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H I G H L I G H T S G R A P H I C A L A B S T R A C T

• Use of reclaimed water or livestock
waste in agriculture introduces phar-
maceuticals to the land surface.

• Uptake of pharmaceuticals in plants
primarily depends on the physicochem-
ical properties.

• Aquaporin and anion channels partici-
pate in the uptake of pharmaceuticals.

• Plants utilize numerous phase I and
phase II enzymes to metabolize
pharmaceuticals.

• Exposure to pharmaceuticals interrupt
major physiological processes in plants.
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A B S T R A C T

The presence of pharmaceutical pollutants in water sources has become a growing concern due to its potential
impacts on human health and other organisms. The physicochemical properties of pharmaceuticals based on
their intended therapeutical application, which include antibiotics, hormones, analgesics, and antidepressants, is
quite diverse. Their presence in wastewater, sewerage water, surface water, ground water and even in drinking
water is reported by many researchers throughout the world. Human exposure to these pollutants through
drinking water or consumption of aquatic and terrestrial organisms has raised concerns about potential adverse
effects, such as endocrine disruption, antibiotic resistance, and developmental abnormalities. Once in the
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environment, they can persist, undergo transformation, or degrade, leading to a complex mixture of contami-
nants. Application of treated wastewater, compost, manures or biosolids in agricultural fields introduce phar-
maceutical pollutants in the environment. As pharmaceuticals are diverse in nature, significant differences are
observed during their uptake and accumulation in plants. While there have been extensive studies on aquatic
ecosystems, the effect on agricultural land is more disparate. As of now, there are few reports available on the
potential of plant uptake and transportation of pharmaceuticals within and between plant organs. This review
summarizes the occurrence of pharmaceuticals in aquatic water bodies at a range of concentrations and their
uptake, accumulation, and transport within plant tissues. Research gaps on pharmaceutical pollutants’ specific
effect on plant growth and future research scopes are highlighted. The factors affecting uptake of pharmaceu-
ticals including hydrophobicity, ionization, physicochemical properties (pKa, logKow, pH, Henry’s law constant)
are discussed. Finally, metabolism of pharmaceuticals within plant cells through metabolism phase enzymes and
plant responses to pharmaceuticals are reviewed.

1. Introduction

Water scarcity is poised to emerge as one of the most significant
challenges in the immediate future and according to estimates, 40% of
the world’s population would experience severe water scarcity by the
year 2050 (UNESCO, 2020). Worldwide, a mere 3% of the total fresh-
water is available for drinking and irrigation according to the European
Commission (European Commission, 2018). Water shortage is worsened
as the population grows, food and energy demand rise, economic
development, and as environmental degradation increases (Water,
2018). Industries such as food and beverage, textiles, dyeing, tannery,
and pharmaceutical manufacturing are functioning globally to meet
human needs, concurrently generating substantial volume of waste-
water in the process (Liu and Racherla, 2019; Hubbard et al., 2022; Scott
et al., 2018). Around two million tons of waste including organic pol-
lutants, inorganic heavy metals and waste products of biological origins
are discharged into the ocean on a daily basis throughout the world
(Saravanan et al., 2022; Gomathy et al., 2021; Karimi-Maleh et al.,
2021). Approximately 80% of wastewater from industries and munici-
palities across the world is discharged into the environment without any
treatment, which has a severe negative impact on ecosystems and
human health (Lin et al., 2022). Along with pollutants such as plastic,
steel, fertilizer, tannery and heavy metal, pharmaceutical pollutants are
also a major concern in terms of releasing toxic substances into the
aquatic environment (González-González et al., 2022; Margot et al.,
2015).

Pharmaceuticals, often ascribed as life savers for millions of people
around the globe, have also emerged as a novel category of environ-
mental contaminants in the last few decades (Sathishkumar et al., 2020;
Patel et al., 2019; Van Boeckel et al., 2015; Kolpin et al., 2002). The
residues of pharmaceutical products i.e., actual pharmaceutical pollut-
ants or their metabolized forms have been discovered in almost every
environmental sphere and matrices including surface water (Wilkinson
et al., 2022; Minh et al., 2009; Watkinson et al., 2009), groundwater
(Fick et al., 2009), wastewater treatment process effluent, influents, and
sludge (Lapworth et al., 2012), geospheres (Riaz et al., 2018; Yang et al.,
2011b), the polar regions (González-Alonso et al., 2017) as well as in the
air (Osytek et al., 2008). Apart from the persistence of pharmaceutical
pollutants, their continuous addition to the environment also poses a
serious threat for flora and fauna (Nikolaou et al., 2007). They are
categorized as emerging pollutants in aquatic environments due to their
lack of regulation or ongoing efforts to establish regulatory measures
(Kolpin et al., 2002). Some of these pharmaceuticals such as antibiotics
and steroids have been extensively studied in the past 20 years with the
help of advanced detection methods that can identify these molecules at
their relatively low levels (Lozano et al., 2022; Noguera-Oviedo and
Aga, 2016).

The demand for pharmaceuticals throughout the globe is continu-
ously rising. Between 2015 and 2020, the number of doses of medication
administered globally have increased by about 24% (Dunn et al., 2017).
It is suggested that half of the world’s population, particularly from
China, India, Brazil, and Indonesia, consume more than one dose of

medication per person per day (Dunn et al., 2017). In 2010, an estimated
2,00,000 tons of antibiotics were consumed worldwide, while 63,200
tons was used in the treatment of cattle and these numbers are predicted
to double by 2030 (Kovalakova et al., 2020; Van Boeckel et al., 2015).
Currently, there are around 4000 active pharmaceutical components
available on the global market (Patel et al., 2019; Rehman et al., 2015).
Around 30% of the pharmaceutical industry worldwide exclusively
functions in Asia, focusing on the production of pharmaceuticals and
personal care products (Kar et al., 2020). According to Majumder et al.
(2019), up to 90% of ingested pharmaceutical substances remains un-
metabolized in human body and is subsequently eliminated through
urine or faeces, ultimately finding its way into the wastewater collection
and treatment (USEPA, 2012). So, a large quantity of pharmaceutical
residues is continuously being added to the wastewater system across
the world.

Wastewaters containing pharmaceuticals can come from industries,
in particular pharmaceutical manufacturing and municipal (or com-
munity) sources. In pharmaceutical manufacturing, it is estimated that a
hundred kilograms of waste is generated for only 1 kg of medicine
produced (Askey et al., 2021). Moreover, the effluent wastewaters
produced from this sector is different from municipal sewage effluents
due to containing excessive organic pollutants and drug components
including antibiotics, vitamins, antiepileptics, and cosmetic ingredients
(Khasawneh and Palaniandy, 2021). These effluents also carry a
considerable amount of total dissolved solids, biochemical oxygen de-
mand, chemical oxygen demand, and suspended solids that can imme-
diately reduce the dissolved oxygen and contaminate the water (Sher
et al., 2020).

Studies reveal that hormonal pharmaceuticals can imitate endoge-
nous steroid hormones and cause similar physiological reactions, even at
low dosages (Kumar et al., 2019). Endocrine disrupting compounds like
estrone (E1) and estradiol (E2) can mimic and hinder human endocrine
systems, leading to issues like diabetes, obesity, abnormal reproductive
growth, endometriosis, and cancer (Ismail et al., 2020). Additionally,
aquatic organisms exposed to psychiatric drugs may experience impacts
on photosynthesis, reproduction, and endocrine function (Subedi and
Kannan, 2015). Meanwhile, antibiotics can contribute to the develop-
ment of antibiotic-resistant bacteria and genes, reducing antibiotic
effectiveness against pathogens in both humans and animals (Pei et al.,
2019; Tran et al., 2018).

Wastewater treatment plant effluents, aside from being released back
into waterways, can be reclaimed as a crucial water supply alternative
that has substantial advantages for the environment, economy, and so-
ciety (Delli Compagni et al., 2020). Consequently, in many areas of the
world, this practice is being adopted as a central component of water
resource management strategies (Singh, 2021). In recent years, there has
been increasingly stringent standards for wastewater treatment due to
the rising need for high-quality water for drinking, sanitation, agricul-
ture, and industrial usage (Sunyer-Caldú et al., 2022). For instance,
policymakers in India recently considered a new drugs bill on rules for
importing, manufacturing and selling medicines, with the objective of
highest possible regulatory standards and a transparent regulatory
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regime (Meshram et al., 2023). In low-income countries, wastewater is
reused for different purposes without adequate treatment but in
high-income countries, reuse of the wastewater is done mainly after its
treatment (Thebo et al., 2017). According to latest studies, countries
particularly in China, India, Pakistan, Mexico and Iran, approximately
80% of wastewater is not treated properly and is utilized for irrigating
around 11% of croplands (Jones et al., 2021; Kookana et al., 2020;
Thebo et al., 2017). But water treatment processes only remove some of
the pollutants or partially eliminate pharmaceutical pollutants, meaning
a wide range of potentially harmful compounds can still be found in
wastewater especially pharmaceutical pollutants and personal care
products where they eventually enter environmental compartments
(Antunes et al., 2021; Gago-Ferrero et al., 2017). Using reclaimed water
or releasing water directly into the environment therefore can have
serious negative impact on aquatic organisms, lands, and crop fields
(Meyer et al., 2019; Cizmas et al., 2015). Humans can also be exposed to
possible health risks by eating crops and fish grown on affected areas
through bioaccumulation (Keerthanan et al., 2021). Recently it has been
reported that use of treated wastewater in agriculture for irrigation
could be a major pathway for introducing organic contaminants i.e.,
pharmaceutical pollutants, to food crops eventually posing a serious
threat to all life forms and environment (Masoner et al., 2023; Christou
et al., 2019; Picó et al., 2019), highlighting the importance of a thorough
understanding of the fate of these molecules in the environment.

Currently, information on plant uptake of pharmaceuticals is limited
to a few drugs and plant species, and the fundamental mechanisms
related to plant uptake, transport, metabolism, and accumulation of
pharmaceuticals remain largely unknown. In this review, we provide a
comprehensive and up-to-date overview of reported pharmaceutical
pollutants in wastewater, their physicochemical properties, concentra-
tion in water bodies and their mechanistic pathways through the envi-
ronmental components. The mechanisms regulating the uptake and
translocation of different pharmaceutical pollutant groups in plants, and
the main factors influencing uptake and transfer processes are summa-
rized with a focus on pollutants that have a high potential for plant
uptake from irrigation. The accumulation patterns, the metabolism
pathways of pharmaceuticals and their potential impacts on plants are
also elucidated. Lastly, the currently available analytical methods for the
detection of pharmaceutical pollutants in plant tissues are summarized.
The novelty of this work focuses on the comprehensive review and
gathering dispersed information on the occurrence of pharmaceutical
pollutants and their uptake, accumulation, transport, and metabolism in
plants with an in-depth exploration of the fundamental mechanisms of
these processes.

2. Occurrence, physicochemical characteristics and pathways of
pharmaceutical pollutants in the environment

The pharmaceutical pollutants examined in this reviewwere selected
based on several factors: (i) high consumption rates, (ii) frequent
detection in wastewater, (iii) potential environmental risks, and (iv) the
availability of analytical data (Tran et al., 2018). The collected data on
the occurrence of pharmaceuticals were categorized into different
therapeutic groups. Based on the data collected from the literature, the
presence of the selected pharmaceutical pollutants in different water
sources are defined and reported in Table 1. The physicochemical at-
tributes of the wastewaters containing pharmaceutical pollutants are
also presented in Table 2. Finally, the pathway of pharmaceutical pol-
lutants from possible source to the disposing sites and their environ-
mental fate are depicted in Fig. 1.

2.1. Occurrence

Since the initial identification of pharmaceutical pollutants in
aquatic systems in the 1990s, a long list of pharmaceutically active
substances has been found in water (Rathi et al., 2021).

Pharmaceutically active pollutants are complex molecules with diverse
physicochemical and biological properties and functionalities. They are
generally polar compounds with molecular weights typically ranging
from 200 to 500/1000 Da. As they are often found in the ng to μg per
litre range in the water environment, they are considered “micro--
pollutants” (Kümmerer, 2009c). Pharmaceuticals can be grouped based
on factors such as their mechanism and mode of action, chemical
structure, and the type of diseases they are used to treat. Their proper-
ties, chemical structure and hazard statements also differs based on
these groups.

Pharmaceutical or medicinal pollutants detected in waterways falls
under eight groups: (i) anti-inflammatories and analgesics, (ii) antibi-
otics, (iii) antiepileptics, (iv) antidepressants, (v) lipid lowering agents,
(vi) antihistamines, (vii) β-blockers, and (viii) other substances (River-
a-Utrilla et al., 2013). The detection of these pollutants vary depending
on the sampling location, pharmaceutical consumption pattern,
manufacturing industries, animal and crop farming practices, and
wastewater treatment facilities of that area (aus der Beek et al., 2016;
Hughes et al., 2013). For instance, Metformin, an antidiabetic drug has
been reported to be detected frequently and also in higher concentra-
tions in a global stream study (Wilkinson et al., 2022). Recently, the
global COVID-19 pandemic has resulted in a widespread utilization of
massive amounts of pharmaceuticals by healthcare facilities (Sharma
et al., 2021). The pandemic has also caused various psychological dis-
orders i.e., anxiety, depression, insomnia, and post-traumatic stress,
resulted in increased consumption of antidepressants. Consequently, the
occurrence of antidepressants in wastewater treatment plant influent
was recently reported in UK (Ng et al., 2020), Belgium (Boogaerts et al.,
2019), Costa Rica (Ramírez-Morales et al., 2020), and Brazil (Cortez
et al., 2019). Diaz-Camal et al. (2022) compared the occurrence of an-
tidepressants in pre- and post-Covid- 19 pandemic period and found
substantial increase of these pollutants after Covid-19 in the environ-
ment. Nevertheless, the pharmaceutical pollutants detected are specific
to environmental sections of wastewater sources such as groundwater,
surface water, drinking water, hospital effluents, industrial effluents,
and effluents and influents of sewage treatment plants (Mor-
eno-González et al., 2014; Baker and Kasprzyk-Hordern, 2013; Casti-
glioni et al., 2008).

Among all groups of pharmaceuticals, antibiotics are the most highly
demanded prescription drug. During the past few decades, both their use
and demand have climbed by 30% (Tiwari et al., 2017). Among the most
widely used antibiotic classes include cephalosporins, quinolones,
macrolides, tetracyclines, penicillins, lincomycins, and sulfonamides
(Calderón and Sabundayo, 2007). It is reported that, 90% of the anti-
biotics consumed by humans are removed without undergoing any
change or partially metabolized via urine or faeces (Tiwari et al., 2017).
Commonly found antibiotics in wastewater effluents include amoxi-
cillin, tetracycline, sulfamethoxazole, azithromycin, chloramphenicol
because of their extensive use, highly hydrophobic property, and low
volatility. They also show resistance to degradation during the waste-
water treatment process by forming stable complexes with suspended
matter (Mutuku et al., 2022; Anjali and Shanthakumar, 2019; Liu et al.,
2018; Ahmed, 2017). One of the major problems created by antibiotics
in the environment is the evolution and dissemination of genes linked to
antibiotic resistance, which has been identified as a global public health
crisis (WHO, 2014).

Analgesics and anti-inflammatories is another major contributor of
pharmaceutical contaminants in wastewater. Diclofenac, ibuprofen, and
paracetamol are the most popular, readily available and widely used
anti-inflammatory and analgesic medications (Jiménez-Bambague et al.,
2020; Albaiges et al., 1986). On the basis of mechanism of action, an-
algesics are classified into groups such as paracetamol (acetaminophen),
non-steroidal anti-inflammatory drugs, opioids, cannabis (medical
marijuana) and alcohols (Batt et al., 2007). Feng et al. (2013) reported
that the ingestion of non-steroidal anti-inflammatory drugs is more than
30 million doses per day worldwide. Commonly detected opioids in
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Table 1
Occurrence of pharmaceutical pollutants with their reported concentration in various water sources (WWTP=Wastewater treatment plant; STP= Sewerage treatment
plant; DWTP = Drinking water treatment plant; n.d. = Not detected; LOD = Limit of detection; LOQ = Limit of quantification; MDL = Minimum detection level).

Pharmaceutical
compound

Relative
molecular mass
(g/mol)

Country Sampling site Source Reported
concentration (ng L− 1)
[min – max (avg)]

Reference

Antibiotic
Sulfamethoxazole
(C10H11N3O3S)

253.3 Switzerland Altenrhein Municipal wastewater
primary effluent

641 ± 4.0 Göbel et al. (2004)

Sweden Stockholm, Henriksdal STP influent 674 Lindberg et al. (2005)
USA Hagerman Municipal wastewater

(influent or effluent not
mentioned)

1000 Brown et al. (2006)

USA Las Vegas Municipal wastewater
(influent or effluent not
mentioned)

2060 Vanderford and Snyder
(2006)

Canada Edmonton – 650 McClure and Wong
(2007)

UK Colsech WWTP influent 20–274 (115) Kasprzyk-Hordern
et al. (2009)

Australia Brisbane WWTP influent 360 Watkinson et al.
(2007)

Croatia Velicka Gorica Raw wastewater 4664 Senta et al. (2008)
China (HK) Stanley WWTP influent 220 Li and Zhang (2011)
France Limours Municipal wastewater

(influent or effluent not
mentioned)

538 Dinh (2012)

Spain Girona WWTP influent 528 Gros et al. (2013)
Brazil Porto Alegre WWTP effluent 473 Jank et al. (2014)
India Coimbatore STP influent 552 Subedi et al. (2015a)
Pakistan Lahore Household and hospital

effluent
4600 Khan et al. (2013)

Germany Dresden STP influent 515 Rossmann et al. (2014)
Greece Athens WWTP influent 218 Dasenaki and

Thomaidis (2015)
Kenya Nairobi Untreated wastewater

(influent or effluent not
mentioned)

89 Mathenge et al. (2017)

Turkey Istanbul DWTP influent 240 Vergili et al. (2019)
Bangladesh Cox’s Bazar Brackish water Shellfish

Aquaculture
0.31–16.77 Hossain et al. (2017)

Bangladesh Old Brahmaputra River Surface water LOD - 7.24 Hossain et al. (2018)
Analgesic and antipyretic
Acetaminophen
(C8H9NO2)

151.16 Poland Swarzewo WWTP influent 6.5 Kołecka et al. (2020)
Scotland Wick WWTP influent 67483 Niemi et al. (2020)
UK Cilfynydd WWTP influent 211380 Kasprzyk-Hordern

et al. (2009)
UK River Tyne River water 6000–65000 Roberts and Thomas

(2006)
UK Southeast of England STP effluent <50 Hilton and Thomas

(2003)
Pakistan Lahore WWTP effluent 64 Ashfaq et al. (2018)
Canada Ontario Drinking water 17–298 Kleywegt et al. (2011)
France Hérault watershed Drinking water 210 Togola and Budzinski

(2008)
Spain Northeastern. Spain Drinking water 10–260 Boleda et al. (2011)
USA New Jersey Drinking water 0.3–120 Stackelberg et al.

(2007)
Japan 11 WWTP in Japan WWTP influent 1700 Okuda et al. (2008)
Australia Gerringong Gerroa Sewerage

Scheme
WWTP influent 23300 Al-Rifai et al. (2007)

Switzerland Cantonal hospital of Baden WWTP influent 107000 Kovalova et al. (2012)
Malaysia STP in Kajang town STP effluent 70 Al-Odaini et al. (2010)
Mexico Tula river River water 20,960.9 Garduño-Jiménez et al.

(2023)
Opioids
Tramadol
(C16H25NO2)

263.37 Germany Dresden WWTP influent 662.8 Gurke et al. (2015)
Sweden Dal river River water 3.01 Lindim et al. (2016)
China 30 major cities across China WWTP influent 6.7–40.3 Du et al. (2021)
Slovakia Bratislava WWTP influent 860 ± 120 Mackuľak et al. (2015)
EU-wide
sampling
campaign

WWTPs in EU countries WWTP effluent 256 Loos et al. (2013)

Czech Republic Prague WWTP effluent 870 Diaz-Sosa et al. (2020)
Germany IWAR facility WWTP influent 1100 ± 200 Knopp et al. (2016)
Germany 12 German STPs Ground water 87 Hummel et al. (2006)

(continued on next page)
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Table 1 (continued )

Pharmaceutical
compound

Relative
molecular mass
(g/mol)

Country Sampling site Source Reported
concentration (ng L− 1)
[min – max (avg)]

Reference

Great Britain Taff river Surface water 5970 Kasprzyk-Hordern
et al. (2009)

Sweden River Fyris, Uppsala Surface water 1840 Fick et al. (2011)
Hungary Balaton lake Surface water 0.2 ± 0.0 Maasz et al. (2021)
Germany Lahn, Hesse Surface water 31–370 Rúa-Gómez and

Püttmann (2012)
Hungary Danube River water samples 1.44–262.4 Kondor et al. (2020)
Wales, UK Pontypridd point, River Taff River water samples 244–5970 Kasprzyk-Hordern

et al. (2008)
Wales, UK Peterson-super-Ely point,

River Ely
River water samples 731–7731 Kasprzyk-Hordern

et al. (2008)
Germany Conventional

WWTP
WWTP influent 470 Wick et al. (2009)

Oxycodone
(C18H21NO4)

315.36 USA Minnesota Upstream, wastewater
and downstream water

38.2–169.8 Campos-Mañas et al.
(2019)

USA Clarks river Upstream 2.90 ± 2.1 Skees et al. (2018)
UK 7 WWTP in UK WWTP effluent 25.3 Baker and

Kasprzyk-Hordern
(2011)

USA WWTPs in New Mexico WWTP effluent 120 Batt et al. (2008)
USA WWTPs across the US WWTP effluent <310 Batt et al. (2016)
Italy Milan WWTP influent 8.7 Castiglioni et al.

(2018)
South Africa Leeuwkuil WWTP WWTP influent 1560 Kamika et al. (2021)
South Africa Meyerton

WWTP
WWTP influent 74.9 Kamika et al. (2021)

South Africa Rietgat WWTP WWTP influent 177 Kamika et al. (2021)
South Africa Sandspruit

WWTP
WWTP influent 187 Kamika et al. (2021)

USA Denver, Colarado WWTP influent 126 Bai et al. (2018)
USA Across the country WWTP influent 10–100 Phillips et al. (2010)
Italy Milan Ground water (Surface

layer)
7.2–286 Castiglioni et al.

(2018)
Canada Grand river watershed in

southern Ontario
DWTP effluent 5.1 ± 0.7 Davoli et al. (2019)

Anticonvulsant
Carbamazepine
(C15H12N2O)

236.3 China Beijing Drinking water 0.37–1.15 Cai et al. (2015)
Serbia Novi Sad, Zrenjanin, Bečej,

Vrbas and Obrenovac
Drinking water <LOQ - 8.7 Petrović et al. (2014)

Italy Milan Drinking water wells 1.05 Riva et al. (2018)
Bangladesh Old Brahamaputra river River water <LOD - 8.80 Hossain et al. (2018)
China Shanghai River water 25.3 Wu et al. (2015a)
Portugal Lis river River water 24.9–214 Paiga et al. (2016)
Serbia Novi Sad, Zrenjanin, Bečej,

Vrbas and Obrenovac
Surface water 0–35.5 Petrović et al. (2014)

Singapore Mangrove water 0.06–4.63 Bayen et al. (2016)
Sweden Dal river River water 0.38–0.51 Lindim et al. (2016)
United States of
America

Skaneateles Lake, New York Lake water 0–0.17 Subedi and Kannan
(2015)

Vietnam Hanoi Surface water <0.144–0.53 Tran et al. (2014)
France Orléans WWTP influent 51–937 Thiebault et al. (2017)
Germany Dresden Kaditz STP influent 246–815 Gurke et al. (2015)
India All over WWTP influent 22–8200 Balakrishna et al.

(2017)
Canada 5 different STPs across

Canada
STP influent 757 Lajeunesse et al.

(2012)
Antidepressant
Alprazolam
(C17H13ClN4)

308.8 Mexico 14 states of Mexico WWTP effluent 56 Adhikari et al. (2023)
Tehran municipal wastewater

treatment plant in South
Tehran

WWTP effluent 2.21–6.46 Golbaz et al. (2023)

Brazil Cascavel River, Paraná Surface water 5.9 ± 0.5 Nunes et al. (2015)
China Beijing Hospital effluent 32 ± 0.2 Yuan et al. (2013)
Sri Lanka Kandy Hospital effluent <MDL - 11 Goswami et al. (2022)
Spain Castellon province WWTP effluent 0.01 Gracia-Lor et al.

(2012)
USA Albany area, New York WWTP influent 3.09–12.6 Subedi et al. (2015b)
China Guangdong province WWTP influent n.d. - 0.98 Lei et al. (2020)

Steroids
Estrone (C18H22O2) 270.4 China Hanjiang river Surface water n.d. – 2.3 Hu et al. (2019)

Switzerland River Jona and Dachseggbach Surface water 0.21–0.91 Zhang and Fent (2018)
France Paris Surface water 0.2–3.0 Cargouët et al. (2004)
China Guangxi Province Wastewater influent 19.7–1330 Liu et al. (2012)

(continued on next page)
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Table 1 (continued )

Pharmaceutical
compound

Relative
molecular mass
(g/mol)

Country Sampling site Source Reported
concentration (ng L− 1)
[min – max (avg)]

Reference

India Yamuna river Surface water 1781.8 ± 0.7 Biswas and Vellanki
(2021)

Mexico Xochimilco wetland Surface water 13000000 Díaz-Torres et al.
(2013)

Mexico Across the country Surface water 179.6 De La Torre (2011)
Mexico Tula Valley Irrigation water 2.5 Chávez-Mejía et al.

(2019)
Poland Kraków Ground water 5.4 Rusiniak et al. (2021)
France Across the country Ground water 9.0 Lopez et al. (2015)
Austria Across the country Ground water 1.6 Hohenblum et al.

(2004)
China Beijing and Tianjin WWTP effluents 74 Lei et al. (2020)

17− β− estradiol
(C18H24O2)

272.4 Austria Across the country Ground water n.d. - 0.79 Hohenblum et al.
(2004)

Belgium Different rivers Surface water n.d. - <0.13 Glineur et al. (2018)
France Rhône-Alpes Ground water n.d. - 1.3 Vulliet et al. (2008)
Luxembourg Pontpierre Streams n.d. - 3.0 Banzhaf et al. (2013)
Poland Kraków Ground water n.d. - <0.2 Rusiniak et al. (2021)
Spain WWTP Quart, Catalonia,

Spain
Raw wastewater 6.05–8.72 Čelić et al. (2017)

Iran Ahvaz City Slaughterhouse
wastewater

98.3 Hassani et al. (2016)

Italy Ticino River Surface water 34 Merlo et al. (2020)
China Huangpu River Surface water 74.8 Zhang et al. (2014a)
Tunisia Southern East Tunisia Sewage treatment plants

effluents
10.8 Belhaj et al. (2015)

Tanzania Ngerengere and Morogoro
River

River water 9.3 Msigala et al. (2017)

South Africa Fort Hare WWTP in Alice Wastewater effluents 135.0 Farounbi and Ngqwala
(2020)

South Africa Bloukrans river Upstream water 16.3 Farounbi and Ngqwala
(2020)

England River Arun River water 0.6 Peck et al. (2004)
England River Ouse River water 0.6 Peck et al. (2004)
Taiwan Dan-Shui River River water 1.4–33.9 Zhang et al. (2014a)
USA Redwood River River water 0.96 Writer et al. (2012)
Netherlands Dutch surface water Surface water 0.3–7.2 Zhang et al. (2014a)
South Africa surface water catchment

stations at Blue Downs
Surface water 15,700 Olatunji et al. (2017)

Estriol (E3)
(C18H24O3)

288.4 South Africa surface water catchment
stations at Phillipi

Surface water 45,550 Olatunji et al. (2017)

China Pearl river delta Receiving river water n.d. - 0.37 Xu et al. (2014)
Japan Tama river River water <0.2 Furuichi et al. (2004)
France Paris Surface water 0.6–3.1 Cargouët et al. (2004)
USA Elkhorn River, Nebraska Surface water n.d. - 3.3 Kolok et al. (2007)
Brazil Campinas Surface water n.d. - 2.3 Sodré et al. (2010)
Australia Tanilba bay, New South

Wales
Raw influent 109.94 Islam et al. (2021)

Canada Québec Influent water 83 Goeury et al. (2022)
China Xiamen Influent water 316–586 Ashfaq et al. (2017)
Germany STP in Wiesbaden Conventional activated

sludge
97 Andersen et al. (2003)

Italy STP located in Rome Conventional activated
sludge

96.6 Laganà et al. (2004)

Great Britain STP located in United
Kingdom

Influent water 100 Kumar et al. (2011)

Switzerland Lausanne wastewater
treatment plant

Wastewater effluent >75 (±12) Margot et al. (2013)

Ethinyl estradiol
(EE2) (C20H24O2)

296.4 China South of China Sewage treatment plant
influent

155.7–501.1 (269.1) Wang et al. (2010)

Korea Han River, the Nakdong
River, and the Youngsan
River

Surface water n.d. - 1.3 Kim et al. (2007)

Malaysia Klang Valley WWTP effluent 0.8 Fang et al. (2019)
Turkey in Istanbul WWTP effluent 7 Can et al. (2014)
Australia Southeast Queensland Effluent from WWTP 1.14 Ying et al. (2009)
Australia Southeast Queensland WWTP effluent 1.5–2 (1.77） King et al. (2016)
France 14 WWTP across the country French WWTP effluent 1.6–4.4 (2.7) Gabet-Giraud et al.

(2010)
USA Gwinnett County, GA Wastewater reclamation

treatment plant effluent
<10 Yang et al. (2011a)

France,
Germany,
Italy, UK,

Various WWTPs WWTPs effluents <1–2.1 (0.9) Janex-Habibi et al.
(2009)

(continued on next page)
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Table 1 (continued )

Pharmaceutical
compound

Relative
molecular mass
(g/mol)

Country Sampling site Source Reported
concentration (ng L− 1)
[min – max (avg)]

Reference

Spain,
USA

Dexamethasone
(C22H29FO5)

392.5 Hungary Danube River Surface water 0.07 Tölgyesi et al. (2010)
Malaysia Rivers in Selangor district Surface water 0.29 Praveena et al. (2018)
China Beijing Surface water 0.11 Chang et al. (2007)
China Pearl River Delta Surface water 0.33 Gong et al. (2019)
USA Los Angeles and San Gabriel

Rivers
Surface water n.d. Sengupta et al. (2014)

China Beijing Treated water from
WWTP

0.02–0.09 Chang et al. (2007)

China River Wenyu, Beijing Treated water from
WWTP

390 Chang et al. (2009)

USA LA river Surface water 55.6 Desgens-Martin and
Keller (2021)

Switzerland Baden Rivers surface water 8–13 Ammann et al. (2014)
Switzerland Baden Hospital wastewater

influent
1720 Ammann et al. (2014)

Netherlands Various sites Industrial effluent 90 ± 9 Schriks et al. (2010)
Germany Various Treated wastewater,

rivers and streams
0–0.4 Weizel et al. (2018)

Singapore WWTP Wastewater influent 0.236 Goh et al. (2018)
South Africa Daspoort WWTW Wastewater effluent 0.92 Mhuka et al. (2020)
France STP, downstream from Lyon Wastewater influents 15 Piram et al. (2008)
Italy Pavia municipal waterworks,

Northern Italy surface waters
Treated wastewater,
rivers and streams.

2–3 Merlo et al. (2020)

Spain Sewer of Girona University
Hospital, Girona

Hospital effluents 360 Cruz-Morató et al.
(2014)

Spain Katalan rivers (Ebre, Ter and
Llobregat) and STPs located
in Tarragona area

River waters, influent and
effluent sewage

<20 Herrero et al. (2012)

Triamcinolone
(C21H27FO6)

394.43 China Pearl River system River water <0.54–0.79 Gong et al. (2019)
Hungary Hungary Danube River River water <0.2 - <0.5 Tölgyesi et al. (2010)
USA Tucson WWTP effluents 5.75–14.0 Jia et al. (2016)
Germany Groβ-Gerau, Bingen,

Schwelm, Koblenz and
Wandlitz

WWTP effluents <28 Weizel et al. (2018)

Germany Rivers across the country Surface water <12 Weizel et al. (2018)
Netherland Various WWTP effluents <14 Schriks et al. (2010)
Switzerland Baden WWTP effluents 1 Ammann et al. (2014)
France Various WWTP effluents 3 Schriks et al. (2010)
China Seven important surface

watersheds
Surface water 1.75–7.53 Xu et al. (2019)

Prednisolone
(C21H28O5)

360.4 Netherland Across the country Industrial wastewater
effluents

247 ± 28 Van der Linden et al.
(2008)

Netherland Across the country Hospital wastewater
effluents

315 ± 30 Van der Linden et al.
(2008)

Netherland Various Hospital wastewater
influent

315–1918 Schriks et al. (2010)

China Pearl river system Surface water <0.39–1.8 Gong et al. (2019)
China Beijing rivers Surface water 0.03–1.8 Chang et al. (2007,

2009)
Germany German rivers Surface water <0.2–0.4 Weizel et al. (2018)
Switzerland Swiss rivers Surface water 10–13 Macikova et al. (2014)
Czech Czechic rivers Surface water 3–5 Macikova et al. (2014)
Hungary Danube River River water <0.04–0.58 Tölgyesi et al. (2010)
USA Tucson, Arizona WWTP effluent 0.16 ± 0.03 Wu et al. (2019)
Sweden Dal river River water 0.033 Lindim et al. (2016)

Trenbolone
(C18H22O2)

270.4 USA Southwest and central Ohio Beef cattle feedlots
discharge

10–120 Durhan et al. (2006)

Germany Freising-Weihenstephan Liquid manure 5–75 Schiffer et al. (2001)
USA Stanislaus, Marin, and

Sonoma counties in central
California

Surface water <25 Kolodziej and Sedlak
(2007)

USA north central Indiana Beef and dairy effluent <8.9 Gall et al. (2011)
USA University of Nebraska

Haskell
Agricultural Laboratory near
Concord

Feedlot runoff from
treated cattle shed

<115 Bartelt-Hunt et al.
(2012)

USA Purdue Animal Science
Research and Education
Center

Untreated lagoon water 22–1720 Khan and Lee (2012)
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Table 2
Commonly reported pharmaceuticals in wastewater, their structure, and physicochemical properties.

Pharmaceuticals
(CAS number)

Class/
therapeutic
application

Chemical
formula

Molecular
weight (g
mol− 1)

Acid
dissociation
constant
(pKa)

Octanol− water
partition
coefficients
(logKow)

Henry’s
law
constant
(atm-cu
m/mol at
25 ◦C)

Structure References

Sulfamethoxazole
(723-46-6)

Antibiotic/sulfa
drug/
antibacterial/
Human and
veterinary use

C10H11N3O3S 253.276 1.6, 5.7 0.89 6.42 ×

10− 13 Patel et al.
(2019)

Acetaminophen
(Paracetamol)
(103-90-2)

Analgesic/
antipyretic/
Human and
veterinary use

C8H9NO2 151.16 9.38 0.46 8.93 ×

10− 10 Patel et al.
(2019)

Tramadol (27203-
92-5)

Opioid pain
medication

C16H25NO2 263.381 9.32,
13.48

3.01 1.54 ×

10− 11 Patel et al.
(2019)

Oxycodone (76-
42-6)

Pain reliever/
Opioid drug/
Human use

C18H21NO4 315.36 8.28 0.66 2.33 ×

10− 16 Patel et al.
(2019)

Carbamazepine
(298-46-4)

Anti-epileptic/
Neuropathic
pain reliever/
Anti-psychotic

C15H12N2O 236.274 13.9 2.45 1.08 ×

10− 7 Patel et al.
(2019)

Alprazolam
(28981-97-7)

Benzodiazepine/
Anti-anxiety
drug/Human use

C17H13ClN4 308.769 2.12 9.77 ×

10− 12 Patel et al.
(2019)

Estrone (E1)
(53-16-7)

Steroid/Human
and veterinary
drug

C18H22O2 270.366 10.3 3.43 3.8 ×

10− 10 Adeel et al.
(2017)

17 β-estradiol (E2)
(50-28-2)

Steroid/Human
and veterinary
drug

C18H24O2 272.38 10.6 3.94 3.64 ×

10− 11 Adeel et al.
(2017)

Estriol (E3)
(50-27-1)

Steroid/Human
and veterinary
drug

C18H24O3 288.38 10.33 2.45 1.33 ×

10− 12 Ilyas and van
Hullebusch
(2020); Adeel
et al. (2017)

Ethinyl estradiol
(EE2)
(57-63-6)

Steroid/Human
and veterinary
drug

C20H24O2 296.403 10.4 3.67 7.94 ×

10− 12 Adeel et al.
(2017)

(continued on next page)
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wastewater effluent include tramadol, oxycodone, methadone, codeine,
ketamine, and morphine (Campos-Mañas et al., 2018). Non-steroidal
anti-inflammatory drugs have long-lasting eco-toxic impacts on the bi-
otic elements of ecosystems (Tyumina et al., 2020).

Anticonvulsants are used in the treatment of various conditions such
as depression, mental illnesses, drug and alcohol dependencies, and
post-traumatic stress disorders (Mohapatra et al., 2014). One anticon-
vulsant that is frequently detected in water bodies is carbamazepine,
which is typically prescribed for seizures, epilepsy, trigeminal neuralgia,
bipolar disorder, drug and alcohol dependencies, and diabetic neurop-
athy (Zhang et al., 2008). However, wastewater treatment plants are not
designed to effectively remove pharmaceutical drugs, resulting in partial
removal and the release of residues into the environment through
effluent or sludge (Lajeunesse et al., 2012).

Steroid hormones are a class of biologically active substances syn-
thesized from cholesterol and share the cyclopentane-perhydro phen-
anthrene ring (Ying et al., 2002). These are micropollutants that pollute
water sources all over the world and pose a serious risk to both human
health and the environment even at low amounts. The typical sources of
steroid hormones in the environment include pharmaceuticals, veteri-
nary medications, agricultural runoff, and human and animal excretion
(Almazrouei et al., 2023). Estrone (E1), 17β-estradiol (E2) and estriol
(E3) are three natural and 17α-ethinylestradiol (EE2) is the synthetic
steroid hormone most predominantly found in wastewaters (Racz and
Goel, 2010). Steroid hormones are extensively studied as
endocrine-disrupting chemicals due to their prevalent use in hormonal
treatments for specific purposes, such as growth, development, sexual
differentiation, and reproduction. As a result of the ineffective removal
techniques in conventional wastewater treatment plants and design
limitations, these hormones are not properly being removed during
wastewater treatment and make their way to the environment (Chim-
chirian et al., 2007). Water bodies receiving high steroid hormones have
a significant impact on aquatic species. Oestrogens, responsible for
developing female sexual characteristics, can interfere with normal

biological functions by mimicking normal hormones and signalling
pathways i.e., feminizing males, altered oogenesis in females and impact
on gonadal development in fathead minnows (Pimephales promelas)
when exposed to low 17β-estradiol concentrations (5–6 ng L− 1) (Kidd
et al., 2007). Aquatic plants can also take up these steroid hormones and
they can end up in the human food chain if contaminated water is used
in agriculture (Chen et al., 2022).

Pharmaceutical residues have spread across all continents, including
the Arctic and Antarctica, due to human actions (Wilkinson et al., 2022;
González-Alonso et al., 2017a). The Ministry for Environment in Ger-
many commissioned an evaluation on pharmaceutical pollutants in the
environment including surface, ground and drinking water, wastewater
treatment plant influents and effluents, also veterinary drugs in manure,
dung and soil, which found that out of 713 pollutants tested, 631
pharmaceuticals were detected above analytical limits (aus der Beek
et al., 2016). A global evaluation identified a total of 203 pharmaceu-
ticals in 41 different countries as areas of concern (Hughes et al., 2013).
Studies conducted in the USA, Germany and Japan have assessed the
presence of emerging organic pollutants, including pharmaceutically
active pollutants (Hughes et al., 2013). In the initial nationwide study
conducted in the USA during 1999–2000, 95 pharmaceuticals were
discovered in 139 streams across 30 states (Kolpin et al., 2002).
Furthermore, 35 distinct pharmaceuticals were found in groundwater by
a reconnaissance survey that covered 18 states. Among the detected
pharmaceuticals, sulfamethoxazole was the most common occurring at
23% of the sampling locations, while ibuprofen had the highest average
concentration of approximately 3 μg/L (Barnes et al., 2008). A thorough
investigation was conducted in Serbia, examining 81 pharmaceuticals in
various water sources, such as industrial and municipal wastewater,
surface water, underground water, and drinking water. Out of the 81
pharmaceuticals analysed, 47 were found in the water samples, with
amounts varying from ng/L to more than 1 μg/L (Petrović et al., 2014).

The extent of pharmaceutical pollution in low-income countries has
received less attention compared to high-income nations

Table 2 (continued )

Pharmaceuticals
(CAS number)

Class/
therapeutic
application

Chemical
formula

Molecular
weight (g
mol− 1)

Acid
dissociation
constant
(pKa)

Octanol− water
partition
coefficients
(logKow)

Henry’s
law
constant
(atm-cu
m/mol at
25 ◦C)

Structure References

Dexamethasone
(50-02-2)

Glucocorticoid/
Anti-
inflammatory
drug

C22H29FO5 392.464 1.83 1,89 y
6.4

7.15 ×

10− 8 Chacca et al.
(2022);
Chávez-Mejía
et al. (2019)

Triamcinolone
(124-94-7)

Glucocorticoid/
Anti-
inflammatory
drug

C21H27FO6 394.434 1.16 1.97 ×

10− 9 Patel et al.
(2019)

Prednisolone (50-
24-8)

Glucocorticoid/
Anti-
inflammatory
and
ophthalmology
drug

C21H28O5 360.444 1.62 2.23 ×

102 Patel et al.
(2019)

Trenbolone
(10161-33-8)

Androgen and
anabolic steroid/
Veterinary and
human drug

C18H22O2 270.37 2.71 ×

10− 8 Patel et al.
(2019)
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(Garduño-Jiménez et al., 2023). The limited presence and less advanced
wastewater treatment plants in low-income countries increase the
environmental risks and human vulnerability to pharmaceutical
contamination (Segura et al., 2015). The occurrence of different phar-
maceuticals varies in frequency depending on the location. Globally,
painkillers are the most commonly detected pharmaceutical class.
However, in Asia, antibiotics are the most frequently found and at the
highest concentrations (Patel et al., 2019). Table 1 presents selected
pharmaceuticals and their concentrations reported in the literature for
water sources of different regions across the world.

According to literature, pharmaceutical’s concentration in different
water matrices also follows a general order from highest to lowest
concentrations: industrial effluents > untreated municipal wastewater
> hospital effluents > wastewater treatment plant effluents > surface
water > groundwater > drinking water (Kallenborn et al., 2018). This is
a generalisation based on losses at each step/transition/through the
environmental system, but some exceptions apply, for example accu-
mulation can occur in one or multiple of those compartments (Ebele
et al., 2017). To minimise the introduction of these pharmaceuticals into
the environment, improving efficiency of removal processes at each step
is required.

2.2. Physicochemical characteristics

An extensive range of pharmaceutical pollutants exists in the envi-
ronment, displaying diverse chemical compositions and exhibiting

differences in their physicochemical properties, leading to considerable
variations in their behaviour (Saravanan et al., 2022). Table 2 provides
details on the characteristics and structures of the specified pharma-
ceuticals. Understanding the fate of pharmaceutical pollutants in
aquatic environments involves consideration of properties such as hy-
drophobicity, water solubility, volatility, dissociation constants (pKa),
octanol− water partition coefficients (logKow), organic-carbon based
sorption coefficients (logKoc) etc. These properties play a crucial role in
influencing processes, including sorption, partition, hydrolysis, photo-
degradation, and biodegradation. Together, they contribute to the
diverse pathways and outcomes of pharmaceutical pollutants in aquatic
ecosystems (Pal et al., 2010; Yamamoto et al., 2009). Acid dissociation
constant (pKa) values of pharmaceuticals impact physicochemical
properties such as activity and reacting rates, biological uptake and
receptor binding of substances at molecular level. Additionally, the
charge state of pollutants, determined by pKa under different pH con-
ditions, significantly affects absorption, distribution, metabolism,
excretion, and toxicity (Manallack et al., 2013).

Pharmaceutical pollutants are categorized into three groups based on
their hydrophilicity: hydrophilic (logKow < 1), moderately lipophilic or
hydrophobic (1< logKow < 3), and hydrophobic (logKow> 3) (Verliefde
et al., 2008). High molecular weight compounds with logKow values
greater than 5.0 are unlikely to be found in surface water because they
readily sorb to sediments and are mainly eliminated by coagulation
(Vieno et al., 2007). Conversely, compounds with a logKow values less
than 2.5 have low sorption and are more likely to be available in surface

Fig. 1. The sources and pathways for the occurrence of pharmaceutical pollutants and their residues in the environment. Pharmaceutical industries serve as the main
source of drugs for humans and animals and eventually end up in different environmental component as pollutants. Ultimately through the use of wastewater reuse in
agriculture, pharmaceutical pollutants can be introduced into human food chain.
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water (Mompelat et al., 2009). Pharmaceuticals often contain acidic
and/or basic functional groups, resulting in the existence of cationic,
anionic, neutral, or zwitterionic forms under different pH conditions.
The particular forms are determined by the molecules’ logKow and pKa
values, which can differ greatly. The sorption coefficients of pharma-
ceuticals containing amines are often greater than those of carboxylic
acids and neutral pharmaceutical environments (Yamamoto et al.,
2009). Henry’s coefficient is a vital metric for organic pollutants in the
environment and research suggest that the removal of pharmaceuticals
via volatilization can be ignored owing to low Henry coefficient values
(Radjenovic et al., 2007). These factors play significant role with the
pharmaceuticals’ hydrolysis, sorption, photodegradation, and biodeg-
radation in environment.

2.3. Environmental pathway of pharmaceutical pollutants

The pathways and outcomes of pharmaceutical pollutants have been
explored in the literature (Quesada et al., 2019; Rosman et al., 2018; Lee
et al., 2017; aus der Beek et al., 2016; Bu et al., 2016). Understanding the
transport pathways of pharmaceuticals through air, water, and soil is
challenging due to limited information on the behaviour and fate of
most of these pollutants in the environment. The characterization of
these pathways depends on various physicochemical properties of the
pharmaceuticals including their solubility in water, octanol–water
partition coefficient (logKow) and persistence (Patel et al., 2019).

Additionally, the properties of surrounding matrices, such as soil or
water, also play a crucial role in determining the transport behaviour of
pharmaceutical pollutants (Fairbairn et al., 2016). Fig. 1 portrays the
pathways for the occurrence of pharmaceutical pollutants in the envi-
ronment. The major pathways by which pharmaceuticals as well as their
residues can enter into the environment include-a) wastewater released
from pharmaceutical manufacturing industries, b) municipal treated
and untreated wastewaters, c) hospital effluents containing pharma-
ceutical pollutants discharged in the form of human urine and faeces, d)
agricultural wastewaters mostly from livestock animals containing
pharmaceuticals excreted in the urine and faeces of animals, e) disposing
of unused or expired pharmaceutical products on land either through the
septic system or at conventional waste disposal sites, f) stormwater
runoff events discharging into rivers and reservoirs, g) leachate from
landfill disposals (González-González et al., 2022; O’Flynn et al., 2021;
Masoner et al., 2019; Patel et al., 2019; Tiwari et al., 2017; Veiga-Gómez
et al., 2017; aus der Beek et al., 2016; Masoner et al., 2016). Exceptions
to these pathways reported include the application of any pharmaceu-
ticals directly in water for aquaculture (Patel et al., 2019; aus der Beek
et al., 2016). Pharmaceuticals released into the environment through
hospitals and households primarily occur through patient excretions
(Bagheri et al., 2016). Subsequently, these excreted residues, including
faeces and urine, can enter sewage treatment plants either in their
original form or as metabolites (Helwig et al., 2016).

The effectiveness of treatment in wastewater treatment plants varies,
resulting in only partial removal of pharmaceutical active pollutants and
the introduction of remaining residues into the aquatic environment,
such as surface and groundwater (Lee et al., 2017). Reports indicate that
pharmaceuticals can persist in drinking water, even after undergoing
conventional water treatment processes (Rosman et al., 2018).

The presence and movement of pharmaceuticals in soil are influ-
enced by their properties, physicochemical characteristics, and fate
(Gworek et al., 2021; Wu et al., 2021; Carter et al., 2014). The ionization
of these substances directly affects their hydrophobicity and plays a
crucial role in determining their environmental fate (Wang et al., 2021).
Pharmaceuticals can accumulate in surface soil layers and subsequently
migrate into deeper layers, eventually reaching groundwater aquifers. In
these subsurface environments, pharmaceuticals interact with soil mi-
crobial communities, undergo biodegradation, and may be absorbed by
plants and vegetables (Carter et al., 2014). Dalkmann et al. (2014)
demonstrated the presence of pharmaceuticals in agricultural soils, with

an average concentration of 0.2 μg kg− 1, which was attributed to irri-
gation with wastewater and the deposition of wastewater aerosols
resulting from wind erosion and transportation.

Contamination of soils with pharmaceuticals can also occur when
manure or sewage sludge is utilized as fertilizer. This risk extends
beyond human pharmaceuticals, as veterinary pharmaceuticals also
pose a substantial environmental threat. Residues of veterinary active
pharmaceutical ingredients can be present in the manure and dung of
treated animals in livestock farming. When manure is applied as a fer-
tilizer, these pharmaceuticals can accumulate in the soil, potentially
leading to their availability for plant uptake or migration into water
bodies and groundwater (Klatte et al., 2017). Consumption of pharma-
ceutical contaminated edible plant parts can lead to the introduction of
pharmaceutical pollutants into the food chain. Long term consumption
of these contaminated foods could pose potential human health risk
(Kumari and Kumar, 2021).

3. Water quality parameters of pharmaceutical manufacturing
effluents

The characteristics of effluent wastewater generated during the
manufacturing of pharmaceuticals mostly depend on the raw materials
and formulation process (Gadipelly et al., 2014). Important physico-
chemical characteristics include temperature, turbidity, high concen-
tration of organic and inorganic toxic substances including heavy metals
and various mineral nutrients (Rana et al., 2017). Heavy metals present
in pharmaceutical pollutants come from applied catalysts, raw mate-
rials, processing equipment or as impurities. Hence, treatment of these
wastewaters exclusively depends on the physicochemical characteristics
(Deegan et al., 2011). Most of the wastewater samples have higher
biological oxygen demand, chemical oxygen demand and salt values.
Specific to each industrial sector, regulations have been set for appro-
priate water treatment before any wastewater is released into the
environment (Parida et al., 2021). Table 3 highlights water quality pa-
rameters of various pharmaceutical industry effluents across the world.
Different countries use different parameters to regulate treated waste-
water, but discharge limits are commonly set based on organic pollut-
ants and nutrients (WHO, 2001; WFD, 2000). Other regulated
parameters include chemical oxygen demand, total suspended solids,
pH, and nutrients such as nitrogen and phosphorus. The specific pa-
rameters and limits vary depending on the country and regulatory
agency. World Health Organization (WHO) published a report
describing regulated wastewater parameters across different countries
throughout the world in 2017 (Table 3) (Schellenberg et al., 2020).

Total suspended solids in untreated pharmaceutical wastewater were
reported to be higher in several studies than standard values (Daouda
et al., 2021; K’Oreje et al., 2016; Vanerkar et al., 2015). Elevated total
suspended solid levels can promote the attachment of microbes,
potentially resulting in increased microbial contamination (Babu-
ponnusami et al., 2023). Pharmaceutical wastewater effluents also
exhibit a diverse range of pH values depending on their origin. The pH
range of the water affects the solubility and mobility of metals, avail-
ability of nutrient elements and infrastructures, and can create the
habitat unsuitable for aquatic flora and fauna (Cohen and Kirchmann,
2004).

Some trace elements and heavy metals such as lead, cadmium,
nickel, chromium, or zinc can make their way into the water bodies
through the discharge of pharmaceutical wastewater as they were used
in manufacturing process and not properly removed by treatment
methods. Aquatic organisms can be affected by these pollutants and
humans can also be exposed if these toxic metals get into the food chain
(Rajendran et al., 2022). Usually, wastewaters contain high levels of salt
which affects aquatic life (Fang et al., 2018) and pharmaceutical
wastewater is no different (Bhatti et al., 2017).
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Table 3
Review on water quality parameters of untreated pharmaceutical wastewater effluents from various locations (EC = Electrical conductivity; COD = Chemical oxygen demand; BOD = Biological oxygen demand; TSS =

Total suspended solid; TS = Total solid; TOS = Total organic carbon; TDS = Total dissolved solid; a = United States Environmental Protection Agency (USEPA) (1999), National recommended water quality criter-
ia–correction; b = World Health Organization (WHO) (2002), Guidelines for drinking-water quality).

Parameters Locations USEPAa WHOb

Sango
industrial
area of Ogun
state, Nigeria

Medea, Algeria Cotonou, Benin Cuddalore,
Tamilnadu, India

Nagpur,
India

Rubí, Spain Hyderabad,
Pakistan

Guanajuato,
Mexico

Pharmaceutical
factory in
Singapore

Anhui
province,
China

Eli Lilly &
Company
Ltd,
Liverpool,
UK

Pharmaceutical
type

– Antibiotics – Penicillin-G Herbal Mixed Mixed Mixed Penicillin – –

Temperature
(◦C)

– – – 30–45 – – 26.2 – – – – – –

pH 4.7–7.1 6.46 5.62–8.79 5.5–6.5 3.9 7.52 7.5 – 7.0–8.0 6.42 5.2–6.8 6.5–8.5 6–9.5
EC (μS/cm) 199–413.0 784.0 356.0–1275.0 – – – 3328 – – – – – –
Turbidity – 48.60 – – – – – – – – – – 5
COD (mg/L) 80.0–110.0 525.51 1080.0–9504.0 15000.0–25000.0 23980.0 508.2 – 660 15365.0 ± 1214 20.14 7000 ± 800 – –
BOD (mg/L) 22.0–60.0 – 180.0–1700.0 5000.0–9000.0 13430 – – 290 – – 3500 ± 500 – –
Alkalinity (mg/
L)

30.0–40.0 – – 1000.0–2000.0 – – 740.3 – – – – – –

Salinity (mg/L) 0.02–0.03 – – – – – 1.7 – – – – – –
Hardness (mg/
L)

– – – – – – 350 – – – – – –

Ammonium
nitrogen (mg/
L)

– – – 300.0–500.0 – 49.13 – – – 988.6 – – –

Total nitrogen
(mg/L)

– – 3.05–20.32 – 444 – – 57 1422 ± 173 2000.57 364 ± 50 – –

Total
phosphorus
(mg/L)

– – 0.77–8.75 – – – – 33 – 400.2 – – –

TSS (mg/L) 30.0–70.0 – 370.0–2370.0 – 4915 119.2 – 200 – – – – –
TS (mg/L) – – – – 8512 – – – – – – – –
TOC (mg/L) – – – – – 67.67 – – 7624 ± 710 – – – –
TDS (mg/L) 134.0–277.0 – – – – – 2167 – 22168 ± 3757 – – 500 <1200
Chloride (mg/L) 10.0–18.0 – – – – – 98.3 – 16134 ± 3971 – – 250 250
Boron (mg/L) – – – – – – – – – –
Sulphate (mg/L) 7.0–14.0 – – 3000.0–4000.0 85 – – – 54 ± 5 – 2500 ± 500 250 500
Nitrate (mg/L) 1.52–3.31 – – – – – – – – 10 50
Phosphate 0.08–0.16 – – 70.0–200.0 270 – – – 176.3 ± 36.6 – – – –
Fluoride (mg/L) – – – – – – – 109 ± 29 – – – –
References James et al.

(2014)
Kermet-Said and
Moulai-Mostefa
(2015)

Daouda et al.
(2021)

Mullai and Vishali
(2007)

Vanerkar
et al.
(2015)

Radjenovic
et al. (2007)

Bhatti et al.
(2017)

Estrada-Arriaga
et al. (2016)

Ng et al. (2014) Chen et al.
(2014)

Chelliapan
et al. (2011)

USEPA
(1999)

WHO
(2002)
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4. Wastewater reuse and pharmaceutical pollution in
agriculture

Wastewater reuse also known as reclaimed water use refers to the use
of wastewater that undergoes treatment to meet defined water quality
standards, to be utilized for a range of applications (USEPA, 2012). In
the last few decades, adoption of reclaimed water for irrigation has
become a common global practice. This is attributed to its numerous
benefits, including alleviating pressure on other water resources,
ensuring year-round reliability, changing weather patterns due to
climate change, recovering nutrients for crops, and reducing disposal
costs (Drechsel et al., 2022; Li et al., 2015; Holt-Giménez et al., 2012).
The United Nations promotes water reuse through the 2030 Agenda for
Sustainable Development to achieve the Sustainable Development Goals
(United Nations, 2016). The agricultural sector, consuming 70% of the
world’s water, is crucial in integrated water management (WWAP -
UNESCO World Water Assessment Programme, 2019). In dry regions,
using treated sewage for crop irrigation is the major solution to sustain
agriculture (Al-Hammad et al., 2014; Dery et al., 2019; Jaramillo and
Restrepo, 2017; Tal, 2016).

The potential for reusing treated wastewater has not been fully
exploited worldwide (Salgot and Folch, 2018). However, both devel-
oped and developing nations are increasingly viewing reclaimed water
as a viable alternative resource (Caicedo et al., 2019). This practice has
already begun in water-scarce areas, such as Mediterranean countries
and other arid and semi-arid regions, where treated municipal waste-
water is being recycled and reused (Cirelli et al., 2012). Studies indicate
1.6–6.3% of the world’s treated sewage is used for irrigating agricultural
land (Ungureanu et al., 2018). According to a 2017 United Nations
report, nearly 50 countries worldwide utilize wastewater for irrigation
(WWAP - UNESCOWorldWater Assessment Programme, United Nations
World Water Development Report, 2017). Globally, around 15 million
m3 of reclaimed water is used daily for agricultural irrigation (Elgallal
et al., 2016). The World Health Organization (2006) reported that over
10% of the global population consumes food irrigated with wastewater.
By adopting wastewater reuse for agriculture, Israel has increased its
production by 1600%, becoming a global benchmark (Tal, 2016).
Wastewater reuse in agriculture as irrigation water has been reported to
be ranging from 22 to 77 % in different countries such as Tunisia
(Ait-Mouheb et al., 2018), China (Beijing) ((Lyu et al., 2016), Spain
(Paranychianakis et al., 2015) and Southern Europe (Ricart and Rico,
2019). Thus, a significant portion of wastewater is reported to be reused
for agricultural purposes worldwide.

Although wastewater reuse in agriculture as irrigation is higher in
low-income countries compared to high-income countries, proper
treatment and water quality standards are less maintained in low-
income ones (Carter et al., 2019; Madikizela et al., 2017). The compo-
sition of reclaimed water varies depending on its sources and treatment
processes. It may contain elevated concentrations of salts, heavy metals,
pathogens, and emerging contaminants such as pharmaceuticals, illicit
drugs, and pesticides (Masoner et al., 2023). The utilization of reclaimed
water mainly the pollutants in it can potentially lead to adverse effects
on soils and plants, directly influencing the suitability of the soil for
cultivation and the availability of water resources. As such there is
significant concern regarding potential health risks and environmental
impacts arising from the agricultural use of reclaimed water throughout
the world (Chen et al., 2011; Qadir et al., 2010). Gottschall et al. (2012)
studied urban biosolids applied in agricultural sector in Ontario, Canada
and found over 80 pharmaceuticals and personal care products in the
studied samples. Section 2.3 above describes how these introduced
pharmaceuticals behave in soil.

Continuous application of treated wastewater or biosolids in agri-
cultural fields has the potential to elevate the concentration of phar-
maceutical pollutants to levels higher than those present in the original
sources (Li et al., 2019). A recent review article by Nguyen et al. (2023)
provides the distribution of pharmaceutically active compounds at

various concentrations in agricultural environments worldwide.
Pharmaceutical pollutants found in soil may enter plants through

root uptake. The existence of crop plants contaminated with pharma-
ceuticals poses a potential threat to humans as these contaminants may
enter the food chain. The movement of pharmaceutical pollutants from
plants to the food consumed by humans raises concerns regarding po-
tential health risks associated with the consumption of contaminated
crops (Bartrons and Peñuelas, 2017).

5. Impacts of pharmaceuticals on plants

Once the pharmaceutical pollutants make their way into soils, plants
can take up and accumulate these pollutants into their tissues. Different
plants have been investigated for their ability to absorb over 100
different pharmaceuticals and personal care products in a range of
countries (Fu et al., 2019; Al-Farsi et al., 2017). Several studies have
confirmed the negative effect of pharmaceutical pollutants on different
plants (Table 4), but whether the negative effects are a direct damage to
the plant caused by the reported pharmaceutical pollutant or on the soil
microbial community that helps in nutrient acquisition by plant is not
clear (Grassi et al., 2013). For example, antimicrobial activity shown by
the pharmaceuticals can slow down the decomposition rate in soil,
resulting in slower denitrification and processing of nutrients (Fatta--
Kassinos et al., 2011). Conversely, the phenomenon of hormesis or
positive effect on plant growth and development has also been reported
by several studies (Table 4). Along with plant impacts, there are also
reports on potential human food chain contamination from the con-
sumption of pharmaceutical contaminated food crops (Osuoha et al.,
2023; Jayampathi et al., 2019; Wu et al., 2015b). Impact of pharma-
ceutical pollutants on plants and possible introduction of these pollut-
ants in human food chain is represented in Fig. 3.

5.1. Plant uptake of pharmaceuticals

The uptake and accumulation of pharmaceuticals in plants are
strongly affected by the physicochemical properties of the pollutants,
such as hydrophobicity and ionization behaviour. Soil characteristics
like pH, organic matter content, water quality, as well as the concen-
tration and duration of exposure, are essential factors influencing this
process (Bartrons and Peñuelas, 2017). Furthermore, the variation in the
uptake and accumulation of pharmaceutical pollutants is associated
with biotic factors such as species of plant, cultivar, variety, genotype,
and the physiological stage of the plant (Ravichandran and Philip,
2021). The degradation of pharmaceuticals in soil is also influenced by
microbial activities (Lin and Gan, 2011). A study by Langenhoff et al.
(2013) demonstrated the mineralization and breakdown of ibuprofen
and diclofenac by bacterial consortia. Bacteria and fungi are also re-
ported to degrade and mineralize nearly all organic pollutants present in
the environment. Plants can also uptake and accumulate the microbe
degraded pharmaceutical pollutants from soil (Gworek et al., 2021).
Antibiotics tend to be the most abundant among pharmaceuticals in
plants, primarily due to their elevated concentrations in biosolids and
animal manure commonly used as fertilizers in agricultural fields
(Matamoros et al., 2012).

The entry of pharmaceutical pollutants into plants occurs through
two main pathways: root uptake and foliar uptake, with root uptake
being the predominant mechanism (Zhang and Zhu, 2009). Numerous
studies have demonstrated that pharmaceuticals can be efficiently
absorbed by roots, leading to accumulation in the roots. In other cases,
pharmaceutical substances are translocated from the roots to
above-ground tissues, including stems, leaves, and fruits, predominantly
through passive diffusion (Fu et al., 2019).

Plants absorb organic pharmaceuticals through either active or
passive mechanisms, influenced by the specific characteristics of the
pollutants and the plants involved (Collins et al., 2006). Active ab-
sorption involves carriers and energy consumption, whereas passive
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Table 4
Impact of pharmaceutical pollutants on plant growth.

Pharmaceutical
pollutants

Impact on plant

Sulfamethoxazole • Strawberry showed excitatory response to low-dose of
SMX (1 mg/L), but root and photosynthetic efficiency
were damaged under high level (Lv et al., 2021)

• Increased Pakchoi (Brassica chinensis L.) plant height,
root length, and fresh biomass at 50% minimum
inhibitory concentration (MIC) but inhibited plant
growth at MIC (Zhang et al., 2017)

• Lower levels of SMX promoted the growth of ginger, but
at higher dosages, the root growth and light energy
utilization efficiency of ginger were impaired (Lv et al.,
2020)

• Negatively affected the seed germination and vegetable
growth of both pakchoi and radish (Wang et al., 2016)

• Inhibited seed germination of the three plants oat, rice
and cucumber with the EC50 (effective concentrations)
values (Liu et al., 2009)

• Affected Cyperus involucratus plant growth (Xu et al.,
2020)

Acetaminophen • 20-day-old pea and maize plants exhibited decrease in
biomass production (Zezulka et al., 2019)

• Increasing paracetamol stress levels adversely affected
the spinach plants’ photosynthetic machinery, altering
the chlorophyll fluorescence parameters, photosynthetic
pigments and composition of essential nutrients and
elements (Badar et al., 2022)

• Application of paracetamol significantly decreased
maize grains yield by up to 50% (Hammad et al., 2018)

• Applied paracetamol concentrations, retarded the root
and stem developments in seeds, and increased the
electrolyte leakage and antioxidant enzyme activities in
wheat plants (Türkoğlu et al., 2019)

• The increased load of paracetamol in the environment
may negatively affect the growth of duckweed (Hájková
and Kummerová, 2014)

• 1.0 ppm concentration of paracetamol induced oxidative
stress via increasing levels of lipid peroxidation, and
H2O2 accumulation in mung bean (Vigna radiata) plants
(Almohisen, 2019)

• Increased oxidative stress in duckweed (Kummerová
et al., 2016)

• Higher doses of paracetamol reduced the photosynthetic
activity in lettuce (Lactuca sativa) (Kudrna et al., 2020)

Carbamazepine • Increased carbamazepine uptake by zucchini (Cucurbita
pepo) resulted in a decrease in above and below ground
biomass (Carter et al., 2015)

• Collard greens (Brassica oleracea) root and shoot biomass
decreased with increasing CBZ concentration (Deng
et al., 2017)

• CBZ could be detected in soil, roots, and aerial plant
parts but did not adversely affect the growth of ryegrass
(Winker et al., 2010)

• Bioaccumulation of CBZ by cucumber leaves, roots and
fruits (Shenker et al., 2011)

• CBZ was taken by the tomato plants and mainly stored in
the leaves (Riemenschneider et al., 2017b)

Estrone (E1) • Stimulative effect on the growth of isolated corn root tips
(Fiedler, 1936)

• Stimulated the growth of isolated pea embryos grown on
a solid culture medium (Bonner and Axtman, 1937)

• Increased germination of Melandrium dioecum seeds
(Löve and Löve, 1945)

• Increased biomass at lower concentrations in Alfalfa
(Shore et al., 1992)

• Even at low concentrations reduced potato tuber growth
and overall tuber number (Brown, 2006)

• In tomato seedlings, estrone and 17β-estradiol (as
sulphate derivatives, at the concentration of 1 μM in
nutrient solution), reduced root growth as well as root
number in shoot cuttings (Guan and Roddick, 1988)

• At 0.1 μM concentration decreased the number of
generative plants in Arabidopsis thaliana (Janeczko et al.,
2003)

Table 4 (continued )

Pharmaceutical
pollutants

Impact on plant

17-β-Estradiol (E2) • Inhibited pea shoot growth (Helmkamp and Bonner,
1953)

• Application of low concentrations increased growth and
photosynthesis, but high concentrations were found
toxic in carrot tissue cultures (Gioelli, 1942), Alfalfa
biomass growth (Shore et al., 1992) and Lettuce growth
(Adeel et al., 2018)

• Increased germination of Melandrium dioecum seeds
(Löve and Löve, 1945)

• Stimulated the flowering of broccoli curd cuttings grown
in culture medium (Leshem, 1967)

• Even at low concentrations reduced potato tuber growth
and overall tuber number (Brown, 2006)

• Improved chickpea plant growth under stressed
conditions (Erdal and Dumlupinar, 2011)

• Increased the inorganic element concentrations in Barley
leaves (Dumlupinar et al., 2011)

• In sunflower seedlings, increased shoot growth but
inhibited root growth (Bhattacharya and Gupta, 1981)

• At 0.1 μM concentration decreased the number of
generative plants in Arabidopsis thaliana (Janeczko et al.,
2003)

• Maize seedling growth was consistently inhibited at 10
mg/L but was stimulated by 0.1 mg/L 17β-E2 (Bowlin,
2014)

• In lentil, 17β-E2 treatment enhanced embryo growth and
improved tolerance to cadmium and copper stress during
germination (Chaoui and El Ferjani, 2013)

• At 0.1 μM concentration decreased the number of
generative plants in Arabidopsis thaliana (Janeczko et al.,
2003)

Estriol (E3) • Inhibitory effects on the development of Lepidium
sativum seedlings (Euler, 1946)

• Increase in the auxin content of dwarf pea and young
pine seedlings (Kopcewicz, 1970a, 1970b)

• Enhanced the number of flowers and increased the
percentage of female flowers in Ecballium ehterium
(Kopcewicz, 1971)

• Even at low concentrations reduced potato tuber growth
and overall tuber number (Brown, 2006)

• At 0.1 μM concentration decreased the number of
generative plants in Arabidopsis thaliana (Janeczko et al.,
2003)

Ethinyl estradiol
(EE2)

• The growth stimulation of dwarf pea seedlings
(Kopcewicz, 1970a)

• Flower promoting effects in Callistepphus sinensis (Castan
and Chouard, 1937)

• Induced flower buds ofMelandrium dioecum to develop in
a female or male direction (Löve and Löve, 1945)

• In mung beans estrone and estradiol at low
concentrations of 0.1 μM augmented germination and
vegetative growth but were inhibitory at high
concentrations (60 μM) (Guan and Roddick, 1988)

• The negative effects of EE2 (at 7 μM) on growth and
photosynthesis in the green alga, Chlamydomonas
reinhardtii (Pocock and Falk, 2014)

• Application of low concentrations increased growth, but
higher concentrations were found toxic and induced
stress in lettuce growth (Adeel et al., 2018)

Dexamethasone • Promoted algal growth (Guo et al., 2017)
• Application of dexamethasone to Arabidopsis mutant

plants alleviates the dwarfism and sterility (Kim et al.,
2014)

• Induce gene expression in Arabidopsis, tobacco
(Padidam, 2003) and citrus plants (Rossignol et al.,
2014)

Triamcinolone • Responsible for gene expression and does not retard rice
plant growth (Samalova and Moore, 2021)

• Triamcinolone acetonide expressed antagonistic activity
against a soil-borne fungal plant pathogen Fusarium
oxysporum (Nayana et al., 2023)
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absorption is an energy-independent process that may or may not
involve carriers (Zhan et al., 2010; Collins et al., 2006). For example,
water enters cells through osmosis or aquaporin channels (Zhan et al.,
2010). Chen et al. (2021) reported that aquaporin and anion channels
participate in the uptake of steroid estrogens i.e., 17β-estradiol (17β-E2)
in plants.

The hydrophobicity (reported as LogKow) also affects the ability of
pollutants to cross membranes. Pharmaceuticals having a LogKow be-
tween 0.5 and 3.5 are both water-soluble and lipophilic enough to
penetrate the lipid bilayers of plant cell membranes and cell fluids
(Dordio and Carvalho, 2013; Stottmeister et al., 2003; Schröder and
Collins, 2002; Dietz and Schnoor, 2001). For instance, carbamazepine,
with a LogKow of 2.45, is readily taken up by Typha spp. roots and
translocated from the roots to stems and leaves, accumulating pre-
dominantly in leaves (Dordio et al., 2011). In contrast, diclofenac, with a
LogKow higher than 3.5 (4.51), has limited uptake and translocation
within the roots and shoots of Scirpus validus (Zhang et al., 2012).

Apart from the characteristics of the pharmaceuticals, crucial factors
in plant uptake include plant characteristics like transpiration, as well as
the lipids and proteins content (Liu et al., 2019; Zhu et al., 2007).
Pharmaceuticals with a molecular weight below 1000 g/mol easily
accumulate in plants by permeating cell membranes (Öztürk et al.,
2015). For example, caffeine, lamotrigine, carbamazepine, and
trimethoprim (MW < 300 g/mol) efficiently diffuse into lettuce roots
and move to shoots or above ground plant parts (Chuang et al., 2019).
Ionic pharmaceuticals, on the other hand, are only able to enter plant
cells through integral proteins on biomembranes due to concentration
gradients (Taiz et al., 2015; Wu et al., 2015b; Di et al., 2012).

Foliar uptake of pharmaceutical pollutants mainly occurs via sto-
mata or cuticle on the leaf surface (Colon and Toor, 2016). In foliar
uptake, aerial tissues absorb pharmaceuticals through the deposition of
aerosols and volatilized compounds as well as direct interactions
involving diffusion or ionic fraction absorption with irrigation or
amendment materials (Trapp and Legind, 2011). Currently, there is no
identification of specific transporters in plant cell membranes respon-
sible for the uptake of pharmaceuticals, indicating a potential area for
future research investigations.

5.2. Accumulation and transport of pharmaceuticals

The accumulation of pharmaceutical pollutants in roots can be
characterized by the root concentration factor (RCF), a parameter
determined by the ratio of the chemical concentration in roots to that in
the surrounding environment. RCF values reported to span many
magnitude orders, ranging from approximately 0.01 to around 1000
(Miller et al., 2016a). Root concentration factors for pharmaceuticals are
influenced by multiple factors, including exposure duration, plant spe-
cies, soil characteristics, humidity, temperature, and the concentrations
of the chemicals involved (Bax, 1997). Additionally, the bio-
concentration factor (BCF) is employed to assess the accumulation of
pharmaceuticals in plant tissues (Bax, 1997). The calculation of BCF in
hydroponic cultures involves calculating the ratio between the chemical
concentration in the plant tissue and the nominal concentration in the
growth medium, expressed as BCF (L/kg) = C plant tissue/C solution. This
relationship can also be applied to estimate pharmaceutical concentra-
tions in soil, using BCF (L/kg) = C soil/C solution. Furthermore, the
translocation factor (TF) is used to represent the movement of phar-
maceutical pollutants within plant tissues, defined as the ratio of con-
centration in leaves to that in roots (TF = C leaf/C root) (Guasch et al.,
2012).

In the rhizosphere, pharmaceuticals become available for plant up-
take through the epidermis at the root surface. Once inside the plant,
pharmaceuticals are transported into or between plant cells through
three main pathways: apoplastic (between cells along cell walls), sym-
plastic (through cells via plasmodesmata), and transmembrane (through
cells via cell membranes). The choice of pathway depends on the size

and potentiality of the solute to cross membranes. Variations in the
composition of plant cytoplasmic membranes across species and tissues
can result in notable differences in how pharmaceuticals pass through
lipid membranes (Pan et al., 2014; Mompelat et al., 2009; Pedersen
et al., 2005; Bax, 1997).

Regardless of whether apoplastic, symplastic or transmembrane, the
pharmaceuticals traverse the cortex to the endodermis. Within the
endodermis, the apoplastic movement of pharmaceuticals is halted at
the casparian strip. This strip, fortified with lignin and suberin accu-
mulated on cell walls, acts as a hydrophobic barrier (Andersen et al.,
2018; Miller et al., 2016a). Consequently, the water flow and solute flux
are compelled to shift from the apoplastic pathway to the symplastic
pathway (Cui and Schröder, 2016). Hydrophobic pharmaceuticals
which are transported to vascular tissues through the apoplastic
pathway tend to bind with membrane lipids and remain in the roots. In
contrast, hydrophilic pharmaceuticals primarily follow the symplastic
pathway (Zhang and Zhu, 2009) and cross to the casparian strip to the
xylem where it is translocated to the leaves. Another situation occurs for
ionic pharmaceuticals which are repelled by negatively charged cell
walls and cytosol, and move toward the phloem, leading to increased
accumulation in fruits (Goldstein et al., 2014).

Pharmaceutical pollutants can also enter aerial plant tissues by foliar
irrigation through the stomatal pathway, where vapor-phase pharma-
ceuticals, along with carbon dioxide, infiltrate the leaf tissues and are
subsequently transported to other plant parts via the phloem (Colon and
Toor, 2016; Calderon-Preciado et al., 2012). Plant aerial portions or
roots may also directly absorb gaseous pharmaceuticals from the air.
Additionally, these gaseous compounds can dissolve in water or be
sorbed by sludges/particles on plant surfaces, entering plants through
diffusion (Hellstrom, 2004; O’Connor, 1996). Several factors, including
vapor pressure, temperature, gas concentrations, Henry’s law constant,
and hydrophobicity, influence the overall absorption of pharmaceuticals
from the air (Colon and Toor, 2016).

5.3. Metabolism of pharmaceuticals

After being absorbed by plants, pharmaceutical pollutants undergo
degradation, ultimately becoming incorporated into plant tissues
(Zhang et al., 2014b). Contaminants absorbed and infiltrated into plant
cells undergo enzymatic transformations, resulting in increased hydro-
philicity and a simultaneous reduction in toxicity (Sandermann Jr,
1994). This is mainly because plants possess multiple detoxification
mechanisms to reduce the harmful effects of contaminants and coun-
teract the toxicity of various external chemicals, a concept referred to as
the “green liver” model (Sandermann Jr, 1994). Transformed products
typically diffuse within the vacuole, apoplasm, or cell wall (Sandermann
Jr, 1994). Plant metabolism of pharmaceuticals involves three phases: I)
chemical alteration; II) conjugation; III) isolating or separating conju-
gates (Fig. 2) (Wei et al., 2023; Pilon-Smits, 2005; Dietz and Schnoor,
2001). Plants can process xenobiotics through different phase I and
phase II enzymatic modifications and molecular conjugations, convert-
ing these pollutants into less toxic and more water-soluble metabolites
(Wei et al., 2023). In phase I, hydrophilic and reactive functional groups
are added to pharmaceuticals to transform them into more reactive
metabolites. Cytochrome P450 enzymes play a vital role in phase I
metabolism, facilitating reactions like oxidation and hydroxylation.
These reactions activate compounds for further conjugation in phase II.
Moreover, cytochrome P450 monooxygenases are crucial in producing
hydroxy metabolites, such as hydroxy-ibuprofen. They also mediate the
transformation of diverse pharmaceuticals, including carbamazepine
and enrofloxacin in plants (Pilon-Smits, 2005; Dietz and Schnoor, 2001).
Moreover, peroxidase and laccase enzymes participate in the
oxidation-reduction-reactions of different pharmaceuticals such as
hydrolysis/dihydroxylation and carbonylation/decarbonylation in the
plant cells (Morsi et al., 2020). Phase I reactions in plants, which acti-
vate xenobiotic compounds, do not always reduce toxicity and can
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Fig. 2. Uptake and accumulation of pharmaceutical pollutants within plant tissues. In the soil, pharmaceutical pollutants are degraded by different microbes (A). The
uptake pathways of pharmaceutical pollutants in plants involve the xylem and phloem transport (B). Within plant tissues, metabolic phase enzymes (I, II, III)
transform pharmaceutical pollutants into different metabolized compounds (C).

Fig. 3. Impact of pharmaceutical pollutants on plants and human food chain contamination from wastewater reuse in agriculture. Arrows indicate increase (↑) or
decrease (↓) of respective traits in plants.
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sometimes produce metabolites that are as toxic as or more toxic than
the parent compounds (Coleman et al., 1997). A xenobiotic with a
suitable functional group for phase II metabolism can be detoxified
directly, skipping phase I (Coleman et al., 1997).

Conjugation with polar molecules occurs in phase II, converting
pharmaceutical pollutants and/or their metabolites into more soluble
compounds that are affixed to proteins, transporters, and enzymes
(Pilon-Smits, 2005; Dietz and Schnoor, 2001). Phase II enzymes i.e.,
sulfotransferases (STs), glutathione-S-transferases (GST)s, and uridine
diphosphate glycosyltransferases (UGTs), play a crucial role in detoxi-
fying pharmaceuticals in plants by conjugating with biomolecules
(Bartha et al., 2014). For example, in horseradish and Typha latifolia,
diclofenac is mainly metabolized into glycosyl- and
glutathionyl-conjugates (Huber et al., 2016; Bartha et al., 2014). In
cucumber, phase II enzymes rapidly converts acetaminophen into
GSH-acetaminophen through glutathione conjugation, reducing phyto-
toxicity (Sun et al., 2019). In contrast to phase I, which can generate
phytotoxic metabolites, phase II produces compounds that are either
nontoxic or less toxic than the original substance (Coleman et al., 1997).
Therefore, in plants, phase II plays a vital protective role in the phar-
maceutical detoxification process.

In phase III, conjugate metabolites are excreted from the cytoplasm
as a result of the compounds’ enhanced hydrophilicity by conjugation.
These metabolites are then incorporated into plant vacuoles, cell wall
components, or apoplast (Zheng and Guo, 2021; LeFevre et al., 2015). In
a study by Macherius et al. (2012), the metabolism of triclocarban, tri-
closan, and methyl triclosan was investigated in carrot cell cultures and
intact carrot plants. Triclocarban and methyl triclosan showed no
metabolic changes in the cell cultures, while triclosan underwent fast
metabolism, resulting in phase II conjugate metabolites. Furthermore, it
was found that the overall amount of triclosan conjugates in whole
carrot plants was five times greater than the amount of triclosan itself. In
phase III, ATP-binding cassette (ABC) transporters actively transfer
metabolites and conjugates produced during phase II, from the cytosol
across membranes into the apoplast or vacuole, utilizing energy gener-
ated by ATP hydrolysis (Zheng and Guo, 2021; LeFevre et al., 2015;
Davidson, 2007).

To date, the metabolic pathways and transformation products of only
a few common pharmaceuticals have been thoroughly investigated
within plants. This is due to the challenging nature of screening and
identifying metabolites of pharmaceuticals within tissues. The difficulty
arises from the limited structural information available for these prod-
ucts and interference from plant tissue matrices.

5.4. Plant responses to pharmaceuticals

Due to the bioactive nature of most pharmaceuticals and personal
care products, their bioaccumulation and biotransformation in plants
pose challenges to growth and development by altering plant physiology
and key biochemical pathways (Sairam et al., 2023; Podlipná, 2022;
Christou et al., 2018; Bartrons and Peñuelas, 2017). Exposure to phar-
maceuticals can have direct impacts on seed germination, plant growth,
and development. Physiological responses include inhibiting root ac-
tivity, increasing reactive oxygen species (ROS), causing folic acid
deficiency, elevating oxidative stress, inducing lipid peroxidation, and
boosting glutathione content. Some of the reported impacts of phar-
maceuticals on plants are highlighted in Table 4. These effects vary
among plant species based on concentration and compound type. Root
regions, being primary sites for pharmaceuticals, often exhibit more
pronounced effects, compared to shoots (Madikizela et al., 2018; Sun
et al., 2018; Amy-Sagers et al., 2017; Carvalho et al., 2014).

In the case of seed germination, effects of pharmaceuticals include
delayed, accelerated or reduced germination rates. Mukhtar et al.
(2020) reported the application of amoxicillin, ciprofloxacin, ofloxacin,
levofloxacin, and ampicillin at 10 mg/L concentration resulted signifi-
cant reduction in rice seed germination. Conversely, antibiotic

ciprofloxacin at the rate of 0.2–2.0 mg/L enhanced germination in corn
possibly by breaking dormancy (Gomes et al., 2019).

Interestingly, mammalian sex hormones at low doses have the
capability to enhance plant functions (Agathokleous et al., 2018).
Migliore et al. (2003) discovered that exposure to enrofloxacin had toxic
effects at 5000 μg/L but exhibited hormesis at lower concentrations of
50 and 100 μg/L in Cucumis sativus, Lactuca sativa, Phaseolus vulgaris and
Raphanus sativus. This was observed through significant alterations in
root length, hypocotyl, cotyledons, and the number/length of leaves. A
study by Carter et al. (2015) indicated that the uptake of carbamazepine
and verapamil at concentrations ranging from 0.005 to 10 mg/kg led to
notable changes in the concentrations of auxins, cytokinins, jasmonates,
abscisic acid (ABA), and its glucose ester in zucchini leaves. These al-
terations could have significant effects on plant development because
plant hormones play crucial roles in various plant growth processes and
defence responses to both biotic and abiotic stressors.

Ciprofloxacin, an antibiotic, at concentrations equal to or exceeding
1.05 mg/L was found to impede electron flow through the respiratory
electron transport chain (Gomes et al., 2017). This obstruction led to an
over-production of reactive oxygen species (ROS), ultimately causing
damage to the process of photosynthesis. Nutritional compositions can
also be altered as result of plant exposure to pharmaceuticals. According
to Mukhtar et al. (2020), treatment with ciprofloxacin, ofloxacin, levo-
floxacin, amoxicillin, and ampicillin at a concentration of 10 mg/kg
resulted in reductions in the levels of phosphorus, iron, carbohydrates,
and proteins in rice plants.

Additionally, pharmaceuticals have the potential to impact nitrogen
fixation processes, secondary metabolism, and induce genotoxicity in
plants. For example, Gomes et al. (2018) observed modifications in ni-
trogen fixation processes in the aquatic pteridophyte Azolla when
exposed to ciprofloxacin at a concentration of 3.05 mg/L, leading to
reduced photosynthetic and nitrogenase activities.

Therefore, plants show diverse responses to different class of phar-
maceuticals they are exposed to. The findings mentioned above for plant
exposure to pharmaceuticals studied much higher concentrations
compared to environmentally relevant concentrations. Future research
endeavours should prioritize the use of environmentally realistic expo-
sure concentrations and comprehensive analysis of the complexity of
phytotoxicity induced by individual as well as mixtures of pharmaceu-
tical pollutants on plants.

6. Analytical methods for detection of pharmaceutical
pollutants in plants

Analyzing pharmaceuticals in plant tissues poses additional chal-
lenges compared to examining water, soil, or sediment samples alone.
This is because plant tissues contain pigments, fats, and waxy materials
that can lead to significant matrix interferences. For precise and accurate
analysis, sample preparations including pharmaceutical compound
extraction and cleanup is essential. Key steps in pharmaceutical pollut-
ants detection from plant samples involves sample preparation, data
acquisition, analysis and interpretation (Fig. 4).

The investigation of plant uptake and metabolization of a specific
pharmaceutical can be approached through targeted or untargeted
analysis (Mlynek et al., 2021). In targeted analysis, specific metabolites
are pre-selected for quantitation based on known plant metabolization
pathways, studies on mammals or microbes, or in silico prediction tools
(Kazmi et al., 2019). This method allows for optimized sample prepa-
ration and low quantitation limits, suitable for plants irrigated with
reclaimed water (Mlynek et al., 2021; Kazmi et al., 2019).

In contrast, untargeted analysis aims to detect both known and un-
known metabolites or transformed products using high-performance
liquid chromatography coupled with high-resolution mass spectrom-
etry (HPLC-HRMS) (Pezzatti et al., 2020; Gika et al., 2019; Nash and
Dunn, 2019). Due to the focus on unknown metabolites, sample pre-
treatment cannot be fully optimized (Mlynek et al., 2021). While
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untargeted metabolomics provides a broad overview of the metabolome
and is invaluable for discovering new metabolites and biomarkers, it is
often limited by the lack of specific standards for quantification and the
challenges associated with metabolite identification (Dunn et al., 2013).

Multiple studies have employed diverse extracting methods, extrac-
tion solvents, cleanup techniques, and instrumental analyses to detect
each group of pharmaceuticals (Miller et al., 2016b; Li, 2014; Malchi
et al., 2014; Guasch et al., 2012; Jelic et al., 2011; Kümmerer, 2009b;
Migliore et al., 2003; Liu et al., 2001). Extraction techniques utilized for
extracting pharmaceuticals from plant tissues include solid-liquid
extraction (SLE), sonication sea sand disruption method (SSDM), and
accelerated solvent extraction (ASE) alternatively referred to as pres-
surized liquid extraction (PLE) or pressurized fluid extraction (PFE)
(Fig. 4). Liquid chromatography (LC) combined with mass spectrometry
(MS) stands out as the predominant instrument for analyzing various
pharmaceuticals in plant tissue extraction (Kümmerer, 2009a). Addi-
tionally, some researchers have employed Gas Chromatography coupled
with mass spectrometry (GC-MS) and Liquid Chromatography in
conjunction with electrospray ionization (ESI), ultraviolet (UV), or
fluorimeter for the analysis of pharmaceuticals. The mass spectrometry

(MS) system commonly utilizes electrospray ionization (ESI) for better
sensitivity, especially with certain pharmaceuticals like cyclophospha-
mide and ifosfamide (Kümmerer, 2009a).

Cleanupmethods in extraction include liquid-liquid extraction (LLE),
solid-phase extraction (SPE), and hollow fiber liquid-phase micro-
extraction. A range of solvents including water, methanol, acetate,
acetonitrile, hexane, and more are employed for extraction (Fig. 4). The
diverse hydrophobicity of pharmaceuticals has led to the adoption of
solid-phase extraction (SPE) as the preferred cleanup method. Hydro-
philic–lipophilic-balanced (HLB) cartridges are commonly used in SPE
to purify extracts of plant materials (Tanoue et al., 2012; Wu et al., 2012;
Hu et al., 2010; Dolliver et al., 2007).

Instead of employing a conventional solvent extraction method, a
modified QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe)
approach was utilized to extract parent drugs and their metabolites from
plants (Riemenschneider et al., 2017a). This alternative method elimi-
nates the need for solid-phase extraction (SPE) yet maintains effective
limits of detection for both parent drugs and metabolites. Additionally,
for ionic pharmaceuticals, ion-exchange SPE cartridges have been
explored for sample cleanup (Emhofer et al., 2018; Riemenschneider
et al., 2017a).

Coupled chromatography-MS systems enhance chemical analysis by
providing both separation of mixtures and structural identification of
individual components (Llewellyn et al., 2011). Another common
technique employed for studying metabolic profile of a plant is the
liquid-state nuclear magnetic resonance (NMR) spectroscopy which is a
non-destructive method with low sensitivity and high reproducibility
(Augustijn et al., 2021). Analyzing a diverse range of pharmaceuticals
with different physicochemical properties can be challenging and also
makes it difficult to achieve satisfactory recoveries for all compounds
even with cleanup procedures. To address this, using isotope-labeled
surrogates for each analyte or group is essential for accurate quantita-
tive measurements. These surrogates compensate for analyte loss and
potential interference during sample preparation and instrumental
analysis by sharing similar physical and chemical properties with the
analytes (Wu et al., 2012).

7. Conclusion and future remarks

The presence of pharmaceutical pollutants in water bodies represents
a significant and complex challenge with implications for both human
health and the environment. Reclaimed water obtained from treated
wastewater or animal wastes used in agriculture poses a potential threat
for pharmaceutical contamination in crop plants. The diverse physico-
chemical characteristics of these pollutants, their widespread occur-
rence, and potential impacts on different ecosystems highlight the
urgency of addressing this issue. Uptake, accumulation, and enzymatic
metabolism process of diverse pharmaceutical pollutants in plants are
still unclear which has received more attention from research commu-
nities. Limited information is available on the toxicity and ultimate fate
of transformation products resulting from the degradation of pharma-
ceuticals in plant tissues.

Recent studies have predicted exposure to individual pharmaceuti-
cals in reclaimed water, but real-world scenarios likely involve multiple
pharmaceuticals contaminating edible produce. There is a need for
better prediction methods for simultaneous exposure to multiple phar-
maceuticals. Current studies only measure extractable parent com-
pounds, neglecting transformation products, conjugated compounds,
and bound residues. While bound residues have reduced toxicity and are
not bioavailable, conjugated compounds can be cleaved during meta-
bolism and potentially exert biological effects. Thus, the health risks of
these conjugated and transformed pharmaceuticals in plants need
thorough evaluation. Additionally, field trials are essential for more
accurate estimations of human exposure to pharmaceuticals through
treated wastewater.

Accurate detection techniques, such as advanced analytical methods,

Fig. 4. Schematic workflow of targeted and non-targeted analysis of pharma-
ceutical metabolites in plant tissues.
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play a crucial role in identifying and quantifying pharmaceutical pol-
lutants in plant tissues and water sources. However, continuous research
and development of more sensitive and selective detection techniques
are still needed to enhance monitoring capabilities and keep up with the
emergence of new pharmaceutical pollutants. Comprehensive field-
based data on pharmaceutical accumulation in plants, including crops,
vegetables and fruit trees, is essential for accurately assessing human
exposure through diet. Data from regions where treated wastewater are
reused, will help analyze potential dietary risks and ensure safe adoption
of these practices while protecting consumers. Also, due to the diversity
of pharmaceuticals, it is important to develop a priority list of those with
the highest plant uptake potential under realistic field conditions. This
prioritization will focus research efforts, optimize investment in studies,
and provide valuable information to guide future research.

Promoting greener practices in pharmaceutical manufacturing and
encouraging the use of advanced wastewater treatment technologies are
critical steps towards reducing the presence of pharmaceutical pollut-
ants in water bodies. With proper treatment facilities and regulatory
policies for wastewater reuse, the maximum potential of using waste-
water as irrigation in agricultural field can be explored worldwide.
Further research efforts should focus on identifying plant species that
are efficient in removing a wide range of pharmaceuticals from
contaminated water and studying the translocation of pollutants within
plants for the development of sustainable phytoremediation strategies.
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Bartha, B., Huber, C., Schröder, P., 2014. Uptake and metabolism of diclofenac in Typha
latifolia–how plants cope with human pharmaceutical pollution. Plant Sci. 227,
12–20. https://doi.org/10.1016/j.plantsci.2014.06.001.
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Kansy, M., Kerns, E.H., Krämer, S.D., 2012. Evidence-based approach to assess
passive diffusion and carrier-mediated drug transport. Drug Discov. Today 17,
905–912, 0.1016/j.drudis.2012.03.015.

Diaz-Camal, N., Cardoso-Vera, J.D., Islas-Flores, H., Gómez-Oliván, L.M., Mejía-
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Díaz-Torres, E., Gibson, R., González-Farías, F., Zarco-Arista, A., Mazari-Hiriart, M.,
2013. Endocrine disruptors in the Xochimilco wetland, Mexico city. Water, Air, Soil
Pollut. 224, 1–11. https://doi.org/10.1007/s11270-013-1586-1.

Dietz, A.C., Schnoor, J.L., 2001. Advances in phytoremediation. Environ. Health
Perspect. 109, 163–168. https://doi.org/10.1289/ehp.01109s1163.

Dinh, Q.T., 2012. Transferts et comportements d’antibiotiques à l’échelle du bassin
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Gros, M., Rodríguez-Mozaz, S., Barceló, D., 2013. Rapid analysis of multiclass antibiotic
residues and some of their metabolites in hospital, urban wastewater and river water
by ultra-high-performance liquid chromatography coupled to quadrupole-linear ion
trap tandem mass spectrometry. J. Chromatogr. A 1292, 173–188. https://doi.org/
10.1016/j.chroma.2012.12.072.

Guan, M., Roddick, J.G., 1988. Epibrassinolide-inhibition of development of excised,
adventitious and intact roots of tomato (Lycopersicon esculentum): comparison with
the effects of steroidal estrogens. Physiol. Plantarum 74, 720–726. https://doi.org/
10.1111/j.1399-3054.1988.tb02043.x.

Guasch, H., Ginebreda, A., Geiszinger, A., 2012. Emerging and Priority Pollutants in
Rivers: Bringing Science into River Management Plans. Springer Science & Business
Media. https://doi.org/10.1007/978-3-642-25722-3.

Guo, Z., Guo, A., Guo, Q., Rui, M., Zhao, Y., Zhang, H., Zhu, S., 2017. Decomposition of
dexamethasone by gamma irradiation: kinetics, degradation mechanisms and impact
on algae growth. Chem. Eng. J. 307, 722–728. https://doi.org/10.1016/j.
cej.2016.08.138.
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Lozano, I., Pérez-Guzmán, C.J., Mora, A., Mahlknecht, J., Aguilar, C.L., Cervantes-
Avilés, P., 2022. Pharmaceuticals and personal care products in water streams:
occurrence, detection, and removal by electrochemical advanced oxidation
processes. Sci. Total Environ. 827, 154348 https://doi.org/10.1016/j.
scitotenv.2022.154348.

Lv, Y., Li, Y., Liu, X., Xu, K., 2021. Effect of soil sulfamethoxazole on strawberry (Fragaria
ananassa): growth, health risks and silicon mitigation. Environ. Pollut. 286, 117321
https://doi.org/10.1016/j.envpol.2021.117321.

Lv, Y., Xu, J., Xu, K., Liu, X., Guo, X., Lu, S., Xi, B., 2020. Accumulation characteristics
and biological response of ginger to sulfamethoxazole and ofloxacin. Environ. Pollut.
262, 114203 https://doi.org/10.1016/j.envpol.2020.114203.

Lyu, S., Chen, W., Zhang, W., Fan, Y., Jiao, W., 2016. Wastewater reclamation and reuse
in China: opportunities and challenges. J. Environ. Sci. 39, 86–96. https://doi.org/
10.1016/j.jes.2015.11.012.

Maasz, G., Molnar, E., Mayer, M., Kuzma, M., Takács, P., Zrinyi, Z., Pirger, Z., Kiss, T.,
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