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Abstract
This paper addresses the problem of assessing the homo-
geneity of the disease transmission process in stochastic
epidemic models in populations that are partitioned into
social groups. We develop a classical hypothesis test
for completed epidemics which assesses whether or not
there is significant within-group transmission during an
outbreak. The test is based on time-ordered group labels
of individuals. The null hypothesis is that of homo-
geneity of disease transmission among individuals, a
hypothesis under which the discrete random vector of
groups labels has a known sampling distribution that is
independent of any model parameters. The test exhibits
excellent performance when applied to various scenar-
ios of simulated data and is also illustrated using two
real-life epidemic data sets. We develop some asymptotic
theory including a central limit theorem. The test is prac-
tically very appealing, being computationally cheap and
straightforward to implement, as well as being applica-
ble to a wide range of real-life outbreak settings and to
related problems in other fields.
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1 INTRODUCTION

This paper is concerned with the problem of assessing the assumption of homogeneity of disease
transmission in stochastic epidemic models in populations that are partitioned into social groups.
Such groups may correspond to physical locations such as households or classrooms, or to collec-
tions of similar individuals such as age groups. Our aim is to assess whether or not transmission
within groups differs from that between groups.

We introduce a new classical hypothesis test which conducts this assessment. The test is fun-
damentally different to existing approaches in the literature (see Section 7.2), requiring no model
fitting and not relying on asymptotic approximations when implemented. The null hypothesis
of the test is the assumption of homogeneity of disease transmission, so that the groups have
no direct bearing on the outbreak. The test is based on the group labels of infected individuals
ordered by time, which we assume are available from observed data. The key idea is that greater
within-group transmission will lead to greater clustering of group labels. Under the null hypoth-
esis, the discrete random vector of group labels has a known sampling distribution which does
not depend on any model parameters. The test statistic has an ordinal interpretation, where
lower values provide greater evidence against the null hypothesis. We demonstrate the perfor-
mance of the test via an extensive simulation study and by application to two real data sets. We
also develop some asymptotic theory including a central limit theorem.

The paper is structured as follows. Section 2 contains preliminary information. Section 3
defines the test and its interpretation and implementation. In Section 4, we present a simulation
study, and in Section 5 we apply the test to real data. In Section 6, we present some asymptotic
results and in Section 7 we give some additional perspectives and commentary. All computer
code used to produce our results was written in the statistical programming language R Core
Team (2019) and the code used to implement the test is provided in Appendix S1.

2 PRELIMINARIES

2.1 Terminology, notation, and data setting

Stochastic epidemic models are typically defined at an individual level and classify individuals
at a given time according to their state. Specifically, susceptible (S) individuals are those at risk
of contracting the disease, infective (I) individuals are those who have the disease and can pass
it on to others, and removed (R) individuals are those who have had the disease but can neither
be infected again nor infect others. In practice the removed state could refer to several conditions
including immunity, isolation and death. Models in which individuals can move from S to I to R
are known as SIR models. Similarly, SEIR models also include exposed (E) individuals who have
been infected but are not yet able to infect others.

Consider an epidemic in a closed population of C individuals which is partitioned into l groups
labelled 1, 2,…, l, with group m consisting of Cm individuals so that C =

∑l
m=1Cm. For ease of

exposition our focus will be on epidemics that have been completed, that is, those where there are
no infectives left in the population at the end of the outbreak; however, as explained in Section 7,
the methodology we develop could in principle also be applied to ongoing outbreaks.

We write e = (e1, e2,…, en) to denote the time-ordered event times and ge =
(

ge
1, ge

2,…, ge
n
)

for
their corresponding group labels, also ordered by time. Thus the individual with event time ek
belongs to group ge

k. If e and g are random vectors, under some specified sampling distribution, we
denote them as esam =

(
esam

1 , esam
2 ,…, esam

n
)

and gesam =
(

gesam

1 , gesam

2 ,…, gesam

n
)
, respectively, whereas
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ARISTOTELOUS et al. 3

if they represent observed data, we write eobs =
(

eobs
1 , eobs

2 ,…, eobs
n

)
and geobs =

(
geobs

1 , geobs

2 ,…, geobs

n
)
.

Note that the number of observed event times n equals the number of individuals ever contract-
ing the disease and is treated as a fixed nonrandom quantity whose value is known from the
observed data.

We consider a generic data observation setting where the event times may refer to any tem-
poral data for which the corresponding time-ordering of the group labels can be considered to
convey information on the amount of within-group transmission. For example in an SEIR model,
the event times might correspond to exposure times, infection times or removal times. We assume
that event times which are not infection times are still able to convey information about trans-
mission itself. In reality this is not unreasonable since SIR and SEIR models typically assume that
the times spent in the I and E states are identically distributed for different individuals, and hence
there is no systematic distortion of the event ordering if we were to view the order of removal
times as a proxy for the order of infection times.

In practice, it is often the case that only case-detection times of individuals are observed, which
for modelling purposes are often treated as removal times (e.g. Neal & Roberts, 2005; O’Neill
& Roberts, 1999; Xiang & Neal, 2014). This last assumption is not necessary for our purposes
since the test can be applied without the specification of a model, a point discussed in Section 7.
However, we shall consider a specific model to both motivate the construction of our test and also
assess its performance via a simulation study, with the model providing a means of generating
suitable data.

For ease of exposition we will restrict our attention to the use of SIR models. This is because
SIR models, unlike SEIR models, have no exposure period and it is therefore simpler to describe
the amount of distortion that may be introduced when basing the test on different types of event
times. However, the test is equally applicable in both SIR and SEIR settings, or indeed any disease
transmission model in which individuals are partitioned into groups. In addition, although our
motivation and focus is on epidemic models, the test we propose has potential application in other
fields, as explained in more detail in section 7.

2.2 Two-level-mixing SIR model

The two-level-mixing SIR model (Ball et al., 1997) is defined as follows. Consider a closed popula-
tion of C individuals, partitioned into groups as described in Section 2.1. Initially, N individuals
are susceptible, K are infective and none are removed. Each infective individual remains so for
a period of time known as the infectious period before becoming removed. Infectious periods of
different individuals are assumed to be independent and distributed according to some random
variable TD. During its infectious period, an infective has contacts with each other individual
in the population at the time points of a homogeneous Poisson process of rate 𝛽G. Addition-
ally, each infective has contacts with each other individual in their group at the time points of
a homogeneous Poisson process of rate 𝛽L. If a contacted individual is susceptible at the time of
a contact, they immediately become infective. All Poisson processes are assumed to be mutually
independent.

In what follows we assume for simplicity that K = 1 but this assumption can easily be relaxed.
The epidemic ends when no infectives are left in the population.

Note that the overall infection process is described by two independent infection processes:
one that models contacts at the population level, with governing parameter 𝛽G, and one modeling
contacts at the group level, with associated parameter 𝛽L. We refer to infections occurring in these
processes as global infections and local infections in the obvious manner.
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4 ARISTOTELOUS et al.

A key parameter associated with the two-level-mixing model is the reproduction number R∗,
which is loosely defined as the average number of groups infected by a typically infected group
in a totally susceptible population (Ball et al., 1997). In the particular case where all groups are of
equal size CH , and the population size C becomes large in such a way that the number of groups
l becomes large but the group size CH remains fixed then R∗ = 𝜇RG, where 𝜇 is the expected
number of individuals infected in a within-group epidemic with one initial infective and only
local infections, and RG is the basic reproduction number for the model in which all groups are
of size 1 and only global infections occur.

In this paper we consider a specific choice of infectious period distribution, namely Exponen-
tial, with rate parameter 𝛾 and probability density function (p.d.f.) f (x; 𝛾) = 𝛾 exp(−𝛾x), x ≥ 0; 𝛾 >

0, and we denote this version of the two-level-mixing model as Exp-2L. This choice of infectious
period distribution appears frequently in the epidemic modelling literature.

3 GROUP LABEL TEST

3.1 Rationale

Intuitively, if there is a within-group-transmission effect in the data, in which an infective indi-
vidual is more likely to infect individuals in their group rather than outside of it, then the
time-ordered sequence of group labels is likely to include clusters of labels from the same
group close together. Conversely, if there is no within-group-transmission effect in the data the
labels of each group will typically appear with no specific pattern over time. For example, con-
sider an outbreak of n = 9 infection events, occurring in a population with a l = 4 groups and
group size Cm = 3, m = 1, 2, 3, 4. In the case of extreme within-group-transmission effect a typ-
ical realized group label data set may look like ge = (3, 3, 3, 1, 1, 1, 4, 4, 4), whereas in the case
of no within-group-transmission effect, a realized group label data set may typically look like
ge = (3, 1, 4, 2, 4, 4, 1, 3, 2).

3.2 Null hypothesis and test statistic

The null hypothesis, denoted H0, is the assumption of homogeneity of disease transmission
among individuals. A key observation is that under H0, the sampling distribution of the discrete
random vector gesam is known and independent of any model parameters, depending only on n, l,
and Cm. This follows from the fact that in an SIR or SEIR model with homogeneous mixing, all
susceptibles in the population are equally likely to be contacted by an infective. Thus a realization
from the sampling distribution of gesam under H0 can be drawn by sampling, without replacement
and uniformly at random, a sequence of length n from a set of size C whose elements are the group
labels of each individual in the population (see Appendix S2 for the analytic expression of the
joint probability mass function of the random vector gesam ∼ H0). The fact that this remains true
if event times are not infection times but associated event times, such as removal times, follows
from the assumptions made in Section 2.1.

We now construct a test statistic T on the space of the n-dimensional group label vectors. The
test statistic is constructed to quantify the idea of group label clustering, described in Section 3.1,
and is therefore given an ordinal nature, where the higher (lower) the within-group-transmission
effect in the data, the lower (higher) the value of T. Specifically, T is defined as T(ge) =

∑l
m=1s(m)

ge ,
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ARISTOTELOUS et al. 5

where s(m)
ge is a measure of spread for the labels of group m that appear in ge, so that higher (lower)

levels of within-group-transmission effect in the data are associated with lower (higher) values of
s(m)

ge . In the following we omit the ge dependence for notational simplicity.
We specify s(m), m = 1, 2,…, l as follows. Until stated otherwise, suppose that Cm ≥ 2. Let 𝜈(m)

denote the number of times that the label of group m appears in ge and, assuming that 𝜈(m) ≥ 1, let
f (m) =

(
f (m)
1 , f (m)

2 ,…, f (m)
𝜈(m)

)
denote the vector of indices of ge at which the labels of group m appear;

note that for 𝜈(m) = 1, f (m) reduces to a scalar, i.e. f (m) = f (m)
1 where f (m)

1 is the index of ge where the
first and only appearance of the label of group m occurs. For example, if ge = (3, 1, 4, 2, 4, 4, 1, 3),
then 𝜈(3) = 2 with f (3) = (1, 8) and 𝜈(2) = 1 with f (2) = 4. We consider three cases for 𝜈(m).

(i) 𝜈(m) ≥ 2: First, suppose that the label of group m appears twice or more in ge, so that
measuring spread is possible. In this case, we set s(m) = f (m)

𝜈(m) − f (m)
1 − (𝜈(m) − 1). For example, if

ge = (3, 1, 4, 2, 4, 4, 1, 3, 2, 5, 5, 5) then s(1) = 7 − 2 − (2 − 1) = 4 and s(2) = 9 − 4 − (2 − 1) = 4. Note
that s(m) can be calculated by counting the number of nongroup-m labels found between the first
and last group m label of ge. Thus s(m) can be thought of as penalizing group m according to
the extent that it deviates from the most obvious realization of within-group-transmission effect,
where its labels appear in consecutive order (such as group 5 in the example above).

If 𝜈(m) = 0 and 𝜈(m) = 1 then measuring the spread of the labels of group m is not pos-
sible, and so s(m) is defined differently, but still with the intention that s(m) quantifies the
within-group-transmission effect associated with the labels of group m.

(ii) 𝜈(m) = 0: If 𝜈(m) = 0, we set s(m) = 0. This assignment stems from the idea that, when there
is a within-group-transmission effect in the data, given n, the label of less rather than more
groups should appear in ge. Note that this assignment is also consistent with the ordinal nature
we aim to give to T, in the sense that it is the only one that allows T to attain its minimum
value of 0 when evaluated at realizations of the most obvious within-group-transmission effect.
To see this, recall the example realization of section 3.1, ge = (3, 3, 3, 1, 1, 1, 4, 4, 4), with obvious
within-group-transmission effect. In this case 𝜈(1) = 𝜈(3) = 𝜈(4) = 3, thus, from the definition of s(m)

for 𝜈(m) ≥ 2, we have s(1) = s(3) = s(4) = 0, and therefore, T(ge) =
∑4

m=1s(4) can only be 0 if group 2,
which has 𝜈(2) = 0, has s(2) = 0.

(iii) 𝜈(m) = 1: Finally we consider the case where 𝜈(m) = 1 for any group m whose label
appears in ge. For example, if n = 5, l = 6, Cm = 3 and m = 1, 2,…, 6, one such realization
might be ge = (1, 2, 3, 4, 5). This case we refer to as a case of negative within-group-transmission
effect, meaning that an infective individual is more likely to infect susceptible individuals out-
side their group rather than within it. In fact the present example is the most extreme case
of such negative within-group-transmission effect, in the sense that the outbreak progresses
only between and not within groups. In order for T to have the desired ordinal nature, real-
izations of this type must produce the maximum value of T. To this end, considering the fact
that n ≥ f (m)

𝜈(m) in all instances, s(m) is specified as in the case of 𝜈(m) ≥ 2 (see above) with the
difference being that f (m)

𝜈(m) is replaced by n, that is, as s(m) = n − f (m)
1 − (𝜈(m) − 1) = n − f (m)

1 . For
example for ge = (2, 3, 3, 5, 3, 4, 4), s(2) = 7 − 1 = 6 and s(5) = 7 − 4 = 3. Notice that, similarly to
the case where 𝜈(m) ≥ 2, s(m) can be calculated by counting the number of non-group m labels
from the first (and only) group m label until the last index of ge. This counting representation
of s(m) highlights how a group m, whose label first appears in ge at index f (m)

1 , receives the max-
imum value of s(m) in the instance that its label does not appear again (i.e., in the instance that
𝜈(m) = 1).

We note that from a practical point of view the notion of negative within-group-transmission
effect is often not relevant since it is not usually plausible for real-life epidemic outbreaks to have
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6 ARISTOTELOUS et al.

higher transmission between rather than within groups. Nonetheless, ensuring that T behaves
sensibly under such cases is essential in providing it with the required ordinal nature.

We have so far assumed that Cm ≥ 2. Lastly, suppose that Cm = 1. In this case the label of group
m can only appear zero or one times, and measuring spread in such cases is neither possible nor
meaningful. Thus, the only sensible assignment is s(m) = 0.

We summarise the definitions of T and s(m) in Equation (1) below.

T(ge) =
l∑

m=1
s(m), where s(m) =

⎧⎪⎨⎪⎩
0 if 𝜈(m) = 0 or Cm = 1,
n − f (m)

1 if 𝜈(m) = 1 and Cm ≥ 2,
f (m)
𝜈(m) − f (m)

1 − (𝜈(m) − 1) if 𝜈(m) ≥ 2.

(1)

3.3 Implementation and interpretation

Since T is a deterministic function of ge (see Equation 1), and the distribution of gesam ∼ H0 is
known and independent of any model parameters, the distribution of Tsam ∼ H0 is also indepen-
dent of any model parameters, and independent sampling from Tsam can easily be achieved by
first drawing an independent sample

{
gesam(1)

, gesam(2)
,…, gesam(S)} from gesam ∼ H0, following the pro-

cedure described in Section 3.2, and by then evaluating T at each realization gesam(s) , s = 1, 2,…, S,
using equation (1). The resulting sample, {Tsam(1),Tsam(2),…,Tsam(S)}, where Tsam(s) ∶= T

(
gesam(s)),

s = 1, 2,…, S, can be used to test H0 visually, by imposing the observed value Tobs ∶= T
(

geobs)
on a histogram of the sampled values, and quantitatively by calculating the p-value, defined as
p-value ∶= P(Tsam ≤ Tobs), and calculated as

p-value = P(Tsam ≤ Tobs) = E
(
1{Tsam≤Tobs}

)
= ∫ 1{Tsam≤Tobs}𝜋

(
gesam |H0

)
dgesam ≈ 1

S

S∑
s=1

1{Tsam(s)≤Tobs}, (2)

where 1A denotes the indicator function of the event A. All steps required to implement the test
are listed in Algorithm 1.

Algorithm 1. Group label test

input: geobs =
(

geobs

1 , geobs

2 ,… , geobs

n
)

and Cm, m = 1, 2,… , l ;
output: Tobs,

{
Tsam(1),Tsam(2),… ,Tsam(S)} and the p-value;

1. Calculate Tobs ∶= T
(

geobs) using Equation (1);
2. Sample from Tsam ∼ H0 :

for s = 1, 2,… , S do
i. Choose uniformly at random a permutation of n out of the total C individuals and

record their corresponding group labels gesam(s) ;
ii. Calculate Tsam(s) ∶= T

(
gesam(s)) using Equation (1);

end for
3. Impose Tobs on the histogram of {Tsam(1),Tsam(2),… ,Tsam(S)} and calculate the p-value using

Equation (2).
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ARISTOTELOUS et al. 7

F I G U R E 1 Example of assessing homogeneity of transmission using the classical hypothesis test for group
label data. Observed data are generated from an Exp-2L model (N = 99, CH = 5, R∗ = 2.5, 𝜇 = 1.89 and 𝛾 = 0.1).
The plot is the histogram of 10,000 realizations from the sampling distribution of Tsam ∼ H0 with the observed
value (based on infections) Tobs

i = 722 (dashed line), the observed value (based on removals) Tobs
r = 846 (dotted

line) and the maximum value of T = 1188 (solid line) imposed. The p-values are (based on infections)
p-valuei = .001 and (based on removals) p-valuer = .025.

Figure 1 shows sampled values from Tsam ∼ H0 when the test is applied to an example
simulated data set generated from the Exp-2L model, having mild to moderate
within-group-transmission effect. The observed values of T, along with their corresponding
p-values, are interpreted as follows. Values that fall well within the support of Tsam ∼ H0 (i.e.,
closer to the mode rather than the tails of the histogram of Tsam ∼ H0) are consistent with H0 and
provide no evidence against it; in such cases the associated p-value is not too close to the extreme
values of 0 or 1. As values move to the left tail (and beyond) of the histogram of Tsam ∼ H0
and toward the minimum value of T which is 0 (which represents the most obvious case of
within-group-transmission effect) they become inconsistent with H0, and provide increasing evi-
dence against it and in favor of the hypothesis HL, that there is within-group-transmission effect
in the data; the corresponding p-value being close to or equal to 0.

We note that a histogram of Tsam ∼ H0, with the observed value of T imposed, is more infor-
mative than the p-value alone. For example, a p-value of 0 might correspond to the observed value
of T being very near to the left tail of the histogram of Tsam ∼ H0 or very far from it, closer to the
minimum value of T = 0. Although the p-value would be the same in these two cases, the amount
of evidence against H0 and in favor of HL would be higher in the second case.

We now discuss the results of the test on the example data set. Notice that we conduct two
assessments, one in which the event times are infection times and one in which they are removal
times. To distinguish between the two, the observed group label vector, the observed value
of T, and the associated p-value, are respectively denoted giobs , Tobs

i and p-valuei when event
times are infection times, and as grobs , Tobs

r and p-valuer when event times are removal times.
We adopt this notational convention in subsequent parts of this paper. For the infection-based
assessment, we have that Tobs

i = 722 and p-valuei = .001, and for the removal based, Tobs
r = 846

and p-valuer = .025. Both p-values are small enough to provide evidence against H0 and
in favor of HL which is sensible given that the data set in question has mild to moderate
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8 ARISTOTELOUS et al.

within-group-transmission effect. The amount of evidence is higher in the infection-based assess-
ment, which again is to be expected since the removal times correspond to an i.i.d. random shift
of the infection times as described in Section 2.2.

The results of this example are indicative of the test’s ability to identify a within-group-
transmission effect when present. They also provide an indication of how the test results might
differ when based on different types of event times. A much more detailed exploration of the test’s
performance is given in the simulation study of the following section.

4 SIMULATION STUDY

4.1 Simulation and run conditions

To assess the performance of the test on data of varying levels of within-group-transmission effect,
we conduct a large-scale simulation study. We generate data from the Exp-2L model under four
simulation scenarios, the conditions of which are given in Table 1.

The parameters for the four simulation scenarios are set as follows. All groups are set to
have equal size CH = 5. Having equal group sizes is not necessary for the test, as illustrated
below in Section 5, but is useful for the simulation study since it provides us with a simple
form for the reproduction number parameter R∗, which in turn allows us to clearly quantify the
within-group-transmission effect in each scenario, as we now explain.

The global and local infection rate parameters, 𝛽G and 𝛽L, are set so that the four simulation
scenarios are of increasing within-group-transmission effect. Specifically, recall the three quan-
tities R∗, 𝜇 and RG from Section 2.2, which can roughly be thought of as quantifying overall,
within-group and between-group transmission, respectively. We keep R∗ fixed at 2.5 in all scenar-
ios. Given a value for R∗, RG, and 𝜇 are inversely proportional and the within-group-transmission
effect in the data increases as 𝜇 increases (and RG decreases).

To guide our choices for the model parameters, recall that the within-group outbreak can be
seen as an outbreak from a standard SIR model, with individual-to-individual infection rate 𝛽L,
CH − 1 initial susceptibles and basic reproduction number RH

0 = 𝛽L(CH − 1)∕𝛾 . Choosing a value
of RH

0 therefore specifies 𝛽L. In turn, given 𝛽L, 𝜇 can be determined from eq. (2.25) of Ball (1986).
Finally, given 𝜇 and R∗, RG and 𝛽G are specified by the equations R∗ = 𝜇RG and RG = N𝛽G∕𝛾 ,
respectively.

Scenarios 1–4 are such that RH
0 = 0.5, 1.0, 2.5, 5.0 and in turn, 𝜇 = 0.61, 1.32, 2.44 and 3.88,

respectively. To see the extent of the within-group-transmission effect in each scenario we also
calculate the mean proportion of local infections (over total infections) pL under the sampling

T A B L E 1 Simulation conditions for the simulation study.
Data generating
process Parameter values pL

Scenario 1 Exp-2L R∗ = 2.5, 𝛾 = 0.1, 𝜇 = 0.61 0.09

Scenario 2 Exp-2L R∗ = 2.5, 𝛾 = 0.1, 𝜇 = 1.32 0.27

Scenario 3 Exp-2L R∗ = 2.5, 𝛾 = 0.1, 𝜇 = 2.44 0.51

Scenario 4 Exp-2L R∗ = 2.5, 𝛾 = 0.1, 𝜇 = 3.88 0.70

Notes: Each simulation scenario consists of four rounds, where the number of initial susceptibles N is set at 99, 199, 499, and 999,
respectively. For each round 500 datasets are generated. The number of individuals in each group is set at CH = 5, in all instances.

 14679469, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sjos.12743 by T

est, W
iley O

nline L
ibrary on [31/07/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



ARISTOTELOUS et al. 9

distribution of the model. The values of pL for scenarios 1–4 are 0.09, 0.27, 0.51, and 0.70, respec-
tively, and they are also given in Table 1 for reference. Scenarios 1–4 can be interpreted as having
very mild, mild, apparent, and very apparent within-group-transmission effect, respectively.

Each simulation scenario consists of four rounds, with the number of initial susceptibles, N,
being set at 99, 199, 499, and 999, respectively. The number of initial susceptibles can be thought
of as quantifying the dimension of the observed data insofar as the total number of ever-infected
individuals, n, is likely to increase with N, given R∗. Thus the different rounds are used to examine
if and how the performance of the test changes as the dimension of the observed data increases.
For each round, we generate 500 data sets, to capture sampling variability. For all simulated data
sets, the initial infective is chosen uniformly at random from the population.

Following Algorithm 1, the test is applied to each generated data set twice, once using infec-
tion times and once using removal times. Specifically, for each simulated data set, we first obtain
an independent sample of size 10,000 from Tsam ∼ H0, and then calculate and record the two
observed values of T, Tobs

i , and Tobs
r , and their corresponding p-values, p-valuei, and p-valuer. The

value of the Exponential infectious period parameter 𝛾 is set at 0.1 so that the mean of the infec-
tious period is E(TD) = 10 and its variance is Var(TD) = 100. Such an infectious period has more
variability than is typically encountered in real-life diseases, but it is useful for the simulation
study since it creates considerable distortion for the test based on removal data.

4.2 Results

We summarize the results of the simulation study using tables that give the median (95% quantile
interval) p-valuei and p-valuer, for each round and scenario, while plots of all the p-values and
the test’s power from the simulation study are given in Appendices S3 and S4 respectively.

4.2.1 Infection-based assessment

We first consider infection based results. Table 2 shows that the results are sensible in all scenarios
and rounds and that the effect of increasing N and 𝜇 is the desirable one in the sense that larger
values of N (𝜇) yield smaller p-valueis, for a given 𝜇 (N). For example, in scenario 1 the median
(95% quantile interval) p-valuei is 0.25 (0, 0.90), 0.17 (0, 0.85), 0.05 (0, 0.67), and 0.01 (0, 0.46)
for N = 99, 199, 499, and 999, respectively, suggesting that even in the presence of a very mild
within-group-transmission effect the test would still provide adequate evidence against H0 and in
favor of HL, if the dimension of the data is large enough. The power of the test is also evident in

T A B L E 2 Median (95% quantile interval) p-value from the household labels test based on observing
infection times, p-valuei, for the simulation study.

N = 99 N = 199 N = 499 N = 999
Scenario 1 0.25 (0, 0.90) 0.17 (0, 0.85) 0.05 (0, 0.67) 0.01 (0, 0.46)

Scenario 2 0.01 (0, 0.40) 0 (0, 0.10) 0 (0, 0) 0 (0, 0)

Scenario 3 0 (0, 0) 0 (0, 0) 0 (0, 0) 0 (0, 0)

Scenario 4 0 (0, 0) 0 (0, 0) 0 (0, 0) 0 (0, 0)

Note: Simulation conditions for each scenario are given in Table 1.
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10 ARISTOTELOUS et al.

scenario 2, where the within-group-transmission effect in the data is still relatively mild, but the
sampling distribution of the p-valuei is concentrated near 0, even for the smaller values of N. It
is also worth noticing that for scenarios 3 and 4, where the two-level transmission effect is more
apparent, the sampling distribution of the p-valuei is consistently a point mass at 0, meaning that
in such instances, as appropriate, the evidence against H0 and in favor of HL would systematically
be conclusive.

4.2.2 Removal-based assessment

As can be seen from Table 3, removal-based results are very similar to infection-based results,
with the difference being that p-valuer is typically slightly higher than p-valuei, which is to be
expected because of the distortion introduced by the infectious period. As for the infection-based
assessment, results are sensible in all scenarios and rounds and the effect of N and 𝜇 is the desir-
able one, so that the larger the value of N (𝜇), for a given 𝜇 (N), the smaller the p-valuer. The
only scenario in which there is no strong evidence against H0 is scenario 1, with the median (95%
quantile interval) p-valuer being 0.44 (0.02, 0.96), 0.41 (0.01, 0.94), 0.35 (0.01, 0.95), and 0.26 (0.01,
0.95) for N = 99, 199, 499, and 999, respectively. Nonetheless, when considering that scenario 1
represents a case of very mild within-group-transmission effect (where the mean proportion of
local infections is only pL = 0.09), these results are still very encouraging. In scenario 2, where
the within-group-transmission effect becomes a little less mild, the test exhibits increased power
and successfully detects the effect in the data, with the median (95% quantile interval) p-valuer
being equal to 0.08 (0, 0.71), 0.02 (0, 0.53), 0 (0, 0.10) and 0 (0, 0.01) for N = 99, 199, 499, and
999, respectively. For scenarios 3 and 4, which, respectively, represent apparent and very appar-
ent within-group-transmission effect, the sampling distribution of the p-valuer is consistently a
point mass at 0, as appropriate.

5 APPLICATIONS TO REAL DATA

5.1 Abakaliki smallpox outbreak

5.1.1 Data description

We first consider the data set obtained from a smallpox outbreak in Abakaliki, Nigeria, in
1967 (Bailey, 1975, page 125). This is a widely studied data set, either analyzed to understand
the outbreak (see e.g., Eichner & Dietz, 2003; Stockdale et al., 2017) or used to illustrate new
statistical methodology (see e.g. O’Neill & Roberts, 1999; Boys & Giles, 2007; Clancy &

T A B L E 3 Median (95% quantile interval) p-value from the household labels test based on observing
removal times, p-valuer, for the simulation study.

N = 99 N = 199 N = 499 N = 999
Scenario 1 0.44 (0.02, 0.96) 0.40 (0.01, 0.96) 0.35 (0.01, 0.95) 0.26 (0.01, 0.95)

Scenario 2 0.08 (0, 0.71) 0.02 (0, 0.53) 0 (0, 0.10) 0 (0, 0.01)

Scenario 3 0 (0, 0.17) 0 (0, 0) 0 (0, 0) 0 (0, 0)

Scenario 4 0 (0, 0) 0 (0, 0) 0 (0, 0) 0 (0, 0)

Note: Simulation conditions for each scenario are given in Table 1.
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ARISTOTELOUS et al. 11

O’Neill, 2008; Kypraios et al., 2017). The data are described in detail in Thompson and
Foege (1968) and Eichner and Dietz (2003) and consist, among other things, of information on the
32 individuals who became infected among 251 individuals who were living in nine compounds
in the city.

For the purposes of this analysis, we restrict attention to those individuals who lived in a
compound. Specifically we consider a population of size C = 251, where the individuals are par-
titioned into l = 9 compounds, labeled as 1, 2,…, 9, with each compound m consisting of Cm indi-
viduals, m = 1, 2,…, 9, where (C1,C2,C3,C4,C5,C6,C7,C8,C9) = (33, 15, 10, 33, 22, 43, 20, 42, 33)
(see Eichner and Dietz 2003, table 2). Our observed event times are the n = 32 case-detection
times. These times are given in days and some individuals have the same case-detection
day, so there is more than one possible time orderings of the event times. The results
we present here are based on the event times being ordered as in Thompson and
Foege (1968, table 1), for which the corresponding compound label vector is given by
geobs = (1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 4, 5, 1, 1, 1, 1, 5, 2, 1, 2, 6, 5, 2, 7, 4, 2, 2, 8, 3, 9, 5, 2), but also consider
all other options as explained below.

5.1.2 Results and conclusions

We apply Algorithm 1 with a sample of size 10,000 from Tsam ∼ H0, and present the results in
Figure 2. The position of the observed value Tobs on the histogram of Tsam ∼ H0, and the small
p-value = .004, suggest that the data are inconsistent with H0 and thus provide strong evidence
in favor of the hypothesis of a within-compound-transmission effect. This conclusion is in agree-
ment with that found in the literature (see e.g., Thompson & Foege, 1968; Eichner & Dietz, 2003;
Stockdale et al., 2017).

There are 31 additional possible orderings of the compound label vector, and we calculated
the p-value for each. The range of these 31 p-values was from .003 to .006, showing that the test
conclusion is not sensitive to the choice of ordering.

F I G U R E 2 Application of the classical hypothesis test for compound label data on the Abakaliki outbreak
data. The plot is the histogram of 10,000 realizations from the sampling distribution of Tsam ∼ H0 with the
observed value Tobs = 80 (dashed line) and the maximum value of T = 204 (solid line) imposed. The test p-value
is equal to 0.004.

 14679469, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sjos.12743 by T

est, W
iley O

nline L
ibrary on [31/07/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



12 ARISTOTELOUS et al.

5.2 Tristan da Cunha respiratory disease outbreak

5.2.1 Data description

We next consider a data set described and analyzed in Becker and Hopper (1983) and Hayakawa
et al. (2003). The data set contains case-detection times of individuals during a common cold
outbreak that took place from in 1967 on the island of Tristan da Cunha. The total population
of the island was 255 individuals, partitioned into three age-groups, namely infants (age 0–4;
group 1), children (age 5–14; group 2), and adults (age 15 or above; group 3). There was one
unidentified case, and so we assume a population of C = 254 individuals divided into the three
age groups as (C1,C2,C3) = (25, 36,193). The outbreak led to a total of n = 40 cases, for which
case-detection times were reported in days. We used these dates as the observed event times. As
for the Abakaliki dataset some individuals had the same case-detection days, leading to multi-
ple possible time orderings of the event times. We present results based on a randomly selected
ordering of the case-detection times, and investigate the sensitivity of the results over different
orderings below. The age group label vector corresponding to our chosen ordering is given by
geobs = (3, 3, 2, 3, 1, 1, 2, 1, 1, 2, 3, 3, 3, 1, 1, 3, 3, 1, 1, 2, 3, 2, 3, 3, 3, 3, 3, 1, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3).

5.2.2 Results and conclusions

We apply Algorithm 1 with a sample of size 10,000 from Tsam ∼ H0. The results are
given in Figure 3. The p-value is equal to .447, suggesting that there is no indication of
within-age-group-transmission effect. This result is plausible since in previous analyses, the
age groups are often used as a way of differentiating different susceptibility or infectivity (e.g.,
Hayakawa et al., 2003), rather than as social groups in which individuals mix together.

There are 345,599 possible orderings of the age group label vector in addition to the one con-
sidered above, over which the p-value ranged from .391 to .507, suggesting no sensitivity of the
test conclusion to the choice of ordering.

F I G U R E 3 Application of the classical hypothesis test for age group label data on the Tristan da Cunha
outbreak data. The plot is the histogram of 10,000 realizations from the sampling distribution of Tsam ∼ H0 with
the observed value Tobs = 51 (dashed line) and the maximum value of T = 76 (solid line) imposed. The test
p-value is equal to .447.
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ARISTOTELOUS et al. 13

6 ASYMPTOTIC RESULTS

Although the examples of the previous section illustrate that our hypothesis test can be very easily
implemented in practice, it is nonetheless of interest to consider its theoretical behavior. We now
briefly consider the asymptotic behavior of T as the population size becomes large, under the null
hypothesis H0 that the individuals in the outbreak are drawn at random without replacement
from the population. In general this is a challenging problem so in what follows we assume that
the population consists of groups of equal size. Our main focus will be on the case in which the
population size C grows linearly with the outbreak size n, the reason being that the latter is known
to be O(C) in the event of a major outbreak (Andersson & Britton, 2000, chap. 4), although we
briefly consider other regimes. We write T = Tn in the obvious manner. All proofs can be found
in Appendix S5.

6.1 Degeneracy of T

It is possible for the distribution of T to be a point mass, which is clearly not desirable for hypoth-
esis testing. In what follows, we establish conditions under which this degeneracy can occur. In
the case of most practical concern in which C = O(n), the probability of degeneracy is asymp-
totically zero as n → ∞. In practical terms, our results show the importance of a suitably large
outbreak relative to the population size.

Let  denote the set of groups containing individuals who are infected during the epidemic,
so that Tn =

∑
m∈ s(m). For n = 1, 2,… let n denote the event that all of the n individuals in the

outbreak belong to different groups. If n occurs then 𝜈(m) = 1 for all m ∈  and
{

f (m)
1 ∶ m ∈ } =

{1, 2,…,n}. Thus
Tn =

∑
m∈

(n − f (m)
1 ) = n2 −

n∑
j=1

j = n(n − 1)∕2,

so that Tn collapses to a point mass. Conversely if n does not occur then there exists a k such that
𝜈(k) ≥ 2 and

s(k) = f (k)
𝜈(k)

− f (k)1 − (𝜈(k) − 1) ≤ n − f (k)1 − 1 < n − f (k)1 ,

and since s(m) ≤ n − f (m)
1 for all m ≠ k, m ∈  it follows that

Tn =
∑
m∈

s(m) <
∑
m∈

(n − f (m)
1 ) < n(n − 1)∕2,

the final strict inequality arising from the fact that there are fewer than n − 1 groups in  apart
from k. We have thus established that Tn = n(n − 1)∕2 if and only if n occurs.

Lemma 1. If P(n) → 1 as n → ∞ then 2Tn∕n(n − 1) converges in probability to 1.

It remains to establish the behavior of P(n). Let f (n) ∼ g(n) denote that f (n)∕g(n) → 1
as n → ∞.

Lemma 2. Suppose that the population consists of l groups of size m ≥ 2 so that C =
ml. If C ∼ 𝜃n𝛽 with 𝜃 > 0 and 𝛽 ≥ 1 then

lim
n→∞

P(n) =
⎧⎪⎨⎪⎩

0 if 1 ≤ 𝛽 < 2,
exp(−(m − 1)∕2𝜃) if 𝛽 = 2,
1 if 𝛽 > 2.
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14 ARISTOTELOUS et al.

We conjecture that corresponding results apply if the assumption of equal-sized groups is
relaxed. Such results appear harder to prove, as explained in Appendix S5.

6.2 A central limit theorem for groups of size two

Since Tn =
∑l

m=1s(m), it is natural to ask if Tn can be asymptotically Gaussian. Under the null
hypothesis, the s(m) are random variables with a non-trivial dependence structure, and also
n-dependent. They are also exchangeable, but we were unable to find any results in the literature
on central limit theorems that could be applied to Tn, the main difficulty being that such results
usually consider a sum that is made up of a subset of exchangeable random variables Y1,…,Yn
rather than all n of them. However, in the special case in which the population consists of groups
of size two, it is possible to write Tn as a doubly indexed permutation statistic, and then apply a
result from Barbour and Eagleson (1986) to yield a central limit theorem, as we now describe.

6.2.1 Representing T as a doubly indexed permutation statistic

Suppose that the population consists of groups of size two. We can construct Tn as follows. The
individuals in the population can be represented by the vector v = (1, 2,…,C), where C = 2l. We
assume that the groups consist of pairs of individuals (1, 2), (3, 4),…, (C − 1,C).

Consider a permutation 𝜋 of v drawn uniformly at random from all possible permutations.
Then the first n elements of 𝜋(v) are an ordered sample, chosen uniformly at random without
replacement, from the individuals in the population. In particular, this sample is identically dis-
tributed to the individuals sampled under the null hypothesis. Note that individual i appears in
the sample if and only if 1 ≤ 𝜋(i) ≤ n.

If a group has no individuals in this sample, it makes no contribution to Tn. If a group
has exactly one individual in the sample, i say, it contributes n − 𝜋(i) to Tn. If a group has two
individuals in the sample, i and j say, then it contributes |𝜋(i) − 𝜋(j)| − 1 to Tn.

We encode this construction by summing over all possible ordered pairs of individuals (i, j) in
the population. If i and j are in different groups then (i, j) and (j, i) make no contribution to Tn.
Conversely if i and j are in the same group then both (i, j) and (j, i) make the same contribution to
Tn, which we take account of by dividing each separate contribution by 2. Specifically, we define

Tn =
C∑

i,j=1
i≠j

dij y𝜋(i)𝜋(j), (3)

where for 1 ≤ i, j ≤ C,

dij = dji =

{
1
2

if (i, j) ∈ {(1, 2), (2, 1), (3, 4), (4, 3),…, (C,C − 1)},
0 otherwise,

(4)

and

yij = yji =
⎧⎪⎨⎪⎩
|i − j| − 1 if 1 ≤ i, j,≤ n and i ≠ j,
n − min(i, j) if 1 ≤ min(i, j) ≤ n < max(i, j),
0 otherwise.

(5)
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ARISTOTELOUS et al. 15

By way of example suppose that C = 8, so the population vector of individuals is v = (1, 2,…, 8),
that n = 4, and 𝜋(v) = (4, 1, 3, 7, 6, 2, 5, 8). Then the sample of n is (4, 1, 3, 7), consisting of two
individuals from the same group (3,4) and two individuals from two other groups (1, 7). Individ-
uals 3 and 4 contribute 1 to Tn since there is one individual (namely 1) between them. Individual
1 is in position 2 and so contributes n − 2 = 2 to Tn. Finally individual 7 is in position 4 and so
contributes n − 4 = 0 to Tn. Thus Tn = 1 + 2 = 3.

To see that this agrees with (3), note that from (4) we need only consider the pairs (1, 2), (2, 1),
(3, 4), (4, 3) … (7, 8), (8, 7), all of which have dij = 1∕2. For (1, 2) and (2, 1), 𝜋(1) = 2 and 𝜋(2) = 6
so that y𝜋(1)𝜋(2) = y𝜋(2)𝜋(1) = 4 − 2 = 2. Similarly 𝜋(3) = 3 and 𝜋(4) = 1 so y𝜋(3)𝜋(4) = y𝜋(4)𝜋(3) = |3 −
1| − 1 = 1, while𝜋(5) = 7 and𝜋(6) = 5 and so y𝜋(5)𝜋(6) = y𝜋(6)𝜋(5) = 0. Finally𝜋(7) = 4 and𝜋(8) = 8
yielding y𝜋(7)𝜋(8) = y𝜋(8)𝜋(7) = 4 − 4 = 0, and we thus obtain Tn = (1∕2)(2 + 2 + 1 + 1 + 0 + 0 + 0 +
0) = 3 as before.

6.2.2 Central limit theorem

Statistics of the form (3) are known as doubly-indexed permutation statistics, and a number
of papers give sufficient conditions under which such statistics are asymptotically Gaussian,
as described in Zhao et al. (1997). Only one of these results appears to be applicable to our
setting, namely Thm 2. of Barbour and Eagleson (1986), which can be used to obtain the
following result.

Theorem 1. Suppose that the population consists of groups of size two and that
C = C(n) ∼ 𝜃n, where 𝜃 ≥ 1. Define s2

n = var(Tn) and Wn = (Tn − E[Tn])∕sn. Let (Wn)
and  denote respectively the probability distribution of Wn and of a standard
Gaussian random variable. Then as n → ∞, ((Wn), ) → 0 where  denotes the
distance

(F,G) = sup
h∈C1

{||||∫ h dF − ∫ h dG
||||(||h||1)−1

}
,

and ||h||1 = supx |h(x)| + supx |h′(x)|.
Expressions for E[Tn] and s2

n can be found in the proof of Theorem 1 in Appendix S4, along
with some numerical illustrations.

It is possible that a central limit theorem still holds if C ∼ 𝜃n𝛽 for 1 < 𝛽 < 2, but the method of
proof used for the 𝛽 = 1 case appears to fail. Also it seems likely that a central limit theorem will
also hold for a population with arbitrary group structure, although deriving such a result would
require a different approach to that we have adopted.

7 DISCUSSION

7.1 Limitations, extensions, and general remarks

Event time outbreak data are often daily or weekly, a consequence of which is that there may be
multiple orderings of the group label vector. In the two real outbreak examples considered in this
paper, we calculated the p-value for all possible orderings. However, this approach might not be
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16 ARISTOTELOUS et al.

feasible if the number of orderings is too large. A possible solution is to calculate the p-value for
a random sample of these orderings, as opposed to calculating it for all. It may also be possible to
identify particular orderings that are as extreme as possible in the sense of clearly favoring H0 or
not, and focus attention on these.

An important property of T is that it is a statistic of the data only. In this sense our test is
a nonparametric test. Thus testing H0 does not assess the plausibility of a specific set of param-
eters of a proposed model which has H0 as an assumption, but rather provides a more generic
test for the plausibility of the family of models that share H0 as an assumption, under any set of
parameters. In practice, outbreak data analyses are usually conducted with one or more trans-
mission models, but our test could be used in conjunction with any model that assumes the
population of at-risk individuals is partitioned in some way. Furthermore, the test implementa-
tion involves no parameter estimation or simulations of a model, procedures that are typically
computationally intensive to perform. Thus the test is computationally extremely cheap, with
a sample size of 10,000 from Tsam ∼ H0 typically taking less than a second of computer time
to obtain.

In developing our test, we have assumed that an epidemic outbreak has finished. In principle
it is also possible to apply the test to an ongoing outbreak in which n events have been observed
to date. The extent to which this is sensible will depend on the situation at hand, two potential
problems being group-varying reporting delays in the collection of data and the fact that infected
individuals may not have yet been detected. Nevertheless the test could be helpful in giving some
indication of between-group or within-group transmission in the early stages of an emerging
disease.

Our test requires outbreak data at an individual level. There are many studies in the literature
where outbreaks of both human and animal disease have taken place in a population partitioned
into groups, perhaps by type of individual or by a spatial region, and the available data consist of
event times that are proxies of the infection times such as symptom-onset times, case-detection
times, or lab test results (see, e.g., Auranen et al., 2000; Black et al., 2017; Cauchemez et al., 2009;
de Greeff et al., 2012; McKinley et al., 2020; Neal & Roberts, 2004; Seymour et al., 2021). Under
the assumption that these event times are able to convey information about transmission itself
our test could also be implemented in these settings.

Although our focus has been on epidemiological applications, our test is also poten-
tially applicable to the study of other kinds of transmission. Examples include the spread of
information, awareness, rumors, social media content or financial crises among populations
that can be partitioned into relevant groups, for example, of individuals or countries. Poten-
tial groupings include the age of individuals, geographical locations, or other demographic
categories.

7.2 Related literature

The problem of assessing transmission homogeneity assumptions in epidemic models using clas-
sical hypothesis testing is not new in the literature. For example, the tests in Britton (1997a, 1997b,
1997c, 1997d) all conduct this type of assessment. The general features of these tests are as fol-
lows. As in our case the population is partitioned into groups, and a particular epidemic model
is considered, which assumes global infection contacts at rate 𝜆 > 0, and local infection con-
tacts at rate 𝛿 ≥ 0. The model is formulated so that when 𝛿 = 0 it reduces to a homogeneously
mixing model. A test for additional within-group transmission is conducted by testing the null
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hypothesis 𝛿 = 0 against the alternative hypothesis 𝛿 > 0. This is achieved using the likelihood
ratio (LR) statistic L(𝛿)∕L(0), where L is the likelihood function. Calculation of the observed value
of the LR test statistic and derivation of its sampling distribution under the null hypothesis are
based on a Taylor series approximation of L(𝛿) around 𝛿 = 0 and on asymptotic results when the
number of groups is large. An advantage of our test, and a fundamental difference, is that these LR
tests heavily rely on approximations (numeric and asymptotic), whereas our test does not. Despite
the fundamental differences, we have compared our test against the test of Britton (1997c). The
results of this comparison are presented in Appendix S4 which reveal that whilst both tests per-
form equally well in the case of strong within-group-transmission and large population size N,
ours has greater power than Britton’s when there is very mild within-group-transmission (and
hence harder to detect) and N is small.

Another test that can be used in our setting, which has the same null hypothesis H0 as our
test, is a Chi-squared goodness-of-fit test, based on the number of individuals infected in each
group, that is, on group label counts (a similar approach is described in, Becker, 1989, pp. 21-22).
This test is based on the fact that, under H0, and given the total number of events n, the group
label counts follow a Multinomial distribution. The main difference between this test and ours is
that the former only uses final outcome information whereas the latter uses temporal information
which can be crucial in detecting within-group-transmission effect. For example, if an epidemic
infected almost all individuals in group 1, then almost all individuals in group 2, and so on then
the time-ordering would strongly suggest within-group-transmission, but just looking at the final
numbers infected in each group would not do so.

Besides classical testing, there are other ways possible to assess the assumption of homogene-
ity of disease transmission in populations having a group structure. For example, in a Bayesian
framework, it is possible to look at the posterior distribution of the number of local infections and
compare it to that of global infections, as described in Alharthi (2016). The idea of this approach
is that the higher the number of local infections suggested by the model, the more the evidence of
within-group-transmission effect in the observed data. Although this is a natural way of conduc-
ing this assessment, it requires model fitting via Markov chain Monte Carlo methods or similar
numerical methods, and is far more computationally expensive to implement than our group
label test.
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