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A B S T R A C T

In epidemiology, realistic disease dynamics often require Susceptible-Exposed-Infected-Recovered (SEIR)-like
models because they account for incubation periods before individuals become infectious. However, for the
sake of analytical tractability, simpler Susceptible-Infected-Recovered (SIR) models are commonly used, despite
their lack of biological realism. Bridging these models is crucial for accurately estimating parameters and fitting
models to observed data, particularly in population-level studies of infectious diseases.

This paper investigates stochastic versions of the SEIR and SIR frameworks and demonstrates that the SEIR
model can be effectively approximated by a SIR model with time-dependent infection and recovery rates. The
validity of this approximation is supported by the derivation of a large-population Functional Law of Large
Numbers (FLLN) limit and a finite-population concentration inequality.

To apply this approximation in practice, the paper introduces a parameter inference methodology based on
the Dynamic Survival Analysis (DSA) survival analysis framework. This method enables the fitting of the SIR
model to data simulated from the more complex SEIR dynamics, as illustrated through simulated experiments.
1. Introduction

One of the pioneering works in communicable disease modeling is
the seminal paper by Kermack and McKendrick [1]. This paper intro-
duced a foundational epidemiological model that segments the popula-
tion into three compartments: susceptible (𝑆), infected (𝐼), and recov-
ered or removed (𝑅). This model is widely known as the Susceptible-
Infected-Recovered (SIR) model.

Famously, as a special case of their general framework, Kermack
and McKendrick proposed a simple system of Ordinary Differential
Equations (ODEs) (see (2.1) below) to describe the time evolution
of population proportions in each compartment of the SIR model.
However, their classical SIR model is not entirely realistic because it as-
sumes instantaneous infectiousness upon contact, while most infectious
or transmittable diseases have an incubation period.

The incubation period can be incorporated into the SIR framework
by adding an additional compartment, resulting in the Susceptible-
Exposed-Infected-Recovered (SEIR) system, which accounts for exposed
or incubating individuals, as discussed in the next section. Although the
SIR model is mathematically simpler and sometimes more convenient
to analyze, it lacks epidemiological and biological realism. Conversely,
realistic data from infectious disease studies often derive from SEIR-
like models, which present more modeling challenges. Therefore, it
is crucial to understand how to translate between these frameworks
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to avoid biased estimates of relevant parameters while also avoiding
unnecessary computational and conceptual overhead.

The purpose of the current paper is to demonstrate that, in large
populations, a biologically more realistic SEIR model can be approx-
imated by a mathematically more convenient SIR system with time-
varying infection and recovery rates. To formally introduce and justify
this approximation and quantify the approximation error, we consider
a stochastic Markovian setting and provide both a large-population
Functional Law of Large Numbers (FLLN) limit and a finite-population
concentration inequality. Additionally, we present a parameter infer-
ence methodology based on a dynamical survival model to fit the
approximating SIR system to synthetic data generated from a SEIR
framework.

The rest of the paper is structured as follows: In Section 2 we briefly
recall the classical ODE SIR and SEIR frameworks based on differential
equations. In Section 3, we describe the Continuous Time Markov
Chain (CTMC)-based stochastic SEIR model and its large population
description in terms of a system of ODEs from Section 2. In Section 4,
we describe the approximating stochastic SIR model and furnish nec-
essary convergence results. To illustrate our results’ applicability to
data analysis, we describe the so-called DSA-based parameter inference
methods and given some numerical examples in Section 5 before the
concluding remarks in Section 6. Additional mathematical derivations
and the list of acronyms are provided in Appendices A and B.
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2. Deterministic SIR and SEIR models

Consider the classical ODE SIR model of Kermack and McKendrick,
where the proportions of individuals 𝑥𝑆 , 𝑥𝐼 , and 𝑥𝑅 in susceptible,
infected, and removed compartments satisfy the following system of
ODEs:
d
d𝑡
𝑥𝑆 = −𝛽𝑥𝑆𝑥𝐼 ,

d
d𝑡
𝑥𝐼 = 𝛽𝑥𝑆𝑥𝐼 − 𝛾𝑥𝐼 ,

d
d𝑡
𝑥𝑅 = 𝛾𝑥𝐼 ,

(2.1)

with 𝑥𝑆 (0) = 1, 𝑥𝐼 (0) = 𝜌 ∈ (0, 1), 𝑥𝑅(0) = 0, where 𝛽 > 0 is the infection
rate, and 𝛾 ≥ 0 is the recovery rate. To obtain the corresponding
deterministic SEIR system from (2.1) we would simply replace the
middle equation by a pair of equations
d
d𝑡
𝑥𝑆 = −𝛽𝑥𝑆𝑥𝐼 ,

d
d𝑡
𝑥𝐸 = 𝛽𝑥𝑆𝑥𝐼 − 𝛼𝑥𝐸 ,

d
d𝑡
𝑥𝐼 = 𝛼𝑥𝐸 − 𝛾𝑥𝐼 ,

d
d𝑡
𝑥𝑅 = 𝛾𝑥𝐼 ,

(2.2)

where now 𝑥𝐸 represents a proportion of individuals in exposed com-
partment, with additional initial condition 𝑥𝐸 (0) = 0.

Upon elementary manipulations (shown in Appendix A for com-
pleteness), the system of ODEs in (2.1) reduces to the single ODE

− d
d𝑡
𝑥𝑆 = 𝛽𝑥𝑆 (1 − 𝑥𝑆 ) + 𝛾𝑥𝑆 log(𝑥𝑆 ) + 𝜌𝛽𝑥𝑆 , with 𝑥𝑆 (0) = 1. (2.3)

Note that similar reduction is not possible for the system (2.2).
As is well-known in the theory of Markov jump processes, one

may view the systems of ODEs in (2.1) (2.2) as the FLLN limits of
the proportions of individuals in a corresponding stochastic compart-
mental Markovian SIR or SEIR model where the counts of susceptible,
exposed, infected, and removed individuals are assumed to form a
CTMC. Kurtz [2], Kurtz [3], Darling and Norris [4] provide the prob-
abilistic justification for doing so. See also, Andersson and Britton [5,
Chapter 5].

It is remarkable that an equation similar to (2.3) may be also
obtained as a limit of a stochastic epidemic process evolving on a
random graph with the same infection rate 𝛽, recovery rate 𝛾 and
nitial proportion of infected individuals 𝜌. Indeed, let us consider

stochastic SIR epidemic process on a Configuration Model (CM)
andom graph with a Poisson(𝜇) degree distribution, i.e., the degrees are
rawn from a Poisson(𝜇) distribution. Variants of this model have been
tudied in Volkening et al. [6], Decreusefond et al. [7], Janson et al.
8], Khudabukhsh et al. [9], Ball et al. [10]. The monograph by van
er Hofstad [11, Part III, Chapter 7] is a great resource to learn about
M random graphs. In the limit of a large graph, the proportion of
usceptible vertices �̃�𝑆 in the graph can be described as the solution
o the following ODE [12,13]:
d
d𝑡
�̃�𝑆 = 𝛽�̃�𝑆 (1 − �̃�𝑆 ) + �̃� �̃�𝑆 log(�̃�𝑆 ) + 𝜌𝛽�̃�𝑆 , with �̃�𝑆 (0) = 1.0, (2.4)

where 𝛽 = 𝜇𝛽, and �̃� = 𝛽 + 𝛾. Notice the similarity between (2.3) and
(2.4).

By a novel application of the Sellke construction [14], [5, Chapter
2], the limiting proportions of susceptible individuals 𝑥𝑆 , and �̃�𝑆 can
be interpreted as the survival function for the time to infection of an
initially susceptible individual chosen randomly from among a large
population. That is,

𝖯
(

𝑇𝐼 > 𝑡
)

= 𝑥𝑆 (𝑡),

where the random variable 𝑇𝐼 denotes the time to infection of a
andomly chosen initially susceptible individual in the mass-action SIR
2

model in (2.1). This forms the basis for the so called DSA approach [15–
18]. Comparing the survival function �̃�𝑆 in (2.4) with the survival
function 𝑥𝑆 in (2.3) reveals that, as far as the probability laws of times
of infection (and subsequent times of recovery after an exponentially
distributed infectious period) are concerned, an SIR model on an in-
finitely large CM random graph with infection rate 𝛽, and recovery rate
𝛾 is equivalent to a mass-action SIR model with infection rate 𝛽, and
recovery rate �̃�. For further discussion, we refer the reader to [19,20].

The above observation about the equivalence of two seemingly
different approaches prompts us to consider which other frameworks
can be shown to be in some way equivalent to the simple SIR system.
An obvious candidate is the SEIR model.

3. The stochastic SEIR model

The standard mass-action stochastic SEIR model keeps track of
the counts of individuals with different immunological statuses. Let
us define the stochastic process 𝑋(𝑡) ∶= (𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡), 𝑅(𝑡)) where
(𝑡), 𝐸(𝑡), 𝐼(𝑡), and 𝑅(𝑡) are counts of susceptible, exposed, infected,
nd removed individuals respectively. We assume initially there are
susceptible, and 𝑚 infected individuals. Under the stochastic law

f mass-action, each infected individual contacts other individuals in
he population following a Poisson clock with rate 𝛽. If the contacted
ndividual is susceptible, they get infected and move into the 𝐸 com-
artment in which they are infected but not infectious. Individuals
pend an Exponential(𝛼) amount of time in the 𝐸 compartment before
hey move into the 𝐼 compartment at which point they turn infectious.
nce infectious, they attempt to infect susceptible individuals before

ecovering after an infectious period of length distributed according to
n Exponential(𝛾) distribution. We assume 𝑋(𝑡) is a CTMC. The jumps
f the CTMC 𝑋(𝑡) are given by

(𝑋(𝑡 + 𝛥𝑡) −𝑋(𝑡) = (−1, 1, 0, 0) ∣ 𝑋(𝑡)) ≈
𝛽
𝑛
𝑆(𝑡)𝐼(𝑡)𝛥𝑡,

(𝑋(𝑡 + 𝛥𝑡) −𝑋(𝑡) = (0,−1, 1, 0) ∣ 𝑋(𝑡)) ≈ 𝛼𝐸(𝑡)𝛥𝑡,

(𝑋(𝑡 + 𝛥𝑡) −𝑋(𝑡) = (0, 0,−1, 1) ∣ 𝑋(𝑡)) ≈ 𝛾𝐼(𝑡)𝛥𝑡,

(3.5)

or small 𝛥𝑡. Then, the process 𝑋 satisfies the stochastic equations:

𝑆(𝑡) = 𝑆(0) −𝑄1

(

∫

𝑡

0

𝛽
𝑛
𝑆(𝑢)𝐼(𝑢)d𝑢

)

,

𝐸(𝑡) = 𝐸(0) +𝑄1

(

∫

𝑡

0

𝛽
𝑛
𝑆(𝑢)𝐼(𝑢)d𝑢

)

−𝑄2

(

∫

𝑡

0
𝛼𝐸(𝑢)d𝑢

)

,

𝐼(𝑡) = 𝐼(0) +𝑄2

(

∫

𝑡

0
𝛼𝐸(𝑢)d𝑢

)

−𝑄3

(

∫

𝑡

0
𝛾𝐼(𝑢)d𝑢

)

,

𝑅(𝑡) = 𝑅(0) +𝑄3

(

∫

𝑡

0
𝛾𝐼(𝑢)d𝑢

)

,

(3.6)

where 𝑆(0) = 𝑛, 𝐸(0) = 0, 𝐼(0) = 𝑚(= 𝑚(𝑛)), 𝑅(0) = 0, and 𝑄1, 𝑄2, and
𝑄3 are independent unit-rate Poisson processes. This follows from the
random time change representation of Poisson processes [5,21,22]. See
Appendix A for more details about this representation. The trajectories
can be simulated using the popular Doob–Gillespie’s algorithm [22,23].
See Algorithm 1 for a pseudocode. From an individual perspective, a
randomly chosen initially susceptible individual remains susceptible till
time 𝑡 with probability exp

(

− ∫ 𝑡
0 𝑛−1𝛽𝐼(𝑢)d𝑢

)

, given the history of the
process.

We assume 𝑚∕𝑛 → 𝜌 ∈ (0, 1) as 𝑛 → ∞. Then, following the
standard results for Markov process (see Kurtz [2,3],Darling and Norris
[4],Andersson and Britton [5],Ethier and Kurtz [21]), we can show the
scaled stochastic process 𝑛−1𝑋 = (𝑛−1𝑆, 𝑛−1𝐸, 𝑛−1𝐼, 𝑛−1𝑅) converges to
the solution 𝑥 ∶= (𝑠, 𝑒, 𝑖, 𝑟) of the already familiar SEIR ODE system
(2.2), which in our current notation may be written as
d
d𝑡
𝑠𝑡 = −𝛽𝑠𝑡𝑖𝑡,

d
d𝑡
𝑒𝑡 = 𝛽𝑠𝑡𝑖𝑡 − 𝛼𝑒𝑡,

d
d𝑡
𝑖𝑡 = 𝛼𝑒𝑡 − 𝛾𝑖𝑡,

d 𝑟 = 𝛾𝑖 ,

(3.7)
d𝑡 𝑡 𝑡
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Algorithm 1 Pseudocode for the Doob–Gillespie algorithm
1: Initialize (𝑆(0), 𝐸(0), 𝐼(0), 𝑅(0)) = (𝑛, 0, 𝑚, 0)
2: Assume you have the process value (𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡), 𝑅(𝑡)) at 𝑡
3: Calculate rates 𝜆𝑆→𝐼 (𝑡) = 𝛽𝑆(𝑡)𝐼(𝑡)∕𝑛 , 𝜆𝐸→𝐼 = 𝛼𝐸(𝑡) and 𝜆𝐼→𝑅(𝑡) =

𝛾 𝐼(𝑡)
4: Set 𝛬(𝑡) = 𝜆𝑆→𝐼 (𝑡) + 𝜆𝐸→𝐼 (𝑡) + 𝜆𝐼→𝑅(𝑡)
5: Set next transition time 𝛥𝑡 as Exponential(𝛬(𝑡))
6: Draw a random sample 𝑢 of 𝑈 ∼ Uniform(0, 1)
7: if 𝑢 ≤ 𝜆𝑆→𝐼 (𝑡)∕𝛬(𝑡) then Update

(𝑆(𝑡 + 𝛥𝑡), 𝐼(𝑡 + 𝛥𝑡), 𝑅(𝑡 + 𝛥𝑡)) = (𝑆(𝑡) − 1, 𝐸(𝑡) + 1, 𝐼(𝑡), 𝑅(𝑡))

8: else
9: if 𝑢 < (𝜆𝑆→𝐼 (𝑡) + 𝜆𝐸→𝐼 (𝑡))∕𝛬(𝑡) then Update

(𝑆(𝑡 + 𝛥𝑡), 𝐼(𝑡 + 𝛥𝑡), 𝑅(𝑡 + 𝛥𝑡)) = (𝑆(𝑡), 𝐸(𝑡) − 1, 𝐼(𝑡) + 1, 𝑅(𝑡))

10: else Update

(𝑆(𝑡 + 𝛥𝑡), 𝐼(𝑡 + 𝛥𝑡), 𝑅(𝑡 + 𝛥𝑡)) = (𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡) − 1, 𝑅(𝑡) + 1)

11: end if
12: end if
13: Set 𝑡 = 𝑡 + 𝛥𝑡 and return to Step 2

with 𝑠0 = 1, 𝑒0 = 0, 𝑖0 = 𝜌, and 𝑟0 = 0. More precisely,

lim
→∞

𝖯

(

sup
0<𝑡≤𝑇

‖𝑛−1𝑋(𝑡) − 𝑥(𝑡)‖ > 𝜖
)

= 0,

or any 𝜖 > 0, and 0 < 𝑇 < ∞, where ‖ ⋅ ‖ is the Euclidean norm on
+
4. The system of ODEs in (3.7) is often referred to as the mean-field

EIR ODE system. This convergence result establishes the connection
etween the stochastic and the deterministic models.

The SEIR model described in this section is our reference model.
ur goal is to approximate this model by a simpler SIR model, which
e describe next.

. An SIR approximation to the SEIR model

The SIR approximation that we propose is a time-inhomogeneous
TMC model in which the infection and recovery rates are assumed
ime-varying. To this end, define a new variable 𝑣𝑡 ∶= 𝑒𝑡 + 𝑖𝑡 and
ote that 𝑣𝑡 is the proportion of individuals who are either exposed or
nfected at time 𝑡. Define the new time-varying infection and recovery
ates as follows:

𝑡 ∶= 𝛽
𝑖𝑡
𝑣𝑡
, and 𝛾𝑡 ∶= 𝛾

𝑖𝑡
𝑣𝑡
. (4.8)

Then, of course, it is immediate from (3.7) that 𝑣𝑡 satisfies
d
d𝑡
𝑣𝑡 = 𝛽𝑡𝑠𝑡𝑣𝑡 − 𝛾𝑡𝑣𝑡,

with initial condition 𝑣0 = 𝜌. Our approximating SIR model is described
by the stochastic process 𝑌 (𝑡) ∶= (�̃�(𝑡), 𝑉 (𝑡), �̃�(𝑡)) where �̃�(𝑡), 𝑉 (𝑡), and
�̃�(𝑡) are counts of susceptible, infected, and removed individuals respec-
tively. We assume 𝑌 (𝑡) is a CTMC satisfying the trajectory equations:

�̃�(𝑡) = �̃�(0) −𝑄1

(

∫

𝑡

0

𝛽𝑢
𝑛
�̃�(𝑢)𝑉 (𝑢)d𝑢

)

,

𝑉 (𝑡) = 𝑉 (0) +𝑄1

(

∫

𝑡

0

𝛽𝑢
𝑛
�̃�(𝑢)𝑉 (𝑢)d𝑢

)

−𝑄3

(

∫

𝑡

0
𝛾𝑢𝑉 (𝑢)d𝑢

)

,

�̃�(𝑡) = �̃�(0) +𝑄3

(

∫

𝑡

0
𝛾𝑢𝑉 (𝑢)d𝑢

)

,

(4.9)

with �̃�(0) = 𝑛, 𝑉 (0) = 𝑚, and �̃�(0) = 0, where 𝑄1, and 𝑄3 are the
two independent, unit-rate Poisson processes defined in (3.6). That
is, the two models share the processes 𝑄1, and 𝑄3. We have chosen
the same Poisson processes because it will be useful when studying
3

the approximation error. As before, we assume 𝑚∕𝑛 → 𝜌 as 𝑛 → ∞.
Trajectories of the stochastic process 𝑌 can be simulated adapting the
Doob–Gillespie’s algorithm or the next-reaction method [24,25]. It is
also worth mentioning that the �̃�(𝑡) + 𝐼(𝑡) + �̃�(𝑡) = 𝑛 + 𝑚 for all 𝑡 ≥ 0,
.e., as before, the total mass remains conserved.

.1. Functional Law of Large Numbers

For 𝑥 ∶= (𝑥1, 𝑥2, 𝑥3) ∈ R3, let us define ‖𝑥‖∞ ∶= max{|𝑥1|, |𝑥2|, |𝑥3|}.
As with the SEIR model, we expect a deterministic limit for scaled
process

𝑛−1𝑌 (𝑡) = (𝑛−1�̃�(𝑡), 𝑛−1𝑉 (𝑡), 𝑛−1�̃�(𝑡))

in the approximating SIR model. The following FLLN establishes this
limit. Note that due to the conservation laws (closed populations)
both systems considered here are non-explosive over any compact time
interval.

Theorem 1. Assume lim𝑛→∞ 𝑛−1𝑌 (0) = 𝑦(0) = (1, 𝜌, 0). Then, for any
𝑇 > 0,

lim
𝑛→∞

sup
0≤𝑡≤𝑇

‖

‖

‖

𝑛−1𝑌 (𝑡) − 𝑦(𝑡)‖‖
‖∞

= 0 almost surely,

where 𝑦(𝑡) = (�̃�𝑡, �̃�𝑡, 𝑟𝑡) is the solution to the system of ODEs:
d
d𝑡
�̃�𝑡 = −𝛽𝑡�̃�𝑡�̃�𝑡,

d
d𝑡
�̃�𝑡 = 𝛽𝑡�̃�𝑡�̃�𝑡 − 𝛾𝑡�̃�𝑡,

d
d𝑡
𝑟𝑡 = 𝛾𝑡�̃�𝑡,

(4.10)

with �̃�0 = 1, �̃�0 = 𝜌, and 𝑟0 = 0.

Albeit time-inhomogeneity of the rates, the proof of Theorem 1
follows from the standard use of the FLLN for Poisson processes, which
states that

lim
𝑛→∞

sup
0<𝑡≤𝑇

|𝑛−1𝑄(𝑛𝑡) − 𝑡| = 0 almost surely,

for a unit-rate Poisson process 𝑄, and an application of the Grönwall’s
inequality. See Andersson and Britton [5, Chapter 5] or Ethier and
Kurtz [21, Chapter 11]. For the sake of completeness, we include it
here.

Proof of Theorem 1. For 𝑥 ∶= (𝑥1, 𝑥2, 𝑥3) ∈ R3, and 𝑡 ∈ [0, 𝑇 ], let

𝛹𝑡(𝑥) ∶= (−𝛽𝑡𝑥1𝑥2, 𝛽𝑡𝑥1𝑥2 − 𝛾𝑡𝑥2, 𝛾𝑡𝑥2).

ote that 𝑣0 = 𝜌 > 0 ensures that 𝛽𝑡 ≤ 𝛽 and 𝛾𝑡 ≤ 𝛾 for all 𝑡 ∈ [0, 𝑇 ],
ince 𝑖𝑡 ≤ 𝑣𝑡 for all 𝑡 ∈ [0, 𝑇 ]. Then, for any compact 𝐾 ⊂ R3, there

exists a constant 𝐶𝐾 such that

sup
0≤𝑡≤𝑇

‖

‖

𝛹𝑡(𝑥) − 𝛹𝑡(𝑦)‖‖∞ ≤ 𝐶𝐾 ‖𝑥 − 𝑦‖∞ , for all 𝑥, 𝑦 ∈ 𝐾,

ince the space R3 is locally compact and 𝛹𝑡 is locally Lipschitz for each
≥ 0. This ensures the system of ODEs in (4.10) admits unique solutions
or all 𝑡 ∈ [0, 𝑇 ]. Now, note that

𝑛−1𝑌 (𝑡) − 𝑦(𝑡) = 𝑛−1𝑌 (0) − 𝑦(0) + 𝑛−1(−1, 1, 0)𝑄1

(

𝑛∫

𝑡

0
𝛽𝑢

�̃�(𝑢)
𝑛

𝑉 (𝑢)
𝑛

d𝑢
)

+ 𝑛−1(0,−1, 1)𝑄3

(

𝑛∫

𝑡

0
𝛾𝑢
𝑉 (𝑢)
𝑛

d𝑢
)

− ∫

𝑡

0
𝛹𝑠(𝑦(𝑠))d𝑠

= 𝑛−1𝑌 (0) − 𝑦(0) + 𝑛−1(−1, 1, 0)�̂�1

(

𝑛∫

𝑡

0
𝛽𝑢

�̃�(𝑢)
𝑛

𝑉 (𝑢)
𝑛

d𝑢
)

+ 𝑛−1(0,−1, 1)�̂�3

(

𝑛∫

𝑡

0
𝛾𝑢
𝑉 (𝑢)
𝑛

d𝑢
)

+ ∫

𝑡

0

(

𝛹𝑢(𝑛−1𝑌 (𝑢)) − 𝛹𝑢(𝑦(𝑢))
)

d𝑢,
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Fig. 1. Comparison of empirical survival functions of times of infection under the original SEIR model from (3.6) and the approximating SIR model from (4.9). The parameter
values in this simulation are: 𝛼 = 0.25, 𝛽 = 1.5, 𝛾 = 0.75, and 𝜌 = 0.01. The initial numbers of susceptible, 𝑛, are 1000 (left), 5000 (middle), and 10 000 (right).
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w
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where �̂�1(𝑡) ∶= 𝑄1(𝑡) − 𝑡, and �̂�3(𝑡) ∶= 𝑄3(𝑡) − 𝑡 are the compensated
unit-rate Poisson processes. Here, for a scalar 𝑎 ∈ R, and a vector 𝑢 ∶=
(𝑢1, 𝑢2, 𝑢3) ∈ R3, the product 𝑎𝑢 is defined as the vector (𝑎𝑢1, 𝑎𝑢2, 𝑎𝑢3).
Therefore,
‖

‖

‖

𝑛−1𝑌 (𝑡) − 𝑦(𝑡)‖‖
‖∞

≤ ‖

‖

‖

𝑛−1𝑌 (0) − 𝑦(0)‖‖
‖∞

+ sup
𝑢≤𝑡

𝑛−1|�̂�1(𝑛𝐾𝛽𝑢)|

+ sup
𝑢≤𝑡

𝑛−1|�̂�3(𝑛𝐾𝛾𝑢)|

+ ∫

𝑡

0
𝐶𝐾

‖

‖

‖

𝑛−1𝑌 (𝑢) − 𝑦(𝑢)‖‖
‖∞

d𝑢,

where 𝐾𝛽 , and 𝐾𝛾 are constants dependent on 𝐾 (and 𝛽, and 𝛾 respec-
tively), but independent of 𝑛. Therefore, by Grönwall’s inequality, we
have
‖

‖

‖

𝑛−1𝑌 (𝑡) − 𝑦(𝑡)‖‖
‖∞

≤ (𝐴𝑛 + 𝐵𝑛(𝑡)) exp(𝐶𝐾 𝑡), (4.11)

where

𝐴𝑛 ∶=
‖

‖

‖

𝑛−1𝑌 (0) − 𝑦(0)‖‖
‖∞

,

𝐵𝑛(𝑡) ∶= sup
𝑢≤𝑡

𝑛−1|�̂�1(𝑛𝐾𝛽𝑢)| + sup
𝑢≤𝑡

𝑛−1|�̂�3(𝑛𝐾𝛾𝑢)|.

Taking supremum on both sides of the above inequality, we have

sup
0≤𝑡≤𝑇

‖

‖

‖

𝑛−1𝑌 (𝑡) − 𝑦(𝑡)‖‖
‖∞

≤ (𝐴𝑛 + 𝐵𝑛(𝑇 )) exp(𝐶𝐾𝑇 ).

Now, lim𝐴𝑛 = 0 by our assumption and lim𝐵𝑛(𝑇 ) = 0 almost surely as
𝑛 → ∞ by the FLLN for Poisson processes. Therefore,

lim
𝑛→∞

sup
0≤𝑡≤𝑇

‖

‖

‖

𝑛−1𝑌 (𝑡) − 𝑦(𝑡)‖‖
‖∞

= 0,

almost surely, for all 𝑇 > 0. □

In Fig. 1, we show that the empirical survival functions of the
times of infection under the original SEIR model from (3.6) and the
approximating SIR model from (4.9) are close to each other suggesting
the approximation error is small. In Fig. 2, we show that the empirical
densities of the times of infection and the recovery times under the
two models are close to each other. As Fig. 2 shows, the empirical
densities under the two models are close to each other, again sug-
gesting a small approximation error. We expect the distance (in some
appropriate sense) between the original SEIR model from (3.6) and the
approximating SIR model from (4.9) to vanish in the limit as 𝑛 tends
to infinity. In the next section, we provide a concentration inequality
giving an estimate on the error of approximation for finite 𝑛 and show
that the magnitude of error indeed goes to zero as 𝑛 tends to infinity.

4.2. Approximation error

In practice, especially when 𝑛 is not large enough, the SIR model
may not be a good approximation to the SEIR model. Therefore, it is im-
portant to understand the error in the approximation. A concentration
inequality is useful in quantifying the approximation error.

Before presenting our concentration inequality, we state two basic
lemmas that will be useful in proving the inequality. The first one is a
4

concentration inequality for compensated Poisson processes. 𝑡
Lemma 1. Let 𝑄 be a unit rate Poisson process. Then, for all 𝜖 > 0, and
𝑇 > 0, we have

𝖯

(

sup
𝑠≤𝑇

|𝑛−1𝑄(𝑛𝑠) − 𝑠| ≥ 𝜖
)

≤ 6 exp(𝐶𝑇 − 𝜖
3
√

𝑛), (4.12)

where 𝐶 is a positive constant (independent of 𝑛).

Proof. First, note that

𝖤
[

exp(𝜃(𝑄(𝑡) − 𝑡))
]

= exp(𝑡(exp(𝜃) − 1 − 𝜃)) ≤ exp(𝐶𝑡𝜃2),

for some positive constant 𝐶 and |𝜃| < 1. The proof of (4.12) then
follows from a simple algebraic manipulation of the Etemadi’s inequal-
ity [26] for a unit-rate Poisson process:

𝖯

(

sup
𝑠≤𝑇

|𝑛−1𝑄(𝑛𝑠) − 𝑠| ≥ 3𝜖
)

≤ 3 sup
𝑠≤𝑇

𝖯
(

|𝑛−1𝑄(𝑛𝑠) − 𝑠| ≥ 𝜖
)

.

ndeed, for any 𝑇 > 0, and |𝜃| < 1, we have

up
𝑠≤𝑇

𝖯
(

𝑛−1𝑄(𝑛𝑠) − 𝑠 ≥ 𝜖
)

≤ sup
𝑠≤𝑇

𝖯 (exp(𝜃(𝑄(𝑛𝑠) − 𝑛𝑠)) ≥ exp(𝜃𝑛𝜖))

≤ sup
𝑠≤𝑇

exp(−𝜃𝑛𝜖)𝖤
[

exp(𝜃(𝑄(𝑛𝑠) − 𝑛𝑠))
]

≤ exp(𝑛𝐶𝑇 𝜃2 − 𝜃𝑛𝜖).

hoosing 𝜃 = 1
√

𝑛
, gives us

sup
𝑠≤𝑇

𝖯
(

𝑛−1𝑄(𝑛𝑠) − 𝑠 ≥ 𝜖
)

≤ exp(𝐶𝑇 − 𝜖
√

𝑛),

Similarly, again using the Markov inequality, we get

sup
𝑠≤𝑇

𝖯
(

−(𝑛−1𝑄(𝑛𝑠) − 𝑠) ≥ 𝜖
)

≤ exp(𝐶𝑇 − 𝜖
√

𝑛)

The proof completes by combining the two inequalities above and
replacing 𝜖 with 𝜖∕3 in Etemadi’s inequality. □

Next we show that the solutions to the SEIR ODEs in (3.7) can be
retrieved from the solutions to the approximating SIR ODEs in (4.10).
To this end, recall that 𝑥 ∶= (𝑠, 𝑒, 𝑖, 𝑟) satisfies the system of ODEs in
(3.7), and define

�̃�(𝑡) ∶= (�̃�𝑡, (1 −
𝑖𝑡
𝑣𝑡
)�̃�𝑡,

𝑖𝑡
𝑣𝑡
�̃�𝑡, 𝑟𝑡),

here 𝑖𝑡, 𝑣𝑡 satisfy (3.7), and (�̃�𝑡, �̃�𝑡, 𝑟𝑡) satisfy (4.10). Let 𝐹 ∶= [0, 1 +
]4 ⊂ R4 and define 𝛷 ∶ 𝐹 ↦ R4 as follows

(𝑢) ∶= (−𝛽𝑢1𝑢3, 𝛽𝑢1𝑢3 − 𝛼𝑢2, 𝛼𝑢2 − 𝛾𝑢3, 𝛾𝑢3) (4.13)

or 𝑢 ∶= (𝑢1, 𝑢2, 𝑢3, 𝑢4) ∈ 𝐹 . For all 𝑢, 𝑣 ∈ 𝐹 , we have

𝛷(𝑢) −𝛷(𝑣)‖∞ ≤ 𝐾 ‖𝑢 − 𝑣‖∞ ,

here the constant 𝐾 could be chosen as 𝐾 = 3(1 + 𝜌) max{𝛼, 𝛽, 𝜌}.

Lemma 2. Let 𝑥 ∶= (𝑠, 𝑒, 𝑖, 𝑟) be the solution to the system of ODEs in
(3.7), and �̃�(𝑡) ∶= (�̃�𝑡, (1 −

𝑖𝑡
𝑣𝑡
)�̃�𝑡,

𝑖𝑡
𝑣𝑡
�̃�𝑡, 𝑟𝑡), where (�̃�𝑡, �̃�𝑡, 𝑟𝑡) solves the system

f ODEs in (4.10). If 𝑥(0) = �̃�(0) = (1, 0, 𝜌, 0), then 𝑥(𝑡) = �̃�(𝑡) for all

∈ [0, 𝑇 ].
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Fig. 2. Comparison of empirical densities of times of infection and recovery times under the original SEIR model from (3.6) and the approximating SIR model from (4.9). The
parameter values in this simulation are: 𝛼 = 0.25, 𝛽 = 1.5, 𝛾 = 0.75, and 𝜌 = 0.01. The initial numbers of susceptible, 𝑛, are 1000 (left), 5000 (middle), and 10 000 (right).
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Proof of Lemma 2. Note that if 𝑥(0) ∈ 𝐹 , and 𝑥 satisfies the system of
DEs in (3.7), then 𝑥(𝑡) ∈ 𝐹 for all 𝑡 ∈ [0, 𝑇 ] by the conservation law.

Now, associate to the system of ODEs in (3.7) we have the following
ODE for 𝑣𝑡:
d
d𝑡
𝑣𝑡 = 𝛽𝑠𝑡𝑖𝑡 − 𝛾𝑖𝑡, with 𝑣0 = 𝜌.

Then, dividing this equation by d
d𝑡 𝑠𝑡 and then solving partially yields

𝑣𝑡 = (1 + 𝜌 − 𝑠𝑡) +
𝛾
𝛽
log(𝑠𝑡),

which suggests if 𝑣𝑡 = 0 for some 𝑡, 𝑠𝑢 = 𝑠∞ for all 𝑢 ≥ 𝑡, where 𝑠∞ is
the unique solution to the equation 𝑠∞ = 1 + 𝜌 + 𝛾

𝛽 log(𝑠∞). Moreover,
𝑠∞ ∈ (0, 1), and 𝑠𝑡 → 𝑠∞ from above as 𝑡 → ∞. From the continuity
of the functions 𝑠𝑡, 𝑖𝑡, and 𝑣𝑡 we can choose a uniform lower bound 𝐴,
strictly bounded away from zero, such that 𝑠𝑡, 𝑖𝑡, 𝑣𝑡 > 𝐴 in bounded time
interval [0, 𝑇 ], provided 𝑖0 = 𝑣0 = 𝜌 > 0.

Now, note that �̃� satisfies

�̃�(𝑡) = �̃�(0) + ∫

𝑡

0
�̃�𝑠(�̃�(𝑠))d𝑠,

ith �̃�𝑡(�̃�(𝑡)) ∶= (�̃� (1)
𝑡 (�̃�(𝑡)), �̃� (2)

𝑡 (�̃�(𝑡)), �̃� (3)
𝑡 (�̃�(𝑡)), �̃� (4)

𝑡 (�̃�(𝑡))) where

�̃� (1)
𝑡 (�̃�(𝑡)) = −𝛽

𝑖𝑡
𝑣𝑡
�̃�𝑡�̃�𝑡,

̃ (2)
𝑡 (�̃�(𝑡)) = 𝛽

𝑖𝑡
𝑣𝑡
�̃�𝑡�̃�𝑡 − 𝛾

𝑖𝑡
𝑣𝑡
�̃�𝑡 −

�̃�𝑡
𝑣2𝑡

(

𝛼𝑒𝑡𝑣𝑡 − 𝛾𝑖𝑡𝑣𝑡 − 𝛽𝑠𝑡𝑖
2
𝑡 + 𝛾𝑖2𝑡 + 𝑖2𝑡 (𝛽�̃�𝑡 − 𝛾)

)

,

= 𝛽
𝑖𝑡
𝑣𝑡
�̃�𝑡�̃�𝑡 − 𝛼𝑒𝑡

�̃�𝑡
𝑣𝑡

+
𝑖2𝑡 �̃�𝑡
𝑣2𝑡

𝛽(𝑠𝑡 − �̃�𝑡),

�̃� (3)
𝑡 (�̃�(𝑡)) =

�̃�𝑡
𝑣2𝑡

(

𝛼𝑒𝑡𝑣𝑡 − 𝛾𝑖𝑡𝑣𝑡 − 𝛽𝑠𝑡𝑖
2
𝑡 + 𝛾𝑖2𝑡 + 𝑖2𝑡 (𝛽�̃�𝑡 − 𝛾)

)

,

�̃� (4)
𝑡 (�̃�(𝑡)) = 𝛾

𝑖𝑡
𝑣𝑡
�̃�𝑡.

ow, note that �̃�𝑡 is Lipschitz continuous on 𝐹 . Moreover, if �̃�(0) ∈ 𝐹 ,
hen �̃�(𝑡) ∈ 𝐹 for all 𝑡 ∈ [0, 𝑇 ]. Therefore, by the Picard-Lindelöf

theorem, the solutions to d
d𝑡 �̃�(𝑡) = �̃�𝑡(�̃�(𝑡)) with �̃�(0) = (1, 0, 𝜌, 0) exist

nd are unique.
It is easy to verify that �̃�𝑡(�̃�(𝑡)) = 𝛷(𝑥(𝑡)) if �̃�(𝑡) = 𝑥(𝑡) ∈ 𝐹 ,

here 𝛷 is defined in (4.13). Therefore, if 𝑥(𝑡) = �̃�(𝑡) for some 𝑡, then
(𝑢) = �̃�(𝑢) for all 𝑢 ≥ 𝑡. Because we have the same initial condition

�̃�(0) = 𝑥(0) = (1, 0, 𝜌, 0) with 𝜌 > 0, the conclusion follows from the
uniqueness of solutions. □
5

In order to show that the approximating SIR model is a good
approximation of the SEIR model, we need to show that the difference
between the two models is small. To this end, we define the following
process 𝛥𝑛(𝑡) ∶= (𝛥(𝑛)

𝑆 (𝑡), 𝛥(𝑛)
𝐸 (𝑡), 𝛥(𝑛)

𝐼 (𝑡), 𝛥(𝑛)
𝑅 (𝑡)) where

(𝑛)
𝑆 (𝑡) = 𝑛−1

(

𝑆(𝑡) − �̃�(𝑡)
)

,

(𝑛)
𝐸 (𝑡) = 𝑛−1

(

𝐸(𝑡) − (1 −
𝑖𝑡
𝑣𝑡
)𝑉 (𝑡)

)

,

(𝑛)
𝐼 (𝑡) = 𝑛−1

(

𝐼(𝑡) −
𝑖𝑡
𝑣𝑡
𝑉 (𝑡)

)

,

(𝑛)
𝑅 (𝑡) = 𝑛−1

(

𝑅(𝑡) − �̃�(𝑡)
)

,

(4.14)

here (𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡), 𝑅(𝑡)) evolve according to the trajectory equations
in terms of Poisson processes) in (3.6), and (�̃�(𝑡), 𝑉 (𝑡), �̃�(𝑡)), according
o (4.9). We show that the process 𝛥𝑛(𝑡) converges to zero in probability
s 𝑛 → ∞, and in fact, satisfies a concentration inequality, which we
resent next.

heorem 2. Assume the initial conditions 𝑆(0) = 𝑛, 𝐸(0) = 0, 𝐼(0) =
= [𝜌𝑛], 𝑅(0) = 0, and �̃�(0) = 𝑛, 𝑉 (0) = 𝑚 = [𝜌𝑛], �̃�(0) = 0, i.e.,

𝑛(0) = (0, 0, 0, 0) for all 𝑛, with [𝜌𝑛] denoting the integer part of 𝜌𝑛. Then,
or all 𝜖 > 0, and 𝑇 > 0, we have
(

sup
𝑡∈[0,𝑇 ]

‖𝛥𝑛(𝑡)‖∞ ≥ 𝜖
)

≤ 2 × 𝟣 {𝜌𝑛}
𝑛 > 𝛿

4
+ 36 exp

(

𝐶𝐿𝑇 − 𝛿
36

√

𝑛
)

, (4.15)

where 𝛿 ∶= 𝜖 exp(−𝐾𝑇 ) for some constants 𝐶,𝐾, and 𝐿 that depend on the
arameters of the SEIR model, and {𝑢} = 𝑢− [𝑢] denotes the fractional part
of 𝑢.

Proof of Theorem 2. Note that the map 𝛷 defined in (4.13) is Lipschitz
continuous on 𝐹 with constant 𝐾 that could be chosen as 𝐾 = 3(1 +
𝜌) max{𝛼, 𝛽, 𝜌}. Recall that 𝑋(𝑡) ∶= (𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡), 𝑅(𝑡)) satisfies the
tochastic Eq. (3.6), and 𝑥 ∶= (𝑠, 𝑒, 𝑖, 𝑟) satisfies (3.7). Then, following
alculations similar to those in the proof of the FLLN in Theorem 1, we
btain the following inequality for 𝑛−1𝑋(𝑡) − 𝑥(𝑡):

up
𝑡≤𝑇

‖

‖

‖

𝑛−1𝑋(𝑡) − 𝑥(𝑡)‖‖
‖∞

≤ (𝐴𝑛 + 𝐵𝑛(𝑇 ))𝑒𝐾𝑇 ,

here

𝑛 ∶=
‖

‖

‖

𝑛−1𝑋(0) − 𝑥(0)‖‖
‖∞

= |

[𝜌𝑛]
𝑛

− 𝜌| =
{𝜌𝑛}
𝑛

→ 0,
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𝖯

T

𝖯

a

b
w

‖

‖

w

𝖯

𝑛

t

and

𝐵𝑛(𝑇 ) ∶= sup
𝑡≤𝑇

|�̂�1(𝑛𝐾𝛽 𝑡)| + sup
𝑡≤𝑇

|�̂�2(𝑛𝐾𝛼𝑡)| + sup
𝑡≤𝑇

|�̂�3(𝑛𝐾𝛾 𝑡)|,

where �̂�1, �̂�2, �̂�3 are the compensated Poisson processes corresponding
to 𝑄1, 𝑄2, 𝑄3, respectively in (3.6) and 𝐾𝛽 , 𝐾𝛼 , 𝐾𝛾 are the constants
dependent on 𝛽, 𝛼, 𝛾 but independent of 𝑛. Then, we have

𝖯

(

sup
𝑡≤𝑇

‖

‖

‖

𝑛−1𝑋(𝑡) − 𝑥(𝑡)‖‖
‖∞

> 𝜖
)

≤ 𝟣 {𝜌𝑛}
𝑛 > 𝜖

2 exp(−𝐾𝑇 )

+ 𝖯
(

𝐵𝑛(𝑇 ) >
𝜖
2
exp(−𝐾𝑇 )

)

≤ 𝟣 {𝜌𝑛}
𝑛 > 𝜖

2 exp(−𝐾𝑇 )

+ 3𝖯
(

sup
𝑡≤𝑇

|�̂�1(𝑛𝐿𝑡)| >
𝜖
6
exp(−𝐾𝑇 )

)

,

here 𝐿 = max{𝐾𝛽 , 𝐾𝛼 , 𝐾𝛾}. By Lemma 1, we have
(

sup
𝑡≤𝑇

|�̂�1(𝑛𝐿𝑡)| >
𝜖
6
exp(−𝐾𝑇 )

)

≤ 6 exp
(

𝐶𝐿𝑇 − 𝜖
18

exp(−𝐾𝑇 )
√

𝑛
)

,

herefore, we have an exponential estimate:
(

sup
𝑡≤𝑇

‖

‖

‖

𝑛−1𝑋(𝑡) − 𝑥(𝑡)‖‖
‖∞

> 𝜖
)

≤ 𝟣 {𝜌𝑛}
𝑛 > 𝛿

2
+ 18 exp

(

𝐶𝐿𝑇 − 𝛿
18

√

𝑛
)

,

(4.16)

with 𝛿 ∶= 𝜖 exp(−𝐾𝑇 ).
Now, let us consider the stochastic process

�̃�(𝑡) ∶= (�̃�(𝑡), (1 −
𝑖𝑡
𝑣𝑡
)𝑉 (𝑡),

𝑖𝑡
𝑣𝑡
𝑉 (𝑡), �̃�(𝑡))

where (�̃�(𝑡), 𝑉 (𝑡), �̃�(𝑡)) evolves according to the trajectory equations in
(4.9). From the FLLN for 𝑛−1𝑌 , it is easy to see that 𝑛−1�̃�(𝑡) converges
to �̃�(𝑡) ∶= (�̃�𝑡, (1−

𝑖𝑡
𝑣𝑡
)�̃�𝑡,

𝑖𝑡
𝑣𝑡
�̃�𝑡, 𝑟𝑡) as 𝑛 → ∞. We derive a concentration in-

equality for the process 𝑛−1�̃�. Given continuous functions 𝑥 = (𝑠, 𝑒, 𝑖, 𝑟)
satisfying the SEIR system of ODEs in (3.7), define the operator 𝛤𝑥 as
follows:

𝛤𝑥𝑦(𝑡) = (𝑦1(𝑡), (1 −
𝑖𝑡
𝑣𝑡
)𝑦2(𝑡),

𝑖𝑡
𝑣𝑡
𝑦2(𝑡), 𝑦3(𝑡)),

for 𝑦(𝑡) = (𝑦1(𝑡), 𝑦2(𝑡), 𝑦3(𝑡)). Then, it is easy to see

�̃� = 𝛤𝑥𝑌 , and �̃� = 𝛤𝑥𝑦

where 𝑌 evolves according to the trajectory equations in (4.9), 𝑥 =
(𝑠, 𝑒, 𝑖, 𝑟) satisfies (3.7) with initial condition 𝑠0 = 1, 𝑒0 = 0, 𝑖0 = 𝜌, 𝑟0 = 0,
nd 𝑦 = (�̃�, �̃�, 𝑟) satisfies (4.10) with the initial condition �̃�0 = 1, �̃�0 =

𝜌, 𝑟0 = 0. Moreover, we have
‖

‖

𝛤𝑥𝑦(𝑡) − 𝛤𝑥𝑧(𝑡)‖‖∞ ≤ ‖𝑦(𝑡) − 𝑧(𝑡)‖∞ ,

at each 𝑡 ≥ 0 for two functions 𝑦(𝑡) ∶= (𝑦1(𝑡), 𝑦2(𝑡), 𝑦3(𝑡)), and 𝑧(𝑡) ∶=
(𝑧1(𝑡), 𝑧2(𝑡), 𝑧3(𝑡)).

Therefore, we have

𝖯

(

sup
𝑡≤𝑇

‖

‖

‖

𝑛−1�̃�(𝑡) − �̃�(𝑡)‖‖
‖∞

> 𝜖
)

= 𝖯

(

sup
𝑡≤𝑇

‖

‖

‖

𝛤𝑥𝑛
−1𝑌 (𝑡) − 𝛤𝑥𝑦(𝑡)

‖

‖

‖∞
> 𝜖

)

≤ 𝖯

(

sup
𝑡≤𝑇

‖

‖

‖

𝑛−1𝑌 (𝑡) − 𝑦(𝑡)‖‖
‖∞

> 𝜖
)

≤ 𝖯
(

(𝐴𝑛 + 𝐵𝑛(𝑇 )) > 𝜖 exp(−𝐾𝑇 )
)

= 𝖯
(

(𝐴𝑛 + 𝐵𝑛(𝑇 )) > 𝛿
)

where

𝐴𝑛 =
‖

‖

‖

𝑛−1𝑌 (0) − 𝑦(0)‖‖
‖∞

=
{𝜌𝑛}
𝑛

,

𝐵𝑛(𝑇 ) = sup
𝑡≤𝑇

𝑛−1|�̂�1(𝑛𝐾𝛽𝑇 )| + sup
𝑡≤𝑇

𝑛−1|�̂�1(𝑛𝐾𝛾𝑇 )|,

from (4.11). Here, we have replaced the constant 𝐶𝐾 in (4.11) by 𝐾,
which is justified by restricting 𝛹𝑡 to [0, 1 + 𝜌]3. Therefore, we have

𝖯

(

sup ‖‖𝑛−1�̃�(𝑡) − �̃�(𝑡)‖‖ > 𝜖
)

< 𝟣 {𝜌𝑛} 𝛿 + 2𝖯
(

sup 𝑛−1|�̂�(𝑛𝐿𝑡)| > 𝛿
)

6

𝑡≤𝑇 ‖ ‖∞ 𝑛 > 2 𝑡≤𝑇 4
< 𝟣 {𝜌𝑛}
𝑛 > 𝛿

2
+ 12 exp

(

𝐶𝐿𝑇 − 𝛿
12

√

𝑛
)

.

(4.17)

Finally, we note that

𝛥𝑛(𝑡) = 𝑛−1𝑋(𝑡) − 𝑛−1�̃�(𝑡) = (𝑛−1𝑋(𝑡) − 𝑥(𝑡)) − (𝑛−1�̃�(𝑡) − �̃�(𝑡)),

ecause 𝑥(𝑡) = �̃�(𝑡) for all 𝑡 ∈ [0, 𝑇 ] according to Lemma 2. Therefore,
e have

𝛥𝑛(𝑡)‖‖∞ ≤ ‖

‖

‖

𝑛−1𝑋(𝑡) − 𝑥(𝑡)‖‖
‖∞

+ ‖

‖

‖

𝑛−1�̃�(𝑡) − �̃�(𝑡)‖‖
‖∞

,

hence it follows that
(

sup
𝑡≤𝑇

‖

‖

𝛥𝑛(𝑡)‖‖∞ > 𝜖
)

≤ 𝖯

(

sup
𝑡≤𝑇

‖

‖

‖

𝑛−1𝑋(𝑡) − 𝑥(𝑡)‖‖
‖∞

> 𝜖
2

)

+ 𝖯

(

sup
𝑡≤𝑇

‖

‖

‖

𝑛−1�̃�(𝑡) − �̃�(𝑡)‖‖
‖∞

> 𝜖
2

)

≤ 2 × 𝟣 {𝜌𝑛}
𝑛 > 𝛿

4
+ 18 exp(𝐶𝐿𝑇 − 𝛿

36
√

𝑛)

+ 12 exp(𝐶𝐿𝑇 − 𝛿
24

√

𝑛)

≤ 2 × 𝟣 {𝜌𝑛}
𝑛 > 𝛿

4
+ 36 exp

(

𝐶𝐿𝑇 − 𝛿
36

√

𝑛
)

.

This completes the proof. □

Corollary 1. The stochastic process 𝛥𝑛(𝑡) converges to zero in probability
as 𝑛 → ∞. That is, for any 𝜖 > 0,

lim
→∞

𝖯

(

sup
𝑡∈[0,𝑇 ]

‖𝛥𝑛(𝑡)‖∞ ≥ 𝜖
)

= 0.

Proof. Follows directly from Theorem 2 by taking the limit of 𝑛 → ∞
in (4.15). □

Remark 1. The implication of Corollary 1 is that the distance between
the original SEIR model 𝑛−1𝑋(𝑡) ∶= (𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡), 𝑅(𝑡)) satisfying
he stochastic Eqs. (3.6), and �̃�(𝑡) ∶= (�̃�(𝑡), (1 − 𝑖𝑡

𝑣𝑡
)𝑉 (𝑡), 𝑖𝑡

𝑣𝑡
𝑉 (𝑡), �̃�(𝑡))

where (�̃�(𝑡), 𝑉 (𝑡), �̃�(𝑡)) evolve according to the trajectory equations in
(4.9), vanishes in the limit as 𝑛 → ∞. We could have, of course,
established such as a convergence result as a corollary to Theorem 1
and the standard FLLN for the mass-action SEIR model. However, the
purpose of Theorem 2 is to give an explicit estimate of the error in the
approximation.

5. Parameter inference

Having shown that the time-varying SIR model is a good approxi-
mation to the SEIR model, we now turn to the problem of parameter
inference and model fitting. For this purpose, we consider the DSA
approach [12,15–17], which is a survival analysis based approach
designed for dynamical systems. In this approach, one interprets the
limiting mean-field (FLLN) equations as probabilistic quantities, such
as survival functions and densities corresponding to certain time-to-
event random variables, as opposed to proportions or concentrations.
For instance, in the context of SIR-type models of infectious disease
epidemiology, the function 𝑠𝑡 denoting the limiting proportion of sus-
ceptible individuals is interpreted as a survival function describing the
time to infection of an initially susceptible individual. This change in
perspective in the DSA approach has crucial several advantages. First,
one does not need the size of the total population. In fact, DSA is able
to estimate what is called an effective population size. Second, DSA
does not require full epidemic trajectories. Instead, it only requires a
random sample of times of infection, and times of recovery, if available.
Third, the method is quite flexible and easily applicable to a wide
range of models and data availability scenarios. This includes non-
Markovian models under mass action; for example, see Di Lauro et al.
[16]. Network-based models, such as those explored by KhudaBukhsh
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et al. [12] and Kiss et al. [27], are also considered. In terms of
data availability scenarios, these models have been applied to single
snapshot data [28], spatio-temporal data [29], testing and repeated
testing data [30,31], and wastewater surveillance data [32].

5.1. DSA-likelihood based on the approximate SIR model

Let 𝜃 ∶= (𝛼, 𝛽, 𝛾, 𝜌) denote the vector of unknown parameters. We
begin by noting that the system of ODEs in (4.10) can be reduced to

− d
d𝑡
�̃�𝑡 = 𝛽𝑡�̃�𝑡(1 − �̃�𝑡) + 𝛾𝑡�̃�𝑡 log(�̃�𝑡) + 𝜌𝛽𝑡�̃�𝑡, with �̃�0 = 1.

The derivation can be done almost exactly the same way as we have
shown in Appendix A for the system of ODEs in (2.1). Then, following
the DSA approach, we interpret the function �̃�𝑡 as the improper survival
function corresponding to the random variable 𝑇 𝑆𝐼𝑅

𝐼 denoting the time
of infection of an initially susceptible individual in an infinitely large
population. That is,

𝖯
(

𝑇 𝑆𝐼𝑅
𝐼 > 𝑡

)

= �̃�𝑡.

Note that the random variable 𝑇 𝑆𝐼𝑅
𝐼 does not have finite mean. Indeed,

the expectation

𝖤
[

𝑇 𝑆𝐼𝑅
𝐼

]

= ∫

∞

0
𝖯
(

𝑇 𝑆𝐼𝑅
𝐼 > 𝑡

)

d𝑡 = ∫

∞

0
�̃�𝑡d𝑡

diverges because �̃�∞ ∶= 𝖯
(

𝑇 𝑆𝐼𝑅
𝐼 = ∞

)

= lim𝑡→∞ �̃�𝑡 > 0. However, if
we observe an epidemic till a final observation time 𝑇 > 0, we can
condition on the event {𝑇 𝑆𝐼𝑅

𝐼 ≤ 𝑇 } to get the conditional Probability
Density Function (PDF) of 𝑇 𝑆𝐼𝑅

𝐼 as

𝑓𝑇 (𝑡) = −
(

1
1 − �̃�𝑇

)

d
d𝑡
�̃�𝑡 =

𝛽𝑡�̃�𝑡�̃�𝑡
1 − �̃�𝑇

.

Given a random sample 𝑡1, 𝑡2,… , 𝑡𝑙1 of infection times 𝑇 𝑆𝐼𝑅
𝐼 un-

der the approximating SIR model, their contribution to the likelihood
function is

𝓁𝐼 (𝜃 ∣ 𝑡1, 𝑡2,… , 𝑡𝑙1 ) =
𝑙1
∏

𝑗=1
𝑓𝑇 (𝑡𝑗 ). (5.18)

In general, parameter inference can be conducted using only a
andom sample of infection times. However, when samples of other
ransition times (e.g., recovery times) are available, they should be
tilized to enhance the quality of inference. Therefore, let us assume
e also have access to a random sample 𝑟1, 𝑟2,… , 𝑟𝑙2 of recovery times

𝑇 𝑆𝐼𝑅
𝑅 . The PDF of 𝑇 𝑆𝐼𝑅

𝑅 is given by

̃ 𝑇 (𝑡) =
∫ 𝑡
0 𝑓𝑇 (𝑢)𝑟𝑢(𝑡 − 𝑢)d𝑢

∫ 𝑇
0 ∫ 𝑡

0 𝑓𝑇 (𝑢)𝑟𝑢(𝑡 − 𝑢)d𝑢d𝑡
,

where

𝑟𝑢(𝑠) ∶= 𝛾𝑢+𝑠 exp
(

−∫

𝑢+𝑠

𝑢
𝛾𝑣d𝑣

)

,

for 𝑢, 𝑠 ≥ 0. The PDF ℎ̃𝑇 is a convolution of two PDFs because the
distribution of the infectious period of an individual who got infected
at time 𝑢 is described by the hazard function 𝛾𝑢+(⋅) and the infectious
periods are independent of the time of infection. See [15, Section 2],
or [16, Section 3] for a detailed derivation of such densities under the
DSA approach. Therefore, the likelihood contribution of the random
sample 𝑟1, 𝑟2,… , 𝑟𝑙2 of the random variable 𝑇 𝑆𝐼𝑅

𝑅 describing the times
of recovery is

𝓁𝑅(𝜃 ∣ 𝑟1, 𝑟2,… , 𝑟𝑙2 ) =
𝑙2
∏

𝑗=1
ℎ̃𝑇 (𝑟𝑗 ).

Finally, the DSA likelihood function based on a random sample
𝑡1, 𝑡2,… , 𝑡𝑙1 of infection times 𝑇 𝑆𝐼𝑅

𝐼 and a random sample 𝑟1, 𝑟2,… , 𝑟𝑙2
of the recovery times 𝑇 𝑆𝐼𝑅

𝑅 is given by

𝓁𝑆𝐼𝑅(𝜃 ∣ 𝑡1, 𝑡2,… , 𝑡𝑙1 , 𝑟1, 𝑟2,… , 𝑟𝑙2 ) ∶= 𝓁𝐼 (𝜃 ∣ 𝑡1, 𝑡2,… , 𝑡𝑙1 )
̃ (5.19)
7

× 𝓁𝑅(𝜃 ∣ 𝑟1, 𝑟2,… , 𝑟𝑙2 ).
The likelihood function 𝓁𝑆𝐼𝑅 in (5.19) can be used for parameter
inference in various statistical ways. For instance, one could maximize
it to obtain the Maximum Likelihood Estimates (MLEs) of the unknown
parameters 𝜃. Obtaining closed-form expressions for the maximizers of
the likelihood function 𝓁𝑆𝐼𝑅 does not seem feasible. However, numeri-
cal methods can be employed. In this paper, we will follow a Bayesian
approach instead.

We note a few practical points here: (1) It is often much easier
to work with the log-likelihood function, i.e., the logarithm of the
likelihood in (5.19). This is precisely what we do in our implementa-
tion. (2) The densities ℎ̃𝑇 (.) are computationally expensive to compute.
Calculating the derivatives with respect to 𝑡 and then solving them
as ODEs appears to be a much less expensive approach. This method
is also employed in our implementation. (3) We do not assume that
the random samples of infection and recovery times come from the
same individuals. Since 𝑙1 need not equal 𝑙2, this point is perhaps clear.
However, this ability to consider cross-sectional data is, in our opinion,
one of the crucial practical advantages of the DSA approach.

In order to illustrate the method, we first simulate a single trajectory
of 𝑋 satisfying (3.6) using the Doob–Gillespie’s algorithm 1. From that
trajectory, we take random samples of infection times, and recovery
times. We follow a Bayesian approach to parameter inference. First, we
apply the DSA likelihood to estimate the parameters using the random
sample of only infection times, i.e., using the likelihood function 𝓁𝐼 .
We do this by drawing posterior samples of the parameters using
the Hamiltonian Monte Carlo (HMC) method under uninformative flat
priors. The estimated posterior distributions are shown in Fig. 3. The
posterior distributions are unimodal, and the method is able to recover
the true parameters with remarkable accuracy. Next, we perform the
DSA method using samples of both infection and recovery times using
the full DSA likelihood in (5.19). Again, we follow the same approach
here: We draw posterior samples of the parameters using the HMC
method under uninformative flat priors. The estimated posterior dis-
tributions are shown in Fig. 4. As we can see in Fig. 4, the posterior
distributions are unimodal. The point estimates (means of the posterior
distributions) are fairly accurate.

Comparing Fig. 3 with Fig. 4, we see that the DSA method is able
to recover the true parameters fairly accurately in both cases as the
means of the posterior distributions (shown as red triangles in plots) are
close to the true parameter values. However, using the recovery times
appears to improve the quality of the inference in that the posterior
samples are more concentrated around the true parameter values. In
both Figs. 3 and 4, we followed a HMC-based Bayesian approach
implemented in R [33] using the package CmdStanR [34]. The R script
is available at https://github.com/wasiur/SIRapproximatingSEIR.

6. Summary and conclusions

Although there has been a multitude of works on compartmental
epidemic SIR and SEIR models, formal treatment of the relationships
between the two appears to have received less attention. In this paper,
we have formally demonstrated how, in large populations, a biolog-
ically more realistic SEIR model can be approximated by a mathe-
matically more convenient SIR system with time-varying infection and
recovery rates. To introduce and justify this approximation and quan-
tify the approximation error, we considered a stochastic Markovian
setting and provided both a large-population FLLN limit and a finite-
population concentration inequality, showing that the approximation
is effective, with an error of the order exp(−

√

𝑛) that decays rapidly.
Additionally, we presented a parameter inference methodology based
on a dynamical survival model, demonstrating how to use the so-called
DSA approach to fit an approximating SIR system to synthetic data
generated from an SEIR framework. Based on our method of analysis as
well as some recent discussions in [35], it appears that a general result
may also be established on the asymptotic equivalence between a wide

class of Markovian compartmental models and their counterparts with

https://github.com/wasiur/SIRapproximatingSEIR
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Fig. 3. Posterior distributions of the parameters (𝛼, 𝛽, 𝛾, 𝜌) and 𝑅0 based on the partial DSA-likelihood (5.18) and a random sample of only infection times under the approximating
SIR model. We used uninformative flat priors. The true parameter values are: 𝛼 = 0.25, 𝛽 = 0.8, 𝛾 = 0.4, 𝜌 = 0.01, and 𝑅0 = 2.0. Here, 𝑛 = 50 000 and random samples of size 5000 of
nfection were taken for the purpose of inference. The red triangles represent the means of the posterior samples, often employed as substitutes for the Bayesian point estimates.
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reduced number of compartments but with time-dependent rates. We
eave the establishment of such a general result for future research.

We have used only synthetic data, which can be generated using the
oftware package.
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Appendix A. Additional mathematical background

A.1. Continuous Time Markov Chains

As the name suggests, a CTMC (𝑋(𝑡), 𝑡 ≥ 0) is a pure-jump Markov
rocess taking values in a countable state space  and satisfying the
arkov property
(

𝑋(𝑡) ∈ 𝐵 ∣ 𝑠
)

= 𝖯 (𝑋(𝑡) ∈ 𝐵 ∣ 𝑋(𝑠))

or measurable subsets 𝐵 of  , where 𝜎-field 𝑠 denotes the history of
he process up to time 𝑠. We refer the readers to [38, Chapter 2] for
earning about CTMCs beyond their random time change representa-
ions, which we discuss here. A standard approach to describe a CTMC
Fig. 4. Posterior distributions of the parameters (𝛼, 𝛽, 𝛾, 𝜌) and 𝑅0 obtained based on the complete DSA-likelihood (5.19) and a random sample of infection times and recovery
imes under the approximate SIR model. Uninformative flat priors are used. The true parameter values are: 𝛼 = 0.25, 𝛽 = 0.8, 𝛾 = 0.4, 𝜌 = 0.01, and 𝑅0 = 2.0. Here, 𝑛 = 50 000 and
andom samples of size 5000 of infection and recovery times were taken for the purpose of inference. The red triangles indicate the means of the posterior samples.
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is via its generator 𝐺 defined as

𝐺𝑓 (𝑥) ∶=
∑

𝑙
𝑟𝑙(𝑥)

(

𝑓 (𝑥 + 𝑒𝑙) − 𝑓 (𝑥)
)

, (A.1)

for bounded functions 𝑓 ∶  ↦ R, where 𝑟𝑙 ∶  ↦ R+ is the
instantaneous jump rate (also called ‘‘intensity’’) in the direction 𝑒𝑙 ∈ 
such that

𝖯
(

𝑋(𝑡 + ℎ) = 𝑥 + 𝑒𝑙 ∣ 𝑋(𝑡) = 𝑥
)

≈ 𝑟𝑙(𝑥)ℎ

for small ℎ > 0. It is a standard result in the theory of Markov processes
that if 𝑋 is a CTMC with generator 𝐺, then the stochastic process

𝑀𝑓 (𝑡) ∶= 𝑓 (𝑋(𝑡)) − 𝑓 (𝑋(0)) − ∫

𝑡

0
𝐺𝑓 (𝑆(𝑠))d𝑠 (A.2)

is an 𝑡-martingale for bounded functions 𝑓 ∶  ↦ R. They are
sometimes called the Dynkin’s martingales in the literature. On the
other hand, if a stochastic process (𝑋(𝑡), 𝑡 ≥ 0) is such that the stochastic
process 𝑀𝑓 (𝑡) defined in (A.2) is an 𝑡-martingale for every bounded
function 𝑓 , then we say that the stochastic process 𝑋 is a solution to
the martingale problem for the operator 𝐺, and it can be shown that
the stochastic process 𝑋 is, in fact, a Markov process with generator
𝐺. That is, the martingale problem provides a means to characterize
Markov processes.

In practice, it is often easier to view the CTMC as a solution to some
stochastic equation. The following theorem from [22, Theorem 1.22]
justifies the approach we have taken in Section 3 to describe the CTMC
keeping track of the counts (𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡), 𝑅(𝑡)) in terms of randomly
time changed Poisson processes in (3.6).

Theorem 3. Assume 𝑟𝑙(𝑥) > 0 implies 𝑥 + 𝑒𝑙 ∈  , i.e., there are no
transitions that take the process outside  . Also, assume ∑𝑙 𝑟𝑙(𝑥) < ∞ for
all 𝑥 ∈  , and lim

|𝑥|→∞ 𝐺𝑓 (𝑥) = 0 for functions 𝑓 with finite support in  .
Then, the solution of the stochastic equation

𝑋(𝑡) = 𝑋(0) +
∑

𝑙
𝑒𝑙𝑌𝑙

(

∫

𝑡

0
𝑟𝑙(𝑋(𝑠))d𝑠

)

with 𝑋(𝑡) = 𝛥 for 𝑡 ≥ 𝐽∞ is the unique minimal solution to the martingale
problem for 𝐺, where 𝑌1, 𝑌2,… are independent unit-rate Poisson processes,
and 𝐽∞ ∶= lim𝐾→∞ 𝐽𝐾 , and 𝐽𝐾 = inf{𝑡 ∶ |𝑋(𝑡)| > 𝐾}.

A.2. Derivation of (2.3)

Consider the system of ODEs in (2.1) with the initial condition
𝑥𝑆 (0) = 1, 𝑥𝐼 (0) = 𝜌, and 𝑥𝑅(0) = 0. Now, dividing the equation for
d
d𝑡𝑥𝐼 by d

d𝑡𝑥𝑆 , which is nonzero, yields

d𝑥𝐼
d𝑥𝑆

= −1 +
𝛾
𝛽

1
𝑥𝑆

,

solving which along with the initial conditions gives the relation

𝑥𝐼 = −𝑥𝑆 +
𝛾
𝛽
log(𝑥𝑆 ) + 1 + 𝜌.

Plugging the above solution back into the equation for d
d𝑡𝑥𝑆 gives us

d
d𝑡
𝑥𝑆 = 𝛽𝑥𝑆 (1 − 𝑥𝑆 ) + 𝛾 log(𝑥𝑆 ) + 𝛽𝜌𝑥𝑆 .

Appendix B. Acronyms

ABM Agent-based Model

BA Barabási-Albert

CDC Centers for Disease Control and Prevention

CDF Cumulative Distribution Function

CLT Central Limit Theorem
10
CM Configuration Model

CME Chemical Master Equation

CRM Conditional Random Measure

CRN Chemical Reaction Network

CTBN Continuous Time Bayesian Network

CTMC Continuous Time Markov Chain

DSA Dynamic Survival Analysis

DTMC Discrete Time Markov Chain

DRC Democratic Republic of Congo

ER Erdös-Rényi

ESI Enzyme-Substrate-Inhibitor

FCLT Functional Central Limit Theorem

FLLN Functional Law of Large Numbers

FPT First Passage Time

GP Gaussian Process

HJB Hamilton–Jacobi–Bellman

HMC Hamiltonian Monte Carlo

iid independent and identically distributed

IPS Interacting Particle System

KL Kullback–Leibler

LDP Large Deviations Principle

LLN Law of Large Numbers

LNA Linear Noise Approximation

MAPK Mitogen-activated Protein Kinase

MCMC Markov Chain Monte Carlo

MFPT Mean First Passage Time

MGF Moment Generating Function

MLE Maximum Likelihood Estimate

MM Michaelis–Menten

MPI Message Passing Interface

MSE Mean Squared Error

ODE Ordinary Differential Equation

PDE Partial Differential Equation

PDF Probability Density Function

PGF Probability Generating Function

PMF Probability Mass Function

psd positive semi-definite
PT Poisson-type
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QSSA Quasi-Steady State Approximation

QSSA reversible QSSA

D Standard Deviation

EIR Susceptible-Exposed-Infected-Recovered

I Susceptible-Infected

IR Susceptible-Infected-Recovered

IS Susceptible-Infected-Susceptible

QSSA standard QSSA

QSSA total QSSA

K Togashi–Kaneko

S Watts–Strogatz

hp with high probability
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