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Luise Poustka17, Sabina MillenetID
4, Juliane H. Fröhner18, Michael N. Smolka18,

Henrik Walter12, Robert Whelan19, Gunter Schumann7, Alexandra S. Potter2,

Hugh Garavan2, IMAGEN Consortium¶

1 Vermont Center for Children, Youth, and Families, Department of Psychiatry, University of Vermont College

of Medicine, Burlington, VT, United States of America, 2 Department of Psychiatry, University of Vermont

College of Medicine, Burlington, VT, United States of America, 3 McConnell Brain Imaging Centre, Montreal

Neurological Institute, McGill University, Montreal, QC, Canada, 4 Department of Child and Adolescent

Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg

University, Mannheim, Germany, 5 Discipline of Psychiatry, School of Medicine and Trinity College Institute

of Neuroscience, Trinity College Dublin, Dublin, Ireland, 6 University Medical Centre Hamburg-Eppendorf,

Hamburg, Germany, 7 Medical Research Council—Social, Genetic and Developmental Psychiatry Centre,

Institute of Psychiatry, Psychology & Neuroscience, King’s College London, United Kingdom, 8 Department

of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim,

Heidelberg University, Mannheim, Germany, 9 Department of Psychology, School of Social Sciences,

University of Mannheim, Mannheim, Germany, 10 NeuroSpin, CEA, Université Paris-Saclay, Gif-sur-Yvette,
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Abstract

In structural neuroimaging studies, reduced cerebral cortical thickness in orbital and ventro-

medial prefrontal regions is frequently interpreted as reflecting an impaired ability to downre-

gulate neuronal activity in the amygdalae. Unfortunately, little research has been conducted

in order to test this conjecture. We examine the extent to which amygdalar reactivity is asso-

ciated with cortical thickness in a population-based sample of adolescents. Data were
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obtained from the IMAGEN study, which includes 2,223 adolescents. While undergoing

functional neuroimaging, participants passively viewed video clips of a face that started from

a neutral expression and progressively turned angry, or, instead, turned to a second neutral

expression. Left and right amygdala ROIs were used to extract mean BOLD signal change

for the angry minus neutral face contrast for all subjects. T1-weighted images were pro-

cessed through the CIVET pipeline (version 2.1.0). In variable-centered analyses, local cor-

tical thickness was regressed against amygdalar reactivity using first and second-order

linear models. In a follow-up person-centered analysis, we defined a “high reactive” group of

participants based on mean amygdalar BOLD signal change for the angry minus neutral

face contrast. Between-group differences in cortical thickness were examined (“high reac-

tive” versus all other participants). A significant association was revealed between the con-

tinuous measure of amygdalar reactivity and bilateral ventromedial prefrontal cortical

thickness in a second-order linear model (p < 0.05, corrected). The “high reactive” group, in

comparison to all other participants, possessed reduced cortical thickness in bilateral orbital

and ventromedial prefrontal cortices, bilateral anterior temporal cortices, left caudal middle

temporal gyrus, and the left inferior and middle frontal gyri (p < 0.05, corrected). Results are

consistent with non-human primate studies, and provide empirical support for an association

between reduced prefrontal cortical thickness and amygdalar reactivity. Future research will

likely benefit from investigating the degree to which psychopathology qualifies relations

between prefrontal cortical structure and amygdalar reactivity.

Introduction

Among primates, dense anatomical connections exist between regions of the prefrontal cortex

and the amygdalae [1–4]. Given these anatomical connections, it has long been posited that

prefrontal regions provide “top-down” modulation of amygdalar functioning [1–4]. In support

of this notion, functional magnetic resonance imaging (fMRI) studies of emotion regulation

have implicated prefrontal regions in the regulation of amygdalar activity [5–12]. Specifically,

across such studies, effective forms of emotion regulation have been associated with increased

activation in prefrontal areas, as well as concomitant decreases in amygdalar activation.

In surface-based studies of human cortical morphology, reduced cortical thickness in pre-

frontal areas—particularly in orbital and ventromedial prefrontal regions—has commonly

been interpreted as reflecting an impaired ability to regulate limbic structures like the amygda-

lae [13–15]. Despite the prevalence of such conjecture, little research has been performed in

order to directly test this speculation. To our knowledge, only one study has directly tested

the extent to which cerebral cortical thickness is associated with amygdalar reactivity [16].

Studying 20 healthy human adults (12 males, 8 females; mean age, 35.1 ± 12.7 years), Foland-

Ross et al. (2010) tested the extent to which activation in the left amygdala during cognitive

evaluation of negative emotional facial expressions was related to prefrontal cortical thickness.

Specifically, during cognitive evaluation of negative emotional facial expressions, participants

chose one of two words that best described the emotional face presented on the screen.

Citing a host of prior animal and human studies demonstrating suppression of amygdalar

activity by ventral prefrontal cortical areas [14, 17–21], the authors hypothesized that partici-

pants with reduced prefrontal cortical thickness would exhibit greater amygdalar activation—

reflecting a diminished capacity to downregulate the amygdalae during the affect labeling

Amygdalar reactivity and prefrontal

PLOS ONE | https://doi.org/10.1371/journal.pone.0216152 May 2, 2019 2 / 16

psychopathology) (LSHM-CT- 2007-037286), the

Horizon 2020 funded ERC Advanced Grant

‘STRATIFY’ (Brain network based stratification of

reinforcement-related disorders) (695313),

ERANID (Understanding the Interplay between

Cultural, Biological and Subjective Factors in Drug

Use Pathways) (PR-ST-0416-10004), BRIDGET

(JPND: BRain Imaging, cognition Dementia and

next generation GEnomics) (MR/N027558/1), the

FP7 projects IMAGEMEND(602450; IMAging

GEnetics for MENtal Disorders) and MATRICS

(603016), the Innovative Medicine Initiative Project

EU-AIMS (115300-2), the Medical Research

Council Grant ’c-VEDA’ (Consortium on

Vulnerability to Externalizing Disorders and

Addictions) (MR/N000390/1), the Swedish

Research Council FORMAS, the Medical Research

Council, the National Institute for Health Research

(NIHR) Biomedical Research Centre at South

London and Maudsley NHS Foundation Trust and

King’s College London, the Bundesministeriumfür

Bildung und Forschung (BMBF grants 01GS08152;

01EV0711; eMED SysAlc01ZX1311A;

Forschungsnetz AERIAL 01EE1406A, 01EE1406B),

the Deutsche Forschungsgemeinschaft (DFG

grants SM 80/7-2, SFB 940/2, NE 1383/14-1), the

Medical Research Foundation and Medical

research council (grant MR/R00465X/1). Further

support was provided by grants from: ANR (project

AF12-NEUR0008-01 - WM2NA, and ANR-12-

SAMA-0004), the Fondation de France, the

Fondation pour la Recherche Médicale, the Mission

Interministérielle de Lutte-contre-les-Drogues-et-

les-Conduites-Addictives (MILDECA), the

Assistance-Publique-Hôpitaux-de-Paris and
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task. As hypothesized, the authors found that amygdalar activation during the labeling task

was negatively correlated with cortical thickness in the left ventromedial prefrontal cortex

(vmPFC).

It remains unclear if such structure-function relations exist across the developmental span,

including during childhood and adolescence. Given that adolescence is accompanied by a dra-

matic increase in mood disorders [22], characterizing fronto-limbic relations during this

developmental window may help shed light on neurodevelopmental processes associated with

the emergence of psychopathology. Further, it is possible that sex qualifies relations between

cortical structure and amygdalar reactivity; unfortunately, prior research may not have been

adequately powered to detect sex differences. Indeed, a growing literature indicates that sex

hormone levels in developing youths influence cortico-limbic maturation, including fronto-

amygdalar networks [23–27]. Similarly, recent resting state functional connectivity research

suggests unique patterns of cortico-amygdalar connectivity between sexes during adolescence

[28].

In the present study, we investigate the extent to which amygdalar reactivity to angry faces

is associated with cerebral cortical thickness in a large population-based sample of adolescents.

Based on non-human primate tracer studies of fronto-amygdalar anatomical connectivity, we

hypothesize that reduced cortical thickness in ventromedial prefrontal cortices will be associ-

ated with increased amygdalar activation to negatively valenced emotional stimuli. We utilize

a publicly available probabilistic atlas of vmPFC cytoarchitecture in an attempt to reveal which

vmPFC subdivisions are most significantly associated with amygdalar reactivity (S1 Fig). We

also investigate the degree to which sex qualifies the relationship between cerebral cortical

structure and amygdalar reactivity.

Materials and methods

Participants

Neuroimaging and behavioral data were obtained from the IMAGEN study conducted across

8 European sites in France, the United Kingdom, Ireland, and Germany, which includes 2,223

adolescents recruited from schools at age 14 years. Local ethics research committees approved

the study at each site (London: Psychiatry, Nursing and Midwifery (PNM) Research Ethics

Subcommittee (RESC), Waterloo Campus, King’s College London. Nottingham: University of

Nottingham Medical School Ethics Committee. Mannheim: Medizinische Fakultaet Mann-

heim, Ruprecht Karl Universitaet Heidelberg and Ethik-Kommission II an der Fakultaet fuer

Kliniksche Medizin Mannheim. Dresden: Ethikkommission der Medizinischen Fakultaet Carl

Gustav Carus, TU Dresden Medizinische Fakultaet. Hamburg: Ethics board, Hamburg Cham-

ber of Physicians. Paris: CPP IDF VII (Comité de protection des personnes Ile de France), ID

RCB: 2007-A00778-45 September 24th 2007. Dublin: TCD School of Psychology REC. Berlin:

ethics committee of the Faculty of Psychology). Written consent was obtained from the parent

or guardian as well as verbal assent from the adolescent. A detailed description of recruitment

and assessment procedures has been published elsewhere [29]. In the present study, a total of

1,753 participants possessed quality controlled neuroimaging data and complete demographic

data.

Demographic measures

The puberty development scale (PDS) was administered to assess the pubertal status of study

participants [30]. The socioeconomic status (SES) score was derived by summing the following

variables: Mother’s Education Score, Father’s Education Score, Family Stress Unemployment
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Score, Financial Difficulties Score, Home Inadequacy Score, Neighborhood Score, Financial

Crisis Score, Mother Employed Score, and Father Employed Score [31].

MRI acquisition

MRI scanning was conducted at the eight IMAGEN assessment sites using 3T whole body

MRI systems [29]. Participants underwent MRI scanning for approximately one hour in order

to collect a combination of structural and functional imaging data. 3D T1-weighted images

were acquired using a magnetization prepared gradient echo sequence based on the ADNI

protocol (http://adni.loni.usc.edu/methods/mri-tool/mri-analysis/), which utilizes protocols

developed to minimize image differences across scanner makes and models. With regard to

the functional task used in the present study, 160 volumes were obtained per participant, with

each volume consisting of 40 slices. Slices were aligned relative to the anterior commissure—

posterior commissure line (2.4 mm thickness, 1 mm gap, TR = 2.20 s, TE = 30 ms). Please see

Schumann et al. (2010) for further details.

Processing of functional MRI

In the faces fMRI task, participants passively viewed video clips that contained either a person’s

face or a control stimulus. This task was created by Grosbras and Paus (2006) and required

participants to passively view a series of short (2–5 s) video clips displaying a face that started

from a neutral expression and progressively turned angry, or, progressively turned to a second

neutral expression [32]. The control stimuli contained expanding and contracting concentric

circles of various contrasts, roughly matching the contrast and motion characteristics of the

face stimuli. These control images were created and originally implemented by Beauchamp

et al. (2003) and were included to account for neural activity associated with viewing non-bio-

logical motion [33]. All stimuli were presented as 18 s blocks, with 4–7 video clips per block

during a face block. Each run was comprised of 5 blocks of neutral faces and 5 blocks of angry

faces.

Pre-processing of echo-planar imaging data was performed using SPM8 (Statistical

Parametric Mapping, http://www.fil.ion.ucl.ac.uk/spm/). Time series data were initially cor-

rected for slice timing, and subsequently corrected for movement, non-linearly warped into

MNI space, and spatially smoothed at 5 mm-FWHM. Functional activation maps were gener-

ated with SPM8 and regressed using a general linear model with AR noise model against a

design-matrix modeling each 18 second block of stimulus presentation. Contrast images were

obtained for the main effect of angry faces and neutral faces, as well as for differential activa-

tion of angry minus neutral faces. Left and right amygdala ROIs (from the Harvard-Oxford

Subcortical Atlas, thresholded at 50 percent probability and binarized) were used to extract

mean BOLD signal change for the angry face minus neutral face contrast for all subjects (S2

Fig).

Processing of structural MRI

Quality controlled native MR images were processed through the CIVET pipeline (version

2.1.0) using the CBRAIN platform [34]. As described in detail previously [35], the following

steps were performed as part of the CIVET pipeline [36, 37]. First, native MR images were line-

arly registered to a standardized MNI-Talairach space based on the ICBM152 dataset in order

to account for volumetric differences between subjects [38–40]. Second, the N3 algorithm was

implemented in order to correct for intensity non-uniformity artifacts [41]. Third, classifica-

tion of white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF) was performed

using the INSECT algorithm [42]. Fourth, the CLASP algorithm was used to generate high-
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resolution hemispheric surfaces (40,962 vertices per hemisphere) [43–46]. Hemispheric sur-

faces were generated for both the WM/GM interface and GM/CSF interface. Fifth, surfaces for

each hemisphere were non-linearly registered to an average surface created from the ICBM152

dataset [39, 44, 47]. A reverse linear transformation was carried out on each subject’s images,

and cortical thickness estimations were calculated at each cortical point in native space using

the tlink metric [48, 49]. As a final step, subjects’ cortical thickness maps were blurred using a

20-millimeter full width at half maximum surface-based diffusion smoothing kernel [50], pro-

viding optimal sensitivity for cortical thickness analysis [49].

Statistical analysis

Cortical thickness analyses were performed using SurfStat, a toolbox created for MATLAB

(The MathWorks, Inc., Natick, Massachusetts) by Dr. Keith Worsley (http://www.math.

mcgill.ca/keith/surfstat/). First, local cerebral cortical thickness was regressed against the con-

tinuous measure of amygdalar reactivity (i.e., mean amygdalar BOLD signal change for angry

minus neutral face contrast) using first and second-order linear models:

Y = 1 + b1Amy + b2Age + b3Sex + b4Site + b5Hand + b6TBV + b7PDS + b8SES + b9IQPR +

b10IQVC

Y = 1 + b1Amy + b2Amy^2 + b3Age + b4Sex + b5Site + b6Hand + b7TBV + b8PDS + b9SES +
b10IQPR + b11IQVC.

where “Amy” refers to the angry minus neutral face contrast value. In a follow-up person-

centered analysis, we defined a “high reactive” group as participants falling 1.5 standard devia-

tions above mean amygdalar BOLD signal change for the angry minus neutral face contrast

(corresponding, approximately, to the upper 5% of participants in the present sample). Impos-

ing this statistical cut-off resulted in 90 “high reactive” participants, and 1663 controls.

Between-group differences in cortical thickness were examined (“high reactive” versus all

other participants) using the following model:

Y = 1 + b1Group + b2Age + b3Sex + b4Site + b5Hand + b6TBV + b7PDS + b8SES + b9IQPR +

b10IQVC

Age, total brain volume, sex, site, handedness, SES, Performance IQ, Verbal IQ, and puber-

tal development were controlled for in all vertex-wise surface-based analyses (both variable-

and person-centered analyses). In order to examine the extent to which the association

between amygdalar reactivity and cortical thickness was qualified by sex, a “sex by Amy” inter-

action term was tested in first and second-order linear models. Similarly, a “sex by Group”

interaction term was added to the model used in the follow-up analysis.

To account for multiple comparisons, random field theory (RFT) correction was applied to

the entire cortical surface [51]. In order to identify significant clusters, an initial height thresh-

old of p� .001 was implemented at the vertex level, and a corrected familywise error (p� .05)

was subsequently applied. Further, vertex-level RFT thresholding was implemented using the

vertex-wise RFT critical t-value which was calculated from the expected Euler characteristic

and number of resolution elements, or “resels” [51].

Results

Demographic measures

Demographic information for participants is summarized in Table 1. Participants in the “high

reactive” group possessed significantly lower Performance IQs relative to all other participants.

No other significant differences were revealed between groups.
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Amygdalar reactivity and cortical thickness

No significant first-order linear associations were found between the continuous measure of

amygdalar reactivity and cerebral cortical thickness. Testing of a second-order linear model

revealed a significant quadratic association between amygdalar reactivity and ventromedial

prefrontal cortical thickness (Fig 1 and Table 2). Applying the Mackey and Petrides (2014)

human vmPFC atlas, significant cluster-wise associations were revealed, bilaterally, in areas 25,

14c, 14m, 14r, and 32 [52].

Probing of the quadratic association revealed a weak non-significant positive association

between cortical thickness and amygdalar reactivity at negative values for the angry minus

neutral face contrast; however, this pattern reversed such that a significant inverse association

between cortical thickness and amygdalar reactivity was observed at positive (�0.5) angry

minus neutral face contrast values (Fig 2 and S3 Fig).

Group analyses revealed that the “high reactive” group, in comparison to all other partici-

pants, possessed reduced cortical thickness in bilateral orbital and ventromedial prefrontal

cortices, bilateral anterior temporal cortices, left caudal middle temporal gyrus, as well as por-

tions of the left inferior and middle frontal gyri (p< 0.05, RFT corrected) (Fig 3 and Table 3).

Given the difference in group sizes, we subsequently conducted a Levene’s test in order to test

for potential heteroscedasticity. Importantly, in all significant cortical regions, there was no

evidence of heteroscedasticity. Applying the Mackey and Petrides (2014) human vmPFC atlas,

significant cluster-wise associations were revealed in all cytoarchitectonic subdivisions with

the exception of right area 11m and left area 24 [52].

In both variable- and person-centered analyses, the relationship between amygdalar reactiv-

ity and cerebral cortical thickness was not moderated by sex.

Discussion

In many structural neuroimaging studies, reduced cortical thickness in orbitofrontal and ven-

tromedial prefrontal areas has been interpreted as reflecting an impaired ability to downregu-

late amygdalar regions. To our knowledge, this is the largest multimodal neuroimaging study

to provide support for this widespread speculation. Specifically, using both variable- and per-

son-centered approaches, we revealed an association between high amygdalar reactivity to

emotional stimuli and reduced ventromedial prefrontal cortical thickness in a large, popula-

tion-based sample of adolescents. Further, results from the present study suggest that the rela-

tionship between cerebral cortical thickness and amygdalar reactivity is not influenced by sex.

Table 1. Demographic summary. Demographic summary for amygdalar reactivity groups.

High Reactive Group

M(SD)
(n = 90)

Control

M(SD)
(n = 1663)

t or X2 value p value

Age (yrs) 14.42(0.42) 14.43(0.41) 0.111 0.912

Sex Males = 51(56.7%) Males = 797(47.9%) 2.612 0.106

SES 17.43(3.71) 17.90(3.92) 1.108 0.268

IQPR 103.77(13.81) 108.21(14.06) 2.918 0.004�

IQVC 109.62(16.04) 110.54(14.03) 0.602 0.547

PDS 2.87(0.55) 2.91(0.56) 0.724 0.469

Brain Volume (mm3) 1442.20(134.40) 1425.22(131.59) -1.191 0.234

SES = socioeconomic status; puberty = pubertal development scale; IQ PR = performance IQ; IQ VC = verbal IQ

� = p< 0.007 (corrected significance value)

https://doi.org/10.1371/journal.pone.0216152.t001
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As hypothesized, a continuous measure of amygdalar reactivity to angry faces was associ-

ated with cortical thickness in the vmPFC, including portions of the right subgenual anterior

Fig 1. Amygdalar reactivity and cortical thickness. Brain areas in which local cerebral cortical thickness is associated with the continuous measure of amygdalar

activation (i.e., angry minus neutral face contrast) in a second-order (quadratic) model over the whole sample (n = 1753). Figure is shown at p� 0.05, RFT corrected.

Blue areas are significant at the cluster level and red color corresponds to areas significant at the vertex level. Controlled for age, total brain volume, sex, site, handedness,

Performance IQ, Verbal IQ, SES and pubertal development. Colored borders correspond to the maximum symmetric probability map derived from the cytoarchtectonic

studies of Mackey & Petrides (2014).

https://doi.org/10.1371/journal.pone.0216152.g001

Table 2. Peak areas from variable-centered analysis. Peak areas in which local cerebral cortical thickness was associ-

ated with the continuous measure of amygdalar activation (i.e., angry minus neutral face contrast) in a second-order

(quadratic) model over the whole sample.

Peak Vertex Location t-statistic MNI Coordinates

Left frontal orbital cortex -4.43 -15.82, -1.38, -13.56

Right subcallosal cortex -4.15 4.73, 16.55, -22.88

Right subcallosal and frontal orbital cortex -4.11 7.51, 6.91, -14.99

Left subcallosal and frontal orbital cortex -4.08 -14.81, 10.24, -17.28

https://doi.org/10.1371/journal.pone.0216152.t002
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cingulate—areas known to have strong anatomical connections with the amygdalae [53]. In

particular, analyzing the entire population-based sample of adolescents, we found evidence of

a significant quadratic association between amygdalar reactivity and bilateral ventromedial

prefrontal cortical thickness. Post hoc probing of this curvilinear relationship revealed signifi-

cant inverse associations between amygdalar reactivity and ventromedial prefrontal cortical

thickness at moderate to high (�0.5) angry minus neutral face contrast values. These findings

appear consistent with the notion of thinner ventromedial prefrontal cortices being tied to a

diminished capacity to regulate amygdalar activation in response to negatively valenced emo-

tional stimuli [16].

Using a person-centered approach, we found that the “high reactive” group, in comparison

to all remaining participants, possessed reduced cortical thickness in bilateral orbital and ven-

tromedial prefrontal cortices, bilateral anterior temporal cortices, left caudal middle temporal

gyrus, and portions of the left dorsolateral prefrontal cortex. These results are consistent with

non-human primate tracer studies indicating that caudal orbital and medial prefrontal cortices

possess the densest anatomical connections with amygdalar regions. Present findings are also

consistent with the only prior study to investigate the relationship between cortical thickness

and amygdalar reactivity [16]. As noted, however, this prior study was conducted using a rela-

tively small number of healthy adult participants.

Participants in the “high reactive” group exhibited reduced cerebral cortical thickness in

dorsolateral prefrontal regions. To our knowledge, this is the first study to demonstrate an

association between cortical thickness in dorsolateral prefrontal areas and amygdalar reactiv-

ity. This result is somewhat surprising given that dorsolateral prefrontal areas do not possess

Fig 2. Association between amygdalar reactivity and cortical thickness at varying contrast levels. Relationship between cortical thickness and angry minus neutral

face contrast value (averaged across bilateral amygdalar ROI) at varying levels of angry minus neutral face contrast values (-1.5, -1.0, -0.5, 0.0, 0.5, 1.0, 1.5). In top row,

colors represent t-statistic values associated with regression coefficient. Bottom row depicts RFT-corrected results (p� 0.05). Blue areas are significant at the cluster level

and red color corresponds to areas significant at the vertex level. Controlled for age, total brain volume, sex, site, handedness, Performance IQ, Verbal IQ, SES and

pubertal development.

https://doi.org/10.1371/journal.pone.0216152.g002
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strong anatomical connections with the amygdalae [1, 2, 4]. Nonetheless, the dorsolateral pre-

frontal cortex has long been implicated in cognitive, or voluntary, aspects of emotion regula-

tion. In functional neuroimaging studies, voluntary forms of emotion regulation (e.g.,

cognitive reappraisal) have been consistently tied to increased activation in dorsolateral pre-

frontal regions, and concomitant decreases in amygdalar activity [5–10]. As others have previ-

ously suggested, it is likely that dorsal prefrontal regions influence amygdalar activity through

phylogenetically older areas of the cerebral cortex—such as the vmPFC—that possess anatomi-

cal connections with the amygdalae [17]. Dovetailing with functional imaging studies of cogni-

tive emotion regulation, resting state functional connectivity studies of the amygdalae indicate

that amygdalar activity, at rest, is negatively associated with activity in dorsal prefrontal and

Fig 3. Results of “high reactive” group analysis. Brain areas in which local cerebral cortical thickness was significantly reduced in the “high reactive” group (n = 90)

relative to all other participants (n = 1663). Random field theory was used to correct for multiple comparisons over the entire cortical mantle. Figure is shown at

p� 0.05, RFT corrected. Blue areas are significant at the cluster level and red color corresponds to areas significant at the vertex level. Controlled for age, total brain

volume, sex, site, handedness, Performance IQ, Verbal IQ, SES and pubertal development. Colored borders correspond to the maximum symmetric probability map

derived from the cytoarchtectonic studies of Mackey & Petrides (2014).

https://doi.org/10.1371/journal.pone.0216152.g003

Table 3. Peak areas from person-centered analysis. Peak areas in which local cerebral cortical thickness was signifi-

cantly reduced in the “high reactive” group relative to all other participants.

Peak Vertex Location t-statistic MNI Coordinates (x,y,z)

Left subcallosal and frontal orbital cortex -5.23 -11.49, 14.36, -15.67

Right subcallosal cortex -4.87 3.87, 16.10, -7.56

Left precentral and inferior frontal gyrus -4.19 -53.88, 6.97, 8.79

Left middle temporal gyrus and angular gyrus -3.83 -63.43, -48.02, 6.16

https://doi.org/10.1371/journal.pone.0216152.t003

Amygdalar reactivity and prefrontal

PLOS ONE | https://doi.org/10.1371/journal.pone.0216152 May 2, 2019 9 / 16

https://doi.org/10.1371/journal.pone.0216152.g003
https://doi.org/10.1371/journal.pone.0216152.t003
https://doi.org/10.1371/journal.pone.0216152


inferior parietal cortices [54–56]. Results from the present study provide further support for

functional antagonism between portions of the DLPFC and the amygdalae.

Whereas Foland-Ross (2010) examined the relationship between amygdalar activation and

ventromedial prefrontal cortical thickness during cognitive evaluation of negative emotional

faces (i.e., affect labeling task), the present study utilized a functional probe that involved only

passive viewing of neutral and negative emotional faces. Thus, our results suggest that amygda-

lar reactivity is related to ventromedial prefrontal cortical thickness during passive viewing of

emotional stimuli, and further support the vmPFC’s putative role in automatic or involuntary

aspects of human emotion regulation [57].

Several limitations of the present study should be noted. In rodent models of chronic stress,

structural changes and increased neuronal excitability have been reported in the amygdalae

[58–60]. Furthermore, there is evidence that such functional and structural changes in the

amygdalae undergird the emergence of anxiety-like symptoms in rodent models of chronic

stress [58–60]. That being said, we can only speculate as to the developmental origins of the

observed structure-function relationship in the present study. As members of our group have

previously discussed [35], it is possible that reduced thickness in prefrontal regulatory regions

—reflecting compromised cytoarchitectonic integrity—results in a diminished capacity to

downregulate amygdalar activity. It is also possible that increased amygdalar reactivity, over

time, results in structural damage to prefrontal cortices through continued activation of the

hypothalamic-pituitary-adrenal (HPA) axis and resultant release of cortisol [61–64]. Both of

these processes could potentially account for the structure-function association in the present

study; future studies, however, are needed to directly test these potential explanations. We can-

not rule out the possibility that structure-function relations observed in the present study

reflect parallel, experience-driven developmental processes that are independent of underlying

anatomical connectivity. With regard to our group analyses, it should be noted that the “high

reactive” group possessed significantly lower Performance IQs relative to all other participants.

We cannot rule out the possibility that this difference in Performance IQ may have contrib-

uted to the observed cortical thickness differences. To address this issue, we examined the rela-

tionship between Performance IQ and cortical thickness while controlling for age, total brain

volume, sex, site, handedness, SES, Verbal IQ, and pubertal development. Critically, no signifi-

cant associations were revealed between Performance IQ and cortical thickness. Further, no

trend-level associations (p<0.005 uncorrected) were observed in any of the cortical regions

that were related to amygdalar reactivity (in both whole sample second-order linear model

results, and group results). Given the age of participants in the present study, it is unclear the

extent to which our findings generalize to adult populations. Importantly, the cerebral cortex

and limbic structures are still undergoing significant structural change during this develop-

mental period [65–67], and evidence from prior imaging studies indicates that white matter

pathways serving to connect the amygdalae and prefrontal cortices are continuing to mature

during adolescence [68–70]. Given dynamic changes in brain structure and connectivity dur-

ing adolescence, caution should be taken in extending the present findings to children and

adults. Lastly, in our variable-centered analysis, it should be noted that the effect size of the

observed quadratic association was relatively small (R2 = 0.013). Ventromedial prefrontal cor-

tical thickness is likely just one of myriad brain factors associated with amygdalar reactivity.

Factors such as white matter microstructure in pathways such as the uncinate fasciculus may

be important moderating factors when assessing the association between cortical structure and

amygdalar reactivity. Future multimodal studies are needed to more fully elucidate such

relations.

It is noteworthy that results of the present study appear consistent with a prior report of

structural covariance between amygdalar volume and cerebral cortical thickness in a large
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sample of typically developing youths [35]. In particular, Albaugh et al. (2013) found that

amygdalar volume was negatively associated with cortical thickness in orbitofrontal, ventro-

medial, and dorsolateral prefrontal cortices. A similar pattern of results has been reported in a

large adult sample [71].

Although the aim of the present study was to characterize relations between amygdalar

reactivity and cerebral cortical structure, future studies will likely benefit from investigating

the extent to which forms of psychopathology moderate these structure-function relations. It

is possible that such relations between cerebral cortical structure and amygdalar reactivity may

not only have ties to concomitant psychopathology, but also have predictive utility for the

emergence of future psychopathology. In addition, ongoing prospective longitudinal studies,

such as the Adolescent Brain and Cognitive Development (ABCD) study, may help to shed

light on how the observed relations between cerebral cortical structure and amygdalar reactiv-

ity develop across childhood and adolescence.

Supporting information

S1 Fig. Cytoarchitectonic-based atlas. Surface-based representation of maximum symmetric

probability map derived from the cytoarchitectonic studies of Mackey & Petrides (2014). Col-

ors correspond to the following cytoarchitectonic areas: red = 11m; blue = 14r’; pink

lavender = 14r; lime green = 14c; yellow = 25; orange = 14m; dark green = 32; magenta = 24.

(TIF)

S2 Fig. Amygdala ROIs. Depiction of left and right amygdala ROIs (from the Harvard-Oxford

Subcortical Atlas, thresholded at 50 percent probability and binarized) that were used to

extract the mean BOLD signal from the angry face minus neutral face contrast.

(TIF)

S3 Fig. Scatter plot of quadratic association. Scatter plot depicting quadratic association

between residualized average thickness of right vmPFC cluster (adjusted for age, total brain

volume, sex, site, handedness, Performance IQ, Verbal IQ, SES and pubertal development)

and angry minus neutral face contrast value (mean value for left and right amygdalae).

(TIF)
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Robert Whelan, and Gunter Schumann.

Author Contributions

Conceptualization: Matthew D. Albaugh, Scott Mackey.

Data curation: Philip A. Spechler, Claude Lepage, Vladimir Fonov, Pierre Rioux, Alan C.

Evans, Tobias Banaschewski, Arun L. W. Bokde, Uli Bromberg, Christian Büchel, Erin
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Burke Quinlan, Sylvane Desrivières, Herta Flor, Antoine Grigis, Penny Gowland, Andreas

Heinz, Bernd Ittermann, Jean-Luc Martinot, Marie-Laure Paillère Martinot, Frauke Nees,
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