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Abstract 

We seek to expand the opportunities to exploit glycerol, a largely untapped renewable 

feedstock, by exploiting enzymatic catalysis in supercritical carbon dioxide (scCO2). This work 

highlights a promising and clean approach to bio-renewable amphiphilic polyester-based 

biodegradable surfactants. We have developed a low temperature (40, 50 and 60 °C), low 

energy melt processing route to biodegradable, renewable poly(glycerol succinate) (PGLSA) 

polymers that importantly have a low degree of branching (3% <DB< 11%). Our approach 

shows significant advantages over traditional melt polycondensation at 110-120C, where the 

standard catalyst-free approach led only to highly branched (DB >85%) or insoluble 

crosslinked materials.  We have exploited these linear PGLSA materials to create a library of 

‘green’ surfactants by end-capping with lauric acid or poly(ethylene glycol). Our approach 

avoids pre-modification of the monomers and fewer synthetic steps are required. Finally, we 

evaluate the performance of these new surfactants, focussing upon surface tension, critical 

aggregation concentration (CAC) and water contact angle.  

 

 

 

 

Introduction 

Our growing global population will lead to increased demand for energy and resources.1, 2  In 

recent decades, the study of alternative and renewable feedstocks for the synthesis of polymeric 

materials has received significant attention 3-7 with applications ranging  from medical and 

tissue engineering, food packaging, coatings, cosmetics, surfactants and more.8 Surfactants are 

widely used as emulsifiers, detergents and foaming agents across our society, with applications 
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across home-, personal-, health- and crop-care. Since their introduction in the early 20th 

century, the production of surfactants from petrochemical sources has continuously increased8 

reaching 18.5 million tons per year, and is forecast to grow at a compound growth rate (CAGR) 

of 5% from 2018-2023.9  

 

There is now an awareness that we need more environmentally-friendly and economically 

viable surfactants10 preferably derived from renewable resources11,12-15 Glycerol is an 

underexploited by-product of biodiesel production, in particular from the hydrolysis of biomass 

derived triglycerides (such as palm oil, sunflower oil or rapeseed oil) which results in valuable 

methyl esters.16 Between 2007 and 2016, biodiesel production increased by 83% in the 

European Union. 17 Thus, glycerol is widely available and its price is inversely proportional to 

the increase in biodiesel production.18 As a comonomer, we have focussed upon succinic acid 

(SA) which has been widely employed as a starting material for different applications in the 

surfactant, food and pharmaceutical industries.19 Presently, SA is produced from petrochemical 

feedstocks, but there has been a trend towards production of bio-based SA from biomass (e.g. 

sucrose and glycerol).20-22 The polycondensation of glycerol and succinic acid to form novel 

biodegradable materials has been studied previously, but has typically involved energy 

intensive processes (heat /vacuum), toxic solvents and/or catalysts.21, 23-26 In addition, if not 

well-controlled, the polycondensation of glycerol and diacids (succinic acid, azelaic acid and 

glutaric acid) gives only low conversions and a plethora poorly controlled cross-linked or 

branched materials.27-29  Biodegradable and bio-renewable polyesters such as poly(lactic acid) 

(PLA), poly(glycerol-succinate) (PGLSA) and poly(lactic-co-glycolic acid) (PLGA) have been  

combined with PEG, lauric acid (LA) and palmitic methyl ester to prepare surfactants. 

However, high temperatures, toxic catalysts and solvents are always required.25, 27, 30-34  

 

In this paper we show for the first time the production of a library of biodegradable surfactants 

derived from glycerol. To do this, we exploited scCO2 to facilitate mild reaction conditions and 

the allow the use of a lipase CaLB (Novozyme-435) as a chemo- and regio-selective catalyst 

to yield the linear and low molecular weight polymers desired to construct a range of 

surfactants. In order to tune the amphiphilic balance of the PLGSA backbone, PEG and lauric 

acid were then employed as hydrophile and hydrophobe respectively. PEG can be produced 

from biobased feedstock such as bagasse35 and lauric acid is a naturally occurring fatty acid. 

Thus, the entire surfactant molecule can be considered biorenewable and fully biodegradable.  

 



 

 

 

 

 

Experimental Section and Materials are reported in the Supporting Information 

document. 

 

Results and Discussion  

 

The key focus of this work is the design and optimisation of an enzymatic synthesis of PGLSA 

exploiting scCO2 (Scheme 1) to develop a facile route to linear and low molecular weight 

polyesters. Avoidance of branching is important because as branching increases, the number 

of pendant hydroxyl groups on the polymer chain is decreased, and this compromises water 

solubility.36, 37 Control experiments were also performed in scCO2 without CaLB and under the 

more traditional melt polymerisation conditions at 120°C with and without CaLB.  

 

 

 

Scheme 1. Schematic representation of the synthesis of PGLSA from glycerol and succinic 

acid. 

 

 

 

Enzymatic polycondensation of poly(glycerol succinate) under supercritical conditions 

Previous studies have determined a very low solubility of succinic acid in scCO2
38 and others 

have investigated the phase equilibrium of the CO2/glycerol system.39 In our experiments, the 

strong interaction and solubility of scCO2 in glycerol is clearly shown by the appearance of 

bubbles in the liquid glycerol upon depressurisation (Figure S1, E). This interaction offers the 

opportunity that scCO2 could act as a processing aid in polymerisation, lowering viscosity and 

improving mass transfer of monomers to the catalyst or enzyme.36,37 A series of 

polymerisations of succinic acid and glycerol were trialled using CaLB (25 wt.% wrt monomer 



including polymer support) to gauge the effect of temperature (40, 50 and 60 ºC) and molar 

ratio of the monomers (Table 1).  

 

 

 

 

Table 1 – Synthesis of poly(glycerol succinate) via enzyme in  scCO2 

6
0
 º

C
 

4    1:1  84% 1,700  3.41 11% -55 ºC 

5    1:2  88% 3,500 1.19 7% -50 ºC 

6    2:1  78% 1,300 3.84 9% -77 ºC 

a Degree of Branching determined by Frey’s equation S1: DBFrey=
2×D

2×D+L
×100 by integrating the resonances corresponding to the 

Hb protons from the B0 and B1 structures, using 1H-NMR and focussing on  proton Hb (see Figure 1).b Measured by DSC.  

* yield of recovery: actual amount of material physically recovered from the reactor after reaction.  

 

 

The molar ratio of the monomers was found to only slightly affect the size and topology of the 

polymers produced using CaLB in scCO2 with Mn ranging from 1100 to 3500 Da and a very 

low DB (calculated from 1H-NMR) in the range 5-11 %. The peaks in the 1H-NMR in the 

regions at 3.5–3.7 ppm, 3.80-3.87 ppm, 4.0–4.2 ppm and 4.8–5.4 ppm are attributed to the 

protons Ha, Hb and Hc of the linear, terminal and branched glycerol units (Scheme 2) and all of 

our assignments are in accordance with the previous literature 40, 41. 1H-NMR of the PGLSA 

product (Figure 1) shows a low intensity for the tri-substituted glycerol unit proton Hb (ca. 5.28 

ppm) indicating a low degree of branching (DB) which was determined according to Frey’s 

equation (Supplementary Information) by integrating the resonances corresponding to the Hb 

protons from the B0 and B1 structures using 1H-NMR (see Scheme 2 and Figure 1). To 

 
Entry Ratio (Gly:SA) Yield* Mn

GPC (Da) Đ DBa Tg
b 

4
0
 º

C
 

1 1:1 87% 3,400 3.00 5% -74 ºC 

2 1:2 67% 1,900 1.48 10% -44 ºC 

3 2:1 59% 1,100 2.85 11% -74 ºC 

5
0
 º

C
 

1a 1:1 32% 2,600 2.73 13% -48 ºC 

2a 1:2 49% 1,200 1.27 8% -40 ºC 

3a 2:1 85% 2,700 1.84 5% -56 ºC 



understand in more detail the nature of the glycerol 1H pattern the 1H-NMR experiment was 

combined with 2D-HSQC and COSY NMR techniques (see Figure S2A) 

 

 

 

 

 

 

 

Scheme 2. Visual representation of possible modes of polymerisation showing, linear, 

branched and terminal units. Structural information on these topologies can be derived from 

the 1H NMR data relating to Ha, Hb and Hc. The schematic representations of branched, linear 

and terminal polymer units are as follow:  = linear glycerol unit; in this case, the 

polymerisation occurred in positions a and c,  = linear glycerol unit; in this case, the 

polymerisation occurred in positions b and c,  = terminal glycerol in the polymer backbone, 

leaving the hydroxy groups a and c free,  = terminal glycerol in the polymer backbone, 

leaving the hydroxy groups a and b free,  = trisubstituted glycerol unit in the branched 

polymer backbone. 



 

 

Figure 1 – 1H-NMR spectrum of PGLSA produced by enzymatic catalysis under scCO2 at 60 ºC (275 bar) from 

a G:SA molar ratio of 1:2 (Table 1 entry 5). For glycerol branching representations, refer to Scheme 2. Only a 

very small presence of tri-substituted glycerol units is observed (proton Hb at ca. 5.3 ppm highlighted in the inset), 

compared to that obtained for PGLSA synthesised without catalyst (Figure 3) 

 

 

Using CaLB under supercritical conditions, it was observed that the degree of branching (DB) 

was not strongly influenced by the molar ratio of alcohol:diacid and no gelation onset was 

observed at 40 or 60 oC. At 40 ºC and with a molar ratio of G:SA 1:1 (Table 1, entry 1), a waxy 

yellow polymer with low molecular weight (3,400 Da), low DB and broad dispersity (Đ = 3) 

was obtained. Increasing the diacid content or glycerol content (Table 1, entries 2,3) showed 

an increase in branching, but a decrease in molecular weight and yield.  

 



At 60C the molecular weight and DB remain generally low and we can be confident that under 

supercritical conditions the enzyme functions well giving good yields of low molecular weight 

materials. The materials produced at 50 oC (chosen as an intermediate temperature) showed the 

same amorphous behaviour with low DB and low molecular weight at all the monomer ratios 

explored. Again, there is negligible effect of molar ratio upon branching, highlighting the 

regioselectivity of the enzyme under these reaction conditions. In all cases the PGLSA showed 

Tgs from -77 to -40 ºC which was in the expected range for low molecular weight linear 

polyesters. The Tg obtained is clearly influenced by both molecular weight and DB.  

Importantly, all the scCO2 synthesised PGLSA polymers showed molecular weights below 

4,000 Da and were soluble in water, thus demonstrating promise for application as renewably 

sourced biodegradable surfactants. In particular, the bio- and chemical- degradability of 

polyesters (linear or branched) bearing glycerol and a diacids are well known and broadly 

reported in literature.42,43,44,45, 46 As an extra control, reactions were performed in scCO2 at the 

same temperature without the enzyme, and no conversion of monomers into polymer could be 

obtained at 40 – 60 C.  

 

MALDI-TOF spectrometry was performed in order to further elucidate the PGLSA 

architecture. If branched polymers are formed, resulting from the esterification of both primary 

and secondary hydroxy groups of glycerol, oligomers containing tri-substituted units will show 

characteristic masses different from those of an oligomer containing only linear di-substituted 

structures. The MALDI-TOF mass spectrum of PGLSA (Figure 2) synthesised at 60 ºC, 275 

bar for 24 h with a G:SA molar ratio of 1:2 (Table 1 entry 5) shows peaks that can be assigned 

to the sodium and potassium adducts for a linear PGLSA; the same pattern was observed for 

all the polymers synthesised under melt and scCO2 condition in presence of CaLB. The peaks 

match well with the predicted masses, confirming a linear structure of PGLSA. In addition, it 

was still possible to observe some branched structures, which were expected as a consequence 

of the degree of branching determined from 1H-NMR (DB = 8%).  

  



 

 

 

 

 

 

 

 

 

Figure 2– (TOP) Suggested structures and predicted masses of the sodium and potassium adducts for the linear 

poly(glycerol succinate). Note: G = glycerol; SA = succinic acid. (BOTTOM) MALDI-TOF mass spectrum 

section of K+ and Na+ adducts of PGLSA synthesised under enzymatic supercritical conditions (). Note:  an 

unknown peak; the peaks not assigned are assumed to be noise from the baseline spectrum; G = glycerol; SA = 

succinic acid; orange annotation denotes branched structures of PGLSA; black denotes linear structures of 

PGLSA. 

 

 

 

 

 

  

 
Polymer structure (M + Na)+ (M + K)+ 
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Melt polycondensation of poly(glycerol succinate)  

PGLSA was also synthesised without catalyst via the more traditional melt polycondensation 

at 120C (Table 2, entries 7, 8 and 9). The yield of polymer obtained was generally much lower 

than that obtained in scCO2. When performed with a 1:1 molar ratio in the absence of catalyst 

at 120C, a polymer with a molecular weight up to 3,900 Da (Đ > 2) was obtained with DB 

18% and this was found to be only partially soluble in water. The increase in branching can 

clearly be seen (Figure 3).  Increasing the SA content to a G:SA molar ratio of 1:1.5 and 1:2, 

increases DB dramatically. The molecular weight of the polymer also increased, and these 

materials were found to be insoluble in water, in accordance with previous studies.47  

 

 

Table 2. Synthesis of poly(glycerol succinate) via melt polymerisation at 120C  without and 

with CaLB.  

  

Entry 
Time G:SA molar ratio Yield Mn

GPC (Da) Đ DBa Tg
b 

N
o

 c
a

ta
ly

st
 7 24 h 1:1 60% 3,900 > 2 18% -61 ºC 

8 24 h 1:1.5 60% 8,200 > 2 67% -18 ºC 

9 24 h 1:2 96% 6,200 > 2 65% -20 ºC 

C
a

L
B

 

  

10 24 h 1:1 61% 3,700 > 2 13% -55 ºC 

11 24 h 1:2 54% 14,900 > 2 11% -50 ºC 

a determined by Frey’s equation S1: DBFrey=
2×D

2×D+L
×100 by integrating the resonances corresponding to the Hb protons from B0 

and B1 structures, using 1H-NMR. The chemical shifts used related to Hb the proton are reported in Figure 1. b Measured by 

DSC. 

* yield of recovery: actual amount of material physically recovered from the reactor after reaction. 

 

 



Figure 3. 1H-NMR of PGLSA from melt polymerisation without catalyst (entry 8 Table 2) clearly showing high 

levels of branching as indicated by the trisubstituted glycerol peak at ca. 5.3 ppm associated with Hb (inset) and 

the corresponding increase of terminal groups when compared to Figure 1.  

 

The NMR data reveal clearly the increase in branching when moving to melt polymerisation 

as compared to the polymers produced in scCO2. To understand this in more detail, the 

branching patterns of the polymeric backbones were analysed by combining 1H-NMR, 2D-

HSQC and COSY NMR spectroscopies (see Figure S2 B) to allow the degree of branching to 

be calculated and compared.   

 

We also probed use of the enzyme under conventional melt conditions, reasoning that the 

inherent chemo- and regio- selectivity might yield the desired linear polymers (entries 10 and 

11 in Table 2). Use of CaLB does indeed significantly lower branching, dropping the DB to 13 

and 11%.  The molar ratio of the monomers was found to only slightly affect the size and 

topology of the polymers in the presence of CaLB in scCO2 as well as in melt conditions. On 

the other hand, when no catalyst was present gelation was seen to occur earlier and at a lower 

ratio of Gly:SA (Table 2), clearly indicating a tendency towards branched polymer. When 

CaLB was used as catalyst (in both supercritical and melt conditions) similar DB values were 

A
ce
to
n
e
-d

6
 



observed (<15%) but only under supercritical conditions were the yields pushed consistently 

to above 60 %.  

 

For PGLSA synthesised under melt polycondensation without catalyst (Table 2, entries 7-9),   

it is clear that the increased molecular weight and higher DB that are obtained lead to higher 

Tg.   Indeed, it is well known that Tg increases with molecular weight48 and that branching also 

influences chain interactions49,50,38. The Tg’s of the PGLSA chains synthesised via enzymatic 

melt polycondensation did not show a dependence upon molecular weight (Table 2), but such 

Tg values in the range of -50 ºC are strongly indicative of other linear polyesters such as 

poly(butylene itaconate) and poly(1,5-pentylene adipate)).38, 51  

 

The use of CaLB in the melt certainly leads to more linear polyesters containing the desired 

pendant hydroxy groups. However, the melt condensation process at 120C is not ideal since 

the high temperatures lead to degradation of the enzyme which cannot be recycled and tend 

towards high molecular weight and low yield. Higher molecular weights in general are 

problematic for developing surfactants because such materials show only low water solubility 

and cannot be utilised effectively. The use of scCO2 clearly facilitates the synthesis of linear 

low molecular weight poly(glycerol succinate) at lower temperatures and with reasonable 

yield. Moreover, it has been shown previously that such supported enzymes can be recycled 

and reused several times in scCO2. 
36,52  

 

MALDI_TOF analysis for PGLSA synthesised in melt conditions without any catalyst (Figure 

S3) showed different repeat unit patterns and much more branching compared to the PLGSA 

polymers obtained in scCO2 with CaLB (Figure 2). This initial screening highlights the crucial 

combination of enzyme and low temperature in our use of scCO2 leading to linear, low 

molecular weight (water soluble) poly(glycerol succinate) under mild reaction conditions and 

with high yield. In the next section we go on to exploit these syntheses to create renewable and 

biodegradable surfactant from PGLSAs with the addition of lauryl or PEG moieties (Scheme 

3).    

 

We also looked carefully at performing the polymerisations in conventional solvent.   Clearly 

the solvent must not be miscible with water to allow ofr removal of water during the 



polycondensation process.  Reactions in toluene were optimised (see SI) and it was found 

that…… 

 

 

 

 

 

Enzymatic synthesis of lauroyl- and pegylated- poly(glycerol succinate) under 

supercritical conditions 

 

To create a functional surfactant, it is necessary to find good routes to addition of a range of 

end groups. Thus, the enzymatic synthesis of lauroyl PGLSA (LA-PGLSA) and pegylated 

PGLSA (PEG-PGLSA) in scCO2 were performed at 40, 50 and 60 ºC, adding PEG or LA to 

GL and SA in a one-pot reaction exploiting the optimised chemistry developed for the PGLSA 

scaffold. To explore the temperature effect on the synthesis of the end-capped polymers and 

broaden the physical properties of the final surfactants, both LA and PEG variations were also 

performed at 50 oC. The initial syntheses (Table Table 3) were conducted at 275 bar for 24 h, with an 

excess of glycerol, to ensure glycerol terminated PGLSA (Scheme 2) and promote termination 

by lauric acid units. For the synthesis of poly(ethylene glycol)-based surfactants, there was an 

excess of succinic acid, to ensure succinic acid terminated PGLSA, so that the PEG units could 

add to the carboxylic moieties (Scheme 2).  

 

 

Scheme 3 – Schematic representation of the synthesis of LA-PGLSA, demonstrating use of excess glycerol to 

ensure the synthesis of glycerol terminated PGLSA (A). Schematic representation of the synthesis of PEG-

Commented [SMH1]: Added from letter 



PGLSA, demonstrating the excess of succinic acid, to ensure the synthesis of succinic acid terminated PGLSA 

(B). 



 

Table 3 – Synthesis of lauroyl and PEG functionalised poly(glycerol succinate) under enzymatic supercritical 

conditions, at 275 bar. 

Entry T ºC 
Ratio 

(Gly:SA:LA) 
Yield 

Mn
GPC 

(Da) 
Đ 

Mn
NMR

(Da)a 
DBb Tg Tm 

LA-PGLSA1 40 ºC 2:1:0.15 85% 1,700 1.5 2,200 12% – 48 ºC 

LA-PGLSA2 50 ºC 2:1:0.15 96% 1,400 > 3 2,600 10% -72 ºC 50 ºC 

LA-PGLSA3 60 ºC 2:1:0.15 92% 2,000 1.8 2,800 5% -78 ºC 50 ºC 

PEG-PGLSA4 40 ºC 1:2:0.15 93% 1,200 1.8 2,000 13% -45 ºC – 

PEG-PGLSA5 50 ºC 1:2:0.15 85% 3,800 >2 2,200 0% -75 ºC – 

PEG-PGLSA6 60 ºC 1:2:0.15 94% 1,500 >2 2,200 0% -74 ºC – 

a calculated through 1H-NMR from the ratio between the integrals of the peaks of the polymer backbone and the end-group 

peak, using; b determined by the Frey’s equation S1.   

* yield of recovery: actual amount of material physically recovered from the reactor after reaction. 

 

 

 

For the LA-PGLSA synthesis, the calculation of Mn
NMR focussed on the specific NMR signals 

of the terminal glycerol unit as the linking unit, not those of the repeating unit of the PGLSA 

backbone. Equation S2 was used to evaluate the successful attachment of LA to the PGLSA 

backbone. The calculated Mn
NMR (Table 3 and Figure 4) were in good agreement with the 

values obtained through GPC (Table 3). Very positively, all the polymerisations of LA-PGLSA 

polymers show only low degrees of branching (DB) (Table 3) which is ideal for the potential 

use as surfactant molecules 



 

Figure 4 – 1H-NMR spectrum of LA-PGLSA (entry 1, Table 3). The solvent used was acetone-d6. Integrals of 

the peaks of Hf (0.88 ppm, terminal methyl group from LA), and Ha (3.50-3.72 ppm), Hb (3.83 ppm) and Hd,e 

(2.58-2.69 ppm) (backbone of PGLSA) can be used to estimate the average molecular weight of the polymer. The 

peak at 1.29ppm, Hg, is assigned to the –CH2– in the LA chain, while peaks at 1.59 and 2.31 ppm, Hh and Hi, are 

assigned to the –CH2– close to the carboxy group of LA (–CH2–CH2–COO–). For glycerol branching 

representations refer to Scheme 2. 

 

 

The LA-PGLSA synthesised at 40 ºC (entry LA-PGLSA 1, Table 3; Figure 4) was obtained with 

85% yield and a molecular weight of 1,700 Da (Mn
GPC) (DB = 12%). These data also show that 

end-capping via enzymatic polycondensation under supercritical conditions is highly efficient 

with 98.5% of the detected LA moieties attached to the PGLSA backbone. When increasing 

the temperature to 50 ºC and 60C (Table 3) little effect was noted and hence from a sustainable 

viewpoint, 40 ºC was selected as the most energy efficient temperature.  

 



For the PEG-PGLSA system, excess SA ensured the attachment of M-PEG to the terminal units 

and the calculation of Mn
NMR (using Equation S4) focussed on the specific NMR signals of the 

terminal SA linking unit, not those of the repeating unit of the PGLSA backbone.  

 

 

Figure 5 – 1H-NMR spectrum of PEG-PGLSA from entry 4, Table 3. The solvent used was acetone-d6. Integrals 

of the peaks of Hh (3.29 ppm, terminal methyl group from M-PEG), and Ha (3.50-3.72 ppm), Hb (3.83 ppm) and 

Hd,e (2.58-2.69 ppm) (backbone of PGLSA) can be used to estimate the average molecular weight of the polymer. 

The protons Hf, from the M-PEG backbone, overlap with the –CH2– protons from the glycerol unit. For glycerol 

branching representations refer to Scheme 2. 

 

The calculated Mn
NMR (Table 3) for the PEG addition also showed good agreement with the 

values obtained through GPC and indirectly show successful attachment of M-PEG350 Da to the 

PGLSA polyester.  When varying the temperature, the degree of branching remained low as 

expected (lower than 15 %) with good yield. Increasing the temperature to 50 ºC (entry PEG-

PGLSA 5, Table 3), gave rise to a sudden increase in molecular weight, 3,800 Da (Mn
GPC) (Đ > 

2, DB = 0%, 85% yield). By contrast, the polymerisation of LA-PGLSA at the same 



temperature, 50 ºC (entry LA-PGLSA 3, Table 3), showed a decreased Mn
GPC (1,400 Da) when 

comparing to 40 ºC (1,700 Da). Increasing further to a reaction temperature of 60 ºC, (entry 

PEG-PGLSA 6, Table 3) gave PEG-PGLSA with a molecular weight of 1,500 Da (Mn
GPC) (Đ > 

2, DB = 0%) and 94% yield was obtained.  

 

 

It is well known that thermal properties of polymeric structures can be affected not only by the 

degree of polymerisation, but also by end-groups.41, 53 Since the LA-PGLSA synthesised 

polymers all have similar molecular weights and structure, there is no significant difference in 

their thermal properties and this is  consistent with what has been shown previously for similar 

polyesters54 e.g. TweenTM 20 (also known as polyoxyethylene (20) sorbitan monolaurate), a 

commercially available non-ionic surfactant55 with Tg of ca. -61 ºC and a Tm ca. -15 ºC. The 

melting points of LA-PGLSA (ca. 48-50 ºC) are close to values obtained by other authors for 

similar polyesters (linear polyesters based on pentaerythritol, succinic acid and lauric acid)56 

and reflect the interactions of the long alkyl chains of  the terminal LA moieties. By contrast, 

no Tm values were detected for the PEG-PGLSA polymers, reflecting the amorphous nature of 

the hydrophilic end capping molecule. 

 

The Tg values for the samples synthesised at 40 ºC (entry PEG-PGLSA 4, Table 3) were higher 

than those produced at 50 and 60 ºC (-45 ºC vs ca. -75 C ) (entries 5 and 6, Table 3). This 

appears to show the important influence on the thermal properties of the degree of branching 

since at 40 ºC, PEG-PGLSA showed a DB of 13%, while at 50 and 60 ºC, no branching was 

detected. This increase of the degree of branching in the presence of PEG moieties might well 

increase the entanglements between the polymer chains and lead to higher Tg. No such 

correlation was observed for the Tg trends for the uncapped PGLSA. 

 

We have demonstrated that the enzymatic synthesis of biorenewable and biodegradable 

surfactants can be controllable, with low branching values giving linear and water-soluble 

chains with a range of potential end group functionalities. Moreover, the syntheses with scCO2 

are at lower temperatures, and provide a clean and efficient route to new surfactants. These 

data complement earlier studies that showed the synthesis of PEG-based surfactants under 

enzymatic scCO2 for azelaic acid and 1,6-hexanediol end-capped with hydrophilic methoxy 

poly(ethylene glycol) moieties37 and those based upon sorbitol and lactide.57 The replacement 



of conventional solvents by scCO2 is certainly viable since this introduces opportunities ofr 

lower temperature processing and the utilisation of enzymatic routes to polymer based 

surfactants.58 

 

 

  



Surfactant properties 

Amphiphilic, biorenewable and biodegradable polymers can find application in formulations 

for wetting agents, emulsifiers and detergents, but only if they are able to sufficiently reduce 

the surface tension of water. The PGLSA polymers (with G:SA ratios of 1:2 and 2:1) that were 

not end-capped showed only a minimal reduction in the static and dynamic surface tensions 

and do not show any significant surface-active properties (Figure 6 and S5). By contrast, the 

end group modified LA and PEG polyesters show great promise as green biodegradable 

surfactants demonstrating a significant reduction of the dynamic and static surface tension 

values (Figure 6 and S6) and these compare favourably with benchmark surfactants 

(TweenTM 20 and NatraGemTM E145) derived from petrochemical feedstocks.   

 

 

  

Figure 6 – Static surface tension of water, PGSLA not end-capped (with 1:2 and 2:1 G:SA molar ratio, both at 1 

wt.%), commercial surfactants (TweenTM 20 – 1,200 Da, NatraGemTM E145 – 1,300 Da, both at 1wt.%) and the 

synthesised end capped surfactants (1 wt.%) at different temperatures. Those the green dashed line are considered 

to have surface active properties. (LA-PGLSA 40 ºC – 1,700 Da; LA-PGLSA 50 ºC – 1,400 Da; LA-PGLSA 60 

ºC – 2,000; PEG-PGLSA40 ºC – 1,200 Da; PEG-PGLSA50 ºC – 3,800 Da; PEG-PGLSA60 ºC – 1,500 Da). 
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A true understanding of the potential surfactant performance requires assessment of critical 

aggregation concentrations, the size of the aggregates and an assessment of the water contact 

angle (Θw) (see supplementary information)  

 

Table 4 – CAC values of synthesised and commercial surfactants.  

Entry Compound Mn
GPC CAC (μM) CAC (wt.%) 

1 TweenTM 20 1,200 Daa) 7352 0.02 

2 NatraGemTM E145 1,300 Daa) 312 0.03 

3 LA-PGLSA 40ºC 1,700 Da 462 0.05 

4 LA-PGLSA 50ºC 1,400 Da 223 0.02 

5 LA-PGLSA 60ºC 2,000 Da 838 0.08 

6 PEG-PGLSA40ºC 1,200 Da 530 0.05 

7 PEG-PGLSA50ºC 3,800 Da 640 0.06 

8 PEG-PGLSA60ºC 1,500 Da >1000 >1 

a) molecular weight determined by the supplier. The CAC measurement in each case was accomplished by automated 

measurement of the surface tension of the surfactant at a range of concentrations (1-0.007 wt.%), using the static Wilhelmy 

plate tensiometer. (Figure S7) 

 

In each case we have made comparisons with the commercial samples TweenTM 20 and 

NatraGemTM E145; both are known to be efficient surfactants at low concentrations. The CAC 

values obtained will of course depend upon the chain lengths and degree of branching; both of 

which determine the size of the polar head of the surfactant in the case of LA-PGLSA.  For 

LA-PGLSA synthesised at 40 ºC (Entry 3 Table 4) we saw a decrease the surface tension to 23 

mN/m, with a promising CAC plateau value of 462 mg/L (0.05 wt.%). For LA-PGLSA 

synthesised at 60 ºC, the surfactant becomes efficient only at much higher concentration (Entry 

5, Table 4) and, since the degree of branching at 5% is the lowest, this probably reflects the 

presence of more hydroxy pendant groups in a larger polar head.   

 

The PEG-PGLSA surfactants gave higher CAC values, likely due to the high hydrophilicity of 

PEG as an end-group. The PEG-PGLSA at 60ºC showed a surprisingly high CAC value, >1000 

mg/L (> 1 wt.%). This might be a consequence the presence of free M-PEG (unattached to the 

PGLSA) (entry 8, Table 4).   

 



The sizes of the self-assembled structures are obtained from DLS and are in the range of 170-

600 nm (entries 3-8 from Table 5). Personal care and cosmetics applications require self-

assembled aggregates in a size range between 200-500 nm.59  Whilst for drug delivery, self-

assembled aggregates must typically be smaller than 200 nm;60 to deliver efficient penetration 

through blood vessel walls.61, 62   

 

Table 5 – Size distribution of surfactant nanoaggregates measured by DLS. The measurements were done at 

surfactant concentrations higher than it CAC value. a concentration close to CAC value. b value reported from 

peak 2 because a higher peak was also present in DLS trace, > 5,000 nm, explaining the high Z-average reported.  

Entry Compound 
CAC  

(wt. %) 

Concentration 

(wt. %) 

Z-average  

(d, nm) 
PDI 

1 TweenTM 20 0.02 0.1 100.5 (±9.2) 0.5 (±0.08) 

2 
NatraGemTM 

E145 
0.03 0.1 370 (±34.5) 0.4 (±0.04) 

3 
LA-PGLSA 

40ºC 
0.05 0.1 274 (±25.5) 0.3 (±1.24) 

4 
LA-PGLSA 

50ºC 
0.02 0.1 543 (±82.2) 0.4 (±0.05) 

5 
LA-PGLSA 

60ºC 
0.08 0.2 247 (±9.5) 0.2 (±0.03) 

6 
PEG-PGLSA 

40ºC 
0.05 0.1 631 (±119.7) 0.5 (±0.1) 

7 
PEG-PGLSA 

50ºC 
0.06 0.1 280 (±18.7) 0.3 (±0.03) 

8 
PEG-PGLSA 

60ºC 
>1 1a 178 (±3.1) 0.3 (±0.01) 

 

The sizes of the self-assembled structures will of course be influenced by the molecular weight 

of the building blocks, the length of the end-cappers, and the hydrophobicity of the non-polar 

block.37  These data did not show any significant size differences between the two types of end-

capped PGLSA-based polymers, but promisingly the size distributions were similar to the 

commercial surfactants NatraGemTM E145 and TweenTM 20 in the range 100-300 nm.  

 



Water contact angle (Θw) is of pivotal importance for different applications, including 

cleaning, lubrication, coating and printing.63 Θw values observed for PGLSA polymers not 

end-capped with LA or PEG were near 100º showing that the bare PGLSA backbones had 

minimal ability to reduce the interfacial tension between the water solution and the solid 

surface. On the other hand, the end-capped PGLSA surfactants show promise with contact 

angles in the same range as TweenTM 20 and NatraGemTM E145 (Table 6).  

 

Table 6 – Contact angles (left and right) of water. 

Entry Compound Left angle Right angle 

1 Water 110.0 ± 0.2 109.0 ± 0.3 

2 TweenTM 20 91.0 ± 2.3 90.0 ± 2.6 

3 NatraGemTM E145 63.0 ± 2.3 61.0 ± 2.5 

4 PGLSA 1:2 40 ºC 103.0 ± 1.1 104.0 ± 2.0 

5 PGLSA 2:1 40 ºC 96.0 ± 0.5 96.0 ± 0.6 

6 LA-PGLSA 40ºC 75.0 ± 6.2 73.0 ± 7.2 

7 LA-PGLSA 50ºC 74.0 ± 5.9 75.0 ±6.7 

8 LA-PGLSA 60ºC 79.0 ± 5.5 78.0 ± 6.0 

9 PEG-PGLSA40ºC 88.0 ± 0.9 88.0 ± 0.4 

10 PEG-PGLSA50ºC 93.0 ± 0.6 93.0 ± 0.6 

11 PEG-PGLSA60ºC 90.0 ± 0.9 90.0 ± 3.8 

Commercial surfactants at 0.5 wt.% (TweenTM 20 and NatraGemTM E145), PGLSA at 0.5 wt.% (with G:SA of 1:2 and 2:1, 

synthesised at 40 ºC), 0.5 wt.% of LA-PGLSA (synthesised at 40, 50 and 60 ºC) and 0.5 wt.% of PEG-PGLSA(synthesised at 

40, 50 and 60 ºC). 

 

These data collectively demonstrate that our PGLSA-based surfactants are effective in reducing 

the surface tension of water compared with the commercial surfactants and deliver CAC values, 

aggregate sizes and water contact angles that show promise as biorenewable and biodegradable 

surfactants. 

 

Conclusions 

We have exploited the unique properties of scCO2 to allow melt synthesis of poly(glycerol 

succinate) PGLSA at very mild temperatures (<60 °C). This allows effective use of an enzyme 

(CaLB - Novozyme 435) catalyst to deliver linear and low molecular weight PGLSA-based 



polymer chains with pendent hydroxy groups. Such low molecular weight and linear materials 

are of value because they are water soluble and provide the opportunity to develop new types 

of renewable surfactant.  The linearity of the polymers was confirmed by 1H-NMR, COSY and 

2D-HSQC NMR, showing that there was minimal esterification on the secondary hydroxyl 

group of the glycerol monomer. These chains were then exploited by end-capping with lauric 

acid or poly(ethylene glycol) and the performance of these novel end-capped amphiphilic 

materials as surfactants has been tested by employing a variety of standard analytical 

techniques. All of the surfactants showed the ability to decrease the surface tension of water 

giving competitive surface-active properties when comparing with commercially available 

surfactants and can be optimised to yield low CAC values, with aggregates in the range 200-

600 nm. Contact angle data showed significant reduction in interfacial tension (75 º < θ < 90 º) 

providing the opportunity for application as wetting agents. These preliminary results clearly 

show that all the synthesised PGLSA-based surfactants that we have developed can form self-

assembled aggregates with suitable size for personal care and cosmetic applications.52 
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