	1 10	20	30	40	50
LsAA9A	HTLVWGVWVNGV	DOGDGRNIYIR	SPPN <mark>N</mark> NPVKNLTS	PDMTCNVDN-R	VVPKSVPVNAGDT
CVAA9	HTRMFSVWVNGV	DOGDGONVYIR	TPPNTDPIKDLAS	PALACNVKGGE	PVPOFVSASAGDK
•	** ::.*****	*****:*:***	:***.:*:*:*:*	* ::***	**: ****.
	60 _ 70	80 80	90	100	110
LsAA9A	LTFEWY <mark>HN</mark> TRDD	DII <mark>A</mark> S <mark>SH</mark> HGPI	AVYIAPAASN	IGQGNVWVKLFEI	DAYNVTNSTWAVD
CVAA9	LTFEWY <mark>RV</mark> KRGD	DII <mark>D</mark> P <mark>SH</mark> SGPI	TTWIAAFTSPTMD	GTGPVWSKIHE	EGYDASTKSWAVD
	*****: .*.*	*** .** ***	:.:**. :* :	* * ** *:.*	: . * : . : : * * * *
	120	130	140 15	0 160	170
LsAA9A	RLITAHGOHSVV	VP-HVAPGDYL	FRAEIIALHEADS	LYSONPIRGAO	F <mark>Y</mark> ISCAQITINSS
CVAA9	KLIANKGMWDFT	LPSOLKPGKYM	LROEIVAHHESDA	TFDKNPKRGAO	FYPSCVOVDVKGV
•	:**: :*	:* :: **.*:	:* **:* **:*:	: . : ** ****	** **.*: ::.
	180	190	200 21	0 220	230
Τ.ς ΔΔ 9Δ Ι	DDSTPLPAGVPF	PGAYTDSTPGT	OFNITYTTPATSYV	APPPSVWSGAL	GSTAOVGDAS
CVAA9	GGDAVPDOAFDE	NKGVKVSDPGT			RECORTINGVID
CVARJ		* * * ***	*** **	* * **	* * * * •*
	••••	• • • • • • •	··· · · · · · · · · · · · · · · · · ·	· · · · · · ·	·· · · · · ·
T = 7 7 9 7 1	TP	_			
LSAA9A	TE	- -			
CVAA9	AVEAAVÕTICAT	17			
	::				

Supplementary Figure 1: Alignment of *Ls***AA9A and** *Cv***A9A enzymes.** Copper ligand residues are highlighted in yellow; key residues of *Ls*AA9A involved in protein:substrate interactions are highlighted in green and the equivalent residues of *Cv*AA9A are in purple.

Supplementary Figure 2: *CvAA9A* cleaves Cell₆-2AB using solely a C4-oxidation mechanism. MALDI-ToF MS spectra showing substrates and products of *CvAA9A* activity on Cell₆-2AB.

Supplementary Figure 3: *LsAA9A* and *CvAA9A* are unable to cleave a range of polysaccharide structures. **a**, PACE gels showing products of *LsAA9A* and *CvAA9A* activity on a range of polysaccharide substrates with 4mM ascorbate. **b**, PACE gel showing products of *LsAA9A* on starch, showing that cleavage by the *LsAA9A* preparation is not reductant-dependent and therefore likely the product of a contaminating hydrolase. Ls, *LsAA9A*; Cv, *CvAA9A*; Asc, ascorbate.

Supplementary Figure 4: MALDI ToF MS spectra of the products of *Ls*AA9A and *Cv*AA9A on a range of polysaccharide substrates. DP, degree of polymerization; ox-, oxidized oligosaccharides. For xyloglucan nomenclature, see Fry et al¹.

Supplementary Figure 5: *Ls*AA9A and CvAA9A are able to cleave Cell₄ but not G4G3G4G. PACE gel showing products of *Ls*AA9A and *Cv*AA9A activity on Cell₄ but not G4G3G4G (D-Glc- β -(1 \rightarrow 4)-D-Glc- β -(1 \rightarrow 3)-D-Glc- β -(1 \rightarrow 4)-D-Glc), with 4mM ascorbate.

Supplementary Figure 6: *Ls*AA9A and *Cv*AA9A can cleave glucomannan with glucosyl or mannosyl residues at subsites -1 and +1 and yield both C1- and C4-oxidised products a, Protocol for analysis of site of cleavage and oxidation state b, Expected products (following analysis protocol) after C1 or C4 oxidative cleavage of different bonds. c, HPAEC analysis of products (supernatant) and undigested substrates (pellet) of *Ls*AA9A and *Cv*AA9A activity on glucomannan. The presence of Talose indicates C4-oxidation of mannose. The presence of mannonic acid indicates C1 oxidation of mannose. All reactions using 4mM ascorbate as reductant. NE, no enzyme. Tal, Talose; Glcol, glucitol; Manol, Mannitol.

Supplementary Figure 7: *Ls*AA9A and *Cv*AA9A cleave xyloglucan oligosaccharides with unsubstituted glucose at subsite +1. a, MALDI MS spectra showing products of *Ls*AA9A and CvAA9A activity on a range of disubunit xyloglucan oligosaccharides. The LPMOs cleave at a different site to xyloglucan endoglucanase (XEG). **b**, Schematic diagram showing cleavage of a xyloglucan oligosaccharide.

Supplementary Figure 8: *Ls*AA9A cleaves Xyl_6 -2AB using solely a C4-oxidation mechanism. MALDI MS spectra showing substrates and products of *Ls*AA9A activity on Xyl_6 -2AB.

Supplementary Figure 9: *Ls*AA9A cleavage of Xyl₆ is much faster than CvAA9A. PACE gels showing cleavage of oligosaccharides by different dilutions from standard assay conditions of *Ls*AA9A and *Cv*AA9A with 4mM ascorbate. a *Ls*AA9A on Cell₆, b *Ls*AA9A on Xyl₆ c CvAA9A on Cell₆ d CvAA9A shows no activity of Xyl₆. *Ls*AA9A and *Cv*AA9A show scarcely detectable activity on Man₆

Supplementary Figure 10: *CvAA9A* **structure. a**, Structure of *CvAA9A*. **b**, *CvAA9A* active site. **c**, Structural comparison of residues in *LsAA9A* and *CvAA9A*. Residues of *LsAA9A* (green, black labels) interacting with Cell₅ (yellow) at subsite -1 to +2 and those equivalent in *CvAA9* (chain A - magenta) are shown (part of Cell₅ is not shown for clarity)..

Supplementary Figure 11: Stereo view of representative electron density for the CvAA9A structure determined at 1.90 Å resolution. The region shown covers residues 2-29. The $2F_{obs}$ - F_{calc} electron density map is shown contoured at 1 σ . Difference electron density is also displayed at +3 σ (green) and -3 σ (red) but is barely visible.

Supplementary Figure 12: Stereo view of representative electron density for the lowest resolution LsAA9Aoligosaccharide complex structure, LsAA9A:G4G4G3G determined at 2.0 Å resolution. The region shown covers residues 2-29. The $2F_{obs}$ - F_{calc} electron density map is shown contoured at 1 σ . Difference electron density is also displayed at +3 σ (green) and -3 σ (red) but is barely visible.

Supplementary Figure 13: Structure of LsAA9A:MLG4. a, Structure of *Ls*AA9A with MLG4 bound. b, zoom-in on active site of *Ls*AA9A with MLG4 bound. The $2F_{obs}$ - F_{calc} electron density map contoured at 1σ shows β - $(1\rightarrow 4)$ -glucan density, with no evidence of bound residues with β - $(1\rightarrow 3)$ -linkages.

Supplementary Figure 14: X-band cw EPR spectra of *LsAA9A* and various substrates. Spectra a-f were run in chloride-free buffer, spectra g-I in the presence of 200 mM NaCl, spectra m and n with 1 M NaCl. a. *LsAA9A*. b. *LsAA9A* in the presence of 2 equivalents of Cell₆. c. *LsAA9A* with avicel. d. *LsAA9A* and glucomannan. e. *LsAA9A* and xyloglucan. f. *LsAA9A* and xylan. g. *LsAA9A*. h. *LsAA9A* in the presence of 2 equivalents of Cell₆. i. *LsAA9A* in the presence of 2 equivalents of Cell₆. i. *LsAA9A* with avicel. j. *LsAA9A* and glucomannan or solubilized glucomannan (red). k. *LsAA9A* and xyloglucan. I. *LsAA9A* and xylan or solubilized xylan (red). m. *LsAA9A*. n. *LsAA9A* in the presence of ~150 equivalents of Xyl₆. o. solid substrates.

Supplementary Figure 15: X-band cw EPR spectra of CvAA9A. Spectra **a** and **b** run in the presence of 200 mM NaCl, spectra **c** and **d** with 1 M NaCl. **a**. *Cv*AA9A. **b**. *Cv*AA9A in the presence of 4 equivalents of Cell₆. **c**. *Cv*AA9A. **d**. *Cv*AA9A in the presence of ~150 equivalents of Xyl₆

Supplementary Figure 16: Uncropped PACE gels. a. PACE gel from Fig. 1a. b,c. PACE gels from Fig. 2a. d,e. PACE gels from Fig. 4a. f,g. PACE gels from Fig. 4b.

Supplementary Table 1: Accession numbers of characterized LPMOs in the phylogenetic tree of Figure 1.

Label	Accession
GH61-1	EAA30263.1
GH61-2	EAA29018.1
LsAA9A	ALN96977.1
MtLPMO9A	AKO82493.1
MYCTH_112089	AEO60271.1
MYCTH_92668	AEO56665.1
NcLPMO9C	EAA36362.1
NcLPMO9D	CAD21296.1
NcLPMO9E	EAA26873.1
NcLPMO9F	CAD70347.1
NcLPMO9M	EAA33178.1
NCU00836	EAA34466.1
PaLPMO9A	CAP73254.1
PaLPMO9E	CAP67740.1
PaLPMO9H	CAP61476.1
PaLPMO9D	BAL43430.1
PaLPMO9A	ACS05720.1

Supplementary	Supplementary Table 2: glycosidic torsion angles									
Glycosidic torsion angles		LsAA9A:Cell₅	LsAA9A:G4G4G 3G	LsAA9A-Cu(II) :Xyl₅	<i>Ls</i> AA9A:Xyl₅	LsAA9A:Xyl₄	LsAA9A:Xyl₃	LsAA9A:GM		
Subsite +2/+3 (°)	Ф Ψ	-	-	-	-	-	-	-83.5/-76.7 § 100.9/114.4 §		
Subsite +1/+2 (°)	Φ Ψ	-89.4 91.7	-92.6 93.3	-79.7 -175.6	-75.5 -175.4	- -	-83.6 140.7	-93.7 94.9		
Subsite -1/+1 (°)	Ф Ψ	-83.9 99.9	-85.1 96.2	-75.1 152.5	-80.2 162.4	- -	(-103.6)* (164.7)*	-82.7 103.3		
Subsite -2/-1 (°)	Φ Ψ	-79.0 98.5	-66.9 94.2	-84.4 123.1	-86.3 118.7	-86.3 107.2	-87.2 99.4	-73.4 94.8		
Subsite -3/-2 (°)	Φ Ψ	-68.7 101.0	-	-98.1 127.0	-97.7 130.2	-113.3 132.3	-129.2 152.4	-113.7 126.7		
Subsite -4/-3 (°)	Φ Ψ	-	-	-	-	- -	-	-92.6/-91.2 § 106.1/105.3 §		
Ideal cellulose torsion angles	Φ Ψ				-88.9 95.0					
Definitions	Φ Ψ			O C	$C_{5'} - C_{1'} - O_4 - C_4$ $C_{1'} - O_4 - C_4 - C_3$					
Ideal xylan torsion angles	Φ Ψ			-						
Definitions	Φ Ψ			O C	$C_{5'} - C_{1'} - O_4 - C_4$ $C_{1'} - O_4 - C_4 - C_3$					
§ Alternative conform *(xylosyl unit flipped	nation	subsite-1)								

				Pote	ential hydro	gen bonding di	stances (v	vithin 3.2 Å dista	ance) in Ls	AA9A-compley	c structures				
		LSAA9A	:Cell5	LsAA9A:G	4G4G3G	LsAA9A-Cu	(II):Xyl	LSAA9A:	Xyl₅	LSAA9A	Xyl₄	LsAA9A:	۲yl₃	LsAA9A:	GM
Subsite	Glycosi	i Residue	Distances	Residue	Distances	Residue	Distances	Residue	Distances	Residue	Distances	Residue	Distances	Residue	Distances
	aic/	(atom)	(A)	(atom)	(A)	(atom)	(A)	(atom)	(A)	(atom)	(A)	(atom)	(A)	(atom)	(A)
۴	O(6)		ı	,	ı	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	H ₂ O (Aen28(N))	2.70§
	O(6)					n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	Asn67(No ₂)	3.17
+2	0(1)	H ₂ 0	2.30	H ₂ 0	3.06	Asn28(Nõ ₂)	2.94	Asn28(Nõ ₂)	2.97	Asn28(Nõ ₂)	3.06	Asn28(Nõ ₂)	2.95	ı	ı
		(Asn67(Nõ ₂))		(Asn67(Nõ1))	_						1				
	0(1)	-	- 20	-	, i , c	Asn6/(Uo2)	2.67	ASN67(NO2)	2.69	Asn67(No2)	Z./1	Asnö/(No2)	2.62	-	, 0
	0(2)	Asn28(Nõ ₂)	2.81	Asn28(Nõ ₂)	2.87		,		,	ı	,		,	Asn28(Nõ ₂)	2.89
	0(2)	Asn67(Nõ₂)	2.58	Asn67(Nð1)	2.57	'	·	'	,	ı	ı	·	·	$Asn67(N\delta_2)$	2.67
	O(3)	His66(Νε₂)	2.80	His66(Nε₂)	2.72		•			ı				His66(N ϵ_2)	2.81
	O(4)			ı						ı		·			
	O(4)	ı		ı	,	ı	,	ı	,	ı	ı	ı	,	ı	,
	O(5)	ı	·	I	ı	His66(N ϵ_2)	2.80	His66(N ϵ_2)	2.76	His66(N ϵ_2)	2.76	His66(Nε ₂)	2.75	ı	,
÷	0(6)	H ₂ O _{pocket}	2.80	H ₂ O _{pocket}	2.71	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	H ₂ O _{pocket}	2.83
T	0(2)	Ser77(Oy)	2.54	Ser77(Oy)	2.59	Ser77(Oy)	2.65	Ser77(Oy)	2.63	Ser77(Oy)	2.68	Ser77(Oy)	2.57	Ser77(Oy)	2.67
	O(2)	ı		ı	,	ı	,	ı	'	I	ı	*(Gln162((N52))	*(3.16)	ı	,
	0(3)	·		ı		·				ı	1	*(Glu148((O£2))	*(2.60)		
	O(3)			ı		H ₂ O	2.94	H ₂ O	2.95	I	1	*///01/28//OU	(VU 2/*	1	1
						(Tyr203(OH))		(Tyr203(OH))		I	ı		(+0.0)	ı	
	O(4)	·		ı						ı		*(Ile158((CO))	*(2.87)		
	O(6)	ı	ı	H ₂ O (Glu148(Οε ₄))	3.12	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	ı	ı
٢	O(2)	Glu148(O ₆₁)	2.58	Glu148(Oε ₁)	2.62	Glu148(O ₆₁)	2.62	Glu148(Oε ₁)	2.66	Glu148(Oε ₁)	2.71	Glu148(Oε ₁)	2.74	Glu148(OE1)	2.55
	O(2)			·		$Arg159(N\omega_1)$	2.90	Arg159(Nw1)	2.98	Arg159(Nw1)	2.90	Arg159(Nw1)	2.94		
	O(3)	$Arg159(N\omega_2)$	3.02	$Arg159(N\omega_2)$	3.12	$Arg159(N\omega_2)$	2.83	$Arg159(N\omega_2)$	2.93	$Arg159(N\omega_2)$	2.87	$Arg159(N\omega_2)$	2.82	Arg159(Nω1)	3.13
	O(3)		'	·	ı	#Leu222(CO)	3.01		ı	#Leu222(CO)	2.82	#Leu222(CO)	2.80	H ₂ O	3.04
													-	(Asp1ou(Uo2))	
	O(5)				·	H ₂ O (Tyr203(OH))	2.80	H ₂ O (Tyr203(OH))	2.67	·					ı
	O(6)					n/a	n/a	n/a	n/a	na	n/a	n/a	n/a	#Gly233(N)	2.71
ዋ	O(5)	,	ı	I		,	ı	H_2O	2.86	I	ı	I	ı	ı	
								(Asp150(Oõ ₂))							
	O(6)	$Arg159(N\omega_2)$	3.01	ı		n/a	n/a			n/a	n/a	n/a	n/a	·	
	O(6)	$Asp150(O\delta_2)$	2.71	ı		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a		
	O(6)	#Leu222(CO)	2.60			n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	-	,
	O(2)	•		ı		•				I				Asn201(N δ_2)	3.13
	O(2)			·			•			ı				Asn201(Nõ ₂)	3.12 §
	O(3)			ı						ı		ı		#Ser219(CO)	2.99
	O(3)	ı		ı	,	ı	,	ı	,	I	,	ı	,	#Ser219(CO)	3.07 §
			A &	Nternative con	Information;	* (xylosyl unit fi	ipped out	of subsite-1); #	Symmetry	related intera	ction; n/a n	ot applicable			

Supplementary Table 3: Protein-substrate interactions.

Supplementary Table	4: Crystallization an	d soaking conditions
----------------------------	-----------------------	----------------------

Crystallization Conditions	LsAA9A:Cell₅	LsAA9A:G4G4G3G	LsAA9A:Xyl₃	LsAA9A:Xyl₄	LsAA9A:Xyl₅	LsAA9A:Xyl₅ Cu(II)	LsAA9A:GM	CvAA9
Protein concentration	19.2 mg/mL	19.2 mg/mL	19.2 mg/mL	19.2 mg/mL	19.2 mg/mL		19.2 mg/mL	6.3 mg/mL
Preincubation [Cu(II)acetate] Time	1.0 mM 1 hour	1.4 mM 30 min	1.0 mM 1 hour	1.0 mM 1 hour	1.0 mM 1 hour	1.0 mM 1 hour	1.0 mM 1 hour	1.0 mM 1 hour
Precipitant concentration	3.2 M NaCl	3.5 M NaCl	4.4 M NaCl	4.1 M NaCl	3.6 M NaCl	3.6 M NaCl	3.3 M NaCl	1.6 M (NH₄)₂SO₄ 0.1M NaCl
Reservoir buffer	0.1 M citric acid pH3.5	0.1 M citric acid pH3.5	0.1 M citric acid pH4.5	0.1 M citric acid pH4.0	0.1 M citric acid pH4.5	0.1 M citric acid pH4.5	0.1 M citric acio pH3.5	d 0.1 M HEPES pH 7.5
drop volume and ratio (Prot:Res:H ₂ O)	0.5 μL 3:1:1	0.4 μL 3:1:0	0.4 μL 3:1:0	0.5 μL 3:1:1	0.4 μL 3:1:0	0.4 μL 3:1:0	0.4 μL 3:1:0	0.5 μL 3:1:1
Soaking Conditions	LsAA9A:Cell₅	LsAA9A:G4G4G3G	LsAA9A:Xyl₃	LsAA9A:Xyl₄	LsAA9A:Xyl₅	LsAA9A:Xyl₅ Cu(II)	LsAA9A:GM	CvAA9
pH equilibration	30 min. in 0.4ul drop of pH 5.5	-	-	-	-	-	-	-
Soaking Conditions	1ul G5 solution added for 10 min	0,5ul of 0.3M MLG-B (reservoir) added for 20 min	1.45 M X3 pH5.5 1 hour	1.25 M X4 pH5.51 hour	0.9M X5 pH 5.5 10 min	0.9M X5 pH 5.5 10 min	GM solution pH5.5 15 min	-

Both proteins were buffered in 20 mM acetate pH 5.5

Supplementary Reference

1. Fry, S.C. *et al.* An unambiguous nomenclature for xyloglucan-derived oligosaccharides *Physiol. Plant.* **89**, (1993)