
Digital Twins in Agriculture: Orchestration and Applications
Marc Escriba-̀Gelonch,* Shu Liang, Pieter van Schalkwyk, Ian Fisk, Nguyen Van Duc Long,
and Volker Hessel*

Cite This: J. Agric. Food Chem. 2024, 72, 10737−10752 Read Online

ACCESS Metrics & More Article Recommendations

ABSTRACT: Digital Twins have emerged as an outstanding opportunity for precision farming, digitally replicating in real-time the
functionalities of objects and plants. A virtual replica of the crop, including key agronomic development aspects such as irrigation,
optimal fertilization strategies, and pest management, can support decision-making and a step change in farm management,
increasing overall sustainability and direct water, fertilizer, and pesticide savings. In this review, Digital Twin technology is critically
reviewed and framed in the context of recent advances in precision agriculture and Agriculture 4.0. The review is organized for each
step of agricultural lifecycle, edaphic, phytotechnologic, postharvest, and farm infrastructure, with supporting case studies
demonstrating direct benefits for agriculture production and supply chain considering both benefits and limitations of such an
approach. Challenges and limitations are disclosed regarding the complexity of managing such an amount of data and a multitude of
(often) simultaneous operations and supports.
KEYWORDS: Digital Twins, Internet of Things, precise agriculture, agriculture 4.0, Industry 4.0

1. INTRODUCTION
The rise of the world population has increased global demands
on food production, not only for subsistence but also to
support well-being and the shift to a more sustainable lifestyle.
This is further compounded by the need to reduce
consumption of natural resources and increase agricultural
productivity.1 Precision agriculture (PA) has emerged
subsequently as a more productive alternative, employing
advanced agricultural solutions to provide, e.g., exactly the
right amount of nutrients at the right moment for the plants.
PA has to leverage the collection of a large volume of location-
based agricultural data via sensors, enabled by autonomous,
disruptive, and data-intensive technologies using Internet of
Things (IoT) architecture. This combined approach aims to
optimize agronomic inputs such as water, fertilizers, agro-
chemicals, or soil tillage. Cutting-edge technologies are the
Metaverse concept, using virtual-reality space to enable human
users’ interaction with a computer-generated environment, and
Digital Twins (DTs), aiming at virtual representations of
reality.2 The latter is reviewed herein.

DTs are defined as “a virtual representation of real-world
entities and processes, synchronized at a specified frequency
and fidelity, representing the past, present and simulate
predicted futures guided by domain knowledge, and
implemented in information and operative technology (IT/
OT) systems”.3 Elemental DT processes include simulation,
integration, testing, monitoring, and maintenance, and
essential DT units encompass processes, real-world objects,
or biological systems created using computational models.4

The understanding and manipulation of the virtual replica
serves for real-world optimization, resulting in improved
efficiencies surpassing limitations, reduced costs, and enhanced
decision-making. The physical (real-world) space contains

physical assets, sensors, or actuators, while the virtual space
includes multiphysics, multiscale, or probabilistic simulation
models. Using real-life data collected from past studies,
machine learning (ML) models and simulations support data
analysis.

The interaction and integration of intelligent digital
technologies into production, including industrial IoT net-
works, Artificial Intelligence (AI), Big Data, robotics, and
automation, has developed the concept of the fourth industrial
revolution, so-called Agriculture 4.0,5 Figure 1. The benefits

and applications of DTs are continuously expanding along
different production sectors as industries are willing to discover
and explore new production pathways along their capabilities.
For example, DTs can be applied to simulate weather patterns,
test treatments, or predict productivities oriented toward
resource optimization. Not surprisingly, market estimates

Received: March 2, 2024
Revised: April 17, 2024
Accepted: April 19, 2024
Published: May 6, 2024

Figure 1. Technological evolution of agriculture along ages.
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about IoT predict an increase from USD 7.6 billion to 24.1
billion by 2030, with benefits over USD 1.5 trillion.6

The relationship between an IoT platform and DTs is
integral, as they work in tandem to create a comprehensive and
interconnected system that enhances monitoring, control, and
optimization of physical assets and processes (physical world).
A common IoT platform includes three main parts, including
the cloud server (backend), connections router, and devices
(front end), Figure 2. Each part is equipped with a local

decision-making center to minimize bandwidth use, improving
reliability, security, and privacy.7 The need for real-time
interaction makes time the real challenge. Ferrari et al.
evaluated the communication delay (round trip time, RTT)
due to source−cloud data transfer, setting it to 300 ± 70 ms
with a peak below 1 s, concluding that this RTT was still too
long for real-time interactions.8 This delay time is caused by
the interaction of local centers with their own environment
using actuators or sensors in a machine-to-machine fashion
(M2M), receiving real-time data and preprocessing to ease the
cloud through an edge router for a global decision.5 M2M
connections can be performed directly or indirectly depending
on the location of the sensor in or out of the wireless coverage
area, respectively, using as many routers as needed to deliver
the message.

Local IoT devices are allowed to take local decisions, so they
are equipped with a simple deep learning algorithm to compile
and process all information provided by sensors or neighboring
device interactions, enabling intermediate decision nodes via
AI. This architecture mimics the human nervous system,9

where with a consumption of 20 W, the brain is composed of
86 billion of neurons whereby information is transferred
through synapses using electrical pulses of about 100 mV
during 1−2 ms.10

The review is divided in three parts, the first being a general
description of what DTs are, then an overview of how DTs are
orchestrated for agricultural processing, and finally an extended
overview of applications of DTs in agriculture with their
outcomes and benefits.

2. DIGITAL TWINS: ARCHITECTURE AND
COMPONENTS

Depending on the complexity and scope, the architecture of a
DT can be very different. In a general view, creating and
maintaining a DT involves a combination of various machine-
to-machine (M2M) technologies that collaborate to replicate,
monitor, and analyze physical objects or systems in a digital

environment. The emergence of DTs stems from recent
development of key computing, communication, and sensing
technologies.11 Many efforts have been undertaken to provide
technical and architectural frameworks for the development
and implementation of DTs, i.e., The Digital Twin
Consortium’s (DTC) Digital Twin Capabilities Periodic
Table12 and Reference Architecture.13

Architectures may vary according to the following goals:
Schleich et al. (2017) introduced a comprehensive architecture
to connect physical and virtual twins, focusing on scalability,
interoperability, expansibility, and fidelity,14 while Alam and El
Saddik (2017) proposed a DT for cloud-based cyber-physical
systems.15

Various DT architectures can be categorized according to
the specific purposes or monitoring scopes:15 (i) a single DT
represents an individual physical object or system, typically
used for simple or standalone entities, such as a single machine,
equipment, or product, providing a detailed virtual representa-
tion of that specific object, enabling monitoring, analysis, and
simulation; (ii) a system-level DT represents an entire system
or process, encompassing multiple interconnected components
and subsystems, offering a comprehensive view while providing
insights into the interactions and dependencies throughout the
lifecycle, optimizing product performance, monitoring usage,
and enhancing maintenance processes; or (iii) a biomass DT
represents individuals or groups of living beings in a virtual
environment, to be used for production, education, or
healthcare. In this review, we focus on agriculture production,
whose scope sits between the biomass DT (iii) and a system
level production process (ii).
2.1. Digital Twin Architecture: Structure of the Data

Flow. In a common DT architecture, sensor data are collected
and preprocessed to construct a DT model in the cloud, Figure
3. This data can be both M2M-analyzed to take immediate

action and simultaneously used to simulate and construct the
optimization model. Through this data flow, the model is
continuously updated with new data, so predictions can be
validated in real time in response to real events. This iterative
process of “continuous monitoring−model update−predic-
tion−validation” allows deep learning, as predictions become
more and more accurate. Pedersen et al. highlighted the
relevance of interconnections among these steps for the proper
functionality of the DT.16

Figure 2. General structure of the IoT platform.

Figure 3. Data flow: data collection, preprocessing, modeling,
simulation, analytics, decision support, visualization, and control,
ultimately aiding in optimizing farm operations and improving
decision-making processes.
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The simulation of a DT requires the use of mathematical
models to depict and characterize the dynamics of the physical
phenomena under assessment, which are fed with data
provided by the proper real-time actuators. These models
analyze the behavior and relationships of the observed physical
phenomena and are validated by real experimental results
either in the field or in the laboratory, which inform the DT
about the confidence of the previous prediction generating a
powerful source of new insight.17 The combination of these
algorithms in neural networks constitutes an essential tool for
AI, to prevent events based on previous data processing,
facilitating decision-making, and anticipating actions. DTs are
consequently a collection of models built on real-data-bases to
assess and predict the behavior of physical processes, designed
in a format compatible with automated systems to carry out
the corresponding actions.18 As technology continues to
advance, the integration of DTs with other emerging
technologies such as blockchain, AI, and advanced analytics
will likely further enhance their capabilities in transforming
agriculture.

In the next section, the general components of the DT
system architectures are disclosed.
2.2. Digital Twin Components. 2.2.1. Data Processing

and Analysis (I): Artificial Intelligence (AI). AI enables the
comprehension of large volumes of data, which typically could
exceed human processing capacities, leading to fast conclusions
and decisions that can be executed and carried out by the
physical counterpart, in addition to its learning capacities.19

Yet with the additional prediction capacity enabled by deep
learning, as a result of the storage of previous decisions and
derived consequences of actions, DTs enable an intelligent and
fast real-life counterpart action against potentially dangerous
situations regarding crop health or productivity, irrigation
efficiency optimization, and failures of safety mechanisms at
different levels (production, postharvest, storage), making
immediate M2M corrections to preserve biomass and
machinery integrity.20

2.2.2. Data Processing and Analysis (II): Internet of Things
(IoT). IoT devices, such as sensors, actuators, and data loggers,
are crucial for gathering real-time data from physical objects or
systems. In agriculture, IoT devices can measure and capture
parameters such as soil moisture, temperature, or images (e.g.,
using a hyperspectral camera that gives insight into surface
chemistry). 5G technology (ultrahigh reliability and ultralow
latency) allows DTs for constant monitoring and analysis,
taking and controlling precise actions to adapt the physical
counterpart to any change in conditions. The contribution of
the DT relies on the feedback to the environment, predicting
possible situations derived from previous experiences.21

2.2.3. Data Collection: Sensors and Actuators. These
devices are responsible for capturing and transmitting data
from the physical world to the DT. Examples of physical
sensors include those that measure critical parameters related
to temperature, humidity, pressure, velocity, and material
composition; noncontact sensors might capture visible light
(camera) or insights into changes in surface chemistry
(hyperspectral cameras). Actuators, meanwhile, can enable
the DT to influence the physical system as a replication of
sensory capabilities. The use of sensors allows the DT to
optimize production processes by leveraging previously stored
comparative information. Integrating sensors for collecting
real-time monitoring information and actuators for taking
actions or process corrections enables data-driven analytics to

simulate scenarios for optimization purposes, achieving
resource optimization and cost savings in various fields.

2.2.4. Communication Technologies. Wireless communi-
cation protocols such as message queuing telemetry transport
(MQTT) and the constrained application protocol (CoAP)
facilitate the seamless M2M transfer of data between IoT
devices and the DT. This ensures that the digital
representation is continuously updated with real-world data.
Effective communication requires a millisecond time frame,
currently demanding 5G technology standards. Communica-
tion types are sorted by surface communication coverage: (1)
RFID (radio frequency identification), a technology that allows
multiple objects to be individually identified using radio waves,
suitable to be used in, e.g., storage and supply chain
monitoring.22 (2) Wireless networks from WPAN (short-
range connectivity such as Bluetooth) and WLAN (medium-
range connectivity such as domestic WiFi) to WWAN (long-
range connectivity such as Internet mobile phones). Yet, Low
Power Wide Area Networks (LPWANs) have been described
as optimal for IoT devices to optimize energy efficiency with
long battery life at low cost.23

2.2.5. Cloud Computing. Cloud platforms provide the
computational power and storage needed to handle the vast
amounts of data generated by DTs. Cloud services also support
scalability, allowing the DT to grow and adapt when the
physical system evolves anytime and anywhere, managing
larger data sets without local hardware limitations. Through
this approach, the real side of the twin can access and interact
with the virtual side from any location and at any time,
adapting the situations to environmental changes, such as
climatic factors.

Edge computing (deployment of computing and storage
resources at the location where data is produced) involves
processing data closer to the source (near the IoT devices)
rather than relying solely on centralized cloud servers.17 This
approach can reduce latency and enhance real-time capa-
bilities, which are crucial for applications where quick decision-
making is essential.

2.2.6. Virtual Representation: Augmented (AR), Virtual
(VR), and Mixed Reality (MR) Technologies. AR, VR, and MR
technologies enable users to interact with and visualize DTs in
immersive environments. This capability proves particularly
useful for training, maintenance, and troubleshooting purposes,
from which DTs are derived. For example, the DT enables
virtual nature simulations and botanically correct plant models
as holograms, similar to Microsoft HoloLens.24 Here, the
hologram is generated based on real-time data from sensors
properly installed in remote key locations, allowing individuals
to interact with media enabling physical actions as if interacting
with their real-life counterparts. Because of this interaction,
tasks can be performed remotely using local robotic systems
that mimic human movements, boosting the performance of
the DT toward immersive realistic interactions.

2.2.7. 3D Modeling, Simulation, Data Analytics, and
Machine Learning. Advanced analytics, including ML
algorithms, play an important role in analyzing the data
collected by DTs. These technologies can identify patterns,
make predictions, and provide insights that aid in decision-
making and optimization. Creating an accurate digital
representation often involves 3D modeling and simulation
tools.25 These tools help in visually replicating physical objects
or systems and can be used for testing various scenarios. ML
and deep learning (DL) are simulation models, which involve a
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combination of (i) actual data, (ii) a prediction model, and
(iii) a method for modifying and refining the model, Figure 4.

The actual data are inserted in the prediction model, which
generates a response, conclusion, and/or action This new
experience is then considered by the refining model to adjust
the model based on real experiences. In an agricultural context,
once the model is trained, validated, and verified on the digital
side, conclusions about soil and plant health, leaf area, and
height can be obtained regarding the physical side. In
agriculture, DTs can extend time scales over which the object
and its behavior undergo significant variations, such as plant
growth.

2.2.8. Safety and Trustworthiness. Besides a strict
protection of the DT from cyber threats, robust cybersecurity
encryption ensures the integrity and confidentiality of the data
associated with DTs. Trustworthiness is taken here globally,
meaning the degree of confidence regarding the proper process
performance, including safety, security, privacy, reliability, and
resilience in the face of environmental disturbances, human
errors, system faults, and attacks.26 Integrity, reliability, and
credibility are also key points when managing key operations
to real counterparts, ensuring the authenticity and reliability of
data sources. Both virtual and real parts must trust each other
to develop a constructive and synergic function, thereby
ensuring secure interactions.27 This privacy degree is achieved
using cryptographic codes and biometric measurements such
as ECG (electrocardiogram) and haptic biometrics. Tech-
nologies like blockchains facilitate transparency (through

agricultural supply chain), security (quality, plant health, and
productivity), automation (temperature, irrigation, and plant
health), and data storage.27

2.2.9. Application Programming Interfaces (APIs). APIs
enable the integration of different software components,
allowing DTs to interact with other systems and applications.
This interoperability is essential for the seamless flow of data
and information. The successful implementation of DTs often
involves a combination of these technologies tailored to the
specific requirements and characteristics of the physical system
or object being replicated. As technology progresses, the
capabilities and applications of DTs are likely to expand
further.21

2.2.10. Physical Entity Model. A physical entity in a DT is
not merely a static representation but a dynamic and
interconnected digital counterpart that replicates the entity’s
geometry, behavior, and characteristics. This digital represen-
tation enhances understanding, facilitates optimization, and
supports decision-making throughout the entity’s lifecycle.

3. DIGITAL TWINS IN AGRICULTURAL PRODUCTION:
CONCEPTS AND BENEFITS

Agriculture is moving toward digitalization through using AI,
IoT, and data modeling systems.28 A DT carries out the
simulation, monitoring, diagnosis, prediction, and control via
real-time and accurate digital mapping, e.g., for crops.
Agricultural DTs integrate these instruments in cyberspace.

In agriculture, DT technology significantly can increase
productivity and efficiency by creating accurate virtual models
of crops, livestock, or entire farms.29 This technology allows
agricultural practitioners to monitor and analyze key factors
such as crop growing conditions, soil quality, and climate
change in real time to make more precise decisions.

This section and the following one are framed by the use of
DTs along the lifecycle stages of agricultural production. DTs
can be applied from the beginning of a crop production
lifecycle up to the final food product, Figure 5. The complexity
of agricultural operations asks for a balanced DT design that
avoids developing costly dedicated physical prototypes, rather
being modular to easily integrate new components for process
performance updates.30 The DT interacts with the physical
twin via monitoring, traceability, compliance, and learning.
3.1. Agriculture 4.0: The Smart, Sustainable Way of

Digitalization and Automation. Agricultural production in
the last three decades has evolved from an artisan business into
an automated, highly regulated set of interconnected machines,

Figure 4. Common machine learning data flow in digital twins.

Figure 5. Digital twin interaction along product lifecycle.

Journal of Agricultural and Food Chemistry pubs.acs.org/JAFC Review

https://doi.org/10.1021/acs.jafc.4c01934
J. Agric. Food Chem. 2024, 72, 10737−10752

10740

https://pubs.acs.org/doi/10.1021/acs.jafc.4c01934?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jafc.4c01934?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jafc.4c01934?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jafc.4c01934?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jafc.4c01934?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jafc.4c01934?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jafc.4c01934?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jafc.4c01934?fig=fig5&ref=pdf
pubs.acs.org/JAFC?ref=pdf
https://doi.org/10.1021/acs.jafc.4c01934?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


following trends signaled by the automotive industry in the
1930s and the chemical industry in the 1990s of the past
century, respectively. The last step of these so-called
agriculture revolutions is Agriculture 4.0 as the fourth
agriculture revolution that uses digital technologies toward a
smarter and environmentally responsible industrial sector.31

This Agriculture 4.0 encompasses digitalization and automa-
tion, including Big Data, AI, robots, IoT, and virtual and
augmented reality.
3.2. Digital Twins along the Agricultural Lifecycle. In

agriculture and as detailed below, DTs are used to create
virtual models of agricultural operations, machinery, and
systems. Using sensors and IoT coordinated by cloud
computing, DTs simulate and refine farming methods within
virtual settings.32 As an example, 28 case studies on DTs in
agriculture were assessed by Pylianidis et al. highlighting the
possibilities of DTs to be applied to revolutionize agriculture.33

Yet, agriculture is a complex system with various interaction
levels. In an ideal structure, each level would require a specific
DT with the corresponding dynamic model to optimize
farming operations, thereby reducing environmental impacts
while increasing cost competitiveness and productivity, Figure
6. Each DT would be coordinated by a super DT or
“Supervisory Twin” suitable to have a holistic view and predict
supra-interactions between DTs.26

3.2.1. DT Lifecycle Levels. Interaction levels, as depicted in
Figure 6, would include the life cycle stages:
(1) An edaphic level, where the soil structure, combined

with proper irrigation and fertilization, can be simulated
to prevent alterations in agricultural land using IoT real-
time data and simulate effects for informed decision-
making.34

(2) A phytotechnologic level, where labors, fertilizer
dosages, and managing costs such as fuel can be
improved efficiently and sustainably.

(3) A postharvest level, where the DT can simulate food-
related processes such as drying, cooling, transport, and
storage degradation.35

(4) A farm infrastructure level where levels 1 to 3 are
integrated and the DT replicates physical structures on a
farm, such as fields, buildings, and equipment, in a
virtual environment. This enables farmers to visualize
their entire operation digitally.

3.2.2. DT Modeling Functions and Supports. The above-
defined levels ask for the following DT modeling functions and
supports.
(1) Crop modeling: DTs simulate the growth and develop-

ment of crops based on various parameters like weather
conditions, soil quality, and agricultural practices. This
helps in predicting crop yields, identifying potential
issues, and optimizing cultivation strategies.

(2) Precision agriculture support: DTs play a crucial role in
precision agriculture by providing real-time data on soil
conditions, moisture levels, and crop health. This allows
farmers or AI to make informed decisions about
irrigation, fertilization, and pest control, leading to
more efficient resource utilization.

(3) IoT integration: IoT devices, such as sensors and drones,
can be integrated with DTs to continuously collect data
from the physical environment. This real-time data helps
to keep the digital twin updated and facilitates better
decision-making.

(4) Climate and weather modeling: DTs can incorporate
weather and climate data to simulate how different
conditions might affect crops. This helps farmers to plan
for potential challenges, such as extreme weather events
or changes in temperature and precipitation.

(5) Supply chain optimization: DTs can be extended to
model the entire agricultural supply chain, including
storage, transportation, and distribution. This allows for
better coordination and optimization of the entire food
preservation and distribution process.

(6) Decision support systems: By integrating AI and ML
algorithms, DTs can provide actionable insights and
recommendations; i.e., they can suggest optimal planting
times, identify areas requiring additional irrigation, or
recommend specific crop varieties based on environ-
mental conditions.

(7) Monitoring and predictive maintenance: DTs can be
applied to agricultural machinery and equipment,
enabling predictive maintenance, before a breakdown
occurs, reducing downtime, and improving overall
efficiency.

(8) Data-driven farm management: The data generated and
analyzed by DTs contribute to data-driven M2M farm
management. Farmers can track historical performance,

Figure 6. Conceptual structure of multiple DT organizations along lifecycle.
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assess trends, and make strategic decisions to improve
productivity and sustainability. In this review, the
structure and data flow on different DT integration in
agriculture along the lifecycle is overviewed focusing on
production.

3.3. Sustainability Benefits and Drawbacks of Using
Digital Twins in Agriculture. While DTs generally are used
in engineering to prevent and respond to critical system
failures to maintain product quality, agricultural DTs are more
focused on tackling climate change through a proper
optimization of scarce natural resources, mitigating the impact
of extreme weather, or managing the effects of multiple
simultaneous stressors.36 DTs propose preventive actions to
mitigate or avoid the effects not only in production crops but
also in the entire supply chain.

Early detection of potential issues such as disease outbreaks
or nutrient deficiencies allows timely interventions through
active decision-making before they escalate, thereby maintain-
ing crop health in a sustainable (i.e., lower doses required) and
efficient manner in both greenhouses and extended fields.

3.3.1. Sustainability Benefits. The application of DTs in
agriculture can result in business profit and labor savings as
well as socioeconomic and environmental benefits. The
process intensification derived from the use of DTs includes
plant growth intensification, leading to shorter production
cycles with optimal use of resources. The application of a DT is
initially supposed to result in less resource input and less
pollution. A DT equipped with decision-making capabilities
has the capacity of taking actions on the environment as the
virtual models are transferred to the physical twin. Con-
sequently, this optimization must be evaluated also in terms of
the ecological consequences of the selected action,37 Figure 7.

The aforementioned four-level implementation of DTs in
agriculture is expected to deliver sustainability benefits along
four key fields within agriculture:
(1) Soil preservation: Soil is the most important resource, as

most crops depend on the soil’s health. By assessing soil
properties using a DT, nutrients, hydric equilibrium,
sustainable fertilization, and irrigation can be planned
preventing soil degradation and promoting sustainable
crop growth.

(2) Crop development: Virtual simulations of biomass
development, mirroring plant growth and behavior,

allow decision-making regarding planting, irrigation, and
harvesting. This enhances yield and optimizes resource
allocation, based on the integration of soil, weather, and
nutrient data delivered.

(3) Climate adaptability: Integrating real-time data into a
DT allows prediction of crop responses to climate
variations. Early modeling enables adaptive measures to
be taken to reduce climate-related impacts and improve
crop resilience.

(4) Agronomic machinery: DTs allow optimization of
machinery use, increasing efficiency and reducing
downtime, in addition to the possibility of carrying out
virtual tests without compromising real equipment.

3.3.2. Adverse Effects. Adverse effects, however, cannot be
excluded and must be considered in a holistic environmental
assessment. The use of DTs involves the use of many devices,
sensors, and actuators, which might cause electronic waste
generation. Implementing better product tracking and return
schemes, eased by customers, is crucial for transitioning from
the prevailing linear model of “take, make, and throw away”
toward Circular Economy.38 Innovative business and reverse
supply chain models, circular designs, safety for e-waste
collectors, and ways to formalize and empower informal e-
waste workers are part of the picture.38

Additionally, the use of private data, either as individual or as
industrial entities, adds a responsible DT layer to a DT
system.39 Information is continuously transferred including
behavior and energy patterns and potential anomalies, which
should not be accessible to third parties without the consent of
both organizational and user stakeholders. There is a critical
need to establish comprehensive privacy policies in DT
deployment and design to ensure their responsible and ethical
use.

4. DIGITAL TWINS IN AGRICULTURAL PRODUCTION:
APPLICATION DEMONSTRATION ALONG THE
LIFECYCLE

Unlike major industry sectors such as chemistry and car
manufacturing, the agricultural business is solely conducted
through the assembly of industrial machines. Rather, it is at
least partly accomplished by using those machines within
closed ecological systems (CESs), which create a hierarchy of
interlaced systems.

Figure 7. Sustainable benefits and adverse effects of using digital twins in agriculture.
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The following text is structured in the use of DTs for (i)
agricultural machinery, (ii) agricultural resourcing (soil, water),
(iii) greenhouses as closed agricultural systems, (iv) hydro-
ponics as closed agricultural systems, and (v) postharvest
agriculture, Figure 8.

4.1. Digital Twins for the Edaphic Lifecycle. 4.1.1. Dig-
ital Twins for Soil and Water Management. DTs can
simulate different irrigation and fertilization scenarios, enabling
farmers to optimize water and fertilizer use, thereby reducing
waste while increasing crop yields.40 Additionally, DTs can
predict the occurrence of diseases and pests, allowing farmers
to take more effective local treatment measures, thereby
reducing the use of chemical pesticides, protecting the
environment, and reducing costs.41 Furthermore, DTs can
also help simulate the entire agricultural ecosystem. For
example, it can be used to assess the impact of different
agricultural practices on soil health and biodiversity.42 By
analyzing soil, climate, and historical data, they can guide
farmers to make more effective planting plans, increase yields,
and reduce resource waste.

Soil monitoring is central in agriculture and particularly
relevant in the early plant growth phase. Insights into the soil
can guide the dosage of fertilizers and plant density, with a final
impact on the environment, human health, and production
costs. A DT was coupled to soil sensors for monitoring
moisture (to assess irrigation efficiency), temperature, organic
matter, and soil pollutants.43 Soil mapping, coupled to AI,
provides soil information based on field and laboratory
investigations.44 Digital technologies used in soil-related DTs
include wireless system networks, IoT, edge-computing, local
weather-based controllers, and soil sensors. Alves et al.
developed a DT for smart water management taking data
from temperature and humidity sensors, soil moisture, ambient
light, as well as geospatial position sensors, connected to an
IoT system, the cloud, and the physical twin.45,46 The cloud
contains models to simulate the behavior of the soil and crops.

The soil-DT management guides water consumption
patterns for reducing water losses47 and facilitates maintenance
of irrigation management systems.48

4.2. Digital Twins for the Phytotechnologic Lifecycle.
4.2.1. Digital Twins for Weather Modeling. Numerous
reports emphasize the value of a DT for climate adaptation
and environmental sciences, marking the next stage of DT use
after its application to the manufacturing industry. DTs can
serve as interactive models for weather and climate prediction,
on a planet scale and for ages.49,50 “Environment aware digital

twins” (EA-DTs) are weather, climate, and environmental
information systems to inform decisions concerning essential
industrial and life safety, including cities, ports, flood barriers,
energy grids, and transport networks,49,50 Figure 9. The

European Destination Earth (DestinE) initiative developed a
DT for climate change adaptation and disaster management on
the global scale.51 This endeavor allows finally to make better
use of renewable resources, water, food, and energy. In
Denmark, a national DT has been developed as a hydrological
information and prediction (HIP) portal.52 Updating of the
real-time HIP allows for the integration of submodels. Under
the umbrella of the green transition, the European Union is
underway to provide funds for DT initiatives. The imperative is
to target DT design beyond big data storage, but rather be “fit
for purpose” to achieve Earth system simulations and
observation capability on a new standard not seen before.53

DTs were designed to investigate the impact of weather and
climate on urban54,55 and natural environments.56

Despite the multiple reports on weather and climate DTs
and their obvious relation to agriculture, specific agricultural
DTs seem to be missing in the literature, as far as we could
investigate.

4.2.2. Digital Twins for Cost Management. DTs for
lifecycle cost estimation can aid in the early product design
stage in manufacturing, yet their application is hindered by the
complexity of the processes involved. Uses are reported across
diverse industrial sectors, including the optimization and
maintenance of railways, impact analysis in the oil and gas
industry, and health monitoring.57,58 A DT was proposed to
overcome this gap via automatic cost modeling using an
adaptive data structure and ontologies throughout the product
lifecycle.59 Another approach to achieve cost-efficiency in DT
development has been proposed by modularization via a set of
reusable and recomposable DT modules that allow generation
of multiple DT variants,60 as demonstrated for the space
industry. The coapplication of DTs and blockchain tech-
nologies helps lifecycle assessment, as practiced in building and
construction.61

Despite some reports on DT use for cost management, a
specific agricultural DT appears to be missing in the literature,
as far as we could investigate.

4.2.3. Digital Twins for Agricultural Machinery. DTs allow
for the automation of agricultural machinery, which serves
various purposes, including fertigation, pest treatment, and

Figure 8. Possible applications of digital twins along the supply chain
in agriculture. Figure 9. Environment-aware digital twin scheme with weather and

climate information.

Journal of Agricultural and Food Chemistry pubs.acs.org/JAFC Review

https://doi.org/10.1021/acs.jafc.4c01934
J. Agric. Food Chem. 2024, 72, 10737−10752

10743

https://pubs.acs.org/doi/10.1021/acs.jafc.4c01934?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jafc.4c01934?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jafc.4c01934?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jafc.4c01934?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jafc.4c01934?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jafc.4c01934?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jafc.4c01934?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jafc.4c01934?fig=fig9&ref=pdf
pubs.acs.org/JAFC?ref=pdf
https://doi.org/10.1021/acs.jafc.4c01934?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


harvesting. Optimal machinery use can save resources and
reduce costs for fuel, fertilizers, and salaries (to substitute
manual by robot work), while increasing production volumes
and sustainability.62 In agriculture, the reliability of machines
and predictive maintenance are paramount, particularly during
critical harvesting periods. DTs harness the potential of data-
driven decision-making to optimize agricultural machinery
performance, enabling farmers to prevent breakdowns and
minimize maintenance costs. Autonomous machines and
robots precisely and reproducibly carry out labors 24/7,
ensuring high standards in quality of products,63 Figure 10.

Verdouw et al. developed a DT suitable to track real-time
movement of agronomic machines for energy monitoring,
economic efficiency, and optimal productivity.18 DTs can not
only control machines but also allow for M2M programming of
the robots to interact without human intervention.64,65

4.3. Digital Twins for the Postharvest Lifecycle
(Food). The postharvest period encompasses a range of
activities such as harvesting, handling, transportation, process-
ing, storage (including drying and/or cooling), and marketing
of agricultural products. This phase is crucial for preserving the
quality and value of the harvested product as plants cannot
withstand any further damage or alterations. Real-time
monitoring in an agri-food supply chain DT might interact
with these operations, reducing losses and monitoring and
optimizing food processing, storage conditions, marketing, and
transportation, thereby increasing the robustness and resilience
of the chain.66 DTs enable the creation of a comprehensive
and real-time digital representation of the entire supply chain
postharvest. With consumers increasingly concerned about the
source, quality, and safety of the food they consume, DTs
provide proper tracking and tracign of the purchased products.

4.3.1. Application Demonstration of DT for Postharvest
Agriculture (Food). DTs can track the product along the
supply chain, defining traceability parameters and increasing
food security. Environmental conditions, handling and trans-
portation, processing, and environmental parameters along
postharvest highly influence the quality of vegetables,67 Figure
11. Verboven et al. reported a DT with the capacity of data
collection, IoT with sensor communication, data storage, and
big data analytics and a simulation platform with decision
supports in the virtual side.68 Defraeye et al. applied a DT for
assessing the mango postharvest supply chain to simulate
biochemical quality changes during this stage.69 Factors such as
air speed on storage, cold chain length, and delivery air
temperature on the fruit quality were measured and assessed in
real time by the DT, quantifying fruit quality losses and
suggesting proper refrigeration and logistic conditions to

reduce food losses. As horticultural products are especially
sensitive, the use of a DT is especially advantageous to forecast
their shelf life through the cold chain, while customers take
greater confidence about product’s quality along the supply
chain.69 Burgos et al. described a DT based on supply chain
analysis, including not only parameters such as production
(quality), transportation (i.e., vehicle capacity), warehouses
(inventory), sourcing, and shipment (demand) but also
insights from customers and suppliers, concluding that DTs
can also be used to monitor and correct performance during
the food supply chain.70 The contribution of a DT in
postharvest operations delivers better quality of fresh
agricultural products as compared with the current preserva-
tion systems, as corrections can be performed before alteration
of the product.71 Shoji et al. quantified potential quality losses
in fruits in the range of 60% on average before being offered in
supermarkets, indicating the potential scope of improvement
with the application of DTs.72 Product quality prediction, shelf
life improvement, and cost reduction are the corner stones of
DT postharvest contribution.

4.3.2. Industrial Demonstration of DTs for Postharvest
Agriculture (Food). Due to the perishable nature of the final
product, the interest in DTs in the food industry has increased
in recent years to monitor product deterioration and optimize
the shelf life.73 Although half of the DT applications in the
food industry are related to agriculture, applying method-
ologies in the way described in previous sections, around a
third of the DTs described in food industry refer to industrial
food processing.73 Key DT-mediated operations include
pasteurization,74 packaging,74,75 entire processing sys-
tems,75−80 or less extended, optimal product composition
and quality.81 The remaining 20% is distributed mainly
between transportation (8%) and distribution (6%), while
the consumption stage remains behind,73 Figure 11.

Barni et al. suggested good practices for the implementation
of DTs in the food industry.82 Although the processes are
modular and scalable, as they should be, it is recommended to
include the entire value chain through dynamic models that
allow ML, including variable data from various families to
globally channel the prediction. The applications of DTs in the
food industry would include all the aspects described in this
review regarding production. Yet, most food products have the
additional challenge of packaging for protection. The inclusion
of intelligent packaging in DTs implies the use of intelligent
materials suitable to monitor food conditions and quality
state,83 achieved by integrating sensors into the packaging84 to

Figure 10. Digital twin architecture for agricultural production.

Figure 11. Digital twin architecture in postharvest and food
processing optimization.
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provide information on variables such as temperature, internal
gas composition, pH, moisture, pressure, or vibrations,
ensuring traceability of the product along the supply chain.85

In this scenario, aiming to avoid over costs, biodegradable
biosensors have been developed to detect pathogens or
toxins.86

4.4. Digital Twins for the Farm Infrastructure Life-
cycle. 4.4.1. DT for Open Agricultural Systems. Laryukhin et
al. employed a DT to monitor plant growth and predict
outcomes, thus describing the development of a crop.87 In
addition to the management of critical elements such as land,
fertilizer, crop, farmer, etc., the DT was used for economic and
resource optimization. In a subsequent step, Skobelev et al.
applied this model to wheat production in multiagent
modeling to mitigate inaccuracies.88 By this approach, the
dynamics of the system were described to identify anomalous
states and suggest appropriate corrective actions.

Moghadam et al. described a DT for each tree of an orchard
using 3D LIDAR and cameras.89 In this case, DTs provided
real-time condition monitoring and decision support to ease
the farmer’s labors. For extensive crops, Machl et al. described
a DT referred to a cultivated landscape in order to optimize
agricultural transport systems.90 The model includes data
collection and use in terms of space time, although the time
intervals are larger than in other studies.

Angin et al. used a DT for plant monitoring and decision-
making using a low-power sensor network and drones, focusing
on how new data might generate new insights by employing
MobileNet and UNet model algorithms.91 Similarly, Jayaraman
et al.92 and Alves et al.45 used DTs for plant monitoring,
focusing on irrigation and fertilization in smart farming,
including a cloud-based architecture. For the first case,
environmental, soil, fertilization, and irrigation data were
collected to obtain crop recommendations using the
SmartFarmNet framework.

4.4.2. DTs for Greenhouses as Closed Agricultural
Systems. Horticulture utilizes indoor production in closed
ecological systems (CESs) for reduction of uncertainty caused
by weather and soil variability. Greenhouses are a prime
technical solution for horticulture as highly controlled, closed
environmental systems that can boost plant growth. DTs
leverage horticultural parameters through cloud computing,
IoT, big data, ML, augmented reality, and robotics. The
parameters comprise climate management, irrigation, fertiga-
tion, lighting, crop monitoring, disease scouting, harvesting,
internal transportation, sorting, and packaging. For example,
real-time remote-control eases in-time inspection, while the
owner is offshore.

Greenhouses, as closed environmental systems, ease the
integration of Agriculture 4.0, enabling DTs as a fundamental
tool to reach productivity optimization. The data flow in a DT
between physical and virtual twins is fully bidirectional,
synchronizing the digital model with the real-time status of
the physical twin. This results in simulations that can be
directly implemented into decision-making in crop manage-
ment and microclimate control for productivity optimization.
The basic DT architecture in a greenhouse is outlined in
Figure 12, where physical and virtual twins are managed by AI,
which hosts the predetermined rules to select for each case the
proper alternative. On the virtual side, the DT in greenhouses
follows the common architectural compilation of technologies,
including IoT; Cloud, Edge and Fog Computing; AI; Robotics;
ML; and Big Data Analytics.

4.4.2.1. Building Blocks of Greenhouse DT. Agricultural
production DTs embrace data managing and prediction tools
and must include additionally (i) architectonic greenhouse
facilities; i.e., windows must be suitable to be electronically
managed, (ii) sensors and actuators including controllers, i.e.,
Arduino Uno Microcontroller, and (iii) data storage suitable to
be accessed at any time, i.e., using MySQL Database,
specifically the phpMyAdmin. Integrating all of these
components, the dataflow can be optimized.

Data can be stored either in the cloud or in a local server, as
this is the DT “source of intelligence”, including (i) internal
atmospheric conditions as well as external conditions to allow
proper balance and interactions, as well as historic previous
conditions and treatments (actions taken), (ii) the cloud
should be able to receive real-time data constantly regarding
(also) crop development, having stored data about previous
development, and (iii) a data set of possible treatments and
solutions, Figure 13. These data must be available by AI to
model, predict, and suggest actions based on the new received
data.93

4.4.2.2. Digital Displays for Greenhouse DTs. Several
system digital display variants are available on the market,
which use tailored models for parameter assessment to
optimize production decisions.

1. The free-open-source digital display Energy Plus can
model energy and water.94 Heating/cooling, lighting,
ventilation, and power receivers are monitored using
detailed building physics. Energy Plus is compatible with
the OpenStudio platform,95 which expands its capabilities
for end users as an interface. The system dynamics can
be modeled by defining time steps for thermal
interactions between different zones in the greenhouse,
allowing manipulation of system dynamics and control
strategies with a user-friendly interface.

2. The Climate Fieldview digital display uses data-driven
decisions to maximize production yields and profits.96

The data flow includes collection, storage, and visual-
ization, enabling crop monitoring and measurement of
the impact of agronomic decisions on fields.

3. Differently, the TRNSYS digital display is a commercial
graphical-based application to model dynamic systems
such as traffic flow or biological processes besides
common evaluation of thermal and electrical systems.97

It is divided into two parts; the first reads and processes
the input file, solving the system to determine
convergence (i.e., using matrix solutions, linear regres-
sions, or interpolations), and plots system variables. The
second is a set of around 150 library models of modular
components including pumps, turbines, or electrolyzers.

Figure 12. Actors involved in a DT architecture (arrows are data
flow).
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4. The DSSAT digital display monitors and predicts
greenhouse productivity via the software The Rural
Technology Transfer Decision Support System.98 This
software includes 42 crop simulation models and diverse
tools (soil, weather, crop management and experimental
data, utilities, and application programs). The models
simulate growth, development, and yield as a function of
the soil−plant−atmosphere dynamics, requiring daily
inputs concerning weather data, soil surface and profile
information, and detailed crop management. Simulations
include the user option to ask “what if” questions by
conducting virtual experiments, including economic risk
and environmental assessments for irrigation, fertilizer
and nutrient management, climate variability, climate
change, soil carbon sequestration, and precision
management.

5. The Agricultural Production Systems sIMmulator
(APSIM) digital display simulates biophysical processes
in agricultural systems, focusing on the economic, food
security, and ecological outcomes.99,100 It incorporates
key models required to simulate potential changes in
agriculture, with a structure based on plant, soil (i.e.,
water, N, P, pH), and management modules, which
include a range of crops and trees.

6. The CropX digital display offers automation and crop
management for irrigation and fertilization with accurate
forecasts and advanced analysis technologies for
agriculture.101 It compiles soil, crop, and atmosphere
data, suitable to adapt the strategies of optimal
cultivation. The system predicts and suggests the proper
rate of irrigation, based on soil and weather conditions,
according to the crop needs and development stage.

4.4.2.3. Open Digital Displays of Greenhouse DTs. The
integration of advanced technologies promoted by Agriculture
4.0 can also be afforded through open platforms, which enable
interoperability, collaboration, and innovation across various
agricultural processes and stakeholders, yet with limited
features as compared with commercial offers. Examples of
open data sources are AgriDataSpace (agridataspace-csa.eu)
and the Open Ag Data Alliance (openag.io) projects, which
provide access to weather information, soil data, crop yields,
and market prices. While freely available open-source software
is scarce, some examples are FarmOS for farm management
(farmos.org) and QGIS for geospatial analysis (qgis.org),
which can be integrated using interfaces such as OGC
SensorThings (ogc.org) for sensor data exchange and ISO
11783 (ISOBUS) for communication between agricultural

equipment. Open designs of open hardware available for
modifications and self-customizations can also be found in
FarmBot (farm.bot) and Open Source Beehives for beekeeping
(fablabbcn.org/projects/osbh-open-source-beehives).

4.4.2.4. Application Demonstration of Greenhouse DTs.
DTs together with AI and decision-making programs can
optimize growing conditions of a greenhouse, e.g., via strict
climate control strategies.102 AI and ML models control plant
growth based on past experiences, current conditions, and
environmental data.103 Monteiro et al. proposed a DT for
production monitoring in vertical farming, which comprises a
model, structure, tasks specifications, assessment of environ-
mental conditions, and decision unit, and outlined its
benefits.104

Hemming et al. employed DT algorithms to determine
climate set points and crop management strategies in six
greenhouse compartments during a six month period of cherry
tomato cropping with aim to maximizing net profit.105 A
climate model was combined with a tomato crop model to
estimate each compartment’s predicted yield according to
growth conditions.

Martin et al. developed a DT to control LED light sources
and electronics to create learning models using AI for crops
grown in greenhouses, as well as for automotive, streetlighting,
and general lighting applications.106

The so-called deep learning ResNet107 DT was applied to
greenhouse tomato crops,108 deciphering the interaction
between crop quality, environmental factors, and crop
management for mango varieties109 or potatoes.110

Howard et al. proposed a multi-DT based automation of
greenhouse production, which allowed garnering of big data
through IoT.111 Effective communication between the DTs
was key with each one in charge of one essential area of the
greenhouse. This structure was able to predict future states
based on real-time data and databases.

DT simulations prepare for corrective and preventive actions
and remote interventions with the corresponding verification
and remove constraints concerning place, time, and human
observation.112 This level of control using the IoT is widely
recognized as Agriculture 4.0.

4.4.3. DTs for Hydro- and Aquaponics as Closed
Agricultural Systems. Hydroponics encompasses the method-
ology of growing plants without soil, where nutrient-rich water
is used to deliver the necessary elements directly to the plant
roots, while plants are supported by an inert medium like
perlite, coconut coir, or rockwool.113 Hydroponics adds
additional control to crop production in greenhouses to

Figure 13. Cloud functions as a data source for AI.
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boost plant growth due to direct access to nutrients, Figure 14.
Hydroponic systems can be designed for vertical farming and

compact spaces. Integrating DTs is a logical addition to this
extremely controlled scenario, using the IoT as a building
block of smart farming, and using AI algorithms to optimize
the productivity according to environmental data, to reduce
labor costs and increase profitability. Yet only very few DT
studies applied to hydroponics can be found in the literature. A
possible cause is that the hydroponics concept itself involves
full process control, as technologies such as sensing, remote
monitoring, and predictive tools are already part of hydro-
ponics culture.

Aquaponics combines the use of recirculating aquaculture
systems and hydroponics in a circular restorative symbiotic
system, Figure 15. Ammonia-rich effluents from aquatic

animals are filtered by solid-fixed nitrifying bacteria to convert
ammonia into nitrates suitable to be absorbed by root-
submerged crops. Reyes-Yanes et al. proposed the use of DTs
to acquire data in real time and algorithm-mediated data
processing to estimate and optimize the growth rate and fresh
crops weight in a restorative aquaponic environment.114

4.4.3.1. Application Demonstration of DTs for Hydro- And
Aquaponics. Kampker et al. described a morphological
framework for a DT to manage a product-service system to
support potato harvesting.110 To assess the efficiency in
customized fields, Tsolakis et al. developed an emulation tool
based on the Robot Operating System “AgROS”, suitable to
select and import the landscape of a field, adding character-
istics of the actual agricultural layout.64 A suitable agricultural
robot is selected, imported, and tested in a quasi-real-world
environment. Alves et al. developed a DT for smart vertical
farming by growing a virtual farm to better understand the
farm operation and the use of resources and equipment.45

Ghandar et al. described a DT and ML to be used for
hydroponic systems in urban farming by the implementation of
aquaponics (growing plants and fish together in a cyclic

nutrient exchange).115 The DT modeled the production plan
along a 3 month experiment, serving as an approach for an
urban farming decision support system.

Jans-Singh presented a DT for an urban-integrated under-
ground hydroponic farm in a World War II air raid shelter.116

The originality of the production underground relies on the
possibility of physical and virtual side transfer through real-
time streams of data, with the possibility to grow plants in
adverse conditions. The use of the DT increased productivity
per unit area by a factor of 12, while minimizing the energy
use, maintaining optimal growing conditions. While the
underground conditions provided more stable weather
conditions, both the limited ventilation and the light
dependence (light emitting diode, LED lights) posed
challenges.

5. OPPORTUNITIES, CHALLENGES, AND
PERSPECTIVES

This review presents various digital twin concepts from a
general view in agriculture to the specific application of
hydroponic systems in greenhouses. Despite being an evolving
technology, digital twin technology still faces several
technological challenges that need resolution. Nevertheless, it
offers numerous scientific and business opportunities across
the supply chain. Agriculture 4.0 offers the possibility to
monitor and transfer to a digital twin framework many
variables such as soil and irrigation, crop, robots and farm
machinery, and postharvest food processing.

Digital twins help farmers to increase productivity while
efficiently optimizing resources and reducing losses in an
Agriculture 4.0 framework, thus reducing economic pressure
on the agricultural sector and addressing labor issues.
Additionally, digital twins ease research work in exploration
of optimal production conditions, by tracking and monitoring
crop farm machinery and agricultural and postharvest products
or reducing water, chemicals, and energy usage. DTs are
expected to become more ubiquitous and accessible, extending
even to small- and medium-sized farms.

Different structures and data management sources are
commercially available, including technological devices and
cloud systems. Digital twins can be integrated throughout the
lifecycle, including secondary digital twins managed by a super
twin. According to the fixed objectives, different paradigms can
be used to construct the next generation of digital twins.

Most of the presented studies are applied to specific needs
according to the project, meaning digital twins’ technology is
not fully exploited. A comprehensive deployment of state-of-
the-art technologies, i.e., AI, advanced statistical and
optimization models, big data analytics, and three-dimensional
simulations, could lead to a general real-time-based optimiza-
tion model in agriculture management. Another important
trend is the combination of digital twins and IoT technology.
By deployment of many sensors and equipment on the farm, a
substantial volume of real-time data can be collected, making
the DT more accurate and real-time.

Digital twins have the potential to enhance transparency and
efficiency in agricultural supply chains by monitoring and
simulating the entire process from field to fork. By identifying
and addressing bottlenecks and waste, digital twins improve
the overall food production and distribution efficiency. The
success of digital twin technology also relies on the capacity of
establishing circular material flows for fully sustainable
production.

Figure 14. General scheme of hydroponic system parts suitable to be
managed by digital twins.

Figure 15. Aquaponic system parts suitable to be managed by digital
twins.
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On the flip side, one of the main challenges in DTs is their
overreliance on automated control. The full control of physical
parameters in the virtual counterpart does not exclude
potential issues derived from uncontrolled parameters, which
in addition can result in irreversible damages.117 For some
applications, DTs might not be feasible, especially when the
physical twin is too complex and requires a great number of
resources. DTs face limits when controlling living organisms
that are not just a collection of several variables but real
complex systems. Besides the obvious knowledge of technol-
ogy, deep learning, and electronics, the application of DTs in
agriculture requires multidisciplinary knowledge of plants
growth, diseases, pests, nutrients, etc.

Covering societal demands, not all nations have the capacity
to build and use DT-based food-system models due to
economic resources and immature infrastructures. The
transition to Agriculture 4.0 will require funding to acquire
technology for more efficient, sustainable, and secure
agricultural practices. DTs need to demonstrate their benefits
and a proper return on investment.118

The industry uses many sources of simulations to evaluate
the performance of a process, with common work packages
such as CAD and Aspen offering such capabilities. Singh et al.
described several applications of DTs in 13 different industries,
including manufacturing, agriculture, education, construction,
medicine, and retail.119 Yet, the difference when using DTs
relies on the constant real-time bidirectional data exchange
between the digital and the physical twins, which allows in-
time decision-making by taking predictive and/or preventive
actions, leading to increased productivity as framed in Industry
4.0.

While in other industries pieces can be monitored given the
homogeneity of the production, DT technology in agriculture
is still under development given the high variability of each
individual crop as a biomass. However, Verdouw and Kruize
presented several applications of DTs in different stages of
agriculture processing such as crop storage and agriculture
machinery.18 They focused on livestock monitoring for health
detection, identification of pests and diseases in plants,
productivity optimization by managing storage availability,
and cost-effectiveness evaluation of machinery-mediated treat-
ments. More sophisticated, Monteiro et al. described a DT for
vertical farming, collecting data related to temperature,
humidity, luminosity, and the relative CO2 concentration,
properly stored in the cloud and processed using intelligent
data analysis resulting in vertical farm optimal production
planification.104

Future trends must be based on the strengths and
opportunities of DT technology, while future improvements
need to counterbalance the weaknesses and threats, as
described in Figure 16. Main disadvantages include that the
final decisions are based on measured parameters, meaning
that other nonmeasured interactions might interfere in the
production out of DT control. A complete DT includes
installation of several sensors and actuators, which optimally
would be wireless for not interfering with agronomic labor,
increasing installation costs. The pace of technological
evolution is remarkably fast, so devices become outdated in
the short term. Additionally, while many applications and
databases are currently available as a starting point for a DT,
the access to them is mainly limited by the developers due to
commercial constraints. Overall, DTs are a key tool for future
scientists and engineers to respond to major global challenges

(net zero, climate change, water scarcity, etc.), and as future
versions of DTs are developed, they will enable scalable system
wide agricultural modeling for a diverse range of users in
agriculture.

Besides productivity and cost savings, the implementation of
DTs in Agriculture 4.0 can improve soil health, namely, its
ability to sustain agricultural productivity and protect environ-
mental resources, enabling long-term productivity and avoiding
ecosystem degradation. The concept of soil health is extended
not only by the physicochemical and biological properties of
soil but also by the sensitivity to soil management practices.
Through long-term soil and crop monitoring enabled by DTs,
agronomic labor such as for localized pesticide application or
targeted irrigation is predicted precisely and applied locally
when needed, minimizing input usage and maximizing
effectiveness avoiding overdosage and soil contamination.
DTs help to optimize resource allocation, minimize input
wastage, and reduce environmental impacts. Environmental
sustainability is achieved by minimizing the use of synthetic
(nonrenewable) inputs, reducing soil erosion, and minimizing
chemical runoff into waterways, leading to improved soil
health, water quality, and biodiversity.
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