TITLE

Mediterranean diet adherence and cognitive function in older, UK adults: The EPIC-Norfolk study

AUTHORS

Oliver M Shannon, Blossom CM Stephan, Antoneta Granic, Marleen Lentjes, Shabina Hayat, Angela Mulligan, Carol Brayne, Kay-Tee Khaw, Rafe Bundy, Sarah Aldred, Michael Hornberger, Stella-Maria Paddick, Graciela Muniz-Tererra, Anne-Marie Minihane, John C Mathers, and Mario Siervo

AFFILIATIONS

- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Leech Building, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK (OMS, JCM, MS)
- Institute of Health and Society and Newcastle University Institute of Ageing, Newcastle University, Biomedical Research Building, Campus of Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK (BCMS, AG)
- 3. Department of Public Health & Primary Care, University of Cambridge, Worts Causeway, Cambridge, CB1 8RN, UK (ML, SH, AM, CB)
- School of Medical Sciences and Health, Örebro University, Campus USÖ, 701 82
 Örebro, Sweden (ML)
- Clinical Gerontology Unit, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 2QQ, UK (KTK)
- 6. Department of Nutrition and Preventive Medicine, Norwich Medical School, University of East Anglia (UEA), Norwich, UK (RB, A-MM)

- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK (SA)
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK (MH)
- 9. Northumbria Healthcare NHS Foundation Trust, North Tyneside General Hospital and Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK (S-MP)
- 10. Centre for Dementia Prevention, Centre for Clinical, Brain Sciences, University of Edinburgh, Edinburgh, UK (GM-T)
- School of Life Sciences, The University of Nottingham Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, UK (MS)

CORRESPONDING AUTHOR:

Name: Dr. Oliver Shannon

Mailing address: Room 2.050, William Leech Building, Medical School, Newcastle University, Newcastle-upon-Tyne, NE2 4HH

Telephone number: 0191 208 1140

Email: Oliver.Shannon@Newcastle.ac.uk

SOURCES OF SUPPORT

This research was supported by the Alzheimer's Research UK Prevention and Risk Reduction Fund (ARUK-PRRF2017-006). The funders had no role in the study design, data collection, analysis and interpretation, the preparation of the manuscript, or in the decision to submit the article for publication.

RUNNING HEAD

Mediterranean diet adherence and cognitive function

NAMES FOR PUBMED INDEXING

Shannon, Stephan, Granic, Lentjes, Hayat, Mulligan, Brayne, Khaw, Bundy, Aldred, Hornberger, Paddick, Muniz-Tererra, Minihane, Mathers, Siervo

ABBREVIATIONS:

BMI Body mass index

BP Blood pressure

CANTAB-PAL Paired Associates Learning Test from the Cambridge Neuropsychological Test Battery

CI Confidence interval

CVD Cardiovascular disease

EPIC-Norfolk European Prospective Investigation of Cancer, Norfolk

FFQ Food frequency questionnaire

HC Health Check

HVLT Hopkins Verbal Learning test

MEDAS Mediterranean Diet Adherence Screener

MedDiet Mediterranean dietary pattern

MRC-CFAS Medical Research Council Cognitive Function and Ageing study

OR Odds Ratio

PREDIMED Prevención con Dieta Mediterránea

RCT Randomised controlled trial

SE Standard error

SF-EMSE Short-form extended mental state exam

- UK United Kingdom
- VST Visual Sensitivity Test

1 ABSTRACT

2 Background

In Mediterranean countries, adherence to a traditional Mediterranean dietary pattern (MedDiet)
is associated with better cognitive function and reduced dementia risk. It is unclear if similar
benefits exist in non-Mediterranean regions.

6

7 **Objective**

8 To examine associations between MedDiet adherence and cognitive function in an older, UK
9 population. To investigate whether associations differed between individuals with high versus
10 low cardiovascular disease (CVD) risk.

11

12 Design

13 We conducted an analysis in 8009 older individuals with dietary data at Health Check 1 (1993-14 1997) and cognitive function data at Health Check 3 (2006-2011) of the European Prospective 15 Investigation of Cancer, Norfolk (EPIC-Norfolk). Associations were explored between 16 MedDiet adherence and global and domain specific cognitive test scores and risk of poor 17 cognitive performance in the entire cohort, and when stratified according to CVD risk status. 18 Lower scores reflect better performance for tests of global cognition and verbal episodic 19 memory (due to data transformations) and processing speed (indicating faster reaction time), 20 whilst higher scores for other tests reflect better performance.

21

22 **Results**

Higher MedDiet adherence defined by the Pyramid MedDiet score was associated with better global cognition ($\beta\pm$ SE=-0.012±0.002; *P*<0.001), verbal episodic memory ($\beta\pm$ SE=-0.009±0.002; *P*<0.001), and simple processing speed ($\beta\pm$ SE=-0.002±0.001; *P*=0.013). Lower 26 risk of poor verbal episodic memory (OR(95%CI)=0.784 (0.641,0.959); P=0.018), complex 27 processing speed (OR(95%CI)=0.739 (0.601,0.907); P=0.004), and prospective memory 28 (OR(95%CI)=0.841 (0.724,0.977); P=0.023) was also observed for the highest versus lowest 29 Pyramid MedDiet tertiles. The effect of a one-point increase in Pyramid score on global 30 cognitive function was equivalent to 1.7 fewer years of cognitive ageing. MedDiet adherence 31 defined by the MEDAS score (mapped using both binary and continuous scoring) showed 32 similar, albeit less consistent, associations. In stratified analyses, associations were evident in 33 individuals at higher CVD risk only (P < 0.05).

34

35 Conclusions

36 Higher adherence to the MedDiet is associated with better cognitive function and lower risk of 37 poor cognition in older, UK adults. This evidence underpins the development of interventions 38 to enhance MedDiet adherence, particularly in individuals at higher CVD risk, aiming to 39 reduce the risk of age-related cognitive decline in non-Mediterranean populations.

40

41

42 KEYWORDS

43 Mediterranean diet, cognitive function, cognitive decline, dementia risk, cardiovascular

44 health, healthy ageing

45

- 46
- 47
- 48

49

- 50
- 51

52 INTRODUCTION

53 The traditional Mediterranean diet (MedDiet) is characterised by a high intake of plant-based foods including fruits, vegetables, legumes, nuts and seeds, and whole grains. Olive oil is used 54 55 as the principal cooking fat, and added liberally to salads, bread, and pasta. Additionally, fish 56 and red wine are consumed in moderate amounts, whilst red meat, confectionery, and processed 57 foods are consumed infrequently (1,2). Higher adherence to a MedDiet has been associated 58 with numerous beneficial health outcomes, particularly in older people, including lower risk of 59 cardiovascular diseases (CVD) (3), type II diabetes (4), and some cancers (5,6). Further, 60 observational studies indicate a protective effect of the MedDiet against dementia, including 61 Alzheimer's disease (7,8), whilst results from the Navarra and Barcelona cohorts of the 62 Prevención con Dieta Mediterránea (PREDIMED) randomised controlled trial (RCT) have 63 demonstrated beneficial effects of a MedDiet intervention supplemented with additional nuts 64 or extra virgin olive oil on cognitive function (9–11). Outside the Mediterranean basin, few studies have explored associations between MedDiet adherence and cognitive function and 65 66 dementia incidence (12). Existing evidence is mixed, with some studies reporting positive associations (13–15) and other studies reporting no significant associations between MedDiet 67 68 adherence and cognitive function (16–18). In the United Kingdom (UK) specifically, there is a paucity of research exploring associations between MedDiet adherence and cognitive 69 70 function, with evidence limited to a cross-sectional study of participants from the 1936 Lothian 71 Birth Cohort, which reported greater verbal ability with higher adherence to an *a posteriori* defined "Mediterranean-style" diet (19). A later analysis of this dataset also showed reduced 72 brain atrophy with higher MedDiet adherence (20). Large scale, prospective analyses 73 74 exploring associations between MedDiet adherence and cognitive function with more comprehensive measures of exposure to the MedDiet are warranted. 75

76

Poor cardiovascular health is associated with higher risk of cognitive impairment and 77 78 dementia (21–23), which has been related to systemic cardio-metabolic (e.g. cerebral hypo-79 perfusion, dysfunctional glucose and lipid metabolism) and brain-specific (e.g. reduced β-80 amyloid clearance, elevated inflammation and oxidative stress, reduced neurogenesis and 81 neuronal survival, greater white matter hyper-intensities) mechanisms (24). By protecting 82 against one or more of these adverse effects, the MedDiet is likely to be particularly effective 83 at reducing the risk of poor cognitive performance in individuals with higher CVD risk but 84 this hypothesis has not been tested.

85

In the present study, we used data from the Norfolk Cohort of the European Prospective Investigation of Cancer and Nutrition (EPIC-Norfolk) to investigate longitudinal associations between MedDiet adherence and cognitive function/risk of poor cognitive performance in an older UK population. We tested whether associations between adherence to this dietary pattern and the risk of poor cognitive performance differed between individuals at lower and higher CVD risk.

92

93 SUBJECTS AND METHODS

94 Study population and design

95 EPIC is an ongoing, multi-centre prospective cohort study, exploring the relationship between 96 diet and disease across 10 European countries (25). EPIC-Norfolk is one of two UK centres 97 within EPIC. The design and methods of this study have been described comprehensively 98 elsewhere (26). Briefly, EPIC-Norfolk included a baseline health examination (Health Check 99 1; HC1) of 25,639 men and women aged 40-79 years, recruited from East Anglia in England 100 via general practice registers, between 1993 and 1997. Participants were invited to a follow 101 up assessment (Health Check 2; HC2) between 1998 and 2000, which included those tests undertaken at baseline plus further variables such as bone health. Health Check 3 (HC3) was
conducted between 2006 and 2011 in 8623 participants (aged 48–92 years at that time), to
investigate conditions relevant to ageing, including cognitive function, loss of mobility, and
loss of vision (27). Cognitive data were collected for 8585 individuals at HC3 (28).

106

The present study evaluated associations between MedDiet adherence, quantified using food frequency questionnaire (FFQ) data obtained at HC1, and cognitive function, as determined via a comprehensive cognitive testing battery at HC3. This analysis involved 8009 individuals who completed both dietary assessments at HC1 and cognitive measures at HC3 (**Supplementary Figure 1**). The study was approved by the Norwich District Ethics Committee (HC1 & HC2: 98CN01; HC3: 05/Q0101/191) and East Norfolk and Waveney NHS Research Governance Committee (2005EC07L). Participants provided informed consent.

114

115 Dietary assessment and calculation of Mediterranean diet scores

116 A 130-item, semi-quantitative FFQ, extensively used and validated in previous research (29-117 31), was used to evaluate the habitual diet of participants over the past year at HC1. Food 118 intake values were calculated from the FFQ data using validated computer programs (32,33), 119 and foods were grouped into relevant categories which were used for the creation of the various 120 MedDiet scores (e.g. total fruit intake or total vegetable intake). Dietary data were energy-121 adjusted (2000 kcal/d (8.4 MJ/d)) via the residuals method (34) to allow evaluation of diet 122 quality independent of diet quantity (35). Briefly, log transformed dietary variables were used 123 to create residuals with more consistent variance across the levels of total energy intake. Values 124 were back-transformed by adding the residuals to a constant, equivalent to the predicted value for the log of 2000 kcal, and then calculating the antilog. Three MedDiet scores were then 125 126 calculated as measures of adherence to the MedDiet pattern. These were: i) the MEDAS score 127 (categorical), ii) the MEDAS Continuous score, and iii) the MedDiet pyramid (Pyramid) score. 128 The MEDAS score is a 14-point score used to track MedDiet adherence in the aforementioned 129 PREDIMED RCT (3). As recently validated for use in UK populations (36), the standard 130 MEDAS score was calculated with participants allocated 0 or 1 points per food item depending on whether they achieved the cut off for the dietary target. The MEDAS Continuous score was 131 132 developed as part of the current analysis to provide greater sensitivity. It was calculated using 133 the same dietary targets as the standard MEDAS score but with points allocated on a continuous 134 basis (i.e. between 0 and 1) depending on closeness to the dietary target. The Pyramid score 135 is a 15-point scoring system proposed by the Mediterranean Diet Foundation (1) that was used 136 previously for the EPIC-Norfolk cohort by Tong et al. (35). It is also coded on a continuous 137 basis. Details of the calculations used for each of the MedDiet scores are provided in 138 Supplementary Tables 1 and 2.

139

140 Assessment of cognitive function

141 Tests were selected to cover a range of different cognitive domains (37). The number of 142 participants for whom both dietary data at HC1 and cognitive test data for each specific 143 outcome at HC3 are available is as follows:

144 1) Global cognitive function: Total score from a shortened version of the Extended
145 Mental State Exam (SF-EMSE; n = 7917).

146 2) Verbal episodic memory: Total score from the Hopkins Verbal Learning test (HVLT;
 147 n = 7589).

Non-verbal episodic memory: The first trial memory score of the Paired Associates
 Learning Test from the Cambridge Neuropsychological Test Battery (CANTAB-PAL;
 n = 6970).

151	4) Attention: Accuracy score (number of targets correctly identified – number missed)
152	from the Letter Cancellation Task, as applied in the Medical Research Council
153	Cognitive Function and Ageing study (MRC-CFAS; n = 7847).
154	5) Simple processing speed: Mean response time of the Simple Visual Sensitivity Test
155	(VST; n = 6685).
156	6) Complex processing speed and visual deficits contributing to cognitive
157	impairment: Mean response time of the Complex VST ($n = 6685$).
158	7) Memory: Pass or fail of the Prospective Memory Test, as also described in the MRC-
159	CFAS ($n = 7841$).
160	
161	Assessment of other covariates
162	At each health check, a self-administered questionnaire was used to capture participant
163	demographics, lifestyle, and health characteristics. Physical activity over the past year was
164	determined via a simple, validated questionnaire, and a four-level index which was validated
165	against heart rate was derived (38). Trained nurses measured the weight, height, waist
166	circumference and blood pressure (BP) of participants, and obtained blood samples.
167	
168	Statistical analyses
169	All statistical analyses were conducted using SPSS version 24. Statistical significance was
170	defined as $P < 0.05$.
171	
172	Cohort characteristics
173	Cohort characteristics at HC1 were compared between low, medium and high MedDiet

adherence groups for each MedDiet score using the Kruskal-Wallis test for ordered and non-

175 normally distributed continuous variables and the chi squared test for nominal variables.

176 Mediterranean diet adherence and cognitive function

177 Linear regression was used to investigate associations between MedDiet adherence at HC1 and cognitive function at HC3, with adjustment for relevant covariates (see statistical models). 178 179 Scores for the SF-EMSE and HVLT were negatively skewed, and therefore transformed 180 variables were derived and used for subsequent analyses as NEWVARIABLE = log_{10} (K – X), 181 where NEWVARIABLE is the new variable name, K is equal to the maximum test score +1, and X is equal to the untransformed score. Lower transformed scores on these tests reflect 182 183 better cognitive performance (i.e. greater original scores). VST-Simple and VST-complex 184 scores were log transformed (log_{10}). Lower scores on this test reflect faster processing speed. Untransformed variables were used for the CANTAB-PAL and Letter Cancellation Task, with 185 186 higher scores reflecting better performance. Results are presented as β -coefficients and 187 standard errors (SE). The prospective memory test was not included in the linear regression 188 analyses because it is binary (scored as pass or fail).

189

Mediterranean diet adherence and risk of poor cognitive performance in the whole cohort and when stratified by CVD risk status

Using the same cognitive data, but now categorised into normal and poor performance, associations between MedDiet adherence and risk of poor cognitive performance were explored via logistic regression. Poor performance on any test was defined as a score below the 10th percentile of the population distribution for each of the cognitive tests (28). Because 196 of the population failed the prospective memory task, this was used as the lower cut-point for this outcome.

198

199 Given the well documented associations between poor cardiovascular health and cognitive 200 impairment (21–23), we performed stratified analyses which tested the hypothesis that the effects of MedDiet adherence on risk of poor cognitive performance differed by CVD risk
group. Lower and higher CVD risk was defined as below and above the median QRISK2 score
(which is indicative CVD risk in the next 10 years (39)). Results are presented as odds ratios
(OR) with 95% confidence intervals.

205

206 Statistical models

207 A series of statistical models was used to investigate associations between MedDiet adherence 208 and cognitive function or risk of poor cognitive performance. Models were adjusted for a range 209 of covariates measured at the same point as the dietary exposure. Additional covariates were 210 added to the model as we progressed from Model 1 to Model 4 (i.e., basic to maximal 211 adjustment) as follows: Model 1 adjusted for age, sex, body mass index (BMI), waist 212 circumference, marital status, and employment status; Model 2 adjusted additionally for self-213 reported medical conditions (heart attack, stroke, arrhythmia, diabetes, depression, and other 214 psychological illness), self-reported medication (BP lowering, lipid lowering, steroids, diabetes 215 medication), HDL and LDL cholesterol, triglycerides, smoking status, physical activity status, 216 systolic BP and diastolic BP; Model 3 adjusted additionally for education; and, Model 4 217 adjusted additionally for APOE genotype (presence or absence of the APOE4 allele).

218

219 Missing data

At HC1, covariate data were missing for ≤ 0.5 % of participants for socioeconomic, lifestyle, anthropometric and BP data, ≤ 1.1 % for self-reported medical conditions, ≤ 7.4 % for circulating cholesterol and triglyceride concentrations, and 11.0 % for *APOE* genotype. The missing data were imputed simultaneously using the SPSS multiple imputations procedure. Estimates from 10 datasets were pooled under Rubin's rules in all subsequent analyses, unless otherwise stated.

226 Sensitivity analyses

227 Sensitivity analyses were conducted to test the robustness of associations between MedDiet 228 adherence and cognitive function/poor cognitive performance using dietary data obtained at 229 HC2 instead of HC1. In addition, to assess whether any individual components of the MedDiet drove the beneficial effects observed, we repeated the primary analyses (i.e. maximally 230 231 adjusted linear regression models) in which a significant effect on cognition was observed after 232 removing each MedDiet component from the total score, sequentially. We also conducted a 233 sensitivity analysis in which participants with potentially implausible energy intakes (i.e. over-234 or under-reporters) according to the Goldberg cut offs (40) were excluded from the main 235 analysis. As an alternative method of exploring whether associations between MedDiet 236 adherence and risk of poor cognitive performance differed by CVD risk status, we also 237 performed analyses where we included an interaction term (diet * CVD risk group) in 238 maximally adjusted models. Finally, we explored differences in cohort characteristics between 239 participants with and without complete cognitive testing data, to identify potential issues with 240 selection bias.

241

242 **RESULTS**

243 Cohort characteristics

Baseline participant characteristics are in **Table 1**, with additional details also provided in **Supplementary Table 3**. Participants with high adherence to the MedDiet were less likely to be smokers, and more likely to be female, unmarried, more physically active, and have a higher education status compared with individuals with low MedDiet adherence. In addition, individuals with a high MedDiet adherence were more likely to have lower BMI, waist circumference, systolic and diastolic BP, triglyceride concentrations, and QRISK2 score, and 250 higher HDL-cholesterol concentrations, compared with individuals with low MedDiet 251 adherence (all P < 0.05).

252

253 **INSERT TABLE 1 HERE**

254

255 Associations between MedDiet adherence and cognitive function

256 Associations between MedDiet adherence and cognitive performance are shown in Table 2. 257 In the maximally adjusted linear regression models (model 4), higher MedDiet adherence, as 258 characterised by all three MedDiet scores, was associated with significantly better performance 259 on the SF-EMSE (global cognition; MEDAS: $\beta \pm SE = -0.004 \pm 0.002$, P = 0.018; MEDAS 260 Continuous: $\beta \pm SE = -0.005 \pm 0.002$, P = 0.008; Pyramid: $\beta \pm SE = -0.012 \pm 0.002$, P < 0.001). 261 Higher adherence to the MedDiet (assessed using the Pyramid score) was also associated with significantly better performance on the HVLT (verbal episodic memory; $\beta \pm SE = -0.009 \pm$ 262 263 0.002, P < 0.001) and VST-Simple (simple processing speed; $\beta \pm SE = -0.002 \pm 0.001$, P =264 0.013). To put this into perspective, the effects of a one point increase in MedDiet score (maximum 14-15 points) on SF-EMSE performance, a measure of global cognition, was 265 266 equivalent to 0.57, 0.71, and 1.7 fewer years of ageing for the MEDAS, MEDAS Continuous, and Pyramid scores, respectively (β value for age in maximally adjusted models was 0.007, P 267 268 < 0.001).

269

270 **INSERT TABLE 2 HERE**

271

272 Associations between MedDiet adherence and risk of poor cognitive performance

273 Associations between MedDiet adherence and risk of poor cognitive performance are presented

in Figure 1 and Supplementary Table 4. In maximally adjusted models (model 4), high

275 compared with low MedDiet adherence as defined by the MEDAS Continuous score was 276 associated with reduced risk of poor cognitive performance on the SF-EMSE (global cognition; 277 OR (95% CI) = 0.828 (0.696, 0.985), P = 0.033) and HVLT (verbal episodic memory; OR 278 (95% CI) = 0.797 (0.653, 0.973), P = 0.026). Higher MedDiet adherence defined by the Pyramid score was associated with a lower risk of poor performance in the HVLT (OR (95% 279 280 CI) = 0.784 (0.641, 0.959), P = 0.018), VST-Complex (OR (95% CI) = 0.739 (0.601, 0.907), P = 0.004), and Prospective memory task (Prospective memory; OR (95% CI) = 0.841 (0.724, 281 282 (0.977), P = 0.023). Moderate MedDiet adherence defined by the MEDAS Continuous score 283 and the Pyramid score was also associated with a lower risk of poor performance on the VST-284 Complex task (complex processing speed; MEDAS Continuous: OR (95% CI) = 0.803 (0.660, 285 0.977), *P* = 0.029; Pyramid: OR (95% CI) = 0.820 (0.675, 0.995), *P* = 0.045).

286

287 **INSERT FIGURE 2 HERE**

288

289 When participants were grouped by CVD risk (below and above the median QRISK2 score; 290 Figure 2; Supplementary Table 5), no associations between MedDiet adherence and risk of 291 poor cognitive performance in individuals with low CVD risk emerged. However, in 292 individuals at high CVD risk, MedDiet adherence as defined by the MEDAS Continuous score 293 was associated with lower risk of poor HVLT performance (verbal episodic memory; OR (95% 294 CI) = 0.756 (0.596, 0.958), P = 0.021). Additionally, in high CVD risk individuals, moderate 295 MedDiet adherence defined by the MEDAS Continuous score was associated with lower risk 296 of poor VST-Complex performance (complex processing speed; OR (95% CI) = 0.728 (0.565, 297 (0.939), P = (0.015). Both moderate and high MedDiet adherence defined by the Pyramid score 298 were associated with lower risk of poor VST-Complex performance in individuals with high

299 CVD risk (Moderate: OR (95% CI) = 0.707 (0.551, 0.908), P = 0.007; High: OR (95% CI) =
300 0.667 (0.551, 0.871), P = 0.003).

301

302 **INSERT FIGURE 2 HERE**

303

304 Sensitivity analyses

305 To test the robustness of associations between MedDiet adherence and cognitive function/risk 306 of poor cognitive performance, we used dietary data from HC2 instead of HC1 307 (Supplementary Table 6 and 7). Higher MedDiet adherence defined by one or more of the 308 MedDiet scores was associated with better performance and/or lower risk of poor cognitive 309 performance across several different cognitive tests (P < 0.05; SF-EMSE, VST-Simple, and 310 VST-Complex). However, unexpectedly, performance was worse in the Letter Cancellation 311 task (P < 0.05; attention) with high MedDiet adherence defined by the MEDAS and MEDAS 312 Continuous scores at HC2, and the risk of poor performance on this test was greater with high 313 MedDiet adherence defined by the MEDAS score (P < 0.05).

314

315 In analyses where diet scores were derived after sequential removal of individual MedDiet 316 components, the significant positive associations with cognition remained reasonably stable 317 (Supplementary Table 8 and 9), except for the removal of wine or fruit from the MEDAS 318 score and wine from the MEDAS Continuous score, after which associations with SF-EMSE 319 performance were no longer present (P > 0.05; global cognition). When potential under- and 320 over-reporters were excluded from the analysis according to the Goldberg cut offs, higher 321 MedDiet adherence defined by the Pyramid score remained significantly associated with better 322 SF-EMSE (global cognition), HVLT (verbal episodic memory), and VST-Simple (simple 323 processing speed) performance, and was additionally significantly associated with higher VST-

324 Complex (complex processing speed) performance. Higher MedDiet adherence defined by the 325 MEDAS continuous score was now significantly associated with higher HVLT performance, 326 but associations with SF-EMSE performance were no longer significant. Associations between 327 the MEDAS and SF-EMSE performance were no longer significant (Supplementary Table 10). When we included an interaction term in the model for MedDiet * CVD risk category, 328 329 we found the MedDiet was more effective in individuals with high versus low CVD risk at reducing the risk of poor cognitive performance (Supplementary table 11), confirming the 330 331 results from our stratified analyses. Finally, when we compared cohort characteristics between 332 participants with and without complete cognitive testing data, we found that participants who 333 completed all cognitive tests were overall significantly younger, more physically active, had a 334 higher educational attainment, and lower systolic BP and QRISK2 score (all P < 0.05; 335 Supplementary table 12).

336

337 **DISCUSSION**

Using data on 8009 middle and older aged participants from EPIC-Norfolk, we found that higher adherence to the MedDiet was associated with better cognitive function and lower risk of poor cognitive performance across several cognitive tests/domains. In stratified analyses, higher MedDiet adherence was associated with a lower risk of poor cognitive performance only in individuals at higher CVD risk.

343

344 MedDiet and cognitive function/ risk of poor cognitive performance

This is the first, large-scale prospective study exploring associations between an *a priori* defined MedDiet and cognitive function/poor cognitive performance in a UK population. We found that higher MedDiet adherence defined by one or more MedDiet scores was associated with better global cognition, verbal episodic memory, and simple processing speed, together 349 with a lower risk of poor global cognition, verbal episodic memory, complex processing speed, 350 and prospective memory. To put this into perspective, compared with the effects of age, which 351 is the strongest determinant of cognitive decline (41), a 3 point increase in Pyramid score is 352 equivalent to ~ 5 fewer years of ageing on global cognitive function. These findings are consistent with a recent study conducted in Greece by Anastasiou et al. (42), who reported that 353 354 higher adherence to the Mediterranean lifestyle (encompassing the MedDiet plus physical activity, sleep, and daily activities) reduced risk of low global cognitive function equivalent to 355 356 2.7 fewer years of ageing. Delaying the onset of dementia by two- or five-years would reduce 357 UK dementia prevalence by 19% and 33% by 2050, and result in much lower prevalence of 358 severe dementia (43).

359

360 In a previous, cross-sectional investigation conducted in 882 participants in the Lothian Birth Cohort 1936 study (19), higher adherence to a "Mediterranean-style" diet was associated with 361 362 significantly better verbal ability in maximally adjusted models. Other studies, conducted in 363 non-Mediterranean countries, have shown inconsistent associations, with some investigations reporting positive associations (13-15) and others documenting no significant associations 364 365 between MedDiet adherence and cognitive function (16-18). Potential reasons for these 366 conflicting findings could include differences in MedDiet capture, cognitive tests employed 367 (e.g. varying sensitivity, assessment of different domains), study design (e.g. cross-sectional 368 versus prospective) and follow up duration, and participant groups (e.g. divergent age profiles, 369 healthy versus non-healthy cohorts).

370

In stratified analyses, higher MedDiet adherence was associated with lower risk of poor
cognitive performance only in participants with higher CVD risk. Mechanistically, this could
be related to effects on both the systemic cardiovascular system and brain, including reduced

374 oxidative stress and inflammation (44), improved glucose and lipid metabolism (45), increased 375 nitric oxide bioavailability, improved vascular function and brain perfusion (46,47). These findings have implications for the design of future RCTs, where individuals with higher CVD 376 377 risk may represent a potentially responsive population group in which to study the cognitive benefits of the MedDiet. This is the strategy that has been adopted for the MedEx-UK trial 378 379 (https://clinicaltrials.gov/ct2/show/NCT03673722), which will explore the feasibility and 380 acceptability of a MedDiet and physical activity intervention for dementia risk reduction and 381 will recruit participants with a high QRISK2 score (used routinely in primary care in the UK 382 to establish CVD risk) and subjective memory complaints. Targeting individuals with and 'at-383 risk' cardiovascular profile to improve MedDiet adherence may have a "double benefit", not 384 only by reducing CVD risk (as established in studies such as PREDIMED (3)), but also by 385 improving cognitive function.

386

387 Strengths and limitations

388 Study strengths include the large sample size and the comprehensive assessment of cognitive 389 function using a range of previously validated tests which cover multiple different domains 390 that are affected during the early stages of cognitive decline prior to dementia onset. Moreover, 391 we used a prospective design in which dietary measures were obtained approximately 13 years 392 before the cognitive assessments were made thus reducing the risk of reverse causality. A 393 further strength of this study is that we used two previously published, robustly defined 394 measures of exposure to the MedDiet. In addition, we created a novel derivative of the MEDAS 395 score where we coded intake of foods continuously rather than on a binary basis, which was 396 more sensitive at quantifying individual diet quality and showed stronger links with cognitive 397 outcomes. However, although dietary data were derived from a validated FFQ, this instrument 398 may not provide sufficient detail about the consumption of some foods key to the MedDiet

399 pattern, such as the type and intake of olive oil, consumption of sofrito, and the type of nuts 400 consumed (12). Moreover, the scales we used to evaluate MedDiet adherence do not account 401 for intake of supplements, which may contain several nutrients key to this dietary pattern (e.g. 402 omega-3, 50% of which is obtained from supplements in the UK (48)). Furthermore, for our 403 primary analysis, dietary intake was assessed between 1993-1997, whilst cognitive function 404 was assessed 13 to 18 years later, and it is possible that participants may have altered their diet 405 during this follow up period. Likewise, given cognitive function was only measured at one 406 time point, we were unable to explore associations between MedDiet adherence and cognitive 407 trajectories. In addition, despite adjusting for multiple covariates, our results may have been 408 influenced by unmeasured variables. For example, we did not measure participant IQ, which 409 influences both cognitive performance and dietary choices (19), but we included education as 410 a covariate which, typically, shows good correlation with IQ (49). Finally, it is possible that 411 there is a degree of selection bias in this study, which may limit the generalisability of our 412 findings to the wider population. Indeed, participants with poorer cognition may have decided 413 not to/ were unable to take part in data collection at HC3. Alternatively, these individuals may 414 have only completed a sub-set of tests at this phase. In this regard, it is noteworthy that 415 participants with incomplete cognitive data showed generally poorer health than those who 416 completed all tests. It is difficult to speculate how this may have influenced our results, and 417 future research is warranted to explore the impact of the MedDiet on cognition in different 418 cohorts.

419

420 **Conclusions and implications**

421 This study provides evidence that higher MedDiet adherence is associated with better cognitive 422 function and lower risk of poor cognitive performance in a UK population. In addition, we 423 demonstrated that the MedDiet is particularly associated with lower risk of poor cognitive 424 performance in individuals with higher CVD risk. These results have implications for the 425 development of dietary recommendations to facilitate healthy cognitive ageing. In addition, the 426 findings suggests that individuals with higher CVD risk are a key population group for future 427 RCTs testing lifestyle modifications to improve cognition during ageing.

428

429 ACKNOWLEDGEMENTS

The authors would like to express their gratitude to the participants, General Practitioners and
staff of the EPIC-Norfolk study team. Finally, we would like to thank Alzheimer's Research
UK for funding this research under the project 'Diet, physical activity and dementia risk in
UK adults: Epidemiology and MedEx feasibility study'.

- 434
- 435

436 CONFLICT OF INTEREST STATEMENT

437 All authors declare that they have no conflict of interest.

438

439 AUTHOR CONTRIBUTIONS

This study was designed by BCMS, MS, AMM, and JCM. OS, MS, JCM, AM, ML, RB
calculated Mediterranean diet scores. SH, SMP, and MH helped interpret cognitive data. OS
conducted the statistical analysis, with guidance from MS, JCM, AG, BCMS, ML, and GMT.
OS, MS, and JCM drafted the manuscript. All the authors participated in the interpretation of
the results and critical revision of the manuscript, and approved the final version.

REFERENCES

- Bach-Faig A, Berry EM, Lairon D, Reguant J, Trichopoulou A, Dernini S, Medina FX, Battino M, Belahsen R, Miranda G, et al. Mediterranean diet pyramid today. Science and cultural updates. Public Health Nutr. 2011;14:2274–84.
- Trichopoulou A, Martínez-González MA, Tong TY, Forouhi NG, Khandelwal S, Prabhakaran D, Mozaffarian D, de Lorgeril M. Definitions and potential health benefits of the Mediterranean diet: views from experts around the world. BMC Med. 2014;12:112.
- Estruch R, Ros E, Salas-Salvadó J, Covas M-I, Corella D, Arós F, Gómez-Gracia E, Ruiz-Gutiérrez V, Fiol M, Lapetra J, et al. Primary Prevention of Cardiovascular Disease with a Mediterranean Diet Supplemented with Extra-Virgin Olive Oil or Nuts. N Engl J Med. 2018; 378:e34.
- Salas-Salvadó J, Bulló M, Babio N, Martínez-González MÁ, Ibarrola-Jurado N, Basora J, Estruch R, Covas MI, Corella D, Arós F, et al. Reduction in the Incidence of Type 2 Diabetes With the Mediterranean Diet: Results of the PREDIMED-Reus nutrition intervention randomized trial. Diabetes Care. 2011;34:14–9.
- Toledo E, Salas-Salvadó J, Donat-Vargas C, Buil-Cosiales P, Estruch R, Ros E, Corella D, Fitó M, Hu FB, Arós F, et al. Mediterranean Diet and Invasive Breast Cancer Risk Among Women at High Cardiovascular Risk in the PREDIMED Trial: A Randomized Clinical Trial. JAMA Intern Med. 2015;175:1752–60.
- Schwingshackl L, Schwedhelm C, Galbete C, Hoffmann G. Adherence to Mediterranean Diet and Risk of Cancer: An Updated Systematic Review and Meta-Analysis. Nutrients. 2017;9.
- Scarmeas N, Stern Y, Tang M-X, Mayeux R, Luchsinger JA. Mediterranean diet and risk for Alzheimer's disease. Ann Neurol. 2006;59:912–21.

- Singh B, Parsaik AK, Mielke MM, Erwin PJ, Knopman DS, Petersen RC, Roberts RO. Association of mediterranean diet with mild cognitive impairment and Alzheimer's disease: a systematic review and meta-analysis. J Alzheimers Dis . 2014;39:271–82.
- Martínez-Lapiscina EH, Clavero P, Toledo E, Estruch R, Salas-Salvadó J, Julián BS, Sanchez-Tainta A, Ros E, Valls-Pedret C, Martinez-Gonzalez MÁ. Mediterranean diet improves cognition: the PREDIMED-NAVARRA randomised trial. J Neurol Neurosurg Psychiatry. 2013;jnnp-2012-304792.
- Martínez-Lapiscina EH, Galbete C, Corella D, Toledo E, Buil-Cosiales P, Salas-Salvado J, Ros E, Martinez-Gonzalez MA. Genotype patterns at CLU, CR1, PICALM and APOE, cognition and Mediterranean diet: the PREDIMED-NAVARRA trial. Genes Nutr. 2014;9:393.
- Valls-Pedret C, Sala-Vila A, Serra-Mir M, Corella D, Torre R de la, Martínez-González MÁ, Martínez-Lapiscina EH, Fitó M, Pérez-Heras A, Salas-Salvadó J, et al. Mediterranean Diet and Age-Related Cognitive Decline: A Randomized Clinical Trial. JAMA Intern Med. 2015;175:1094–103.
- Petersson SD, Philippou E. Mediterranean Diet, Cognitive Function, and Dementia: A Systematic Review of the Evidence. Adv Nutr Bethesda Md. 2016;7:889–904.
- Ye X, Scott T, Gao X, Maras JE, Bakun PJ, Tucker KL. Mediterranean diet, healthy eating index 2005, and cognitive function in middle-aged and older Puerto Rican adults. J Acad Nutr Diet. 2013;113:276-281.e1-3.
- Tangney CC, Li H, Wang Y, Barnes L, Schneider JA, Bennett DA, Morris MC. Relation of DASH- and Mediterranean-like dietary patterns to cognitive decline in older persons. Neurology. 2014;83:1410–6.

- 15. Gardener SL, Rainey-Smith SR, Barnes MB, Sohrabi HR, Weinborn M, Lim YY, Harrington K, Taddei K, Gu Y, Rembach A, et al. Dietary patterns and cognitive decline in an Australian study of ageing. Mol Psychiatry. 2015;20:860–6.
- Vercambre M-N, Grodstein F, Berr C, Kang JH. Mediterranean Diet and Cognitive Decline in Women with Cardiovascular Disease or Risk Factors. J Acad Nutr Diet. 2012;112:816–23.
- Samieri C, Grodstein F, Rosner BA, Kang JH, Cook NR, Manson JE, Buring JE, Willett WC, Okereke OI. Mediterranean diet and cognitive function in older age. Epidemiol Camb Mass. 2013;24:490–9.
- Titova OE, Ax E, Brooks SJ, Sjögren P, Cederholm T, Kilander L, Kullberg J, Larsson E-M, Johansson L, Ahlström H, et al. Mediterranean diet habits in older individuals: associations with cognitive functioning and brain volumes. Exp Gerontol. 2013;48:1443–8.
- Corley J, Starr JM, McNeill G, Deary IJ. Do dietary patterns influence cognitive function in old age? Int Psychogeriatr. 2013;25:1393–407.
- Luciano M, Corley J, Cox SR, Valdés Hernández MC, Craig LCA, Dickie DA, Karama S, McNeill GM, Bastin ME, Wardlaw JM, et al. Mediterranean-type diet and brain structural change from 73 to 76 years in a Scottish cohort. Neurology. 2017;88:449–55.
- Knopman D, Boland LL, Mosley T, Howard G, Liao D, Szklo M, McGovern P, Folsom AR, Atherosclerosis Risk in Communities (ARIC) Study Investigators. Cardiovascular risk factors and cognitive decline in middle-aged adults. Neurology. 2001;56:42–8.
- 22. Raz N, Rodrigue KM, Acker JD. Hypertension and the brain: vulnerability of the prefrontal regions and executive functions. Behav Neurosci. 2003;117:1169–80.

- Debette S, Seshadri S, Beiser A, Au R, Himali JJ, Palumbo C, Wolf PA, DeCarli C. Midlife vascular risk factor exposure accelerates structural brain aging and cognitive decline. Neurology. 2011;77:461–8.
- 24. Parletta N, Milte CM, Meyer BJ. Nutritional modulation of cognitive function and mental health. J Nutr Biochem. 2013;24:725–43.
- 25. Riboli E. Nutrition and cancer: background and rationale of the European Prospective Investigation into Cancer and Nutrition (EPIC). Ann Oncol. 1992;3:783–91.
- Day N, Oakes S, Luben R, Khaw KT, Bingham S, Welch A, Wareham N. EPIC-Norfolk: study design and characteristics of the cohort. European Prospective Investigation of Cancer. Br J Cancer. 1999;80 Suppl 1:95–103.
- 27. Hayat SA, Luben R, Keevil VL, Moore S, Dalzell N, Bhaniani A, Khawaja AP, Foster P, Brayne C, Wareham NJ, et al. Cohort Profile: A prospective cohort study of objective physical and cognitive capability and visual health in an ageing population of men and women in Norfolk (EPIC-Norfolk 3). Int J Epidemiol. 2014;43:1063–72.
- 28. Hayat SA, Luben R, Dalzell N, Moore S, Anuj S, Matthews FE, Wareham N, Brayne C, Khaw K-T. Cross Sectional Associations between Socio-Demographic Factors and Cognitive Performance in an Older British Population: The European Investigation of Cancer in Norfolk (EPIC-Norfolk) Study. PLoS One. 2016;11:e0166779.
- 29. Bingham SA, Gill C, Welch A, Cassidy A, Runswick SA, Oakes S, Lubin R, Thurnham DI, Key TJ, Roe L, et al. Validation of dietary assessment methods in the UK arm of EPIC using weighed records, and 24-hour urinary nitrogen and potassium and serum vitamin C and carotenoids as biomarkers. Int J Epidemiol. 1997;26 Suppl 1:S137-151.
- 30. Bingham SA, Welch AA, McTaggart A, Mulligan AA, Runswick SA, Luben R, Oakes S, Khaw KT, Wareham N, Day NE. Nutritional methods in the European Prospective Investigation of Cancer in Norfolk. Public Health Nutr. 2001;4:847–58.

- 31. McKeown NM, Day NE, Welch AA, Runswick SA, Luben RN, Mulligan AA, McTaggart A, Bingham SA. Use of biological markers to validate self-reported dietary intake in a random sample of the European Prospective Investigation into Cancer United Kingdom Norfolk cohort. Am J Clin Nutr. 2001;74:188–96.
- 32. Welch AA, Luben R, Khaw KT, Bingham SA. The CAFE computer program for nutritional analysis of the EPIC-Norfolk food frequency questionnaire and identification of extreme nutrient values. J Hum Nutr Diet. 2005;18:99–116.
- 33. Mulligan AA, Luben RN, Bhaniani A, Parry-Smith DJ, O'Connor L, Khawaja AP, Forouhi NG, Khaw K-T. A new tool for converting food frequency questionnaire data into nutrient and food group values: FETA research methods and availability. BMJ Open. 2014;4:e004503.
- Willett WC, Howe GR, Kushi LH. Adjustment for total energy intake in epidemiologic studies. Am J Clin Nutr. 1997;65:1220S–1228S.
- 35. Tong TYN, Wareham NJ, Khaw K-T, Imamura F, Forouhi NG. Prospective association of the Mediterranean diet with cardiovascular disease incidence and mortality and its population impact in a non-Mediterranean population: the EPIC-Norfolk study. BMC Med. 2016;14:135.
- 36. Papadaki A, Johnson L, Toumpakari Z, England C, Rai M, Toms S, Penfold C, Zazpe I, Martínez-González MA, Feder G. Validation of the English Version of the 14-Item Mediterranean Diet Adherence Screener of the PREDIMED Study, in People at High Cardiovascular Risk in the UK. Nutrients. 2018;10.
- 37. Hayat SA, Luben R, Moore S, Dalzell N, Bhaniani A, Anuj S, Matthews FE, Wareham N, Khaw K-T, Brayne C. Cognitive function in a general population of men and women: a cross sectional study in the European Investigation of Cancer–Norfolk cohort (EPIC-Norfolk). BMC Geriatr. 2014;14:142.

- 38. Wareham NJ, Jakes RW, Rennie KL, Schuit J, Mitchell J, Hennings S, Day NE. Validity and repeatability of a simple index derived from the short physical activity questionnaire used in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Public Health Nutr. 2003;6:407–13.
- Hippisley-Cox J, Coupland C, Vinogradova Y, Robson J, Minhas R, Sheikh A, Brindle
 P. Predicting cardiovascular risk in England and Wales: prospective derivation and validation of QRISK2. BMJ. 2008;336:1475–82.
- 40. Black AE. Critical evaluation of energy intake using the Goldberg cut-off for energy intake:basal metabolic rate. A practical guide to its calculation, use and limitations. Int J Obes Relat Metab Disord J Int Assoc Study Obes. 2000;24:1119–30.
- Deary IJ, Corley J, Gow AJ, Harris SE, Houlihan LM, Marioni RE, Penke L, Rafnsson SB, Starr JM. Age-associated cognitive decline. Br Med Bull. 2009;92:135–52.
- 42. Anastasiou CA, Yannakoulia M, Kontogianni MD, Kosmidis MH, Mamalaki E, Dardiotis E, Hadjigeorgiou G, Sakka P, Tsapanou A, Lykou A, et al. Mediterranean Lifestyle in Relation to Cognitive Health: Results from the HELIAD Study. Nutrients. 2018;10:1557.
- Lewis F, Karlsberg Schaffer, S, Sussex, J, O'Neill, P, Cockcroft, L. The Trajectory of Dementia in the UK – Making a Difference. Off Health Econ. 2014;
- 44. Mena M-P, Sacanella E, Vazquez-Agell M, Morales M, Fitó M, Escoda R, Serrano-Martínez M, Salas-Salvadó J, Benages N, Casas R, et al. Inhibition of circulating immune cell activation: a molecular antiinflammatory effect of the Mediterranean diet. Am J Clin Nutr. 2009;89:248–56.
- 45. Rodríguez-Rejón AI, Castro-Quezada I, Ruano-Rodríguez C, Ruiz-López MD, Sánchez-Villegas A, Toledo E, Artacho R, Estruch R, Salas-Salvadó J, Covas MI, et al. Effect of a Mediterranean Diet Intervention on Dietary Glycemic Load and Dietary Glycemic Index: The PREDIMED Study. J Nutr Metab. 2014: doi: 10.1155/2014/985373.

- 46. Medina-Remón A, Tresserra-Rimbau A, Pons A, Tur JA, Martorell M, Ros E, Buil-Cosiales P, Sacanella E, Covas MI, Corella D, et al. Effects of total dietary polyphenols on plasma nitric oxide and blood pressure in a high cardiovascular risk cohort. The PREDIMED randomized trial. Nutr Metab Cardiovasc Dis. 2015;25:60–7.
- 47. Shannon OM, Stephan BCM, Minihane A-M, Mathers JC, Siervo M. Nitric oxide boosting effects of the Mediterranean diet: A potential mechanism of action. J Gerontol A Biol Sci Med Sci. 2018; doi: 10.1093/gerona/gly087.
- 48. Lentjes MAH. The balance between food and dietary supplements in the general population. Proc Nutr Soc. 2018; doi: 10.1017/S0029665118002525.
- 49. Deary IJ, Johnson W. Intelligence and education: causal perceptions drive analytic processes and therefore conclusions. Int J Epidemiol. 2010;39:1362–9.

Characteristic							literranean diet s						
	Overall MEDAS ¹				MEDAS Continuous					Pyramid			
		Low =	Medium =	High =	Р	Low =	Medium =	High =	Р	Low =	Medium =	High =	Р
		0 - 2	3 - 4	5 - 10		1.31 - 4.97	4.98 - 6.04	6.05 - 10.87		3.47 - 7.53	7.54 - 8.66	8.67-12.93	
		n=2400	n=4198	n=1411		n=2670	n=2670	n=2669		n=2687	n=2673	n=2649	
Age, Years	55.0 (49.4,	54.5 (49.1,	55.3 (49.5,	54.7 (49.5,	0.131	55.5 (49.5,	55.0 (49.3,	54.5 (49.2 -	0.002	54.9 (49.4,	55.4 (49.5,	54.9 (49.3,	0.439
	61.7)	61.6)	61.9)	61.2)		62.4)	61.6)	61.0)		61.7)	61.8)	61.5)	
Sex, % males	44	51	44	34	<0.001	50	45	39	<0.001	54	44	36	<0.001
BMI, kg/m ²	25.4 (23.3,	25.5 (23.4,	25.4 (23.4,	24.9 (23.0,	<0.001	25.6 (23.5,	25.5 (23.5,	25.0 (23.0 -	<0.001	25.6 (23.6,	25.4 (23.4,	25.0 (23.0,	<0.001
(n=7989)	27.7)	28.0)	27.7)	27.2)		27.9)	27.8)	27.4)		28.0)	27.8)	27.4)	
Smoking status, % (n=7983)					<0.001				<0.001				<0.001
Current	9	11	8	6		11	8	7		12	8	6	
Former	39	37	40	40		37	39	41		39	39	39	
Never	52	51	53	54		52	54	52		49	53	55	
Physical activity level, %					0.001				<0.001				0.007
nactive	22	24	22	17		24	23	18		24	23	18	
Moderately inactive	30	29	30	32		29	30	31		28	31	32	
Moderately active	26	26	25	27		27	24	26		26	24	27	
Active	23	21	23	25		21	23	25		22	23	23	
Education status (n=8012)					<0.001				<0.001				<0.001
No education	26	30	26	19		33	26	20		34	26	18	
D-levels	12	12	12	19		12	13	11		12	12	18	
A-levels	44	44	44	46		43	44	46		43	46	44	
	18	44 14	44 18	24		43 13	44 17	23		45	40	25	
Degree	18	14	18			15	17	25			17	23	
Systolic BP, mmHg (n=7993)	130 (120, 142)	130 (121, 142)	131 (120, 143)	129 (119, 141)	0.046	131 (121, 142)	130 (120, 143)	129 (119, 141)	<0.001	132 (121, 142)	131 (120, 142)	129 (119, 142)	0.001
II=7993)	142)	142)	143)	141)		142)	145)	141)		142)	142)	142)	
Diastolic BP, mmHg (n=7993)	81 (74, 88)	81 (74, 88)	81 (74, 88)	80 (73, 87)	0.010	81 (74, 88)	81 (74, 89)	80 (73, 87)	0.001	81 (74, 88)	81 (74, 88)	80 (73, 87)	0.001
HDL cholesterol, mM	1.4 (1.1,	1.3 (1.1,	1.4 (1.1,	1.5 (1.2,	<0.001	1.3 (1.1,	1.4 (1.1,	1.5 (1.2,	<0.001	1.3 (1.1,	1.4 (1.1,	1.4 (1.2,	<0.00
n=7419)	1.7)	1.6)	1.7)	1.8)		1.6)	1.7)	1.8)		1.6)	1.7)	1.8)	
LDL cholesterol, mM	3.8 (3.1,	3.8 (3.2,	3.8 (3.1,	3.7 (3.1,	0.123	3.8 (3.2,	3.8 (3.2,	3.7 (3.1,	0.002	3.9 (3.2,	3.8 (3.1,	3.7 (3.1,	0.001
n=7419)	4.5)	4.5)	4.5)	4.4)		4.5)	4.5)	4.4)		4.5)	4.5)	4.4)	
Fotal triglycerides, mM	1.4 (1.0,	1.5 (1.0,	1.4 (1.0,	1.3 (0.9,	<0.001	1.5 (1.0,	1.5 (1.0,	1.3 (0.9,	<0.001	1.5 (1.0,	1.4 (1.0,	(1.4 (0.9,	<0.00
n=7592)	2.1)	2.2)	2.0)	1.9)		2.2)	2.1)	1.9)		2.2)	2.0)	1.9)	

Table 1 Participant characteristics at baseline (HC1) of the EPIC-Norfolk study according to Mediterranean diet adherence score

ORISK2 score	6.8 (3.0,	73(33	6.8 (3.1,	58(26	< 0.001	7.6 (3.5,	6.8 (3.0,	58(26	< 0.001	77(35	6.7 (3.0.	6.0 (2.7,	<0.001
		7.5 (5.5,	0.0 (0.1,	5.6 (2.0,	201001	· · · ·	· · ·	5.8 (2.0,	20.001	7.7 (5.5,	0.7 (5.0,	0.0(2.7)	201001
(n=7953)	14.0)	14.8)	14.1)	12.6)		15 5)	13.9)	127)		15.4)	13.8)	12.6)	
(11=7)55)	11.0)	11.0)	11.1)	12.0)		15.5)	15.7)	12.7)		13.1)	15.0)	12.0)	

Participant characteristics were compared between low, medium and high Mediterranean diet adherence groups for each score using the Kruskal-Wallis test for ordered and non-normally distributed continuous variables and the chi squared test for nominal variables. Data are presented as median (IQR) for non-normally distributed continuous data and % for nominal/ categorical data. Where measurements were not obtained in the full set of 8009 participants, the exact number of participants for the variable is stated in brackets under the variable name. ¹For the MEDAS score, it was not possible to divide participants into approximately equal sized groups, given a large number of participants achieved the same score. Therefore, participants were split into three groups where all individuals with the same score were categorised together.

h	2
3	Z

Outcome	Cognitive	Model	MEDAS		MEDAS		Pyramid		
	domain				Continuous	D			
	<u> </u>		$\beta + SE$	P	$\beta + SE$	P	$\beta + SE$	P	
SF-EMSE	Global	1	-0.010 ± 0.002	<0.001	-0.013 ± 0.002	< 0.001	-0.021 ± 0.002	< 0.001	
	cognition	2	-0.010 ± 0.002	< 0.001	-0.013 ± 0.002	< 0.001	-0.021 ± 0.002	< 0.001	
		3	-0.004 ± 0.002	0.019	-0.005 ± 0.002	0.008	-0.012 ± 0.002	< 0.001	
		4	-0.004 ± 0.002	0.018	-0.005 ± 0.002	0.008	-0.012 ± 0.002	<0.001	
HVLT	Retrospective	1	-0.008 ± 0.002	<0.001	-0.010 ± 0.002	<0.001	-0.016 ± 0.002	<0.001	
	memory	2	-0.008 ± 0.002	<0.001	-0.010 ± 0.002	< 0.001	-0.016 ± 0.002	<0.001	
	(verbal	3	-0.003 ± 0.002	0.147	-0.004 ± 0.002	0.058	-0.009 ± 0.002	< 0.001	
	episodic memory)	4	-0.003 ± 0.002	0.139	-0.004 ± 0.002	0.054	-0.009 ± 0.002	<0.001	
CANTAB-PAL	Retrospective	1	0.061 ± 0.036	0.096	0.085 ± 0.039	0.029	0.134 ± 0.037	<0.001	
	memory	2	0.065 ± 0.036	0.077	0.083 ± 0.039	0.027	0.137 ± 0.038	<0.001	
	(non-verbal	3	0.002 ± 0.036	0.967	0.007 ± 0.039	0.859	0.041 ± 0.038	0.279	
	episodic memory)	4	0.002 ± 0.036	0.952	0.008 ± 0.039	0.842	0.042 ± 0.038	0.266	
Letter	Attention	1	0.038 ± 0.049	0.442	0.091 ± 0.053	0.084	0.146 ± 0.050	0.004	
Cancellation		2	0.042 ± 0.049	0.390	0.093 ± 0.053	0.074	0.138 ± 0.051	0.007	
		3	-0.013 ± 0.049	0.795	0.024 ± 0.053	0.652	0.055 ± 0.052	0.282	
		4	$\textbf{-0.012} \pm 0.049$	0.801	0.024 ± 0.053	0.647	0.056 ± 0.052	0.276	
VST-Simple	Simple	1	-0.001 ± 0.001	0.082	-0.002 ± 0.001	0.004	-0.003 ± 0.001	<0.001	
· ~ - ~	processing	2	-0.001 ± 0.001	0.071	-0.002 ± 0.001	0.003	-0.003 ± 0.001	< 0.001	
	speed	3	0.000 ± 0.001	0.431	-0.001 ± 0.001	0.082	0.002 ± 0.001	0.014	
	T	4	-0.001 ± 0.001	0.423	-0.001 ± 0.001	0.079	-0.002 ± 0.001	0.013	
VST-Complex	Complex	1	0.000 ± 0.001	0.762	-0.001 ± 0.001	0.078	-0.002 ± 0.001	0.025	
r complex	processing	2	0.000 ± 0.001 0.000 ± 0.001	0.637	-0.001 ± 0.001	0.055	-0.002 ± 0.001	0.014	
	speed	3	0.000 ± 0.001 0.000 ± 0.001	0.947	-0.001 ± 0.001	0.145	-0.001 ± 0.001	0.058	
	speed	4	0.000 ± 0.001 0.000 ± 0.001	0.939	-0.001 ± 0.001	0.143	-0.001 ± 0.001	0.056	

Table 2 Mediterranean diet adherence and cognitive function in the EPIC-Norfolk study

SF-EMSE, Short Form Extended Mini Mental State Exam (n = 7917); HVLT, Hopkins Verbal Learning Test (n = 7589); CANTAB-PAL, Paired Associates Learning Test from the Cambridge Automated Neuropsychological Test Battery (n = 6970); Letter cancellation (n = 7847); VST-Simple, Visual Sensitivity Test, simple version (n = 6685); VST-Complex, Visual Sensitivity Test, complex version (n = 6685). Associations were explored via linear regression. Model 1 was adjusted for age, sex, BMI, waist circumference, marital status, and employment status. Model 2 was additionally adjusted for self-reported medical conditions (heart attack, stroke, arrhythmia, diabetes, depression, and other psychological illness), self-reported medication (BP lowering, lipid lowering, steroids, diabetes medication), HDL and LDL cholesterol, total triglycerides, smoking status, physical activity status, systolic and diastolic BP. Model 3 was additionally adjusted for education. Model 4 was additionally adjusted for *APOE E4* genotype. Scores for the SF-EMSE and HVLT were negatively skewed, and therefore log and reverse score transformed variables were derived. Lower transformed scores on these tests reflect better cognitive performance (i.e. greater original scores). VST-Simple and VST-complex scores were log transformed (log10), whilst untransformed variables were used for the CANTAB-PAL and Letter Cancellation Task. Results are presented as β -coefficients and standard errors (SE).

FIGURE LEGENDS

Figure 1 Mediterranean diet adherence and risk of poor cognitive performance across the SF-EMSE (A; n = 7917), HVLT (B; n = 7589), VST-Complex (C; n = 6685), and Prospective Memory (D; n = 7841) tasks in the EPIC-Norfolk study. Poor performance was defined as a score in the bottom 10 % of the population distribution for each test. Results are expressed as odds ratios plus 95 % confidence intervals for poor cognitive performance with medium and high compared with the lowest tertile of Mediterranean diet adherence (dashed line). Associations were explored via logistic regression. * represents a significantly lower risk of poor cognitive performance compared with the lowest tertile of Mediterranean diet adherence (P < 0.05).

Figure 2 Mediterranean diet adherence and risk of poor cognitive performance in individuals with low (shaded area) and high CVD risk across the HVLT (A; high risk n = 3685, low risk n = 3847) and VST-Complex (B; high risk n = 3207, low risk n = 3424) tasks in the EPIC-Norfolk study. Participants were stratified into low and high risk groups for analysis by the median QRISK2 score. Poor performance was defined as a score in the bottom 10 % of the population distribution for each test. Results are expressed as odds ratios plus 95 % confidence intervals for poor cognitive performance with medium and high compared with the lowest tertile of Mediterranean diet adherence (dashed line). Associations were explored via logistic regression. * represents a significantly lower risk of poor cognitive performance compared with the lowest tertile of Mediterranean diet adherence in the same CVD risk category (P < 0.05).