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Abstract: 

 

Endogeneity bias can lead to inconsistent estimates and incorrect inferences, which may 

provide misleading conclusions and inappropriate theoretical interpretations. Sometimes such 

bias can even lead to coefficients having the wrong sign. Although this is a long-standing issue, 

it is now emerging in marketing and management science, with high-ranked journals 

increasingly exploring the issue. In this paper we methodologically demonstrate how to detect 

and deal with endogeneity issues in panel data. For illustration purposes, we used a dataset 

consisting of 15 years of observations (i.e., 2002 to 2016) from 101 UK listed companies, and 

examined the direct effect of R&D expenditures, corporate governance, and firms’ 

characteristics on firm performance. The result of our analyses indicate significant differences 

in our findings reported under ordinary least square (OLS), fixed effects and the generalized 

method of moments (GMM) estimations, due to endogeneity bias. We provide generic STATA 

commands that can be used by marketing researchers in implementing a GMM model that 

better controls for the three sources of endogeneity, namely, unobserved heterogeneity, 

simultaneity and dynamic endogeneity. 
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1. Introduction 

Endogeneity in regression models refers to the condition in which an explanatory (endogenous, 

e.g., research and development expenditure) variable correlates with the error term, or if two 

error terms correlate when dealing with structural equation modelling. Endogeneity bias can 

therefore cause inconsistent estimates (i.e., not tend to be the true value as sample size 

increases), which potentially leads to wrong inferences, misleading conclusions and incorrect 

theoretical interpretations. “Sometimes endogeneity causes so much bias that we may not even 

get the sign of the coefficient right” (Ketokivi & McIntosh, 2017, p. 1). Research suggests 

approximately 90% of papers published in premier journals have not adequately addressed 

endogeneity bias (e.g., Antonakis, Bendahan, Jacquart, & Lalive, 2010; Hamilton & Nickerson, 

2003). Based on a study of over 100 articles in top journals, it is claimed that “researchers fail 

to address at least 66% and up to 90% of design and estimation conditions that make causal 

claims invalid” (Antonakis et al., 2010, p. 1086).  

Despite recent methodological advances and the relevant literature in econometrics/psychology, 

other social science disciplines (e.g., marketing, operations management, international business 

and supply chain management) have largely produced inconsistent estimates due to not 

addressing endogeneity biases. However, marketing (e.g., Journal of Marketing, Journal of 

Marketing Research, and more recently Industrial Marketing Management) and operations 

management (e.g., Journal of Operations Management) journals have started to take it more 

seriously, and asked authors to fully address endogeneity in their studies (e.g. Ketokivi & 

McIntosh, 2017; Reeb, Sakakibara, & Mahmood,2012; Zaefarian et al., 2017). Researchers are 

responding to this call; for example, the Industrial Marketing Management journal has seen an 

increase number of authors addressing endogeneity bias in their studies published in 2017 ( a 

total of 6 papers to be exact) compared to that of the previous year (only 1 paper) . The 

reviewers associated with these journals have also played their part in directing researchers to 
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address such methodological complications. Nonetheless, many researchers in management 

disciplines are not yet fully aware of endogeneity, its sources, and relevant remedies (Antonakis, 

Bendahan, & Lalive, 2014; Guide & Ketokivi, 2015; Zaefarian et al., 2017).  

Importantly, endogeneity bias can have different origins, and different methods exist to address 

them. For example, the dynamic generalized method of moments model (GMM) is used to 

address panel data (i.e., dynamic endogeneity bias) and two-stage least squares (2SLS)/three-

stage least squares (3SLS) are often used for survey data. Some researchers have recently 

provided reviews to understand the key endogeneity concepts and relevant techniques (e.g., see  

Zaefarian et al., 2017). However, a step-by-step procedure on how to execute these techniques 

for a particular research problem is still missing. We therefore provide a succinct overview of 

the key endogeneity sources and solutions, and comprehensively demonstrate the GMM 

method using a case study of a panel dataset consisting of 15 years of observations. Specifically, 

this study explores how the dynamic nature of investment in R&D expenditures together with 

corporate governance affect firm performance. To better illustrate how endogeneity bias may 

cause incorrect estimates, we examine our proposed model using three different approaches, 

namely, ordinary least square (OLS), fixed effects, and the generalized method of moments 

(GMM). Practically, our main aim and contribution is to provide a comprehensive procedure 

for researchers to produce consistent estimates and to draw valid inferences when dealing with 

panel data.  

In addition, panel data is used far less frequently in business-to-business than in the business-

to-consumer marketing domain, and this article could provide a starting point as to how 

industrial marketing and management researchers can utilize such datasets to provide insights 

for business practitioners. For instance, the research and development expenditure and its 

relationship to firm financial performance in industrial marketing can be explored by using 
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panel datasets that are available from different databases (e.g., DataStream), unfortunately 

researchers are often unaware of such resources).  

 

2 Sources of endogeneity  

The error term in endogeneity bias is unobservable, so there is no direct way to statistically test 

that an endogenous variable is correlated with the error term. Also, “exogenous variables in a 

model are probably never truly exogenous” (Ketokivi & McIntosh, 2017, p. 3). It is therefore 

almost impossible to statistically ensure that an endogeneity problem  can be completely 

resolved (Roberts & Whited, 2012). That is why such “dilemmas do not call for solutions, they 

call for choices” (Ketokivi & McIntosh, 2017, p. 2). For choices, researchers need to 

understand the sources of the problem and then take reasonable actions to reduce the negative 

impact in order to deal effectively endogeneity. As “there are no direct tests of endogeneity”, 

the choices of indirect tests and precautionary measures can help to guide relevant insights and 

conclusions (Ketokivi & McIntosh, 2017, p. 2). Endogeneity encompasses common-method 

variance, measurement errors, omitted variables/selections and simultaneity. It is important to 

address them theoretically (e.g., extensively reviewing literature and providing comprehensive 

research designs that could help to apply appropriate statistical tools) as well as empirically 

(e.g. using statistical techniques to ensure that data is rigorously investigated) (Antonakis et al., 

2010; Ketokivi & McIntosh, 2017). 

2.1 Common-method variance and its remedies 

Common-method variance (CMV) is related to measurement methods. CMV is problematic 

due to its interlinks with the sources of measurement errors, These sources can come from 

common-rater effects (e.g., only collecting information from similar respondents), common 

measurement content (e.g., time, location and a single-medium used to collect data), common-
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item context or item characteristics (e.g., wording, length and clarity), scale types, respondents, 

response formats and the general content (Malhotra, Kim, & Patil, 2006; Podsakoff, 

MacKenzie, Lee, & Podsakoff, 2003). Research suggests that the difference between the 

amounts of variance accounted is 24% when CMV is controlled (i.e., 35%) versus when it is 

not controlled (i.e., 11%). Thus, CMV can have a substantial effect on the relationships 

between measures or constructs (Podsakoff et al., 2003). 

A series of steps can be taken to minimize the CMV bias. Theoretically, one can use research 

to develop a systematic questionnaire and measures (items) to form the constructs, which can 

be further refined statistically using exploratory factor analysis and reliability measures. It is 

good practice to avoid unfamiliar words, double-barrelled questions and technical words and 

to keep items simple, specific and concise. The items could be further grouped with different 

construct items (i.e., not in conceptual dimensions) (Tourangeau, Rips, & Rasinski, 2000). 

Some researchers also suggest to avoid adding (many) negatively-worded items because of a 

lack of confidence in  respondents’ ability to fully understand them, as highlighted by 

Podsakoff et al. (2003). Researchers often have to delete such items because their loadings are 

not strong enough to meet the minimum criterion. In addition, respondents should be informed 

of the anonymity of the survey - individuals and companies should not be identified and only 

aggregate data used. Moreover, to avoid a single-informant bias, data could be collected from 

multiple informants. For example, a survey data collection may involve multiple management 

positions such as chief executive officers, managing directors, project managers, marketing 

managers, senior operations managers and team leaders (e.g., Akhtar, Tse, Khan, & Rao-

Nicholson, 2016). 

In order to test for CMV, researchers commonly use Harman’s one-factor test (Malhotra et al., 

2006; Podsakoff et al., 2003). In this method, the analysis produced from multiple factors 

(based on eigenvalues greater than 1 and scree plot observations) with reasonable variances is 
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compared to a single factor solution or other combinations. However, this test is insensitive, 

and as such it is insufficient test to rule out the potential existence of common method bias 

(Podsakoff et al., 2003). Although all statistical approaches to control for CMV bias have their 

particular advantages and disadvantages (Malhotra et al., 2006; Podsakoff et al., 2003), it is 

also useful to use the marker variable technique (e.g.,  the number of languages that respondents 

speak, as a marker variable) proposed by Lindell and Whitney (2001), which is a good 

alternative to assess the CMV bias. Additionally, the latent factor approach can be used for 

assessing CMV (see Malhotra et al., 2006). It is a good practice to use these mentioned multiple 

remedies to minimize possible concerns. This leads to employ different methods and one can 

follow a rigorous statistical procedure by using these techniques to deal with CMV.  

2.2 Measurement errors 

Measurement error is a common problem in marketing, management, business and other social 

science research. This is due to the fact that the constructs of interest cannot be measured 

perfectly, as researchers can do in natural sciences. Consequently, the estimates are inconsistent 

and the error affects other variables involved (Antonakis et al., 2010; Antonakis et al., 2014; 

DeShon, 1998). 

Although structural equation modelling analysis (e.g., maximum likelihood estimate) does 

correct for “the biasing effects of random measurement errors” (Frone, Russell, & Cooper, 

1994, p. 573) or “successfully correct for the small amount of measurement errors in the items” 

(DeShon, 1998, p. 417), researchers still need to control for measurement errors when they use 

a single indicator approach, that is parcelling using multi-item scales (DeShon, 1998). For 

example, if researchers use parcelling (averaging the relevant items) for environmental and 

financial (performance) constructs, they should be corrected for the random measurement error 

by constraining the relevant random error variance equal to the product of the variance multiply 
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by one minus the reliability. The relevant loadings (i.e., SD * square-root of alpha) for the 

parcels are also fixed (Antonakis et al., 2014; Bollen, 1989; DeShon, 1998). By controlling for 

the errors, besides minor changes in significance levels, researchers can find that the difference 

between the amounts of variance accounted is improved when measurement error is controlled 

versus when it is not controlled. This indicates the importance of correcting measurement errors 

and following a methodological rigorous approach. 

2.3 Omitted bias and simultaneity 

Omitted bias results in various forms (See for details Antonakis et al., 2010; Antonakis et al., 

2014). One possibility of omitted bias can be when researchers test the validity of a construct 

without including other important variables/constructs. For instance, one measures operational 

performance of supply chain partners without including social performance among them. In 

this regard, the most important guide is “theory, theory and more theory” (Antonakis & Dietz, 

2011, p. 218), which is also supported by Antonakis et al. (2014);; and Ketokivi & McIntosh 

(2017). It is also useful to use the multiple dimensions of constructs, which themselves may 

consist of sub-constructs (e.g., service quality and product quality forming operational 

construct; trust in and satisfaction with supply chain partners representing social construct) 

built based on extensive theories. After this, statistical analysis such as exploratory factor 

analysis, reliability and validity tests can be applied to further refine them. 

The problem of simultaneity occurs when two variables simultaneously affect/cause each other 

and have reciprocal feedback loops (non-recursive models). Though the problem is easy to 

understand, it is complicated to resolve statistically, particularly when a study involves multiple 

constructs. The problem may be addressed using instrumental variables. Zaefarian et al. (2017) 

provide details of how to use instrumental variables by utilizing two-stage or three stage least 

square approaches. However, finding instrumental variables for a number of constructs is not 
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easy, sometimes even it is impossible (Antonakis et al., 2010; Antonakis et al., 2014). The 

fundamental problem for such models in structural models is the identification of the models 

due to numerous complications such as not having sufficient data, high correlations of 

instrumental variables and deficient order and rank conditions (Bentler & Chou, 1987; Martens 

& Haase, 2006). It is a good academic practice to acknowledge that alternative models may 

exist, which are equally possible on logical grounds. Researchers should use strong theoretical 

arguments to build the directions of hypotheses and models. Interested readers may also want 

to consult available studies on the topic (e.g., Bentler & Chou, 1987; Martens & Haase, 2006).   

Cumulatively, by investigating the datasets in detail and addressing different types of 

endogeneity bias from research designs to statistical analysis, researchers can provide evidence 

that they have made efforts to follow a rigorous theoretical procedure and comprehensively 

investigated datasets to comply with psychometric properties and ‘urban legends’. As there is 

no hard and fast rule or a yes or no answer for such types of bias and urban rules, that is why 

some of the ‘urban legends’ (the cut-off criteria) have recently been criticized. For example, 

Lance, Butts, and Michels (2006) unambiguously debunk the 0.70 rule for reliability. This is 

not discussed further here, and we recommend readers to consult recent methodological 

advances in the area (e.g., Cortina, 2002; Lance, 2011; Lance et al., 2006).  

Returning to the main focus of this study, a series of techniques to deal with endogeneity are 

succinctly provided by researchers (Guide & Ketokivi, 2015; Ketokivi & McIntosh, 2017; 

Zaefarian et al., 2017). Our purpose is to provide an in-depth step-by-step procedure as to how 

the general dynamic generalized method of moments (GMM) model can be used to address 

endogeneity in panel data. For other types of data and understanding concepts and relevant 

techniques (e.g., cross-sectional and structural equation modelling), researchers can consult  

recent studies (e.g., Ketokivi & McIntosh, 2017; Zaefarian et al., 2017). A systematic 

procedure for handling endogeneity in panel data is provided in the next section. 
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2.4 GMM models and dealing with endogeneity in panel data 

The emergence of GMM models in marketing research when using panel data can resolve some 

of unanswered questions raised in the recent literature when discussing econometric techniques. 

Arellano and Bond (1991) and Blundell and Bond (1998) developed the generalized method of 

moments model, which can be used for dynamic panel data. In dynamic panel data, the cause 

and effect relationship for an underlying phenomena is generally dynamic over time. For 

example, it may not be the current year’s marketing expenses that are affecting performance, 

but rather the previous year’s expenses that could be playing a significant role.  

In order to capture this, dynamic panel data estimation techniques use lags of the dependent 

variables as explanatory variables. Lagged values of the dependent variables are therefore used 

as instruments to control this endogenous relationship. These instruments are often called 

‘internal instruments’ as they are used from the existing econometric model (Roodman, 2009).  

The GMM model, which is generally used for panel data, provides consistent results in the 

presence of different sources of endogeneity, namely “unobserved heterogeneity, simultaneity 

and dynamic endogeneity” (Wintoki, Linck, & Netter, 2012, p. 588). Traditionally, researchers 

(Schultz et al., 2010; Wintoki et al., 2012) have used two lags of the dependent variables and 

they argue that two lags are sufficient to capture the persistence of the dependent variable (say 

for example firm performance).  

The GMM model removes endogeneity by “internally transforming the data” – transformation 

refers to a statistical process where a variable’s past value is subtracted from its present value 

(Roodman, 2009, p. 86). In this way, the number of observations is reduced and this process 

(internal transformation) enhances the efficiency of the GMM model (Wooldridge, 2012). 

Furthermore, two kinds of transformation methods, known as first-difference transformation 

(one-step GMM) and second-order transformation (two-step GMM), can also be used as GMM 
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estimators. However, the first-difference transformation (one-step GMM) has some limitations. 

For instance, if a variable’s recent value is missing, then the first-difference transformation 

(where a variable’s past value is deducted from its current value) could result in the loss of too 

many observations (Roodman, 2009). In order to avoid potential data loss owing to the internal 

transformation problem with the first-step GMM, Arellano and Bover (1995) recommended 

the use of a second order transformation (two-step GMM).  

The second-order transformation (two-step GMM) applies ‘forward orthogonal deviations’, 

which means that instead of subtracting the previous observations of a variable from its current 

value, the two-step GMM model subtracts the average of all future available observations of a 

particular variable (Roodman, 2009, p. 86). Using a two-step GMM model, researchers can 

prevent unnecessary data loss. Therefore, in the case of a balanced panel dataset, a two-step 

GMM model provides more efficient and consistent estimates for the involved coefficients 

(Arellano and Bover 1995 

Following Arellano and Bond (1991) and Blundell and Bond (1998), we use the following 

general dynamic generalized method of moments model (GMM): 

ititititittiit XnGRDSALESPP   1,                                                         (1) 

Where: Pit denotes firm performance, which in our example is measured in terms of return on 

assets (ROA), Pi,t-1 is a one period lag operator (previous year firm performance); RDSALESit 

represents our main explanatory variable, R&D expenditures; Gβit represents corporate 

governance variables; Xnit represents control variables over the time period; it is firm-

specific fixed effects; and it  represents the error term.  

In this paper, our methodical demonstration and discussion are relating to the impact of R&D 

expenditures, firm-level governance and financial characteristics on the return on assets (ROA) 
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as an indicator of firm’s financial performance. The birth of a corporate form of business 

organization resulted in a separation of ownership and control (Berle and Means, 1932), with 

managers having sufficient control in running the day-to-day affairs of an organization. It is 

unlikely that managers would always act in the best interest of the owners. This phenomenon 

was first pointed out by Adam Smith in 1776 and was formally presented in the form of agency 

theory by Jensen and Meckling (1976). According to Jensen and Meckling (1976), the 

opportunistic behavior by managers would cause a conflict of interests between owners and 

managers, thereby negatively affecting a firm’s financial performance. Jensen and Meckling 

(1976) also suggested that incentive mechanisms (executive compensation) and effective 

control (corporate governance) mechanisms are likely to re-align the interests of owners and 

managers. The board of directors thus play an important role in aligning the interests of owners 

and managers.  

We include a number of firm-level governance (monitoring) mechanisms and incentives paid 

to senior directors to test how these mechanisms affect firms’ performance, in addition to other 

firms’ specific characteristics, such assize, sales growth and R&D expenditures. The literature 

uses a number of proxies for strong internal governance that enhances firms’ performance 

(Beiner, Drobetz & Schmid, 2006). Some attributes of board of directors that represent strong 

governance and monitoring include: smaller board size, highest percentage of non-executive 

directors, appropriate executive compensation, a highest percentage of gender diversity, and a 

higher number of board meetings. We therefore include these proxies measures to demonstrate 

the application of GMM in panel data research.    

Roodman (2006) presented assumptions that need to be fulfilled when employing GMM 

estimations, namely (a) some regressors may be endogenously determined; (b) the nature of 

the relationship is dynamic, implying that current performance is affected by previous ones; (c) 

the idiosyncratic disturbances are uncorrelated across individual; (d) some regressors may not 
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necessarily be strictly exogenous; and finally, (e) the time periods in panel data, T, may be 

small. (i.e., “small T, large N.”). The inclusion of lag performance variables changes the static 

nature of this econometric model to a dynamic panel data model. Two-step system GMM relies 

on internal instruments (lagged values, internal transformation) to address the different sources 

of endogeneity discussed in the literature review section.  

2. Method 

3.1 Data and Sample Selection Procedures 

Researchers in the Journal of Marketing, and Journal of Marketing Research have been using 

panel data for many years (see for example, McAlister, Srinivasan, & Kim, 2007; Nierop 

Bronnenberg,  Paap, Wedel, & Franses. 2010; Ma, Ailawadi, Gauri, & Grewal, 2011; Sridhar, 

Germann, Kang, & Grewal, 2016; Han, Mittal & Zhang, 2017), while IMM researchers are still 

predominantly relying on the use of survey data. The emergence of business/financial databases 

(Bloomberg, Datastream, Thomson One, Compustat) provides more flexibility to marketing 

researchers to effectively utilize the marketing and product related data available in these 

databases. As panel datasets combine the characteristics of cross-sectional and time series data, 

we believe that the IMM community could benefit from the marketing related data available in 

these databases.  

For example, corporate investment and financial data for US and non US companies can be 

collected from Compustat. The Thomson Financial's Securities Data Corporation (SDC) 

database provide detailed information on different types of joint ventures. This database 

compiles information from different publicly available sources. Datastream includes global 

data on patents, brand value, number of consumer controversies directly linked to companies’ 

products or services, product recall, eco-design products, energy footprint reduction, organic-

product initiatives, among others. If IMM community could utilize such massive global 
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marketing datasets for listed companies, they could capture interesting insights about the on-

going marketing management issues around the world. The companies associated with these 

databases put enormous efforts in collecting and reporting this data that is largely unexplored, 

particularly in the context of industrial marketing. Furthermore, using a panel data approach, 

researchers can use more observations and panel data has the capability to control for 

unobserved heterogeneity — a potential source of endogeneity discussed in the literature.  

To demonstrate a step-by-step and rigorous procedure, we first collected the data of UK listed 

companies – available on the Datastream. The data included 15-year observations, ranging 

from 2002 to 2016. We included corporate governance data in our analysis, although this data 

is only available from 2002 onwards in Datastream. Our final sample includes data from the 

101 UK listed companies, after excluding companies which were subsequently delisted and 

whose financial data was not available in the database. Where financial data was not available 

for the sample, we collected such data from the alternative databases (i.e., Bloomberg). Table 

1 shows the industrial classification of our sample firms. The chosen 101 sample firms belong 

to 25 different industrial sectors, with over 1500 observations. Table 2 includes the definitions 

of these variables and relevant codes available for downloading data from the Datastream, 

which is a powerful database and it allows to scrutinise patterns, generate and test research 

questions and develop research on market trends.  

--------------------------------- 

Insert Table 1 about here 

--------------------------------- 

3.2 Variables and descriptive statistics 

Table 2 includes a list of variables used in this research. The explanatory variables are R&D 

expenditure, corporate governance variables including board size, the percentage of 

independent non-executive directors, the number of board meetings, gender diversity, CEO-

Chairman duality, total senior executive compensation and the percentage of shares owned by 
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the single largest/biggest shareholder/owner. We included firm-level governance variables, as 

prior research shows that strong corporate governance (monitoring) have implications on the 

performance of firms (Beiner et al., 2006). The dependent variable in our model is firm 

performance, which is measured by return on assets (ROA). We also control for firm-specific 

characteristics including debt financing, firm size and sales growth. 

--------------------------------- 

Insert Table 2 about here 

--------------------------------- 

Table 3 presents descriptive statistics. The mean value for our key explanatory variable R&D 

expenditure is 4% of sales, with a maximum value of 50% of sales. This provides the insights 

about the level of R&D investment by the UK listed companies. The average board size of the 

UK listed companies is 9.07 and the maximum board size is 18. The average value for the 

percentage of non-executive directors (NEDs) in the UK companies is 65.26%, with a 

maximum number of 88.69% NEDs appointed by the UK companies. Except for smaller 

companies which are not constituent members of the FTSE 350 index in the UK, corporate 

regulations in the UK require at least 50% non-executive directors for companies listed on the 

London Stock Exchange (See regulation B.2.1, in the, Financial Reporting Council, 2016, p.11). 

A higher percentage of external non-executive directors implies strong monitoring at board 

levels, which could also be observed in corporate financial performance.  

Number of board meetings is another monitoring mechanism, affecting corporate financial 

performance. The average number of board meetings (NBS) is 9 and the maximum value is 22. 

As companies are different in their size and structure, such variations in the number of board 

meetings are expected. The mean value for the percentage of women on the corporate boards 

of UK listed companies is 9% and the maximum value is 50%. This represents gender diversity 

that is another governance (monitoring) mechanism having implications for corporate financial 

performance. In this regard, the Lord Davies Report in the UK, entitled, ‘Improving the Gender 
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Balance on British Boards’ sets out a 33% women quota for companies listed on the London 

Stock Exchange by the end of 2020 (Davies, 2011).  

The average value for DUAL is 0.13, suggesting that 13% of the CEOs in UK listed companies 

hold the positions of CEO and Chairmanship simultaneously, while the regulations require 

splitting these role as one person may get too much powerful at the top. Hence, such dual 

positions may negatively affect corporate financial performance. The mean value for the 

logarithm of total senior executive compensation (TSEC) is 6.68 and the maximum value is 

9.13. In terms of large shareholdings, the mean value for single largest blockholder ownership 

(SBO) is 14.06%. Generally, large investors are considered effective monitors compared to 

small and dispersed shareholders.  

On average, 23% debt financing activities are carried out by UK companies during the reported 

period. Debt financing (LEVER) is also a monitoring mechanism as a lender of finance keep 

strict surveillance over their investee companies (Beiner et al., 2006), and hence we expect its 

implications on corporate performance. Firm size (SIZE) is measured by the natural logarithm 

of total assets and the mean value for the size is 14.28 and the maximum value is 19.71. The 

descriptive statistics indicate that the average sales growth of sample UK companies is 10% 

for the reporting period of 15 years, 2002-2016. Finally, the operating performance measure 

return on assets (ROA) shows that the mean ROA for the UK companies is 14% and the 

maximum value is 50%.  

--------------------------------- 

Insert Table 3 about here 

--------------------------------- 

3. Steps used in the estimation process (demonstration) 

In the following section, we use a step-by-step procedure to demonstrate how GMM offers 

robust estimates compared to OLS and fixed-effects estimates. We first start with OLS analysis 
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and identify endoegenity issues by utilizing Durbin-Wu-Hausman test, followed by a fixed-

effects model. The procedure then demonstrates that fixed-effects fail to capture dynamic 

endogeneity. The GMM model finally incorporates lagged-values of the dependent variable 

(previous year’s financial performance). Thereby, the endoegeneity concerns are addressed and 

the valid estimates are produced by using a rigorous GMM process. 

Step1 –Basic OLS analysis 

Owing to its wide usage in prior research, initially, an OLS analysis was carried out to examine 

the direct effect of our independent variables (i.e. R&D expenditures, corporate governance, 

and firms’ characteristics) on our dependent variable, ROA, and the results are reported under 

model (1) column in Table 4. However, following Schultz et al. (2010) and Wintoki et al. 

(2012), before interpreting the results from OLS regression, a test for endogeneity was carried 

out to determine whether the results reported under the OLS models are consistent (see Step 

2). Our main results in the OLS model shows that R&D has a positive effect on the performance 

of firms. This finding is consistent with the recent research of Ehie & Olibe (2010), who 

reported a positive relationship between investment in R&D expenditures and the market 

valuation of firms for a sample of 26,500 firm-years observations for a period of 18 years. In 

model (1), majority of the governance variables, BSIZE, TSEC, GD and SBO have a positive 

impact on the performance of firms, which suggests that strong firm-level (internal) corporate 

governance mechanisms can improve the performance of firms. This is in line with the 

assumptions of agency theory that strong firm-level monitoring mechanisms are likely to have 

positive implications on corporate performance (Beiner et al., 2006).  

Step 2– Detecting endogeneity bias 

The Durbin-Wu-Hausman test is commonly used to detect endogeneity of individual regressors. 

Theoretically, the explanatory variable on the right-hand side should be uncorrelated with the 
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error term, and this test determines whether the residuals (error term) are correlated with the 

explanatory variable. A Durbin-Wu-Hausman test is thus used to detect endogeneity in the 

OLS regression. For the general understanding of IMM readers, we comprehensively 

demonstrate the procedures used to test the endogeneity and illustrate it by using an example 

of an explanatory variable, RDSALES. To do that, we follow the procedures suggested by 

Beiner et al. (2006), Schultz et al. (2010) and Wintoki et al. (2012). The following steps were 

implemented to carry out the Durbin–Wu–Hausman test. 

a. To test whether an independent variable, for example, investment in R&D expenditures (e.g., 

RDSALES) is endogenous or exogenous, a regression was estimated on each independent 

variable with all other independent variables and control variables to predict the relevant 

residuals. 

Example: 

itititit

itititititititit

SGSIZELEVER

SBOTSECDUALGDNBMNEDsBSIZERDSALES




               (2)    

In our standard model, the dependent variable is ROA (see equation 1, itP ). To test for 

endogeneity/exogeneity of RDSALES variable, this variable is now included as a dependent 

variable rather than as an exploratory variable. This is the first step to conduct Durbin-Wu-

Hausman test. 

b. In the second step, the coefficients for the residuals were estimated to test whether the 

residuals (error terms, it ) are significant. The null hypothesis states that investment in R&D 

expenditures and corporate governance mechanisms are exogenous, implying they are 

uncorrelated with the residuals. For each individual explanatory variable in the model (e.g., 

RDSALES), we estimated residuals using the generic STATA command, ‘predict new-
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variable residuals’. The residuals for RDSALES were then included in our basic OLS model, 

which takes the following form:  

 
itititit

ititititititititit

SGSIZELEVER

SBOTSECDUALGDNBMNEDsBSIZERDSALESROA




     (3) 

c. A significant test statistic of Durbin-Wu–Hausman test for an explanatory variable indicates 

that the variable is endogenous – the explanatory variable is correlated with the residuals (error 

term).1   

If a single variable in the econometric specification is endogenous, obviously, researchers need 

to implement a superior estimation technique that provides consistent estimates than OLS. In 

the next step, we identify a list of endogenous variables and we discuss the implications of 

endogeneity issues, and suggest the use of fixed-effects estimation. 

Step 3 – Understanding the nature of endogenous variables 

The Durbin-Wu-Hausman test statistics shows that majority variables in Model 1 (e.g., BSIZE, 

NEDs, DUAL, LEVER, SIZE, SG) are endogeneously determined. From an econometrics 

perspective, and theoretically, it makes sense that some of the corporate governance 

mechanisms and investment in R&D could be endogenously determined. For example, a firm 

with poor performance in one year may change its board size or the percentage of non-

executive directors in the following year (Beiner et al., 2006; Schultz et al., 2010; Wintoki et 

al., 2012). Similarly, poorly performing firms are likely to take more risks in the following 

years (Bromiley, 1991). In addition, firms with higher market valuations may choose to invest 

more in R&D expenditures in subsequent years (Gupta, Banerjee, & Onur, 2017). Overall, the 

results from Durbin-Wu Hausman test statistics suggest that endogeneity is a major problem in 

                                                           
1 The procedures to carry out a Durbin-Wu-Hausman test in any version of the STATA is explained at 

https://www.stata.com/support/faqs/statistics/durbin-wu-hausman-test/  

https://www.stata.com/support/faqs/statistics/durbin-wu-hausman-test/
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our OLS model. If only one variable is endogenous in a regression model, the results reported 

from OLS are inconsistent (Beiner et al., 2006; Schultz et al., 2010; Wintoki et al., 2012). This 

implies that the results reported from OLS are inconsistent because of the endogeneity issues.  

 

Step 4 – Applying Fixed-effects estimation 

In Model 2 (Table 4), we employ a fixed-effects estimation technique, which can potentially 

control for unobservable heterogeneity under the assumption of strict exogeneity. Strict 

endogeneity means that a firm’s current governance mechanisms, investment in R&D 

expenditures (independent variables) are not affected by any changes in a firm past and 

present financial performance (e.g., dependent variable ROA) (Schultz et al., 2010; Wintoki 

et al., 2012). 

However, in reality, this assumption of strict exogeneity is violated because a firm’s 

past/current performance may affect the current/future governance structure of a firm.  In a 

fixed-effects model, firm-specific fixed effects are incorporated in the econometric model by 

either including a set of firm-specific indicator variables into the regression, or by internally 

transforming (differencing) to eliminate the time invariant components (Hamilton and 

Nickerson, 2003). This process eliminates the time-invariant industry- and firm-level 

unmeasured variables from the right-hand side of the regression equation.  

In qualitative terms, fixed effects models help in controlling unobserved heterogeneity, which 

is ‘constant’ over time and is also correlated with the explanatory variables. This constant/time 

invariant component of the model is usually removed from internal transformation. A general 

example of unobserved time-invariant individual effects is managerial capabilities and firm-

level institutional quality which cannot be captured in the econometric specification. The time 

invariant error term is treated as fixed effects (Gujarati, 1999). Furthermore, fixed-effects 

estimation is a static panel data model, which means it does not allow for the lag of the 
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dependent variables (firm financial performance) to be included as an explanatory variable in 

the econometric model (Wooldridge, 2012). An ordinary least squares regression model fails 

to control for unobserved heterogeneity and the fixed-effects or random-effects models could 

potentially overcome this problem. However, fixed-effects estimation is employed to deal with 

endogeneity in circumstances where firm-specific characteristics (time invariant) are correlated 

with the explanatory variable (Wintoki et al., 2012).  

In our example, the relationship between our explanatory variables and firm performance is 

dynamic — past realization of dependent variables (performance) may also affect current year 

performance. Simultaneity could potentially violate the strict exogeneity assumptions (Schultz 

et al. 2010). For example, in a fixed effect model, the relationship between R&D, corporate 

governance, control variables and operating performance of the firms may be determined 

simultaneously — investment in R&D and governance structure could be determined based on 

the expected corporate performance in the same year. Consequently, traditional fixed-effects 

and random-effects panel data static models would provide inconsistent and biased results 

(Wooldridge, 2012). As a GMM is more robust in dealing with these sources of endogeneity, 

we carried out a final check with the two-step system GMM. An important difference between 

fixed-effects and GMM is that fixed-effects estimation uses ‘strict exogeneity’ assumptions 

resulting into a static fixed-effects model in the following form: 

Performance (ROA) = f (RDSALES, Corporate governance, firm-level characteristics, and 

fixed effects).2  

We suggest that an appropriate econometric model should be a “dynamic” model of the form: 

                                                           
2 The following generic STATA command can be executed to run a fixed-effects model: xtreg depvar indepvars, fe. 

‘xtreg’ fits regression models to panel data. ‘Depvar’ indicates the dependent variable (ROA in our case), indepvar 

represents independent variables, and ‘fe’ implies the fixed-effects option. 
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 Performance (ROA) = f (Past performance/lag ROA, RDSALES, Corporate governance, firm-

level characteristics, and fixed effects).  

By including lagged values of past performance, we differentiated between a ‘dynamic’ and a 

‘static’ panel data model. A depiction of the endogenous relationships is also presented in 

Figure 1. 

--------------------------------- 

Insert Figure 1 about here 

--------------------------------- 

Based on the existing literature about endogeneity, Figure 1 indicates how the impact of 

investment in R&D expenditure, corporate governance characteristics, and firm-level 

characteristics on the financial performance could be endogenously determined. Larger firms 

may choose to invest more in R&D expenditures. Similarly, firms with poor financial 

performance (ROA) in one year may also choose different governance arrangements in 

subsequent years. Furthermore, poor financial performance may also affect the 

likelihood/percentage of investment in R&D expenditures. Therefore, this complex and 

dynamic relationship could not be captured through ‘static’ OLS/fixed-effects models. In 

applying a fixed-effects model, time-invariant explanatory variables (e.g., the industry 

classification of a firm) are not included, and failing to estimate such time-constant variables, 

the fixed-effects estimator has been criticized for ‘wasting’ very relevant information from the 

econometric specification (Owusu-Gyapong, 1986) 

In the next step, we explain how the two-step GMM system could address these endogeneity 

concerns.   

Step 5 – Two-Step System of GMM and Comparisons 

In model 3 (Table 4), we use a dynamic panel data estimation to overcome the endogeneity 

issues arising from reverse causality.  
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Our two-step system GMM model is presented in the following equation:

ititititit

ititititititititititit

SGSIZELEVER

SBOTSECDUALGDNBMNEDsBSIZERDSALESROAROAROA

 

  21     (4) 

The definitions for all explanatory variables are presented in Table 2. 
1itROA indicates one lag 

of the dependent variable ROA (previous year performance), and 
2itROA  denotes second lag 

of the dependent variable, representing performance in the year before previous year. These 

lags are included as explanatory variables in our GMM estimation. 

The GMM model controls for endogeneity by internally transforming the data and by including 

lagged values of the dependent variable. In this way, the GMM model offers a superior 

estimation technique compared to the OLS model. In the next step, we report a revised analysis 

of the governance-performance relationship, using a GMM method. As the GMM model 

control for endogeneity and includes lagged values and applies internal transformation process, 

the results reported under the GMM could be significantly different than those reported in the 

OLS column (Table 4, Model 1). For instance, using an OLS approach, Schultz et al. (2010) 

find a significantly negative relationship between executive remuneration and the performance 

of Australian firms. However, after controlling for unobserved heterogeneity, simultaneity and 

dynamic endogeneity by using the GMM approach, Schultz et al. (2010) did not find any 

significant impact of executive remuneration on the performance of firms.  

We find that the relationships of RDSALES, TSEC and SG with the operating performance of 

firms is consistent using OLS, fixed-effects and system GMM (no change in significance levels 

for all three models – see italic-values in Table 4). The impact of the remaining explanatory 

variables changed significantly (or significant levels changed even some of them turned out to 

be significant or insignificant) when we use static panel data model (fixed effects) and dynamic 

panel model (GMM), which captured the lagged values of previous two years’ financial 
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performance.  For example, with regard to control variable, firm size (SIZE) has a negative 

relation with ROA in all three models, which is consistent with the argument that larger firms 

have higher operating costs (Beiner et al. 2006). However, it showed the changes in the 

significance levels (the fixed model shows that it is significant at p = 0.1 while other two models 

show it is significant at p =0.01). Similarly, the variable NEDs showed an insignificant 

relationship due to endogeneity in the OLS model, in fact it is significantly associated as 

demonstrated by the GMM model (with p = 0.000213***). The Duality (DUAL) shows a 

negative relationship in the OLS model but it is positively and significantly associated as 

demonstrated by other two models. Table 4 shows other similar examples highlighted with 

bold text. 

--------------------------------- 

Insert Table 4 about here 

--------------------------------- 

In short, the GMM controlled for different kinds of endogeneity by including previous financial 

performance (lagged values of the dependent variable ROA) as an explanatory variable in the 

model. The GMM model controlled for the three major sources of endogeneity: (i) unobserved 

heterogeneity; (ii) simultaneity; (iii) dynamic endogeneity.  The emergence of the GMM 

technique could be considered as the new methodological development in business research, 

after it was recently employed by Wintoki et al. (2012) in governance research. The nature of 

the data (panel data) and the dynamic nature of the governance-performance relationship 

suggest that a GMM model offers more efficient and consistent estimates for the coefficients 

as compared with other estimation techniques.  

When applying the generalized method of moments model, researchers need to apply two post-

estimation tests to determine that an appropriate econometric model is applied. These tests are: 

(i) the Sargan test; and (ii) the Arellano-Bond test for first-order and second-order correlation. 

A critical assumption for the validity of GMM estimates requires that instruments are 
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exogenous. In other words, the findings from GMM will not be valid if the instruments are 

endogenously determined. The Sargan test is used to determine whether the econometric model 

is valid or not, and whether the instruments are correctly specified or not. In other words, if the 

null hypothesis is rejected, the researcher needs to reconsider the model or the instruments used 

in the estimation process. The post-estimation (Sargan test) can be executed in STATA using 

estat sargan command. Subsequently, if the Sargan test turns out to be insignificant it implies 

that the instruments included in the econometric specifications are exogenous.  

To examine the validity of a strong exogeneity assumption, the Arellano-Bond test for no auto-

correlation (or no serial correlation) is used under the null hypothesis that the error terms of 

two different time periods are uncorrelated. In other words, it means that the lagged variables 

are not correlated with the error term in the governance-performance equation. To execute this 

post-estimation test in STATA, the user needs to employ the estat abond command. The values 

for these two post-estimation tests are reported in Table 4, which confirms the validity of the 

instruments (model) used in our estimation process.  

4. Implementing GMM in STATA 

This study uses STATA software to execute a generalized method of moments (GMM) model 

to deal with endogeneity, showing how this robust technique can control for different kinds of 

endogeneity issues and thus providing unbiased estimates. However, it may be complicated to 

implement in STATA, as Roodman (2009) argues that such analysis is complicated and can 

easily mislead researchers. “Implementing them with a Stata command stuffs them into a black 

box, creating the risk that users, not understanding the estimators’ purpose, designs and 

limitations, will unwittingly misuse it” (Roodman, 2009, p. 87). This is another reason that our 

step-by-step procedure can help researchers to better understand endogeneity sources and 

address them accordingly. 
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For implementing the GMM operations in STATA, users can apply a number of inbuilt 

commands e.g., xtabond, xtdpd, and xtdpdsys commands. The STATA syntax can be used to 

apply the Arellano–Bover/Blundell–Bond’s dynamic panel data estimator. For a sample dataset 

with a dependent variable y and explanatory variables x1, x2, x3, and x4, Roodman (2009) 

developed the following xtabond23 STATA codes for dynamic panel data model 

xtabond2 y l.y x1 x2, x3, x4 gmm(y x1 x2, x3, x4 lag(a b)) noconstant twostep              (5) 

Lagged values (l.y) in the above two step dynamic model are included as regressors. These 

lagged levels of the dependent variable in the Arellano–Bond’s (1991) estimator are used as 

instruments to deal with endogeneity. Also, lag(a b) means the number of lags that researchers 

wish to include in the model. Owing to the internal transformation process, the numbers of 

observations are reduced by using the system GMM. In Appendix 1, we report generic STATA 

commands for implementing GMM in STATA and applying the post-estimation tests. 

5. Conclusions 

Endogeneity bias is an emerging issue in marketing and management science. Different sources 

of endogeneity in panel data could generate bias and inconsistent estimates. We used panel 

data for R&D expenditures, governance and financial performance of 101 UK listed companies 

over a period of 15 years from 2002 to 2016 as an example to empirically demonstrate how 

endogeneity can be addressed in panel data using generalized method of moments. 

We explained step-by-step procedures that can be used to deal with endogeneity bias in panel 

data. Succinctly, OLS regression provides inconsistent results in the presence of any source of 

endogeneity bias. This is confirmed using Durbin-Wu Hausman test. To overcome unobserved 

                                                           
3 STATA users can install this command in STATA using the following code: ssc install xtabond2 
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heterogeneity and to capture firm-specific effects, we employed the fixed effects estimation 

approach, which removes unobserved heterogeneity by internally transforming the data.  

However, fixed-effects model is also known as a ‘static panel data model’, which implies that 

implementing this model does not allow to use lagged values of the dependent variable. The 

dynamic panel data GMM model further extends the fixed-effects model, and, in addition to 

the internal transformation process, the lagged values of the dependent variable are also 

included as instruments to control for dynamic endogeneity. Thereby, we systematically move 

from basic OLS estimation to more sophisticated econometric techniques to control the 

different sources of endogeneity bias. We also provided user-friendly generic STATA 

commands that can be used by marketing researchers when they deal with marketing related 

panel datasets. 

Finally, we briefly introduced a number of potential databases (Bloomberg, Datastream, 

Thomson One and Compustat) that can be utilized by IMM researchers in extracting recent 

marketing related global datasets on advertising expenditures, patents, brand values, number 

of consumer controversies directly linked to companies’ products or services, product recall, 

eco-design products, energy-footprint reduction and organic-product initiatives. While the 

quantitative side of the IMM community has predominantly relied on surveys, we believe that 

these databases would potentially overcome some of the data collection challenges faced by 

marketing researchers. 
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Figure1. Conceptual framework 
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Table 1 Industrial Classification  

Name of industry No. of companies 

Aerospace 4 

Auto Parts 1 

Biotechnology 2 

Beverages 4 

Business Support System 7 

Utilities 6 

Containers and Packages 3 

Defense 4 

Industrial Parts/Machinery 9 

Electrical/Electronic Equipment 8 

Exploration and Production 1 

Telecommunications 5 

Food Products 8 

Mining 4 

Construction 6 

Oil and Gas 3 

Media 2 

Pharmaceuticals 6 

Household products 4 

Paper 1 

Software 5 

Chemicals 5 

Retailors 1 

Tobacco 1 

Transport Services 1 

Total 101 
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Table 2 Definitions of variables 
  

 

Variable name Definition 

Dtatastream 

Codes 

R&D Expenditures (RDSALES) Research and development expenditures divided by sales. 119/104 

Governance Variables 
  

Board size (BSIZE) The total number of board members at the end of the fiscal year. CGBSDP060 

Non-executive directors (NEDs) Percentage of non-executive board members. CGBSO06V 

Number of board meetings (NBM) The number of board meetings during the year. CGBFDP024 

Gender diversity (GD) Percentage of women on the board of directors. CGBSO17V 

Duality (DUAL) 1 if chairman and CEO are the same person, 0 otherwise. CGBSO09V 

Total senior executives’ compensation (TSEC) Logarithm of the total compensation paid to all senior executives (if total 

aggregate is reported by the company). 

CGCPDP054 

Single largest/biggest shareholder/owner (SBO) The percentage ownership of the single largest/biggest owner (by voting 

power) having shares ownership ≥ 3%. 

CGSRDP045 

 

Firm-specific Characteristics/Control 

  

Debt financing (LEVER) A firm's total debt divided by its total assets. WC03255/DWTA 

Firm size (SIZE) Natural l logarithm of a firm's total assets at the end of a financial year. DWTA 

Sales growth (SG) Current year's sales minus previous year's sales divided by previous years 

sales 

    104-104/104 

Operating performance-Dependent variable 
  

Return on assets (ROA)  Operating income divided by total assets at the end of a financial year. WC01250/DWTA 
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Table 3 Descriptive Statistics 

Variable         Observations Mean Standard deviation Min Max 

RDSALES 1515   0.04   0.08   0.00   0.50 

BSIZE 1515   9.07   2.50   5.00 18.00 

NEDs 1515 65.26   9.99  22.22 88.69 

NBM 1515   8.75   2.51   2.00 26.00 

GD 1514   9.18 10.46   0.00 50.00 

DUAL 1515   0.13   0.34   0.00   1.00 

TSEC 1515   6.68   0.45   3.44   9.13 

SBO 1027 14.06 11.44   3.00 72.30 

LEVER 1515   0.23   0.17   0.00   0.89 

SIZE 1515 14.28   1.88   8.93 19.71 

SG 1515   0.10   0.39  -0.89   4.86 

ROA 1513   0.14   0.10 -0.22   0.50 
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          Table 4 Empirical Results Reported for OLS, Fixed-effects and System GMM 

 

        Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.  

         

 

  

 Model(1) Model(2) Model(3) 

VARIABLES OLS Fixed effects System GMM 

    

L.ROA         0.594*** 

        (0.0176) 

L2.ROA         0.0706*** 

        (0.0130) 

RDSALES 

 

BSIZE 

    0.376*** 

   (0.0413) 

    0.00636*** 

      0.140*** 

     (0.0529) 

     -0.00263* 

      0.193*** 

     (0.0302) 

      0.000626* 

    (0.00182)      (0.00137)      (0.000341) 

NEDs      0.000355       0.000444*       0.000213*** 

     (0.000312)      (0.000236)      (4.56e-05) 

DUAL     -0.00884       0.0165**       0.00891*** 

     (0.00928)      (0.00760)      (0.00340) 

TSEC      0.0650***       0.0331***       0.0325*** 

     (0.00963)      (0.00617)       (0.00394) 

LEVER      0.137***      -0.0364*       -0.00839 

     (0.0191)      (0.0187)       (0.00769) 

NBM     -0.00263**      -0.00127*       -0.00154*** 

     (0.00106)      (0.000710)       (0.000161) 

GD       0.00108***       0.000341       -0.000121 

     (0.000313)      (0.000215)       (7.62e-05) 

SBO       0.000606**      -0.00144***        0.000816*** 

      (0.000270)      (0.000346)       (0.000109) 

SIZE      -0.0163***      -0.00855*       -0.00676*** 

      (0.00306)      (0.00480)       (0.00171) 

SG        0.0525***       0.0246***        0.0496*** 

       (0.0115)      (0.00616)       (0.00330) 

Constant       -0.181***       0.0729       -0.0972*** 

       (0.0499)      (0.0685)       (0.0171) 

    

Observations        1,026       1,026         1,006 

R-squared        0.207        0.089  

Number of firms 

AR(1) 

AR(2) 

Sargan test statistics 

         101          101          101 

       0.0022 

       0.1411 

     86.10505 
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 Appendix 1 Generic STATA Commands for Implementing GMM in STATA and Applying Post-

estimation Tests 

Procedures/tests Codes 

Fixed effects xtreg depvar indepvars, fe 

Installing xtabond2 in STATA ssc install xtabond2 

Applying two-step GMM using 

xtabond2 command 

xtabond2 y l.y x1 x2, x3, x4 gmm(y x1 x2, x3, x4 lag(a b)) noconstant 

twostep   

Sargan test estat sargan  

The Arellano-Bond test for first-

order and second-order correlation 
estat abond  

  

 

 


