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Abstract 17 

Bioleaching (or microbial leaching) is a biohydrometallurgical technology that can be 18 

applied for metal recovery from anthropogenic waste streams. In particular, fly ashes and 19 

bottom ashes of municipal solid waste incineration (MSWI) can be used as a target material 20 

for biomining. Globally, approximately 46 million tonnes of MSWI ashes are produced 21 

annually. Currently landfilled or used as aggregate,  these contain large amounts of marketable 22 

metals,  equivalent to low-grade ores. There is opportunity to recover critical materials as the 23 

circular economy demands, using mesophile, moderately thermophile, and extremophile 24 

microorganisms for bioleaching. A Strengths, Weaknesses, Opportunities and Threats (SWOT) 25 

analysis was developed to assess the potential of this biotechnology to recover critical metals 26 
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from MSWI wastes. Bioleaching has potential as a sustainable technology for resource 27 

recovery and enhanced waste management. However, stakeholders can only reap the full 28 

benefits of bioleaching by addressing both the technical engineering challenges and regulatory 29 

requirements needed to realise and integrated approach to resource use. 30 

 31 
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1. Introduction 35 

Our current patterns of consumption are leading to the exhaustion of planetary resources, 36 

while simultaneously generating pollution and threatening our survival as a species. There is 37 

an urgent need for a change in paradigm in waste management to efficiently recover resources 38 

(energy, metals, nutrients) from waste streams, making industrial and urban processes more 39 

efficient.  According to the recent UN Global Resources Outlook, extractive industries are 40 

responsible for half of the global carbon emissions (Oberle et al., 2019). Resource extraction 41 

and processing caused 90% of biodiversity loss and water stress, which puts a more dangerous 42 

level of pressure on climate and natural life support systems than previously thought. Resources 43 

are being extracted three times faster than in 1970, even though the population has only doubled 44 

in that time, according to the same report.  The United Nations Sustainable Development Goals 45 

(SDG) set a target to achieve sustainable management and efficient use of natural resources by 46 

2030, by decoupling economic growth from resource use and environmental degradation.  This 47 

is to achieved by improved resource efficiency, decreased reliance on raw materials, and 48 

increased recycling to reduce environmental pressure and impact. “Circular economy” and 49 

“zero waste” are buzzwords today, but both goals still look unattainable (Velenturf et al., 2019). 50 
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Metals are valuable raw materials for the global economy, and key components of various 51 

products such as low-carbon energy technologies, electric vehicles, and electronic and 52 

biomedical devices. Large quantities of critical and scarce metals, such as platinum group 53 

metals (PGM), rare earth elements (REE), cobalt, vanadium, selenium, and tellurium are 54 

required for storage and production of renewable energies, catalytic processes, digital 55 

communication, and green technologies (Hofmann et al., 2018; Işıldar et al., 2019). Raw 56 

materials and metals are considered critical when they have high economic importance 57 

combined with an elevated risk of supply, mainly resulting from high production in countries 58 

with poor governance (geopolitical instability), limited material replaceability, and low end-59 

of-life recycling rates (EC, 2017). 60 

Municipal solid waste incineration (MSWI) has been globally adopted for the management 61 

of vast amounts of waste (a global average of 130 tonnes per year) (Joseph et al., 2018), as it 62 

allows energy recovery and reduction in the volume of waste sent to landfill. However, the 63 

incineration of municipal solid waste destroys technical value given that once the energy value 64 

of waste has been recovered by burning, it is no longer available to the circular economy 65 

(Purnell, 2019). Coarse metals (>2mm) remaining in fly ashes and bottom ashes are typically 66 

recovered, and the residual fraction is recycled as construction material. However, low but 67 

significant quantities of high-tech, high-value metals remain in the residual material. Estimated 68 

annual flows of these high-value metals are in the order of tens of kg and a total content 69 

comparable to low-grade active mines (Funari et al., 2015). The potential for urban mining and 70 

recovery of secondary resources from MSWI residues is, therefore, promising as a way of 71 

closing the loop within a circular economy (Simon and Holm, 2018). 72 

Given the low metal concentrations, economic feasibility is dependent on using low cost, 73 

sustainable technologies, such as bioleaching. Bioleaching is commercially used for the 74 

recovery of metals from low and waste grade ores, in particular for copper (Gomes et al., 2018). 75 
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These ores would typically be uneconomic to process using conventional comminution-76 

concentration-flotation routes.  Bioleaching uses microorganisms isolated from natural settings 77 

(e.g. extreme environments, acid mine drainage) to generate mineral or organic acid (as 78 

metabolites) and improve metal solubility by enzymatic reactions. Bioleaching can be 79 

performed by direct contact (primary bioleaching) and by indirect leaching (or secondary 80 

bioleaching). The latter only uses the acid produced by bacteria to recover metals without a 81 

direct inoculation. This approach may be best suited in some circumstances, e.g. for alkaline 82 

wastes where the conditions are not favourable for the survival of the typically acidophilic 83 

bacteria However, both approaches are acknowledged to lessen environmental and economic 84 

drawbacks during treatment of anthropogenic waste, compared to using mineral acids (Funari 85 

et al., 2017). 86 

This paper aims to assess opportunities and limitations associated with bioleaching of low-87 

grade wastes for metal recovery, in the context of the circular economy. It is beyond the scope 88 

of this study to provide a comprehensive review of the latest developments of bioleaching. In 89 

recent years, there has been an increasing amount of literature on bioleaching, with several 90 

extensive reviews covering the topic (Auerbach et al., 2019; Pollmann et al., 2018; Sethurajan 91 

et al., 2018; Srichandan et al., 2019). Our objectives are to focus on practical aspects and 92 

limitations that remain obstacles for the full implementation of bioleaching as a crucial tool for 93 

the circular economy.  94 

 95 

2. Bioleaching as an alternative for resource recovery from MSWI waste 96 

 97 

Current alternatives used at industrial scale for resource recovery from MSWI fly ashes are 98 

based on acid leaching (e.g. FLUWA process), and washing processes for salt recovery (e.g. 99 

HALOSEP®) (Quina et al., 2018). At lab scale, hydrometallurgical processes for copper and 100 
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zinc recovery (Tang et al., 2018), electrodialytic processes (Kirkelund et al., 2015), and 101 

treatment processes combining leaching, selective extraction and adsorption (Tang et al., 2019) 102 

have shown promising results, but are still at low technology readiness levels (TRL). 103 

A recent review of the different removal techniques for metals from fly ash compared 104 

bioleaching, carrier in pulp method, chemical extraction with different acids, alkaline leachates 105 

and chelating agents, chloride evaporation process, electrodialytic and thermal treatments 106 

(Meer and Nazir, 2018). The authors concluded that the selection of the best process depends 107 

on the type of fly ash and target metal(s), but also of factors like cost, time and energy (Meer 108 

and Nazir, 2018). 109 

Bioleaching of bottom ash (BA) and fly ash (FA) with a mixed culture isolated from a 110 

natural system showed good yields of metal extraction, with more than 90% Zn, Cu, and 10% 111 

Pb removed from FA; while 100% Cu, 80% Zn and 20% Pb were removed from BA samples 112 

(Funari et al., 2019). Bioleaching of bottom ashes with pure cultures Acidithiobacillus 113 

ferrooxidans or Leptospirillum ferrooxidans, or a mixture of Acidithiobacillus thiooxidans and 114 

Acidithiobacillus ferrooxidans in batch tests showed that Al, Cr, Cu, Ni, Mn and the rare earth 115 

elements Ce, La, and Er were significantly more extracted with iron-oxidizing bacteria 116 

compared to abiotic controls (Auerbach et al., 2019). The results are encouraging for industrial 117 

application to recover concentrated metals like Al and Cu, simultaneously reducing the cost of 118 

landfilling the remaining residues. Continuous heap bioleaching at lab scale showed leaching 119 

yields for zinc and copper between 18–53% and 6–44% (Mäkinen et al., 2019), but also 120 

highlighted the need for further optimisation, in particular regarding acid addition and aeration.  121 

Bioleaching using alkaline autochthonous extremophiles isolated from a fly ash landfill site 122 

showed that Alkalibacterium sp. TRTYP6 could recover 52% of Cu (Ramanathan and Ting, 123 

2016). The use of fungi for fly ash bioleaching showed that fungal morphology of Aspergillus 124 
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niger was significantly affected during one-step and two-step bioleaching, with precipitation 125 

of calcium oxalate hydrate crystals at the surface of hyphae (Xu et al., 2014). 126 

Several factors can influence bioleaching efficacy, such as pH, temperature, pulp density, 127 

redox potential, microorganisms or communities involved, particle size, oxygen and iron 128 

concentrations, and wastes mineralogy (Sethurajan et al., 2018). Also, metal bioleaching is 129 

influenced by biomass concentration, metal tolerance of microorganisms, type and amount of 130 

metabolic products released into the medium, contact time, and pretreatment (e.g. heating) and 131 

has to be assessed case by case (Pollmann et al., 2018). Nevertheless, bioleaching can be a 132 

flexible and environmentally friendly alternative for conventional processes, as it allows the 133 

recovery of valuable resources, but can also reduce the toxicity of the waste for further reuse 134 

in other applications (e.g. aggregate materials) (Auerbach et al., 2019).  135 

3. SWOT analysis 136 

Strengths, Weaknesses, Opportunities, and Threats (SWOT) analysis is a framework 137 

technique used in business to facilitate the development of a sustainable market niche by 138 

uncovering new outlooks and identifying problems that would hinder progress (Miller, 2007). 139 

Table 1 summarises a SWOT analysis for the use of bioleaching for metal recovery from MSWI 140 

fly ashes and bottom ashes. 141 

 142 

  143 
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Table 1. Strengths, Weaknesses, Opportunity and Threats (SWOT) analysis for 144 

bioleaching for resource recovery from MSWI residues. 145 

Strengths Weaknesses 

- Lower environmental footprint (avoids 

strong mineral acids used in 

hydrometallurgy methods, lower energy 

consumption) 

- Not labour intensive 

- Different microorganisms (fungi, 

isolate/mixed acidophilic/alkaline 

bacteria) can be used for bioleaching 

- Bioleaching can be achieved in one-

step, two-step and spent medium-step 

- Minimal investment and low operating 

costs compared with hydrometallurgy 

methods 

- Can be performed in situ 

- Technology readiness level 9 for 

primary ores 

- Can be used to reduce contamination of 

wastes/biostabilization 

- Depends on quantities/concentrations of 

metals in wastes 

- Presents slow dissolution kinetics and 

low metal leaching yield  

- Heap bioleaching can be space 

demanding 

- Adaptation of microorganisms to waste 

materials is critical 

- Alkaline wastes are not favourable to 

the growth of acidophile bacteria 

- More data on alkaline bioleaching are 

needed 

- Not fully reproducible, as it depends on 

the feedstock material 

- Inhibitory layers hinder cell-mineral 

interaction (passivation effects) 

- Lack of research dedicated to process 

development and reactor design 

- No pilot-scale applications for 

anthropogenic streams such as FA and 

BA from MSWI 

Opportunities Threats 

- Recovery of metals from low-grade ores 

and wastes can be a potential offset for 

remediation and operation costs in both 

operating and legacy sites  

- Development and use of 

bioelectrochemical systems for energy 

production and metal recovery 

- Minimise the environmental impacts of 

raw materials extraction 

- Fine-tuned bioleaching to enhance 

selectivity to targeted metals 

- Accelerate carbonation and carbon 

sequestration using microorganisms 

- Hight volatility of markets and metal 

prices 

- Low cost of waste disposal in landfill  

- Low mineral extraction costs 

(“mineralogical barrier”) 

- No alternatives for the downstream 

processing of excessive biomass 

produced 

- Lack of satisfactory coverage for 

substrate materials and inocula 

- Lack of work practices may lead to poor 

reproducibility 

- Higher bioavailability of potentially 

toxic metals 

 146 

  147 
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3.1 Strengths 148 

Bioleaching is a technology considered environmentally friendly, for being less aggressive 149 

(lower use of concentrated acids/bases) and energy-intensive than traditional 150 

hydrometallurgy methods. It can be performed in situ, as heap bioleaching, with minimal 151 

investment, and low operating costs. The process is not labour-intensive since only a few 152 

process parameters need essential monitoring and control.  Unskilled operators can perform 153 

the key maintenance operations with minimal risks (e.g., no use of strong acids like 154 

hydrofluoric acid), including the manipulation of bacterial matter.  MSWI bioleaching 155 

bacteria show low biological hazard and risk of contamination, with no identified risks to 156 

humans, especially those cultures isolated from natural systems of well-known 157 

characteristics. Moreover, bioleaching combines traditional hydrometallurgical methods 158 

effortlessly and in a cost-effective manner, because it does not require highly sophisticated 159 

monitoring and control instruments, the implementation of which can be expensive. Pure 160 

bacterial cultures, mixed (acidophilic or alkaline) bacteria, archaea, fungi, algae and plants 161 

metabolites can be used for bioleaching of different metal-bearing wastes. The bioleaching 162 

process can be achieved by one-step, two-step and spent medium-step, both in batch or 163 

continuous modes and showed promising results on the extraction of several metals (Ni, Co, 164 

Mo, V, Fe, Zn, Cu, Cr, Cd, W, Pb and Mn) (Srichandan et al., 2019). Metal extraction takes 165 

place directly by electron supply (e.g. oxidation or reduction reactions) or indirectly by 166 

metabolic products of the microorganisms (inorganic or organic acids or excretion of 167 

complexing agents) (Auerbach et al., 2019). Bioleaching is a fully developed technology 168 

(TRL 9 for primary ores), and has been used at industrial level since 1960 for extraction of 169 

copper from sulphide ores. Currently, approximately 20% of the worldwide Cu is extracted 170 

using bioleaching (Latorre et al., 2016). Bioleaching can reduce contamination of wastes, 171 

contributing to their biostabilization and can be used to extract metals from ores or 172 
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secondary wastes that are too low grade and therefore uneconomic to processing, using 173 

hydrometallurgical or pyrometallurgical methods.  174 

3.2. Weaknesses 175 

For further implementation of bioleaching as a technology for the circular economy, there 176 

is a need to improve process dissolution kinetics and metal leaching yields. Currently, 177 

bioleaching is slower than traditional extraction methods. Dissolution kinetics can be 178 

accelerated by optimisation of process parameters such as pre-treatments, reaction time, pH, 179 

temperature, mass transfer rate, nutrient requirements, pulp density, and particle size. Further 180 

developments in understanding the biotic factors controlling the inhibitory effects of pulp 181 

density on metal extraction are needed (Valix, 2017). Both single-stage, multistage, batch, and 182 

continuous stirred tank reactors can be developed and tested. To facilitate implementation on 183 

waste matrices, there is also a need to assess the process efficiency in larger, commercial 184 

relevant scale reactors, whilst focusing on process development and reactor design.  185 

Fine-tuned processes assisted with microorganisms do exist, leading to the production of 186 

engineered inocula tailored to the target material and capable of high metal tolerance and 187 

improved selectivity towards the metals wanted as secondary resource (especially Cu, Co, Mn, 188 

V, Zn). The growing use of indigenous bacteria adapted to the environments instead of well-189 

known strains from lab collections may overcome some of the limitations in terms of 190 

processing times (Pollmann et al., 2018). However, it will be challenging to use bioleaching 191 

for recovery of just one element, as further separation and purification techniques will be 192 

needed for circularity.  The use of mixed culture instead of pure strain shows remarkable 193 

synergistic effects, especially against heavy metals that inhibit biomass growth, although pure 194 

cultures might demonstrate improved selectivity for the recovery of individual or groups of 195 

elements. The use of iron and sulphur (for acidophilic bioleaching) or organic sources (fungal 196 

and cyanogenic bioleaching) might increase bioleaching costs, as well as the need to add acid 197 
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to keep the medium pH low (Srichandan et al., 2019). Adaptation of microorganisms to the 198 

waste materials can be critical, primarily due to heterogeneous feedstock composition, high 199 

buffering, and passivation effects. Alkaline wastes like MSWI ashes are unfavourable for 200 

bioleaching using acidophile cultures, so more data on alkaline bioleaching are needed other 201 

than fungal bioleaching, which showed limited performances in terms of metal yield, 202 

biosorption capacity, and volumes of biomass produced (Luo et al., 2019). Controlling the 203 

formation of inhibitory layers may overcome cell growth disruption and decrease metal 204 

extraction where a reasonable trade-off between microbial community succession and their 205 

energy types metabolisms can be maintained. 206 

Regarding microbial development, there is also a need to better understand partnering of 207 

organisms and cell adaptation to the toxic effects of not only metals, but also toxic organic 208 

contaminants in the wastes (e.g. polychlorinated dibenzo-p-dioxins) (Valix, 2017). Metal 209 

separation from the bio-leachate also demands cost-effective and selective processes to recover 210 

metal ions. A major challenge is the recovery of low concentrations of metals from large 211 

volumes of dilute leachates (Pollmann et al., 2018). 212 

3.3. Opportunities 213 

Bioleaching has potential to recover metals from low-grade ores and wastes, but also to 214 

offset remediation (legacy sites) and operation costs by valorising wastes. This can also 215 

contribute to minimising the environmental impacts of raw materials extraction as potentially 216 

toxic elements are not discharged to the environment, but recovered for the circular economy. 217 

The importance of resource recovery in reducing carbon emissions could receive increased 218 

attention and should be leveraged to support the development of bioleaching. It can be expected 219 

that the growing demand for hi-tech elements driven by development and uptake of renewable 220 

energy technologies, will further promote research on bioleaching for metal recovery from 221 

wastes (Pollmann et al., 2018). Similarly, resource recovery will play a key role in securing the 222 
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future availability of critical metals, and further investment in recovery technologies that have 223 

a high potential for implementation in multi-step processes for cost-effective mineral 224 

beneficiation, is likely. 225 

Further opportunities reside in fine-tuned bioleaching to enhance selectivity to targeted 226 

metals, especially critical raw materials. Extension of bioleaching methods from two steps to 227 

three and four steps could mitigate the bacteriostatic effects of waste (Valix, 2017). Another 228 

area of development is accelerated carbonation and carbon sequestration in alkaline wastes 229 

using microorganisms (Mayes et al., 2018). Recent advances in microbial electrochemical 230 

technologies for energy production metal recovery are also promising (Huang et al., 2019; 231 

Pollmann et al., 2018). Similarly, reductive bioleaching of oxidised ores and urban biomining 232 

of electronic wastes (Sethurajan et al., 2018) can promote further research and implementation 233 

of bioleaching in municipal solid waste incineration residues.  234 

3.4. Threats 235 

Bioleaching efficacy can be compromised by the release of potentially toxic metals from 236 

wastes, which may affect the microbes used in bioleaching. Adaptation of microorganisms is 237 

critical for higher effectiveness of this biotechnology. The current lack of work practices, 238 

especially for wastes at pilot scale, may lead to poor reproducibility of metal recoveries in 239 

different matrices. Further research is needed to satisfactory cover more substrate materials and 240 

inocula. There is also a need to assess the downstream processing in case where excessive 241 

biomass is produced in the process. 242 

The major threats for the implementation of bioleaching are statutory and financial factors, 243 

such as the volatility of markets and metal prices, currently low mineral extraction costs 244 

(“mineralogical barrier”), and the current low cost of landfill disposal; all of which are not 245 

favourable to resource recovery. Finally, the possibility of biological hazards needs accurate 246 
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assessment at the prototype phase via standardised ecotoxicity tests that still have to be fully 247 

developed and should adapt to the proposed technologies. 248 

 249 

4. Concluding remarks 250 

Bioleaching allows recovery of critical resources from MSWI residues, such as fly ashes 251 

and bottom ashes, and in this paper, we have identified the Strengths, Weaknesses, 252 

Opportunities, and Threats associated with this biotechnology. Bioleaching is a promising 253 

approach for the recovery of metals, in particular critical raw materials, from wastes. 254 

However, further developments are still needed to enable sustainable and commercial 255 

application to residues from municipal solid waste incineration, to enable scale-up and 256 

demonstration of the commercial value. Advances in reactor design and demonstration at 257 

commercially relevant scales are critical to the adoption of this biotechnology. Techno-258 

economic analysis, life cycle assessment (LCA), life cycle sustainability assessment (LCSA) 259 

are tools that can be used to establish and develop the application of bioleaching for resource 260 

recovery from wastes. 261 

The full implementation of new technologies for resource recovery, such as bioleaching, 262 

needs an integrated policy and regulatory framework at all levels – local, regional, national, 263 

and international, not just scientific and technical advances. The need for regulatory, 264 

economic, and fiscal instruments to enforce and incentivise resource recovery is pressing. 265 

Some of these instruments might include providing a buffer against price volatility for 266 

recovered materials and metals; supporting markets in recyclates; whilst simultaneously 267 

investing in research and development and advancing technology readiness levels. Further 268 

investment in infrastructure and supply chains to enable resource recovery is also required.  269 

Finally, good coverage of testing for suitable microorganisms and heterogeneous substrate 270 

materials is essential to fill the existing knowledge gaps and feasibility uncertainties for 271 
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alkaline waste.  Increasing environmental awareness, as well as limitations of traditional 272 

methods for complex materials with low metal content, will expand the development and 273 

application of bioleaching for primary ores. The potential amount of resources, in particular, 274 

critical raw materials such as metals, that can be recovered are relevant and can contribute to 275 

more sustainable waste management practices, whilst simultaneously avoiding unnecessary 276 

raw resource extraction and associated environmental impacts. 277 
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