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ABSTRACT
Identifying the counterparts of submillimetre (submm) galaxies (SMGs) in multiwavelength
images is a critical step towards building accurate models of the evolution of strongly star-
forming galaxies in the early Universe.However, obtaining a statistically significant sample
of robust associations is very challenging due to the poor angular resolution of single-dish
submm facilities. Recently, a large sample of single-dish-detected SMGs in the UKIDSS
UDS field, a subset of the SCUBA-2 Cosmology Legacy Survey (S2CLS), was followed
up with the Atacama Large Millimeter/submillimeter Array (ALMA), which has provided
the resolution necessary for identification in optical and near-infrared images. We use this
ALMA sample to develop a training set suitable for machine-learning (ML) algorithms to
determine how to identify SMG counterparts in multiwavelength images, using a combination
of magnitudes and other derived features. We test several ML algorithms and find that a
deep neural network performs the best, accurately identifying 85 per cent of the ALMA-
detected optical SMG counterparts in our cross-validation tests. When we carefully tune
traditional colour-cut methods, we find that the improvement in using machine learning is
modest (about 5 per cent), but importantly it comes at little additional computational cost.
We apply our trained neural network to the GOODS-North field, which also has single-dish
submm observations from the S2CLS and deep multiwavelength data but little high-resolution
interferometric submm imaging, and we find that we are able to classify SMG counterparts for
36/67 of the single-dish submm sources. We discuss future improvements to our ML approach,
including combining ML with spectral energy distribution fitting techniques and using longer
wavelength data as additional features.
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1 IN T RO D U C T I O N

The submillimetre (submm) window has become an important
waveband for extragalatic astronomy due to the discovery of bright
submm galaxies (SMGs). These galaxies appear to be among the
earliest and most actively star-forming galaxies in the Universe,
often reaching luminosities of more than 1013 L� (over 100 times
that of our Milky Way Galaxy) and star formation rates (SFRs)
greater than a few hundred M� yr−1 (e.g. Blain et al. 2002;
Magnelli et al. 2012; Swinbank et al. 2014; MacKenzie et al. 2017;

� E-mail: rhliu@phas.ubc.ca

Michałowski et al. 2017) around redshifts 2–3, corresponding to
only a few billion years after the big bang (e.g. Chapman et al.
2005; Simpson et al. 2014, 2017).

Observations of these SMGs are most easily made using single-
dish submm telescopes, such as the continuum imaging instruments
SCUBA-2 (Holland et al. 2013) on the James Clerk Maxwell Tele-
scope (JCMT), and the Large Apex BOlometer CAmera (LABOCA;
Siringo et al. 2009) on the Atacama Pathfinder EXperiment.
However, such single-dish surveys are usually low in angular
resolution, typically around 15–20 arcsec; finding multiwavelength
counterparts to these sources is therefore difficult, since there
could be dozens of optically detected galaxies within the submm
beamsize.
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This identification problem was first tackled using observations
with interferometers at radio wavelengths (e.g. Smail et al. 2000;
Chapman et al. 2001; Chapman et al. 2002, 2003; Ivison et al. 2002;
Bertoldi et al. 2007; Lindner et al. 2011). In the radio, synchrotron
emission is linked to supernovae, which is correlated with far-
infrared (FIR) emission from dust (e.g. Condon 1992; Yun, Reddy &
Condon 2001; Ivison et al. 2010; Magnelli et al. 2015). While these
radio-derived studies paved the way for progress in multiwavelength
detection, probabilistic arguments were still required, since the
submm emission could not be directly resolved.

In order to achieve the arcsecond and sub-arcsecond resolution
required for directly detecting individual SMGs, one must turn
to submm interferometers such as the the Submillimeter Array
(SMA; Ho, Moran & Lo 2004) and the Atacama Large Millime-
ter/submillimeter Array (ALMA; Wootten & Thompson 2009).
Unfortunately, locating statistically significant numbers of SMGs
over large areas of sky with such telescopes is prohibitive in both
time and resources. A more efficient way of utilizing these higher
resolution instruments is therefore to follow up bright individual
SMGs previously found in single-dish surveys (Barger et al. 2012;
Smolčić et al. 2012; Hodge et al. 2013; Simpson et al. 2015; Hill
et al. 2018; Stach et al. 2018). With such data, one can gather
samples over square-degree scales and accurately pinpoint many
hundreds of early-Universe SMGs. Nevertheless, there are much
larger samples of SMGs than can be efficiently followed up one by
one using interferometers.

Since we already have detailed information about the counterparts
to SMGs in samples with interferometric data, we can use that
information to help find the correct identifications in surveys
lacking such high-resolution imaging. In other words, we can use
known counterparts as a training set for identifying the SMGs
in single-dish surveys, through the application of deep-learning
techniques.

Machine learning (ML) has seen growing interest in astronomy
over the past decade or so. The rapid increase in the size of astro-
nomical data sets has led to a need for fast, automated algorithms
to extract relevant information, and astronomers are increasingly
turning to ML techniques to achieve their goals. Examples include
finding structures in galaxy surveys and simulations (e.g. Barrow,
Bhavsar & Sonoda 1985; Hajian, Alvarez & Bond 2015), identifying
cosmic ray artefacts in images (e.g. Salzberg et al. 1995), detection
of sources in γ -ray data (e.g. Campana et al. 2008), classification of
stellar spectra (e.g. Bailer-Jones et al. 1997), fitting photometric
redshifts of galaxies (e.g. Collister & Lahav 2004), producing
mock galaxy catalogues (e.g. Xu et al. 2013), approximating star
formation histories (e.g. Cohn 2018) and even use as a proxy for
simulations of galaxy formation (e.g. Kamdar, Turk & Brunner
2016).

An application closely related to this paper is source detection and
classification (e.g. Bertin & Arnouts 1996; Andreon et al. 2000),
which already has a long history (see e.g. Odewahn et al. 1992;
Storrie-Lombardi et al. 1992). Automated star-finders have been
developed using decision trees (Ball et al. 2006), and more recently
the use of algorithms such as support-vector machines (SVMs)
and convolutional neural networks (CNNs) have been used to find
sources down to even fainter magnitudes (Krakowski et al. 2016;
Kim & Brunner 2017). A similar task involves classifying images
of galaxies based on their morphologies (e.g. spiral, elliptical,
irregular). This problem was studied in detail in astronomy using
early neural networks (NNs) that contained only a few layers (Naim
et al. 1995; Odewahn et al. 2002; de la Calleja & Fuentes 2004),
and it was initially found to be no more accurate than traditional

weighted regression schemes. Later, when SVMs appeared on the
scene, there was a significant improvement over the rudimentary
NNs used in the past (Huertas-Company et al. 2008, 2009), but it
was not until CNNs were trained to distinguish different galaxies
from one another (Dieleman, Willett & Dambre 2015; Huertas-
Company et al. 2015; Domı́nguez Sánchez et al. 2018) that ML
became an effective and convincing tool for image recognition in
galaxy surveys.

Recently, An et al. (2018) used interferometric data from an
ALMA survey of the UKIDSS UDS (hereafter UDS) field (Stach
et al. 2018), designed to follow up sources detected in the SCUBA-
2 Cosmology Legacy Survey (S2CLS; Geach et al. 2017), to
train an ML algorithm to find the optical and near-infrared (NIR)
counterparts to single-dish-detected SMGs. These authors followed
up 716 SMGs detected in the UDS field as part of the S2CLS (Geach
et al. 2017), and matched each galaxy to overlapping optical and NIR
images. They then used an SVM to separate the known SMGs from
the non-SMGs that happened to lie within the single-dish emission
region. It was found that the SVM was able to achieve 77.2 ± 4.7
and 82.0 ± 4.9 per cent in precision and recall, respectively, where
precision and recall are two evaluation metrics for binary classifiers
(described in Section 3.3). Other supplementary inputs, such as
radio detections, were required to increase the performance.

To further develop this approach, in this paper we will test a
variety of different ML algorithms to determine the best method
for classifying SMGs. In Section 2 we discuss how we use existing
data to develop a training set; in Section 3 we explore various
ML algorithms, data-augmentation techniques, and validity tests,
and in Section 4 we evaluate how well these ML algorithms
perform. Then, in Section 5 we apply our fully trained deep NN
to the GOODS-North (hereafter GOODS-N) field, which contains
a similar catalogue of single-dish SMGs from the S2CLS and multi-
wavelength images. In Section 6 we discuss possible improvements
to our ML approach to SMG classification, and we conclude in
Section 7.

2 D E V E L O P I N G T H E TR A I N I N G A N D
PREDI CTI ON DATA SETS

2.1 Training catalogues

2.1.1 The single-dish survey

The first component of our ML training set is data from a large
single-dish submm survey. Following the previous work carried out
by An et al. (2018), we used the subset of the S2CLS covering the
UDS field, which encompasses an area of 0.9 deg2 at 850μm, in
which there are 296 007 catalogued optical galaxies. The resolution
of the SCUBA-2 instrument is 14.8 arcsec, meaning that a typical
blank-field optical image will find between five and 10 galaxies
within a single SCUBA-2 beam. In total, 1084 submm sources
were detected in the UDS field by SCUBA-2 with signal-to-noise
ratio S/N > 3.5, and with flux densities ranging from 2 to 17 mJy
(not including a 50 mJy strong gravitational lens, which we did not
incorporate into this study).

2.1.2 Interferometric follow-up

All S/N > 4.0 S2CLS sources in the UDS field (716 in all) have been
followed up with ALMA at 870μm in the AS2UDS survey (Stach
et al. 2018). The maps produced by these observations had a tapered
angular resolution of 0.5 arcsec, more than sufficient to match that of
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typical optical and NIR maps, which is needed to directly connect
SMGs to counterparts in optical and NIR catalogues. In the 716
ALMA follow-up maps, 608 contained ALMA-detected SMGs,
with some images containing more than one. In all, a total of 695
SMGs were detected above 4.3σ by ALMA.

2.1.3 The multiwavelength follow-up

The optical and NIR data for the UDS field come from a variety
of surveys carried out by several telescopes over the past decade.
Briefly, the United Kingdom Infrared Telescope has covered the
field in the J (1220 nm), H (1630 nm), and K (2190 nm) bands
from the UKIDSS survey (Lawrence et al. 2007) with 3σ depths of
26.2, 25.7, and 25.9, respectively; the Visible and Infrared Survey
Telescope for Astronomy has provided data in the Y band (1020 nm)
at a 3σ depth of 25.3; the u (360 nm) band has been covered by the
Canada–France–Hawaii Telescope down to a 3σ depth of 27.3, and
from the Subaru Telescope we use observations in the B (445 nm), V
(551 nm), R (658 nm), i (806 nm), and z (900 nm) bands, where the
3σ depths are 28.4, 27.8, 27.7, 27.7, and 26.6, respectively. Finally,
a catalogue of NIR sources within the UDS has been obtained from
the Spitzer mission at 3.6μm (down to 24.8, 3σ ) and 4.5μm (down
to 24.6, 3σ ). The details of these observations will be discussed in
Almaini et al. (in preparation). Using this UDS catalogue, An et al.
(2018) were able to match 514 of the 698 ALMA-detected SMGs
from the AS2UDS survey to their multiwavelength counterparts,
spanning the 12 wavebands described above (the details of the
photometric-matched catalogue will be described in Hartley et al. in
preparation). We used this AS2UDS catalogue to make the training
set in our paper.

To create the non-SMG portion of the training set, we took all
of the sources not identified as SMGs by ALMA from the multi-
wavelength catalogue that were within a 7.0 arcsec radius of the 608
SCUBA-2 sources with ALMA detections. We chose this radius as it
gave a search region with a diameter equal to the effective full width
at half-maximum (FWHM) of the SCUBA-2 beam, and the proba-
bility of finding the correct position of an SMG with an S/N > 4.3
that lies within this area is 99.6 per cent (Stach et al. 2018). This is
very similar to the approach taken by An et al. (2018), except that
they used a slightly larger search radius of 8.7 arcsec, which is the
radius of the ALMA primary beam at 870μm. We omitted SCUBA-
2 sources that lacked an ALMA match, since the multiwavelength
sources in those regions could still correspond to a weaker than 4.3σ

SMG. The UDS catalogue has a built-in star classification algorithm
from SEXTRACTOR, which classifies the likelihood of sources being
stars versus galaxies based on K-band photometry. We used this
built-in tool to filter out sources with a >50 per cent likelihood of
being a star. The resulting training set for our ML testing contained
a total of 1439 sources: 514 SMGs and 925 non-SMGs, which
are defined as multiwavelength sources within the 7 arcsec radius
SCUBA-2 beams but without >4.3σ ALMA detection.

2.2 Prediction catalogue

Once an ML algorithm has been trained to identify SMG coun-
terparts, we can use it on fields where no submm interferometric
follow-up data exist, but optical and NIR catalogues are available.
One such field is the Great Observatories Origins Deep Survey
North (GOODS-N) field. The GOODS-N field is one of the
S2CLS regions, and therefore has the necessary single-dish submm
observations. There is also a catalogue of optical- and NIR-detected

galaxies detected in this field using a combination of ground-
based imaging from the Subaru and the Canada–France–Hawaii
telescopes, and space-based imaging from Spitzer (see Hsu et al.
2019 for details), allowing us to use the best fully trained algorithm
to locate the multiwavelength counterparts of submm sources in
the GOODS-N field. For reference, the 3σ depths obtained in this
catalogue are 27.6 in the U band, 27.6 in the B band, 27.0 in the V
band, 27.6 in the R band, 26.4 in the i band, 26.0 in the z band, 26.2
in the Y band, 25.3 in the J band, 24.8 in the H band, 25.0 in the K
band, 25.6 in the 3.6μm band, and 25.6 in the 4.5μm band. In total,
this field contains 67 SCUBA-2-detected submm sources with flux
densities ranging from 3 to 13 mJy. This catalogue contains a total
of 399 multiwavelength sources within these 67 beams.

The depths obtained by the ground-based observations in the
UDS field are a factor of about two deeper than in the GOODS-N
field, and conversely the Spitzer imaging in the GOODS-N filed
is a factor of about two deeper than in the UDS field. Although it
would be ideal to use training and prediction sets of exactly equal
depth, we found that such a limit would drastically reduce the size
of both our UDS training set and our GOODS-North prediction set.
However, we did check to see if reducing the size of the training
and testing data sets to make their depths equal had any appreciable
affects on our results, and we found that indeed there were none.
We therefore chose to use the full scope of the available data; we
will further discuss our tests in Section 5.1.

In addition to the multiwavelength data, the GOODS-N field has
seen a partial interferometric follow-up from the SMA (Cowie et al.
2017). We will utilize this interferometric catalogue to further verify
our results from the ML approach, and provide an ML classified
catalogue of the multiwavelength sources.

2.3 Feature selection

It is well known that any ML algorithm can only be as good as the
features that it uses to learn. Thus, while training, it is important to
strike a balance between using lots of features, most of which are
somewhat useful, and using far too many useless features that just
become noise; it is also important not to compress large numbers
of features together or to reuse features.

Here we used as features the 12 mag measurements from Hartley
et al. (in preparation), as well as the parent SCUBA-2 flux-density
measurements. These are clearly the most useful features to use,
since we are effectively training a model to predict which galaxies
are bright at 850μm based on their brightness at optical and
NIR wavelengths; this is similar to fitting optical/NIR spectral
energy distributions (SEDs) and extrapolating to the submm. Any
additional information about the galaxies (photometric redshifts,
luminosities, etc.) will come from assuming some sort of SED,
which will hence be reusing the same information. In Fig. 1 we show
‘un-extrapolated’ SEDs for our galaxies (i.e. the magnitudes in the
observed frame), colour-coded by SMG/non-SMG classification, to
demonstrate this idea. ML algorithms will take into account all the
available features and put heavier weights on the features with more
prediction power, while still retaining less important features in a
lower capacity. Here we are assuming that there are no issues with
noise in the data, a topic that will be further discussed in Section 6.
In a sense, these features will be used by the ML algorithms to
estimate photometric redshifts and specific rest-frame colours that
predict dust-enshrouded star formation. We note that in the previous
study of SMG identification with ML by An et al. (2018), they chose
to use five features: photometric redshifts (derived from the above
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Figure 1. Plot of the magnitudes of our galaxies in the training set as a function of wavelength. The left-hand panel shows the non-SMGs, and the right-hand
panel shows the SMGs. It is clear that the SMGs are generally brighter at longer wavelengths (i.e. redder), which is largely the characteristic that our ML
algorithm will use (along with detailed colour information corresponding to shapes and breaks in different redshift ranges) to predict which galaxies will be
bright at 850μm (indicated by the dashed black line).

12 optical/NIR magnitudes), H-band magnitudes, J − K colours, K
−[3.6μm] colours, and [3.6μm]−[4.5μm] colours.

In addition to the flux features, we also want to include the
angular separations of the optical/NIR sources from the positions
of the SCUBA-2 centroids (i.e. the position of the brightest pixel
within the 14 arcsec area). We expect the positional accuracy to
be approximately σpos = 0.6 FWHM/(S/N) in each coordinate, and
hence the probability distribution for correct IDs should follow
P (r) ∝ r × exp(−r2/2σ 2

pos) (Ivison et al. 2007). In these equations
FWHM refers to the beamsize of SCUBA-2 at 850μm and S/N is the
signal-to-noise ratio of the SCUBA-2 source detection. Although
some single-dish sources resolve into multiple galaxies, rendering
implementation of the above equation more complicated, we believe
that the inclusion of such sources will be beneficial overall. Indeed,
by plotting the distributions of the angular separations for SMGs
and non-SMGs, we found that the best way to incorporate this
information was by including as a feature the angular separation
scaled by σ pos. In addition, we compared a training set that used
σ pos as a feature to one that did not, using the algorithms discussed in
Section 3.1, and we found that the inclusion of this feature increased
the precision and recall (see Section 3.3 for definitions of these
metrics) by around 1–3 per cent.

In the end, our final training/predicting data sets are comprised
of 14 features: magnitudes in the U, B, V, R, i, z, Y, J, H, K, 3.6μm,
and 4.5μm bands, the 850μm flux densities, and the scaled angular
separations.

Unfortunately, a number of the galaxies in these data sets were
too faint to be detected in all 14 bands, resulting in examples with
incomplete features. This is a common issue in data science, and
in Section 3.4 we will explore methods to cope with this issue.
In our training set of 1483 sources, 301/513 SMGs and 856/970
non-SMGs have complete data across all 14 features; similarly,
in our GOODS-N prediction set, 290/399 sources have complete
photometric data.

In order to maximize the number of unique samples used for
training, we chose to use all of the fully featured sources for training,
without making any S/N cuts; this means that some of our training
examples have relatively low S/N, down to about 3σ . The motivation
behind this choice is that there is still important information present
in the photometric data when averaged over a large number of
sources. To ensure that the low S/N data are not fitting incorrect
models or causing overfitting issues, in Section 4.1 we verify our
results with validation tests to ensure that the classifiers will still
maintain performance on high S/N data. In Section 6.3 we also
discuss future improvements in which photometric uncertainties
can be accounted for in ML algorithms.

2.4 Feature analysis

Before starting our ML training, it is useful to determine how much
separation is visible in the marginal distributions, such that we have
some idea of a lower bound on our expected classification accuracy,
in order to confirm that an algorithm can correctly separate the
data. There are of course a very large number of ways to slice a 14-
dimensional parameter space; however, in practice the galaxy types
will be distinguished through specific slopes and breaks in their
rest-frame SEDs. A simple and easy-to-interpret way to highlight
this is to plot the data in a series of 2D colour spaces, as shown in
Fig. 2.

We can see that a separation between SMG and non-SMG sources
does clearly exist, especially in the redder colours and wavelengths
(as expected since we are looking for galaxies that are brighter
at longer wavelengths, as well as typically being dustier). We can
therefore be confident that ML algorithms will be capable of separat-
ing the sources with a reasonable degree of accuracy. The traditional
astronomical approach would be to apply colour cuts to separate the
classes of sources. ML should be able to use more of the available
information (including weak separation in multiple dimensions that
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Figure 2. Plot of the data for the training set in a variety of 2D colour spaces. The red points represent SMG sources, while blue points represent non-SMGs.
The distributions of the features show a clear divide between SMGs and non-SMGs, especially among the redder colours. We could already effectively separate
red from blue by applying a few colour cuts by hand. The question is how much better ML algorithms will perform compared with traditional separation
methods. We note that the finite depths of the observations lead to unavoidable selection biases (i.e. our data do not contain colours redder or bluer than certain
limits set be telescope sensitivities); these biases should in principle apply equally to both SMG and non-SMGs, and as such ML algorithms can still distinguish
between them.

would not be visible to the naked eye) to separate the SMGs and
non-SMGs. What we want to investigate is how much better ML
can perform. In Section 4 we will show the benefits of using all
features, compared to limiting ourselves to just the obvious ones.

3 MAC H I N E - L E A R N I N G A L G O R I T H M S ,
OPTIM IZATION , AND VA LIDATION

3.1 Algorithms

Two ML algorithms have already been tested with SMG classi-
fication. An et al. (2018) explored the effectiveness of an SVM
and the more recently developed boosted decision tree (BDT) algo-
rithm called XGBOOST1 (Friedman 2001). The SVM model creates
hyperplanes in the n-dimensional feature space to separate the
input samples into different groups. XGBOOST uses an ensemble of
decision trees to score each sample and decide which class it belongs
to, using gradient boosting to optimize the loss function (which
measures how predictive the model is). An obvious advantage of
the latter algorithm is the fact that it can take into account samples
with missing features (which indeed is an issue with our training
set).

In this paper, we will expand on these models by incorporating
a number of other ML algorithms, along with the expanded set
of features. In addition to the SVM and BDT algorithms, we will

1https://github.com/dmlc/xgboost

include logistic regression (LR), Gaussian-naive Bayes (GNB), k-
nearest neighbours (KNN), regular decision trees (DT), random
forests (RF), linear discriminant analysis (LDA), and finally, a few
NNs with different structures. We give further details regarding
the traditional ML models in Appendix A, while our deep-learning
methodology and NN architecture is described in Appendix B. By
testing this many classification methods, we expect to be able to
pick the best algorithm for our particular application. It is worth
noting that some caution is required here, since we are testing so
many different ML algorithms; overfitting, a phenomena where a
classification algorithm picks up on random patterns in order to
describe the training set with near 100 per cent accuracy (see e.g.
Buduma 2015; Chollet 2017), can be an issue in certain scenarios.
However, we do not expect overfitting to be an issue here because
the ML models that we are testing are relatively simple and do
not depend on very many free parameters, as compared to, for
instance, a very deep NN with hundreds of thousands of free
parameters.

Most of our additional models were implemented using the
SCIKIT-LEARN2 package for PYTHON, but we constructed our NNs
using the KERAS3 NN interface library, which is built on top
of many of todays popular deep-learning software libraries. We
also used Google’s TENSORFLOW4 deep-learning library as the

2http://scikit-learn.org
3https://keras.io/
4https://www.tensorflow.org/
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KERAS deep-learning backend. The modularity of KERAS allows
the construction of many types and variations of NNs. We have
specifically constructed four different NNs of varying sizes and
configurations, which are described in more detail in Appendix B.

3.2 Hyperparameter optimization

Most ML algorithms contain hyperparameters that are tuned to find
the best possible algorithm for a particular type and composition
of data. All of the algorithms that we tested (except for the GNB
classifier) contain such parameters. Depending on the model, these
hyperparameters may include different values for the threshold of
classification or different variations in the mathematical models
for fitting the data. In particular, those from SCIKIT-LEARN, as well
as from the XGBOOST package, can be tuned simply using a k-fold
cross-validation method. This procedure divides the training set into
k subsets, or folds, and trains on k − 1 folds while validating on the
remaining fold (i.e. similar to bootstrap resampling). This process
is repeated k times with each separate set serving as the validation
data. The cross-validation procedure is performed on every variation
of the model given by different combinations of hyperparameters
in order to find the best hyperparameter combination. We chose to
set k = 4 in order to have a more reasonable computation time.
Given the relatively small size of our data set, as well as the relative
simplicity of the hyperparameters, we do not split a secondary
validation set specifically for hyperparameter optimization, since
such a set would decrease the amount of training data, and result in
less accurately trained models when assessing model performance.
After the search, we then chose the set of hyperparameters that
achieves the best F1 score (see Section 3.3 for a definition of F1).

It is a bit more difficult to tune an NN in comparison to the
other, simpler models investigated in this study. Using the KERAS

package’s modular NN interface, we found that there are millions
of different combinations of hyperparameters that can be changed
to affect an NN’s performance. Furthermore, large NNs tend to be
more prone to overfitting than other simpler models, as their relative
complexity means that they are more able to ‘memorize’ the training
data rather than learning patterns from it. Therefore, we decided to
simplify the process by fixing a few parameters while performing
hyperparameter optimization on some others. In order to maximize
the effectiveness of the NN algorithm, we tested various structures
with different numbers of layers, nodes, and regularizations to
find those that worked best for our application. In the analysis
below, we included the best four such structures alongside our other
algorithms. Further discussions on overfitting, as well as details
on the exact structures used and NN optimization can be found in
Appendix B.

3.3 Validation

There are many ways to quantitatively assess the performance of a
classification algorithm. Here we use four different metrics (treated
as percentages) to compare each of the ML algorithms in our tests.
We define ncorrect as the total number of correctly classified samples,
ntotal as the total number of tested samples, nTP is the number of true
positives (number of correctly identified SMGs), nFP is the number
of false positives (number of non-SMGs incorrectly identified as
SMGs), and nFN is the number of false negatives (number of
SMGs incorrectly identified as non-SMGs). The totals are such that
ncorrect = nTP + nTN is the number of correctly identified SMGs plus
the number of correctly identified non-SMGs, and ntotal = ncorrect +

nFP + nFN is the total number of classification attempts. Our metrics
are:

(i) accuracy, defined as ncorrect/ntotal;
(ii) precision, defined as nTP/(nTP + nFP);
(iii) recall, defined as nTP/(nTP + nFN);
(iv) the F1 score, a harmonic mean of the precision and recall,

defined as 2 × (precision × recall)/(precision + recall).

Since precision and recall are both important metrics for our
application, we choose to focus on the F1 score because it combines
these two quantities, thus we use it to evaluate the best set of
hyperparameters and to choose the best ML algorithm. The F1

score can also take into account training sets where the number of
positives may be much smaller than the number of negatives, which
is the case here.

To estimate these metrics for each ML algorithm, we use k-
fold cross-validation with k = 4. The procedure is identical to
the k-fold cross-validation used to tune hyperparameters, only the
hyperparameters are fixed to their optimal values. We split the
labelled data set into four subsets, and train on three, while testing
on the remaining one. We then rotate the test set, such that we
eventually test on the entire data. In order to ensure consistency in
our results, we repeated this process 50 times, thus obtaining a total
of 200 estimates of the accuracy, precision, recall, and F1 score
based on 50 random cuts of the training set. We then calculated the
mean and standard deviation of the chains. We note that the standard
deviation here is best viewed as a measure of the relative stability
of the performance of a model (as measured by the given metric,
e.g. F1 score) under varying training/testing sets. This standard
deviation should not be interpreted as a Gaussian uncertainty in the
true value of the metric for a given model trained on a fixed training
set.

In addition to the typical ML validation methods, we also
implemented another validation method by testing a trained model
on blank fields. Blank fields were created by looking at random
points in the UDS field (sufficiently far from known SCUBA-2
sources) and considering all of the multiwavelength galaxies within
a SCUBA-2 beam in the same way as for the real sources. The blank-
field test should give us a better understanding of the false positive
rate of our classifiers, especially when compared to the predictions
from an unknown data set (such as the GOODS-N field).

3.4 Imputation

The effectiveness of an ML algorithm is somewhat related to the
size and completeness of the training set. Models will perform better
when given a more complete sample of data to train on. However,
many galaxies in our catalogue have missing (i.e. undetected)
magnitudes, and removing these galaxies prior to training might
not be ideal because it will decrease the training set size. In order to
use our full training set, we can include the samples with missing
photometry and figure out a way to fill in these missing features.
The process of filling in missing features is called imputation in
data science, and there are many different algorithms to accomplish
the task.

Of course, imputed data should not be considered as representa-
tions of new real data, and imputation is more effective if missing
features are random, while in reality they are due to incomplete
coverage, populations of faint sources, or other sample biases;
Section 6.3 further discusses the causes of the missing features in
our sources. Rather than creating new fully featured training data,
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Figure 3. In order to see if ‘manual learning’ can compete with ML, we imposed manual cuts in colour space to separate SMGs from non-SMGs in the training
set. The lines shown here have been obtained by searching for the slopes and intercepts that maximize the Fi score. Our manual procedure then classifies a
source as an SMG if it satisfies any two of the three linear cuts shown here. The performance of this ‘manual learning’ algorithm is compared to ML algorithms
in Section 4.

the process of imputation can be thought of as a way to improve the
performance of algorithms by increasing the training set size.

In this particular setting, where we are dealing primarily with
photometry (rather than other kinds of missing data), another
reasonable solution to the problem of non-detections would be to
report the non-detections in any case. For example, if a galaxy is
detected in the K band but in the B band its flux density is less
than the local noise, one could still provide this information as a
value and error bar, provided that flux density units are used instead
of magnitudes. The fact that there is a number associated with the
position of the galaxy in the B band is still useful information, even
though the S/N is less than some threshold. In fact, one could further
extend the ML approach to use the uncertainties by repeating the
analysis a large number of times with realizations drawn from the
error distributions, which we discuss in Section 6.3. But here we are
working directly from catalogues of sources where non-detections
are left blank, so in order to deal with these sources we would have
to use imputation to fill in the missing data.

We explored various imputation techniques to see if they im-
proved our metrics in any way. We used the fancyimpute
package for PYTHON, which implements a number of different
algorithms. These include replacing missing values with the mean
or the median, and replacing missing values with the source having
the closest mean-square distance (i.e. KNN), as well as complex
imputation methods such as Soft Impute (Mazumder, Hastie &
Tibshirani 2010) and Multivariate Imputation by Chained Equations
(MICE; Azur et al. 2011). In order to judge the performance of
these techniques, we imputed missing data in the training set only,
and calculated their metric scores on non-imputed data. Lastly,
we compared the metrics obtained from imputed training sets to
the metrics obtained from simply removing sources with missing
features, in order to establish the usefulness of imputation with our
data.

3.5 A manual learning algorithm

An important issue to address is whether or not all of the work
that goes into training sophisticated ML algorithms (like NNs)
is actually worth the effort. In other words, are these algorithms
more successful at SMG classification than traditional, manually
identified colour cuts? In the traditional approach, after plotting
the data in several colour spaces, it might become apparent that a

nearly complete separation exists between SMGs and non-SMGs at
redder wavelengths, and that this can be utilized to ‘learn’ how to
distinguish SMGs from non-SMGs without any ML at all.

We therefore pitted such a ‘human’ or ‘manual learning’ al-
gorithm against the ML algorithms to see how the performance
compares. In Fig. 3 we show the magnitudes and colours against
one another in various combinations, and we looked for spaces
where there was an obvious separation between SMGs and non-
SMGs. There are three plots where this separation seems clear: K
−[3.6μm] versus [3.6μm]−[4.5μm], H − K versus K −[3.6μm],
and H − K versus [3.6μm]−[4.5μm]. Next, we found the slopes
and intercepts of lines that best separated the two classes in these
three plots by applying the concept of hyperparameter optimization.
Iterating over different slopes and intercepts for each of the cuts on
the colour space, we found the best set of slopes and intercepts for
the three colour cut lines that yielded the best F1 score. We certainly
expect ML approaches to do better, since they use information about
the separation of sources in all dimensions of the colour space, but
the question is whether they perform dramatically better or only
slightly better.

4 R ESULTS

4.1 Validation results

The k-fold cross-validation metrics from the ML algorithms (trained
without imputation) are shown in Table 1, and a plot of the
precision/recall scores of all tested classifiers are shown in Fig. 4.
The results show that among the tested models, LR and the NN
work best on our given data, while some other models (such as
GNB and KNN) give rather poor performance. We also show the
precision and recall reported in An et al. (2018) using an SVM
with five features. By utilizing a smaller search radius and all the
available features within our training set, our SVM and NN models
were able to noticeably improve the performance compared to An
et al. (2018).

We further tested the false-positive rate of our NNs using
the blank field approach. Our tests showed a false-positive rate
(calculated as the number of SMGs identified in the blank fields
over the total number of blank field targets) of about 3 per cent. For
comparison, Table 1 shows that the precision of the NN is about
85 per cent.
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Table 1. Machine-learning performance calculated via k-fold cross-
validation. We show the resulting mean and standard deviation for 200
random cuts of the data in this validation process. Note that k-fold cross-
validation cannot be applied to the manual classification scheme, so we only
report the metrics evaluated from a single run.

Algorithm Accuracy Precision Recall F1 Score
[ %] [ %] [ %] [ %]

ML algorithms

LR 92.0 ± 1.3 84.2 ± 3.1 85.5 ± 4.0 84.8 ± 2.5
SVM 91.9 ± 1.3 85.2 ± 3.7 83.6 ± 3.8 84.3 ± 2.6
RF 90.6 ± 1.5 83.0 ± 3.7 80.5 ± 4.3 81.6 ± 3.0
LDA 91.3 ± 1.5 82.5 ± 3.7 84.9 ± 4.0 83.6 ± 2.9
KNN 88.3 ± 1.7 80.0 ± 4.2 73.3 ± 5.1 76.4 ± 3.7
GNB 86.6 ± 2.6 71.5 ± 6.1 82.4 ± 4.5 76.3 ± 3.8
DT 87.2 ± 2.0 77.0 ± 4.7 73.1 ± 6.5 74.8 ± 4.2
BDT 90.8 ± 1.6 83.6 ± 4.3 80.9 ± 4.6 82.1 ± 3.3
BDT (with missing
data)

89.8 ± 1.5 85.0 ± 2.8 85.6 ± 3.2 85.2 ± 2.2

Manual 90.2 78.5 84.6 81.4

NNs

3 Layers + Dropout 91.9 ± 1.4 85.2 ± 3.6 83.8 ± 4.4 84.4 ± 2.8
2 Layers 92.4 ± 1.4 85.8 ± 4.1 85.0 ± 4.2 85.3 ± 2.7
2 Layers + L2 92.5 ± 1.4 86.1 ± 3.7 85.1 ± 3.7 85.5 ± 2.7
1 Layer 92.5 ± 1.4 85.9 ± 3.5 85.4 ± 3.7 85.6 ± 2.7

Figure 4. Precision and recall scores of different classifiers from cross-
validation testing. Also included are the cross-validation results from An
et al. (2018) using an SVM and a BDT. Most of the classifiers are con-
centrated near the top-right corner, with small differences on classification
performance.

It is worth noting that our manual classification algorithm was
very competitive, with its results coming within only a few per cent
in precision and recall compared to the much more complex models.
However, despite the fact that the handful of bands shown in Fig. 3
appear to be well separated in colour space, it is still difficult to
determine the optimal colour combinations to use in the case of
numerous bands without intensive trials. In this aspect, the benefits
of the ML algorithms become their ability to provide a systematic
procedure to fit the data in every parameter dimension. None the
less, for this particular problem, incorporating complex models like
deep learning, although beneficial, do not dramatically improve
existing ‘manual learning’ techniques in classification accuracy. An
advantage of using an NN here might be that it is quick to implement
(now that the software is readily available), only requiring some
tuning of the number of layers and regularization. On the other

Table 2. Machine-learning performance using an imputed training set. The
results of this test are unexceptional, since the metrics are mostly the same
as the metrics obtained from training on data with no imputation.

Algorithm Accuracy Precision Recall F1 Score
[ %] [ %] [ %] [ %]

ML algorithms

LR 91.7 ± 1.5 82.7 ± 4.0 86.5 ± 3.9 84.5 ± 2.7
BDT 91.2 ± 1.5 83.0 ± 4.1 83.5 ± 4.0 83.1 ± 2.9
Manual 88.0 80.2 86.7 83.3

NNs

3 Layers + Dropout 91.9 ± 1.4 83.8 ± 3.9 85.2 ± 4.2 84.4 ± 2.8
2 Layers 92.2 ± 1.5 83.8 ± 4.3 86.7 ± 3.7 85.2 ± 2.9
2 Layers + L2 91.9 ± 1.4 83.7 ± 3.9 85.7 ± 4.0 84.6 ± 2.6
1 Layer 92.3 ± 1.4 84.1 ± 3.9 87.0 ± 3.3 85.4 ± 2.6

hand, a disadvantage might be that, as a ‘black box’, it would
be difficult for the user to learn what features are providing the
discriminatory power (in this case, redder colours), and this might
be useful information for interpreting the data and hence planning
for future observations.

In addition to regular cross-validation methods, we also tested our
classifier models by training on all low S/N data and a portion of the
high S/N data, while predicting on the remaining high S/N data. We
found that this strategy had almost no effect on our performance
metrics. Even when classifying high S/N sources, the classifiers’
performances matched those of the original results within one
standard deviation. This suggests that our training set is robust
even when given relatively noisy photometry.

4.2 Performance of imputation

Our preliminary tests with different imputation methods showed
that the majority of the possible imputation algorithms were not
useful. Simple methods, such as replacing the missing data with the
mean or median, even performed worse in some cases. However,
we did find that the Soft Impute (Mazumder et al. 2010) model
was promising. Hence we tested this algorithm more intensively
by performing the same k-fold cross-validation as for the missing
data on the most successful models discussed in Section 4.1. The
resulting evaluated metrics are presented in Table 2.

Even with this specific imputation method, we saw no significant
improvement compared to removing examples with missing data.
However, the imputation tests at least showed us that a classifier
trained with imputed data will not perform worse than a classifier
trained only with real data. It is likely that we see almost no change
in performance with imputation because our training set is large
enough that, even after removing samples with missing data, our
algorithms are able to learn everything they need to know to classify
SMGs effectively. With smaller training sets, it is possible that
imputation would be more important. Due to the negligible increase
in performance of a model trained with the imputed data set, we
chose to utilize only full-featured data for training when classifying
new sources in the GOODS-N catalogue (see Section 5.1).

4.3 Receiver operating characteristic curves

Another metric that can be used to evaluate classifiers is the receiver
operating characteristic (ROC) curve. This is a plot of the true
positive rate against the false positive rate at different thresholds of
the classifier (i.e. different dividing points for classifying a source
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Figure 5. ROC curves for a series of classifiers using the non-imputed data.

as an SMG or a non-SMG), effectively evaluating the classifier at
all possible thresholds. The effectiveness of the ROC curves can be
evaluated by calculating the area-under-curve (AUC) score for each
of these functions. As a general rule, the closer a curve gets to the
upper left corner of the plot (and hence the larger the AUC), the
better the classifier. We plot such an ROC curve for all of our tested
classifiers in Fig. 5, and calculate the areas (which we include in
the figure legend).

4.4 Model selection

We selected the best classifier based on the classification results in
Tables 1 and 2, as well as Figs 4 and 5. The four NNs performed
best in three of the four measured metrics among the classifiers
we tested, and they had the best AUC score in the ROC plot. Other
classifiers, such as LR and the SVM, also performed relatively well,
but fell short of the NNs. Overall, the most successful NN is the
1-layer NN. The 1-layer network is only slightly superior to other
NN models we tested, even falling slightly behind on some metrics
such as the ROC score (although the difference of 0.002 in the ROC
score is quite small). Ultimately, we selected our preferred network
based on the F1 score because we believe it to be the best judge for
overall model performance in this particular application.

5 A PPLICATION TO THE GOODS-N FIELD

5.1 A catalogue of ML-identified SMGs

Using the most successful 1-layer NN model, we classified the
sources in the S2CLS found within the GOODS-N field described
in Section 2.2. The matched catalogue contains 290 full-featured
multiwavelength sources, corresponding to 67 SCUBA-2 beam
areas in the GOODS-N field. Identifying SMGs without the use
of high-resolution submm data is particularly important in this field
since, being in the Northern hemisphere, ALMA is unable to observe
it.

Although the 1-layer NN gave good results, the nature of the NN
with random weight initialization means that trained models still
have some intrinsic variance. When training and predicting on this
field with a single NN classifier, we found that each successive
run yielded a different number of positively classified SMGs,
between 40 and 50. A catalogue classified from a single NN is
thus problematic due to this high variance, and we would like to
have a definitive result unchanged by each run. To overcome this

problem, we utilized an NN ensemble-averaging method (Hansen &
Salamon 1990), also known as bagging, for our predictions. By
training a large number of NNs (each with different random weight
initializations) in parallel and averaging the returned results, we can
find the typical spread in the classification. Furthermore, by taking
into account the standard deviation of the returned prediction scores
from each individual NN, we would be able to quantify uncertainties
for our predictions (Lakshminarayanan, Pritzel & Blundell 2016).

We applied this ensemble bagging algorithm to the GOODS-N
catalogue by training 100 NNs in parallel and taking the average and
standard deviation of the resulting prediction scores. We employed
a cut-off at 0.5 for the output averaged scores, classifying all sources
with a score above this point as SMGs and all of those below as non-
SMGs (Appendix B describes in detail how the prediction score is
generated).

We found a total of 45 positive matches within the 290 full-
featured sources. These 45 multiwavelength ML-identified SMG
candidates lie in 36 SCUBA-2 sources (out of a possible 67), with
eight SCUBA-2 sources having more than one multiwavelength
candidates. We see that our prediction catalogue contains eight
SCUBA-2 sources with multiple IDs (seven of which are matched
to two SMG candidates, while one SCUBA-2 source is matched to
three). For comparison, the SMA follow-up of Cowie et al. (2017)
found three pairs of SMGs in the GOODS-N field, comparable
to our result given the large Poisson error bars, while the ALMA
follow-up (used as our training set) contained many more pairs of
SMGs due to its much higher sensitivity and angular resolution. A
table of all the classified source IDs within GOODS-N can be found
in Appendix C. To aid further studies and independent confirmation,
we give the most relevant names and identification numbers, along
with NN prediction scores for each of the sources. It should be
emphasized that the NN prediction scores do not represent actual
probabilities, but instead a potentially non-linear certainty for a
given classification. No SMG identifications were made for 22 of the
SCUBA-2 sources. This could be because these SMGs are simply
too faint to be detected in the multiwavelength catalogue (as for
HDF850.1, see below).

We ran a blank field test (slightly different from the blank field
test in Section 3.3) focused on all sources within 7 arcsec ‘beams’
in the GOODS-N field by taking random RA and Dec. positions
within the field and running our trained NN on the multiwavelength
sources contained within the simulated beams. From such a test,
we found that only 37 out of 1000 fake ‘beams’ contained any false
positive IDs, giving a false positive of 3.7 per cent. Comparing
this to our results on real SCUBA-2 sources, where we found
that 36/67 (or about 55 per cent) of the SCUBA-2 sources in the
GOODS-N field matched with counterparts in the multiwavelength
catalogue, we see that the false positive rate of our classifier is quite
low.

It is also worth noting once more that as the two fields (UDS and
GOODS-N) used for training and predicting are not identical (in
terms of depth, source extraction, etc.), the accuracy of the NN in
this application may be different than what we what we estimated
from our extensive testing. For instance, as discussed in Section 2.2,
we found that the depths of the two catalogues differ by a factor
of about two. We tested the effects of this difference by removing
faint sources from each catalogue such that their minimal 3σ depths
matched one another. This reduced our training set from 301 to 145
SMG sources and 856 to 537 non-SMGs. Likewise, the size of the
prediction set was reduced from 290 fully featured objects to 173.
Using the same training and predicting methods described above,
we found that the set of NNs trained on this reduced data yielded
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similar results compared to using the full data; in particular, we
found that the mean absolute difference in the output prediction
scores resulting from these two training sets was about 3 per cent.
Since this difference is quite small, we are confident that we can
use the full depth available in both fields in order to utilize a larger
training set and classify more GOODS-N sources.

5.2 Comparison with known GOODS-N SMGs

To test our results from an astronomical perspective, we checked
a couple of well-known SMGs in the GOODS-N field, specifically
the galaxies known as GN20 (Pope et al. 2005) and HDF850.1
(Hughes et al. 1998). With the former, we were able to locate
six multiwavelength sources within the SCUBA-2 beam (four of
them with no missing features), and we knew a prior which one of
these sources corresponded to the actual submm source. Predicting
with the ensemble algorithm, we were able to classify the correct
multiwavelength source with a prediction score of 0.7, while the
other galaxies in the beam were all correctly classified as non-
SMGs. In particular, we found one non-SMG source within the
beam area that had similar features compared to the real GN20
source. Although this source seemed similar by eye, the NN
accurately classified it as a non-SMG, with a prediction score of
0.15, well within our 0.5 cut-off.

For the other well-studied SMG, HDF850.1, multiwavelength
identification has been a long battle (see e.g. Walter et al. 2012),
with the current consensus being that the source is extremely faint
at optical and NIR wavelengths; indeed, our current GOODS-N
catalogue does not contain HDF850.1. Nevertheless, we were able
to confirm that no false SMGs were found within the SCUBA-2
beam surrounding HDF850.1.

The GOODS-N field has also seen submm interferometric follow-
up with the SMA from Cowie et al. (2017). As an independent test,
we compared our ML identifications of 36 SCUBA-2 sources with
the 33 SMA detections of SCUBA-2 sources found in their work;
out of these 33 detections, 15 matched with our identifications, four
were sources that our NN deemed not to be SMGs, and three were
matched to sources in our multiwavelength catalogue with missing
photometry that we did not run our NN on. The remaining 11 were
not matched to any source from our catalogue. This is equivalent
to a matching success rate of 68 per cent and a completeness of
45 per cent.

From this comparison, it is clear that although our classifiers do
match with known sources from other catalogues, there is a disad-
vantage with only predicting on sources with full multiwavelength
data. In particular, some bright SMGs could only be bright enough
to be detected in the NIR, and lack optical photometry detection
altogether. In our GOODS-N-matched catalogue, only 290 of the
399 possible galaxies are fully featured, meaning we were not able
to make a classification for over a quarter of the matched data set. In
order to increase the number of sources classified, two approaches
could be used. The first is to find additional features more relevant
for these sources, which we discuss in Section 6.2. The second is to
fill in the missing features with, for example, aperture photometry,
even if bands may be below 3σ detections (discussed in Section 6.3).

5.3 The superdeblend catalogue of the GOODS-N field

The GOODS-N field has seen other attempts at untangling the FIR
to mm wave images (e.g. Borys et al. 2004; Pope et al. 2006;
Chapin et al. 2009; Gruppioni et al. 2013). Recently, Liu et al.
(2018) developed a technique called ‘superdeblending’, which uses

Spitzer 24μm and Karl G. Jansky Very Large Array (VLA) 20-cm
imaging (both of which have good angular resolution) to create a
base catalogue of galaxies as candidates for the submm emission
seen by Herschel-SPIRE at 250, 350, and 500μm. The technique
then looks at a series of images, starting from 24μm and moving to
progressively longer wavelengths where the resolution deteriorates,
sequentially removing candidate galaxies deemed hopelessly faint
in the submm based on the best-fitting model SED at a given stage.
This work is similar to our own in that it tries to identify SMGs from
catalogues of galaxies where the resolution is far superior. However,
key differences include the fact that the superdeblend algorithm
requires an assumed SED shape (whereas our NN ‘learns’ what a
good SED shape is), and that its primary task is to estimate the
flux density of blended galaxies (as opposed to identifying their
counterparts).

As a check of our GOODS-N catalogue, we compared our results
to those of Liu et al. (2018). In order to do this, we took all sources
in the superdeblend data set that were predicted to be brighter than
0.89 mJy in the 850μm band. This threshold was chosen because
it corresponds to the noise limit of ALMA-detected sources in our
training set (Stach et al. 2018). We then matched these sources
to the SCUBA-2 beam areas in the GOODS-N field. We found
that in the superdeblend data set, there were 63 sources meeting
our brightness criteria that matched within a 7 arcsec radius of
our SCUBA-2 sources. Of these sources, 38 also matched with
our full-featured multiwavelength catalogue to within 0.6 arcsec;
these 38 sources should therefore presumably be classified as SMG
candidates by our best ML algorithm. Upon comparing these 38
sources to our ML results, we found that our algorithm identified 33
as SMG candidates. In addition, our GOODS-N catalogue contains
12 candidates that were not found with superdeblending, while the
superdeblending catalogue contains five candidates that were not
found here.

There could be a variety of reasons for the discrepancies between
the two catalogues. For example, one of the five sources we
identified as a non-SMG was given a 0.4995 prediction score of
being an SMG by the NN, barely missing the cut-off. Three other
sources were matched with very faint SCUBA-2 sources at the
bottom end of the S/N limit. Similar issues might occur in the
superdeblend data set, and in practice neither of the two catalogues
will give definitive results for SMGs, since we are operating at only
modest S/N values. Nevertheless, there is reassuringly good overall
agreement between our two approaches.

6 FUTURE IMPROVEMENTS

6.1 Combining deblending and machine learning

In the future, it might be possible to combine deblending and
ML approaches, using the power of an NN to identify the useful
candidates and the power of deblending to obtain the photometric
properties of the galaxies in the submm. Indeed, the superdeblend
method described above is only one implementation of a more
general idea; for example, a similar method called ‘SEDeblend’
(MacKenzie et al. 2014; MacKenzie, Scott & Swinbank 2016)
uses a high-resolution catalogue to simultaneously fit a number of
long-wavelength images while also fitting the SEDs of the blended
sources. As previously mentioned, a fundamental difference of these
kinds of methods are that they are fitting the images, rather than
simply deciding whether each catalogue source is a good SMG
candidate.

MNRAS 489, 1770–1786 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/489/2/1770/5548789 by U
niversity of N

ottingham
 user on 29 January 2020



1780 R. H. Liu et al.

Combining deblending and ML would require using an iterative
scheme with several training sets in different wavebands, so that
at each step the decision between useful versus hopelessly faint
could be made more accurately. However, this still leaves open the
question of how to connect the model SED (which is needed to
obtain a predicted flux density) to the SED ‘learned’ by an NN.
Further work is required to investigate how to extract results from
an NN when given an SED to fit. Another potential method for
combining the techniques might involve using deblending to fill in
missing wavelengths in the multiwavelength catalogues in order to
train and classify bigger catalogues with ML algorithms.

6.2 Using radio and 24μm catalogues

There is of course no reason to restrict the training set to short
wavelengths – as long as the resolution is sufficient to keep
individual galaxies from becoming too blended, longer wavelengths
(more similar to the submm regime) should provide useful features
for SMG identification. An et al. (2018) in particular used the radio
IDs of SMGs in the UDS field to find multiwavelength counterparts
for sources where their ML algorithm was not able to find one on
its own; this was found to increase the recall by about 5 per cent.

As an exploratory test of this idea, we compared our catalogue
of GOODS-N identifications to surveys done in the radio using the
VLA (Morrison et al. 2010) and at 24μm using Spizter,5,6 with the
aim of quantifying how many GOODS-N SCUBA-2 sources left
unaccounted for by our NN might benefit from the incorporation of
these additional data. To find the number of SCUBA-2 sources with
potential radio/24μm counterparts, we used the matching criteria
outlined in Downes et al. (1986), which takes into account a finite
survey depth and search radius. Here a p-value is computed for
all radio/24μm sources within a search radius of each SCUBA-2
source (taken to be 7 arcsec to match the FWHM of the SCUBA-
2 data). First, we found that out of the 36 SCUBA-2 sources
already given a multiwavelength ID by our NN, 23 also had a radio
counterpart and, independently, another 23 had a 24μm counterpart.
Secondly, out of the remaining 31 SCUBA-2 sources lacking an
ML-identified counterpart, 13 had a radio or 24μm association. For
completeness, in Table C1 we also show which SCUBA-2 sources
have radio IDs and 24μm IDs.

The important question then is whether adding radio and 24μm
data as features would be beneficial to our classification algorithm.
From our results, it is clear that if we consider the matched radio
and 24μm sources as positive identifications, our identification rate
would increase from 36/67 to 49/67. This means that by adding these
data we could potentially increase the total fraction of identified
SCUBA-2 sources to 73 per cent. However, due to the lack of mutual
multiwavelength and radio/24μm data for a lot of sources, we would
need to implement one of the imputation techniques described above
to include sources with missing features properly, or come up with
a new way to construct the list of feature.

6.3 Missing features and uncertainties

Currently, our classification algorithm does not take into account
missing features or flux density uncertainties. This limits us

5https://irsa.ipac.caltech.edu/data/SPITZER/GOODS/docs/goods dr1plus
.html
6https://irsa.ipac.caltech.edu/data/SPITZER/GOODS/docs/goods dr1plus
mipslist.html

to classifying only a subset of all total detected sources in a
given field, while also treating sources with different S/N in
the same manner. Although our classifier is still shown to be
effective and matches other results, we would like in future studies
to incorporate both missing featured sources and photometric
uncertainties, in order to produce a more robust and accurate
catalogue.

Missing features may be due to a variety of reasons. The coverage
of surveys, sources too faint to pass an S/N threshold, and nearby
bright sources could all lead to missing photometric magnitudes in
catalogues. In particular, some bright SMGs are only bright in the
submm-to-infrared range, and intrinsically lack the brightness in
optical wavelengths to be detected by photometric surveys. These
cases are particularly interesting because they are clear hints that
an SMG is present. In the future it may be more helpful to train
a separate ML algorithm using only photometry from the redder
wavebands, along with the possible inclusion of radio and 24μm
catalogues, as described in Section 6.2.

To solve the problem of sources with missing survey coverage,
we have already seen the potential of imputation for helping with
missing features. Section 4.2 showed that an imputed training data
set would perform no worse than a normal training data set when
tested on real data. But it is worth noting that imputing a prediction
set may lead to systematic biases that are not corrected for by
the classifier, and that these biases are likely to give misleading
classification results. Therefore, systematic testing will need to be
done to observe the effectiveness of creating new artificial data in
the prediction set for classification.

A second method for filling in missing features relies on having
aperture photometry at the positions of known red (i.e. bright
at longer wavelength) sources, even if the flux is consistent
with zero or negative. In this way, galaxies that are essentially
invisible at optical wavelengths would not have to be removed
from the ML training and predicting sets, and ML algorithms
could ‘learn’ that these sources will probably be bright in the
submm.

Uncertainties pose another potential problem for classification.
The photometric magnitudes used as features in our algorithm
have systematic and statistical uncertainties related to their original
measurements in surveys. At the moment, these uncertainties are
not taken into account by the algorithm, and we are only classifying
each source based on the measured value of the magnitudes in the
catalogues. However, it would be possible to factor in the S/N of
our multiwavelength sources when classifying in the future. One
method of incorporating uncertainties is to sample our features
from their error distributions, rather than taking the measured
values. We could use a similar ensemble bagging system to what
was described in Section 5.1, either training or predicting each
individual NN with a slightly different data set sampled from
the error distributions, and averaging the final results (Hansen &
Salamon 1990). By sampling in an ensemble of classifiers, we
would be able to classify each source multiple times based on their
error distribution, and average the results to obtain a collective
classification for each source. However, it is important to note that
such a large-scale ensemble would require significant computational
resources.

Since both our training catalogue and any potential predic-
tion catalogue will contain uncertainties, further testing is also
required to understand the effects of such an ensemble method.
We would need to sample both a training set before training a
model, and sample prediction sets before predicting on a new
catalogue.
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7 C O N C L U S I O N S

Based on our rigorous testing of various ML algorithms trained
using data from the UDS field, a subset of the S2CLS, it is clear that
an ML approach is a useful way to classify potential counterparts
to SMGs. Our testing of different algorithms showed us that an
NN model performs best compared to other ML algorithms in this
application. However, as we have shown with our manual colour-
cut comparison, ML techniques do not always provide dramatic
improvements over more traditional methods as one might hope.
Nevertheless, the additional 5 per cent in accuracy is worth the
extra effort, since it comes without the need to gather any extra
data.

We then applied our ML algorithm to the GOODS-N field,
another subset of the S2CLS that contains similar submm and
multiwavelength data but lacks a thorough interferometric follow-
up programme (with e.g. ALMA). We identified counterparts for
36 out of the 67 submm sources, and our classifications roughly
matched with a number of other attempts to pinpoint the locations
of SMGs within the field, including a partial survey of the field by
the SMA.

To conclude, it is worth pointing out that although ML can out-
perform traditional methods, one has to be careful to perform a fair
comparison. There are certainly disadvantages to ML techniques,
especially the most advanced methods. First, it can be dramatically
more difficult to set up the analysis pipeline, which then requires
more computational resources. Secondly, it is usually hard to deter-
mine uncertainties, or to interpret the uncertainties that are produced
by the data-science codes. And finally, it can be challenging to
determine what underlying features are being used to make the
decisions within the ML process and thus learn something useful
about the sources being studied.
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APPENDI X A : MAC HI NE-LEARNI NG MODELS

Here we give qualitative descriptions of the ML approaches used
in this paper, as well as further references. For a more in-depth
description of the Boosted Decision Tree, as well as the PYTHON

implementation, see the package XGBOOST.7 For the rest of the
algorithms, see the package SCIKIT-LEARN8 and the accompanying
documentation.

(i) Logistic regression (LR; Peng, Lida Lee & M. Ingersoll
2002): also known as ‘logit regression’ is a linear classification
model that linearly combines the data features into a single number
using weights optimized during training. The algorithm then applies
a non-linear sigmoid function as a filter (see equation B2), and this
results in a number between zero and one. In this way, an LR
algorithm can be considered as an NN with no hidden layers.

(ii) Support vector machine (SVM; Cortes & Vapnik 1995):
creates hyperplanes in n-dimensional feature space in order to sepa-
rate the possible classifications; these hyperplanes are tuned during
the training process in order to place as many training example
features as possible into each classification section. Predictions are
then made by locating new data within these sections and assigning
the corresponding label.

(iii) k-nearest neighbours (KNN; Cover & Hart 2006): plots
the training data in an n-dimensional parameter space, and simply
classifies new data by finding the KNN based on their Euclidean
distances and looking for the most frequent label among these k
neighbours.

(iv) Gaussian naive-Bayes (GNB; Friedman, Geiger & Gold-
szmidt 1997): assumes that each feature in a given training example
is independent, and furthermore that within each classification
features are drawn from a Gaussian distribution. Priors are set
for each possible classification as the relative frequency of each
class within the training set, and the means and variances of each
Gaussian distribution are tuned during the training process. The
classifier then uses Bayes’ theorem to calculate the probability that
the input samples belong to each label class, and takes the maximum
probability as the output.

(v) Linear discriminant analysis (LDA; Ye 2007): assumes
that all features come from multivariate Gaussian distributions
with equal covariance matrices, regardless of their classification.
Priors are set in the same way (as the relative frequency of each

7https://xgboost.readthedocs.io
8https://scikit-learn.org/stable/user guide.html
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classification), means are calculated for the features within each
classification, and the covariance matrix is tuned during training.
The classifier then uses Bayes’ theorem in the same way as the
Gaussian naive-Bayes algorithm to assign classifications to new
data.

(vi) Decision trees (DT; Quinlan 1986): use a tree-like structure
to separate data using a number of different decisions thresholds
that are tuned during the training process. For each decision the
algorithm looks at one or more feature and checks to see where the
feature falls among the thresholds, then based on the answer follows
two or more possible branches; the number of decisions, the number
of features to consider in each decision, and the number of threshold
boundaries/branches are chosen beforehand, while the features used
in each decision and the decision thresholds are optimized during
the training. New data are then passed into the DT and filtered
down through the branches based on the decision boundaries, and
eventually into decision nodes that provide a classification.

(vii) Random forests (RF; Ho 1995): are similar to DT, but use
an ensemble of uncorrelated DT to classify the data. Each DT in a
random forest is trained on a subset of the whole training set, and the
final classification looks at the output from each DT and identifies
the most predicted result. The free parameters that are tuned during
the training process are the same as with the DT algorithm, but here
there are multiple sets of these parameters, based on the number of
trees chosen to include in the random forest.

(viii) Boosted decision trees (BDT; Friedman 2001): is a variant
of the random forest algorithm. It uses an algorithm called ‘boost-
ing’ in which individual DT are correlated with one another and fit
consecutively; thus there are additional parameters to tune during
training, which are the correlation coefficients between the trees in
the random forest. This model is implemented with the XGBOOST

package.

A P P E N D I X B: D E E P N E U R A L N E T WO R K S

DNNs are a popular type of algorithm for tackling ML and data-
science problems (Schmidhuber 2014). A DNN is made up of
interconnected layers of neurons, as shown in Fig. B1. Each neuron
j performs a linear combination on an input array �x from the layer
before it by applying to �x an array of trainable weights �wj , as well as
adding a bias bj. The values of �wj and bj are specific to each neuron,
and set during network training. The NN then implements a non-
linear ‘activation function’ f on the result, giving the final output
of the neuron. The choice of activation functions is a changeable
hyperparameter of the NN. In our case, we used a rectified linear
unit (ReLU) function, defined as

f (x) = max(0, x), (B1)

for the activation function in the hidden layers.
The output layer result is normalized instead with a sigmoid

activation function, defined as

S(x) = 1

1 + exp(−x)
. (B2)

The sigmoid function serves to normalize the output of the network
between 0 and 1, and the output will essentially act as a ‘probability’
of the classified source being an SMG (1) or non-SMG (0); note
that the score does not symbolize a real probability for the source
being an ‘SMG’, but rather a quantified certainty value for the class
given by the NN, the higher the value, the more certain the NN is
that this source is of this class. We choose the complete operation
of each neuron yj as shown in equation (B3), where n is the number

of weights connecting to the neuron:

yj = f ( �x · �wj + bj ) = f

(
bj +

n∑
i=1

xiw
j

i

)
. (B3)

Typically, the first layer of an NN is the input, and the last the
output, with a number of hidden layers between. When training, the
algorithm will take the input data and pass it through the NN, and a
loss function will quantify the difference between the end result and
the expected result. In a binary classification problem, such as the
classification of SMGs, where the expected output value is a float
between 0 and 1 (with 0 being the negative class and 1 being the
positive class), a very common loss function is binary cross-entropy.
Binary cross-entropy loss is defined as

H (y, ŷ) = −y log(ŷ) + (1 − y) log(1 − ŷ), (B4)

where y is the true binary label (i.e. either 0 or 1), and ŷ is the
predicted ‘probability’ label. This loss function will be optimized by
determining the best weights in the network. Using an optimization
algorithm [usually some variant of stochastic gradient descent
(SGB); Bottou 2004], the NN will then change the weights based
on the loss function and find the best possible set of weights to
connect the input layer to the output. NNs essentially behave as
complex non-linear functions that may be more sensitive to the
relevant patterns than less complex algorithms.

A common problem in NN training is ‘overfitting’ (Buduma
2015). This occurs when a complex model becomes too sensitive
to the input training data and is unable to generalize on new testing
data. Rather than ‘learning’ the data, an overfitted model will tend
to ‘memorize’ the data, resulting in near perfect training scores,
but a much lower testing score on a separate validation set. To
reduce overfitting, a number of different methods exist. The simplest
approach is to reduce the complexity of the model. NN models rarely
need to go beyond two or three layers, and larger NNs will tend to
overfit. An alternative to reducing the number of nodes in a model
is to use regularization techniques to combat overfitting. One of
the most commonly used regularization techniques, L2, works by

Figure B1. A visual representation of a typical NN architecture. Similar
network architectures are used in this work to decide between SMGs and
non-SMGs.
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Table B1. Structures of our four tested deep learning NNs. Networks with regularization can have more nodes and parameters to train, since the regularization
step will help with overfitting issues. The details in brackets give the type of layer, e.g. the number of layers, activation method, and specific parameters (as
explained in the text).

Model 3 layers + Dropout 2 layers 2 layers + L2 1 layer

Layer 1 Fully connected (64, ReLU) Fully connected (32, ReLU) Fully connected with L2
(64, ReLU, L2 λ = 0.001)

Fully connected (32, ReLU)

Layer 2 Dropout (25 per cent) Fully connected (4, ReLU) Fully connected with L2
(8, ReLU, L2 λ = 0.001)

–

Layer 3 Fully connected (64, ReLU) – – –
Layer 4 Dropout (25 per cent) – – –
Layer 5 Fully connected (8, ReLU) – – –
Output layer Fully connected Output

(1, Sigmoid)
Fully connected Output

(1, Sigmoid)
Fully connected Output

(1, Sigmoid)
Fully connected Output

(1, Sigmoid)

No. of trainable parameters 5649 617 1489 513

adding the following term to the loss function:

λ

2n

∑
i

||wi ||2. (B5)

Here wi represents a single weight in the network and n represents
the number of samples, while λ is a hyperparameter that can be
optimized. A third way to reduce overfitting is using the dropout
technique (Srivastava et al. 2014); this is a recent and popular
regularization method that is implemented by randomly selecting
a number of nodes in a layer and setting them to zero. This forces
the NN to adapt to missing certain information and prevents the
dependence on any particular node. In our case, we attempted to
integrate all these techniques in different NN models in order to
find the best approach for our data.

In a complex algorithm, such as an NN, there are many parameters
that need to be chosen. As discussed in Section 3.2, we have fixed
some of the parameters before optimizing for the rest. However,
we still decided to optimize some specific training parameters, such
as epochs and batch sizes. An epoch is an iteration of passing the
whole data set through the network for a feed-forward NN such
as our own (i.e. a network that passes through data in only one
direction without forming a cycle); in practice multiple epochs are
needed in order to achieve a good result. A batch size is the number
of samples to pass through the NN before making an adjustment
to the weight parameters. Through our optimization algorithm, we

found that training each network for 150 epochs, with 64 samples
per batch provided a good solution.

In addition to the epoch and batch size, we also tested different
optimizer algorithms for the NN. We tested two specific algorithms,
SGD (Bottou 2004) and ADAptive Moment estimation (ADAM;
Kingma & Ba 2014), each with different variations of internal
parameters such as learning rates and learning rate decay. We found
that an ADAM optimizer with an initial learning rate of 0.001 and
a time-based learning rate decay worked best for our application.

The NNs we have tested are shown in Table B1. These networks
represent different regularization methods applied to a typical NN.
Due to the nature of regularization, networks with regularization
tend to be bigger, with more nodes or layers.

APPENDI X C : TABLE OF SMG
C O U N T E R PA RTS IN G O O D S - N

Here we provide a table of the predicted SMG counterparts (defined
as having an average prediction score over 0.5) in the GOODS-
N field. Alongside the ID numbers and coordinates for both the
SCUBA-2 sources and the multiwavelength sources from GOODS-
N, we also provide the prediction score value and standard deviation
across the 100 ensemble NNs. The prediction score and uncertainty
values help us understand the degree to which we are confident that
these sources are SMGs or non-SMGs. The final columns indicate
whether or not the SMG has a radio or 24μ counterpart.
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ML identification of submm galaxies 1785

Table C1. All identified SMG counterparts in GOODS-N. Column (1) gives the names of the single-dish submm sources detected in the S2CLS catalogue
(Geach et al. 2017), and similarly columns (2) and (3) gives their positions (i.e. the position of the brightest pixel within the SCUBA-2 beam). Columns (4)
and (5) give the positions of the optical/NIR counterparts (taken from Hsu et al. 2019) found in this paper using our fully trained NN, and column (6) gives
the angular offset between the optical/NIR counterparts and the single-dish submm positions. In column (7) we give the prediction score for each counterpart,
calculated as the mean value of the output of 100 NNs trained in parallel; numbers close to 0 are not likely SMGs, and numbers close to 1 are likely SMGs. Our
threshold for positive identifications was 0.5. In columns (8) and (9) we state whether or not the single-dish submm source has a corresponding radio galaxy
match or 24μm galaxy match, respectively (Y for yes, N for no); see Section 6.2 for details.

S2CLS name RA Dec. RA Dec.
Angular

separation
Prediction

score Radio match 24μm match
(submm) (optical/NIR)
[J2000] [J2000] [arcsec]

(1) (2) (3) (4) (5) (6) (7) (8) (9)

S2CLSJ123730+621258 189.37803931 62.21626211 189.3781731 62.2162900 0.245940 0.747 ± 0.156 Y Y
S2CLSJ123711+621330 189.29820699 62.22521367 189.2972740 62.2252994 1.595313 0.763 ± 0.158 Y Y
S2CLSJ123633+621408 189.13961496 62.23575765 Y Y
S2CLSJ123707+621406 189.28153378 62.23522097 189.2799737 62.2355744 2.909284 0.827 ± 0.072 Y Y
S2CLSJ123701+621146 189.25645425 62.19633929 189.2565799 62.1961887 0.581735 0.997 ± 0.002 Y Y
S2CLSJ123550+621041 188.96004402 62.17830355 Y N
S2CLSJ123618+621550 189.07626370 62.26403584 189.0764287 62.2640793 0.317649 0.956 ± 0.026 Y Y
S2CLSJ123632+621712 189.13349000 62.28686472 189.1329583 62.2873442 1.942135 0.990 ± 0.007 Y N
S2CLSJ123741+621220 189.42206933 62.20565233 189.4215231 62.2057496 0.981533 0.981 ± 0.017 Y Y
S2CLSJ123741+621220 189.42206933 62.20565233 189.4235441 62.2065473 4.063188 0.501 ± 0.190 Y Y
S2CLSJ123645+621448 189.19088280 62.24689230 189.1910092 62.2463782 1.862851 0.520 ± 0.123 Y Y
S2CLSJ123645+621448 189.19088280 62.24689230 189.1919457 62.2469104 1.783021 0.861 ± 0.086 Y Y
S2CLSJ123627+621214 189.11349908 62.20407169 Y Y
S2CLSJ123652+621226 189.21833682 62.20745269 Y Y
S2CLSJ123627+620604 189.11389111 62.10129438 Y Y
S2CLSJ123622+621616 189.09413713 62.27127656 Y Y
S2CLSJ123645+621936 189.18838880 62.32689153 Y N
S2CLSJ123616+621514 189.06796115 62.25402645 189.0659326 62.2543111 3.550903 0.805 ± 0.114 Y Y
S2CLSJ123616+621514 189.06796115 62.25402645 189.0671680 62.2538630 1.453721 0.981 ± 0.009 Y Y
S2CLSJ123648+622104 189.20032761 62.35133888 189.2011334 62.3519266 2.507718 0.975 ± 0.029 Y Y
S2CLSJ123635+621424 189.14795121 62.24020721 189.1483527 62.2400106 0.976819 0.994 ± 0.006 Y Y
S2CLSJ123711+621208 189.29934611 62.20243532 Y Y
S2CLSJ123658+620930 189.24452444 62.15856340 Y Y
S2CLSJ123722+620538 189.34420182 62.09407222 189.3458748 62.0943551 2.997083 0.902 ± 0.071 Y N
S2CLSJ123634+621922 189.14533585 62.32298343 189.1453858 62.3232032 0.795569 0.971 ± 0.014 Y Y
S2CLSJ123621+621710 189.08809692 62.28627058 189.0873019 62.2860258 1.596289 0.897 ± 0.044 Y Y
S2CLSJ123621+621710 189.08809692 62.28627058 189.0887089 62.2856445 2.475836 0.989 ± 0.006 Y Y
S2CLSJ123554+621338 188.97510736 62.22722106 188.9744380 62.2270685 1.249961 0.587 ± 0.161 Y Y
S2CLSJ123554+621338 188.97510736 62.22722106 188.9719555 62.2271217 5.299264 0.913 ± 0.041 Y Y
S2CLSJ123656+621206 189.23501651 62.20189742 N N
S2CLSJ123712+621034 189.30404641 62.17632176 Y N
S2CLSJ123738+621736 189.41068330 62.29344570 189.4096088 62.2933351 1.842040 0.957 ± 0.042 N N
S2CLSJ123616+620700 189.06750327 62.11680357 189.0688200 62.1174773 3.285908 0.995 ± 0.003 N Y
S2CLSJ123713+621826 189.30795947 62.30743071 N N
S2CLSJ123720+621106 189.33502421 62.18519045 N N
S2CLSJ123609+620650 189.04138645 62.11399289 189.0391695 62.1131623 4.782771 0.883 ± 0.046 N N
S2CLSJ123609+620650 189.04138645 62.11399289 189.0422881 62.1123289 6.179750 0.512 ± 0.126 N N
S2CLSJ123721+620708 189.34073287 62.11907495 Y Y
S2CLSJ123719+621216 189.33032697 62.20463841 189.3317204 62.2058194 4.852592 0.897 ± 0.049 N N
S2CLSJ123608+621440 189.03580211 62.24454100 Y Y
S2CLSJ123658+621448 189.24218366 62.24689692 N N
S2CLSJ123640+621834 189.16689251 62.30966141 189.1665178 62.3092654 1.557363 0.955 ± 0.022 Y N
S2CLSJ123609+620804 189.03769316 62.13454338 N N
S2CLSJ123719+621022 189.33022087 62.17297181 N N
S2CLSJ123652+620920 189.21954459 62.15578616 Y Y
S2CLSJ123621+620718 189.08767445 62.12182560 Y Y
S2CLSJ123713+621154 189.30648385 62.19854263 189.3095530 62.1991452 5.591282 0.647 ± 0.167 N N
S2CLSJ123611+621034 189.04933178 62.17622565 189.0479284 62.1760598 2.432530 0.984 ± 0.006 N Y
S2CLSJ123636+621154 189.15282765 62.19854329 189.1503158 62.1984154 4.242634 0.838 ± 0.136 N N
S2CLSJ123640+621004 189.16837377 62.16799542 Y Y
S2CLSJ123623+622002 189.09744489 62.33405751 189.0965119 62.3356147 5.818768 0.790 ± 0.064 N N
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Table C1 – continued

S2CLS name RA Dec. RA Dec.
Angular

separation
Prediction

score Radio match 24μm match
(submm) (optical/NIR)
[J2000] [J2000] [arcsec]

(1) (2) (3) (4) (5) (6) (7) (8) (9)

S2CLSJ123652+620502 189.21719381 62.08411963 Y N
S2CLSJ123702+621422 189.26245740 62.23967131 189.2613696 62.2405352 3.605431 0.898 ± 0.048 N Y
S2CLSJ123646+620832 189.19458136 62.14244890 189.1944602 62.1426222 0.656328 0.784 ± 0.134 Y Y
S2CLSJ123653+621110 189.22429758 62.18634192 189.2237021 62.1867815 1.872107 0.970 ± 0.018 N N
S2CLSJ123634+621240 189.14445393 62.21131622 189.1438694 62.2114090 1.036353 0.968 ± 0.023 Y Y
S2CLSJ123716+621404 189.31850212 62.23464654 N N
S2CLSJ123652+621858 189.21829801 62.31634152 N N
S2CLSJ123728+621920 189.36780063 62.32238394 Y N
S2CLSJ123744+620754 189.43467160 62.13174521 Y N
S2CLSJ123800+621619 189.50369086 62.27218203 189.5011119 62.2725306 4.498276 0.568 ± 0.193 N N
S2CLSJ123606+621238 189.02886946 62.21064219 189.0263968 62.2091349 6.831366 0.661 ± 0.115 N N
S2CLSJ123635+620618 189.14712522 62.10520689 N N
S2CLSJ123739+621618 189.41294072 62.27177602 189.4091778 62.2714342 6.421896 0.995 ± 0.014 N N
S2CLSJ123739+621618 189.41294072 62.27177602 189.4135752 62.2702138 5.723525 0.992 ± 0.011 N N
S2CLSJ123622+621630 189.09411971 62.27516543 189.0957373 62.2750157 2.762264 0.510 ± 0.166 Y Y
S2CLSJ123622+621630 189.09411971 62.27516543 189.0969088 62.2748190 4.834824 0.802 ± 0.123 Y Y
S2CLSJ123622+621630 189.09411971 62.27516543 189.0943424 62.2749211 0.955394 0.996 ± 0.003 Y Y
S2CLSJ123721+620510 189.34061211 62.08629742 N N
S2CLSJ123634+620940 189.14459384 62.16131632 189.1436735 62.1617147 2.109676 0.982 ± 0.016 N N
S2CLSJ123657+621516 189.23860700 62.25467499 N N
S2CLSJ123544+621437 188.93440818 62.24380752 N N
S2CLSJ123703+620800 189.26590603 62.13355943 189.2670790 62.1320418 5.809055 0.608 ± 0.165 N Y
S2CLSJ123716+620804 189.32058381 62.13464523 189.3225633 62.1346003 3.334661 0.984 ± 0.007 Y Y
S2CLSJ123605+620840 189.02336193 62.14452287 N N
S2CLSJ123637+620854 189.15533198 62.14854469 189.1542752 62.1478960 2.934708 0.854 ± 0.051 Y Y

This paper has been typeset from a TEX/LATEX file prepared by the author.
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