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Abstract

Electrically active cells like cardiomyocytes show variability in their size, shape, and electrical activity.

But should we expect variability in the properties of their ionic currents? In this brief review we gather

and visualise measurements of two important electrophysiological parameters: the midpoints of activation

and inactivation of the cardiac fast sodium current, INa. We find a considerable variation in reported

mean values between experiments, with a smaller cell-to-cell variation within experiments. We show how

the between-experiment variability can be decomposed into a correlated and an uncorrelated component,

and that the correlated component is much larger and affects both midpoints almost equally. We then

review biological and methodological issues that might explain the observed variability, and attempt to

classify each as within-experiment or correlated and uncorrelated between-experiment factors. Although

the existence of some variability in measurements of ionic currents is well-known, we believe that this

is the first work to systematically review it and that the scale of the observed variability is much larger

than commonly appreciated, which has implications for modelling and experimental design.

Introduction

Variability in electrophysiological properties arises at several scales. Between and within subjects, elec-

trically active cells such as cardiomyocytes and neurons vary in number (Olivetti et al., 1995), size and

shape (Volders et al., 1998), and ion channel expression levels (Schulz et al., 2006). But as we continue

down the scales, towards molecules and atoms and into the realms of chemistry and physics, we may

expect biological variability to disappear.

Where do ion channels fit in this picture? Transcription, translation, anchoring, and degradation of

ion channel genes can affect the total number of channels in a cell, and hence the maximal conductance

of its aggregate (whole-cell) currents. But should we also expect cell-to-cell or intersubject differences in

properties that are not governed by channel count, such as voltage-dependence? Ion channel function is

known (or suspected) to be modulated by several mechanisms, including localisation, phosphorylation,

stretch, and even proximity to other channels (Marionneau and Abriel, 2015; Daimi et al., 2022; Beyder

et al., 2010; Hichri et al., 2020). But what is the impact of such mechanisms on variability in ‘baseline’

currents, measured under controlled experimental conditions?

Here, we address this question using literature data gathered for a previous study on the human

cardiac fast sodium current, INa(Clerx et al., 2018). Where our earlier study focused on mutants, here

shall use exclusively the accompanying wild-type controls. To gain a large but uniform data set, we
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will focus on the most common experiment type in this database: measurements using the whole-cell

patch-clamp configuration in cells heterologously expressing SCN5A, the primary subunit of the channels

conducting INa in the heart. Similarly, although INa voltage-dependence is complex, we shall focus on two

of the most common quantities used to characterise it: the midpoints of activation (Va) and inactivation

(Vi). These describe the voltage at which the channel is half-maximally activated (or the voltage at

which the measured peak conductance is half the maximum observed value), and the voltage at which

it is half-maximally inactivated (see e.g. Sakakibara et al., 1992; Chadda et al., 2017).

Each experiment in our data set consists of measurements of Va and/or Vi in several cells, expressed

as a mean (µa and µi, respectively), a standard deviation (σa and σi), and a cell count (na and ni). We

shall use the individual standard deviations as a measure of within-experiment variability, and refer to

the difference between the means as between-experiment variability.

Methods

All data used in this study were collected as part of a previous study on single-point mutations in SCN5A

in expression systems (Clerx et al., 2018). For the current study, we reduced this data set to keep only

wild-type (control) measurements, and we removed Xenopus oocyte measurements to keep only whole-

cell patch-clamp studies. The systematic process whereby the original data was gathered is detailed

below. Although this is not a study into effect sizes, we followed the PRISMA guidelines (Page et al.,

2021) where applicable.

To identify candidate studies, we searched PubMed for “SCN5A mutation” (with the last search

occurring in May 2016) and looked in previously published lists of mutations (Napolitano et al., 2003;

Moric et al., 2003; Ackerman et al., 2004; Zimmer and Surber, 2008; Hedley et al., 2009; Kapplinger et

al., 2010, 2015). Studies identified this way were then scanned to see if they contained measurements of

Va or Vi made with whole-cell patch clamp in either HEK or CHO cells, along with the number of cells

measured and a standard deviation or standard error of the mean. Next, we filtered out studies made

at normal or raised body temperatures, but kept studies made at “room temperature” (as stated by the

authors) or at any temperature in the range from 18 to 26◦C. Because of the considerable effort involved

in performing experiments at body temperature, we assumed that studies not mentioning temperature

satisfied our criteria and could be included. Similarly, we excluded any studies under non-baseline

conditions (e.g. with known stretch, remodelling, ischemia, etc.). All data collection and selection was

performed by M.C.

The dataset includes measurements in two different expression systems: HEK293 or tsA201 (both

indicated as “HEK” in this study), and CHO cells. A clear statement of cell type was part of the

inclusion criteria (see above), so that no missing-data strategy was required. The exact SCN5A α-subunit

expressed in these cells was not always clearly indicated. We found at least four different isoforms, which

we labelled: a, sometimes known as Q1077 and with GenBank accession number AC137587; b, known

as Q1077del or GenBank AY148488; a*, hH1, R1027Q, or GenBank M77235; and b*, hH1a or T559A;

Q1077del, no GenBank number (see also Makielski et al., 2003). Missing α-subunit information was

recorded as “α-subunit unknown”. Finally, we noted whether or not studies stated a co-expressed β1

subunit; no information on β1 co-expression was taken to mean it was not co-expressed.

Some studies we surveyed recorded separate control (wild-type) experiments for each mutant (see

Supplementary Table 1). We therefore distinguish between studies and experiments, where a study can

contain several experiments, and each experiment summarises findings in multiple cells.

For each experiment, we recorded either the midpoint of activation (as a mean µa, a sample standard

deviation σa, and a cell count na), the midpoint of inactivation (µi, σi, and ni), or both. Sample standard
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deviations were not usually given directly, but could be calculated from the provided standard errors of

the mean (SEMs). In Figure 1 we shall make the further assumption that midpoints in individual cells

were distributed normally, allowing us to plot a 5th-to-95th percentile range of the corresponding normal

distribution.

Where both midpoints were reported, cell counts were often equal (34%) or similar (differing by no

more than 5 cells in 90% of experiments, see Supplementary Table 2). So whilst it is plausible that Va and

Vi were often both measured in the same cell this cannot be guaranteed (and was not explicitly stated in

many papers). However, we will assume that, even when cell counts were different, the conditions under

which Va and Vi were measured in an experiment were similar enough that correlations between µa and

µi can be studied.

We shall use the term within-experiment variability to refer to the standard deviations within indi-

vidual experiments, and the term between-experiment variability to refer to differences in reported means

between different experiments (even in cases where those means are reported in the same study). For the

two studies containing more than 5 experiments, we shall also look at within-study between-experiment

variability, again by comparing the reported means.

Data availability

The full list of midpoints and references can be found in Supplementary Table 3. A database version of

the same data, along with code to generate all figures, tables, and numbers in this study, is available for

download from https://github.com/MichaelClerx/ina-midpoints.

Results

In the 120 studies that met the selection criteria, we found a total of 174 experiments: 151 experiments

reporting both midpoints, 7 reporting only on activation, and 16 reporting only on inactivation. The

obtained means (µa and µi) and standard errors of the mean (SEM) are shown graphically in Figure 1.

To see where the individual cell estimates of Va and Vi may have been, for each experiment we also plot

the 5th-to-95th percentile range of a normal distribution with the reported µ and σ (approximately the

range µ± 1.64σ).

Within-experiment variability can be seen in the grey bars in panel A and the histograms in panel C.

The median standard deviations were 3.6mV for Vi and 4.0mV for Va. Assuming a Normal distribution,

this suggests that 90% of single-cell results in a typical experiment fall in a range of approximately 12mV

(Vi) to 13mV (Va). Slightly larger ranges of up to 20mV or 30mV are also not uncommon (panel C,

top axis), but outliers go up to 50mV (Vi) and 73mV (Va).

More surprisingly, substantial between-experimental variability can be seen in our data set: reported

means of Vi range from −109 to −59mV (median −81.4mV, range 50.7mV, 5th-to-95th percentile range

35.5mV), while means of Va range from −60 to −21mV (median −40.0mV, range 38.6mV, 5th-to-

95th percentile range 28.9mV). Despite the large between-experiment variability, the SEM for most

experiments, which quantifies the degree of certainty in the estimate of the mean, is quite narrow. This

suggests that the mean Va and Vi differed significantly between the surveyed experiments, and that

one or more confounding factors may exist that explain this difference. Inactivation results seem more

affected, which a much larger between-experiment variability for µi, while the median within-experiment

variability σi is slightly smaller than σa.
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Figure 1: A, Reported mean midpoints of inactivation (µi, left) and activation (µa, right) for all exper-

iments. Vertically, both sets of points are individually ordered from most to least negative membrane

potential: correlations between an experiment’s µa and µi cannot be seen here and will be examined

below. The standard error of the mean (SEM) for each experiment is indicated by a thick black bar. A

thinner grey bar shows the 5th-to-95th percentile range of a normal distribution with the reported mean

and standard deviation: if the individual cell measurements in these studies were normally distributed,

90% of measurements would fall within this range. B, A histogram view of the means. The y-axis shows

the percentage of reported means with each potential. C, A histogram view of the standard deviations.

A second x-axis (top) shows the corresponding 5th-to-95th percentile ranges.
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Figure 2: A, Mean midpoints of inactivation µi plotted against mean midpoints of activation µa, for the

experiments that reported both. The mean of all points (a mean-of-means) is indicated by a yellow star.

A best-fit line is shown as a solid blue line, with its 95% confidence interval indicated by dashed blue

lines and a gray shaded area. A second linear regression line with a slope constrained to have a gradient

of one is shown in green. For one example experiment (µa = −58.2mV, µi = −95.5mV) we show the

vector from the mean-of-means to this point, decomposed into components along the line of best fit (first

principal component) and perpendicular to the line of best fit (second principal component). The same

example point is highlighted in black in panels B and C. B, The square root of the experiment size as a

function of the first principal component, for all points in A. The experiment size is defined as na + ni,

where na is the number of cells tested for Va and ni is the number tested for Vi. C, The square root of

the experiment size as a function of the second principal component.

Mean midpoints µa and µi strongly correlate across experiments

Next, we look at Va and Vi in the subgroup of 151 experiments where both were reported, as shown in

Figure 2A. Each experiment is shown as a dot and a linear fit through all experimental means is shown,

made using unweighted least-squares based linear regression. This line had an offset of −45.4mV and a

slope of 0.94mV/mV, with a Pearson correlation coefficient R = 0.79. The coefficient of determination

was R2 = 0.63, indicating that 63% of the variance is explained by this linear correlation. A second

regression with a fixed slope of 1 is shown (green line), and this falls within the 95% confidence interval

of the original regression (shaded grey area and dashed blue lines), so that we cannot statistically reject

the hypothesis that the slope equals 1. Together, this correlation suggests the existence of some unknown

factor shifting µa and µi by approximately equal amounts between experiments.

We can decompose the difference between each (µa, µi) measurement and the group mean into a

component along the line of best fit (without constraining the slope), and a component perpendicular to

the line of best fit (i.e. principal component analysis, PCA). An example for a single point is shown by

the arrows drawn in Figure 2A), and the same example point is highlighted in black in panels B and C.

The result suggests that most of the between-experiment variability is positively correlated.

In panels B and C we test whether the variability in either direction diminishes with experiment size

(number of cells tested). To this end, we define ‘experiment size’ as the number of cells ni tested to

measure µi, plus the number of cells na tested to measure µa. In Figure 2B we plot the square root of
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this quantity (
√
na + ni) as a function of the first principal component to create something akin to a

‘funnel plot’. No clear triangle shape is observed in either plot, but the first component does appear to

somewhat diminish with an increased number of measurements.

Subunits and cell type are not the major sources of variability

Cell type, α-subunit isoform, and β1-subunit co-expression may affect Va and Vi and were duly reported

in most publications we checked. But can they explain the large between-experiment variability we

observed? In Figure 3, we show the same data as in Figure 2, but grouped by recorded α subunit, β1

co-expression, and cell type. The largest subgroup (a* subunit, with β1 co-expression, in HEK) is shown

in panel D. It is clear that, while some differences between these groups exist which could cause subtle

shifts in the means, grouping like this does not divide our data into clear-cut clusters. In fact, many of

the larger groups span the full observed range, suggesting that these factors have only a small effect on

Va and Vi measurements — even though their effect on in vivo electrophysiology may be profound.

Within-study between-experiment variability

The final two panels in Figure 3 show the two studies with more than five experiments: Kapplinger et al.

(2015, 27 experiments), and or Tan et al. (2005, 15 experiments). Again, a strong correlated component

is visible in both. Compared to the full data set, both correlated and uncorrelated between-experiment

variability is much smaller in these groups.

Discussion

We observed strong variability within experiments (median σi was 3.6mV, median σa was 4.0mV, but

with outliers up to 22mV) and between experiments (µi ranged from −109 to −59mV, µa from −60 to

−21mV), and found a strong positive correlation across experiments measuring both (explaining 63%

of the observed between-experiment variance). Cell type, α-subunit, and β1-subunit were seen to have

an influence, but grouping by these categories did not explain the results. We also saw within-study

between-experiment variability, on a smaller scale but with a visually similar correlation. How should

we interpret these findings?

The existence of some within-experiment variability is well known, and is the reason why midpoints

are reported as a mean and SEM. The existence of between-study or between-lab variability too, is

indirectly acknowledged by the mutant studies we collected in Clerx et al. (2018) and reused here:

each provided a new wild-type recording instead of using a value from the literature. Some studies

measuring multiple mutants have gone even further, and accounted for within-study between-experiment

variability by performing a paired control wild-type measurement for every measured mutant. For good

examples see Kapplinger et al. (2015, 27 reported wild-type values) or Tan et al. (2005, 15 reported

wild-type values). The Tan et al. (2005) paper also provides the only direct acknowledgement of between-

experiment variability we found, citing “seasonal variation in current characteristics” as a reason for their

paired study design. However, the wild-type values reported in Tan et al. (2005) and Kapplinger et al.

(2015) differ by at most 11mV and 7mV respectively — well short of the 40 and 50mV ranges seen in

Figure 1. The full extent of between-experiment variability then, is still surprising.

Interestingly, the least negative (most depolarised) reported value of µi is -58.7mV, exceeding the

most negative (least depolarised) µa of -60.1mV. Such a situation is clearly not physiological, and it is

tempting to postulate some unknown biological mechanism (present even in cells non-natively expressing

SCN5A) that regulates the difference between the midpoints, keeping Va − Vi at approximately 45mV
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Figure 3: Grouping by recorded α subunit, β1 subunit co-expression, and cell type does not create distinct

clusters and only explains a small part of the observed between-experiment variability. The number

after each category indicates the corresponding number of means. Within-study between-experiment

variability is observed in the two largest studies, but is much smaller than in the full data set. A,

Grouping by α subunit; from largest to smallest subgroup we show the a* (R1027Q) α subunit, b

(Q1077del), not reported, a (Q1077), and b* (T559A; Q1077del). B, Grouping by β1 co-expression. C,

Grouping by cell type (HEK versus CHO cells), but note the very different group sizes. D, The largest

subgroup versus all other results. E, Within-study variability in the study by Kapplinger et al. (2015)

and F, Tan et al. (2005).
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Table 1: Postulated experimental causes of variability. Characterised as strongly likely (✓✓), likely (✓),

possibly (?), or unlikely (✗) to be contributing to the different types of variability in measurements of

µa and µi.
Between experiment Within experiment

correlated uncorrelated

Temperature ? ✗ ?

Time since rupture ? ? ?

Missing or erroneous LJP correction ✓✓ ✗ ✗

Voltage-control errors ✓ ✓ ✓

Voltage protocol and analysis ✓ ✓ ✗

Stretch ✗ ✗ ?

Endogenous currents ? ? ?

Regulation ? ? ?

and explaining the correlation with a gradient indistinguishable from 1 that is seen in Figure 2. However,

a simpler explanation might be sought in experimental factors causing a difference between the intended

and the applied voltage that applies equally to measurements of Va and Vi. We briefly review such factors

below.

Experimental sources of variability

An overview of experimental sources of variability (or more precisely, uncertainty that might cause

variability in measurements, see Mirams et al., 2016) is shown in Table 1, and we have made a tentative

effort to classify each as causing between- or within-experiment variability. The between-experiment

column is further divided into correlated and uncorrelated effects. Disputed or hypothetical factors are

indicated using question marks, while check marks indicate factors known to strongly influence results

— although the extent of their effect on our data is still unknown. In the text below, we explain our

reasoning and provide some highly speculative upper bounds on effect magnitudes.

The measurements we reviewed were made at “room temperature”, defined by the various authors as

anywhere between 18◦C and 26◦C. Nagatomo et al. (1998) recorded a shift in the midpoint of activation

of +0.43mV per ◦C, and a +0.47mV shift for inactivation, although no such shifts were observed by

Keller et al. (2005) and both studies used HEK cells. If there is a 0.5mV per ◦C shift, the observed range

of room temperatures could lead to a correlated between-experiment effect of up to 4mV. Within studies

temperature was usually given as a 1 or 2 degree bracket, leading to a much smaller within-experiment

estimate of 0.5 to 1mV.

Hanck and Sheets (1992) measured INa in Purkinje cells and studied the effect of the time between

rupturing the membrane and performing the measurement, which caused both midpoints to drift towards

more negative potentials at approximately 0.5mV per minute. A study by Abriel et al. (2001) looked

for, but did not find evidence of, a similar time-dependent drift in HEK cells. Time since rupture was

not reported in the studies we reviewed, which makes it difficult to classify this effect. First, between-

experiment variability may arise if highly systematic approaches are employed but these differ between

experiments/studies. Any unsystematic deviation cell-to-cell, e.g. due to the time needed to note down

cell measurements or adjust compensation circuitry, will lead to within-experiment variability. Next, a

correlated means effect could arise for example if a systematic approach was followed, if both midpoints

were measured in the same cells (consistent with the similar na and ni shown in Supplementary Table

1), and if the time between activation and inactivation protocols was short relative to the time needed to

set up. Because of these uncertainties, we list “time since rupture” as only a possible effect in all three

columns of Table 1. The magnitude of these three effects is impossible to determine from our data, but
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we might estimate an upper bound of 30 minutes between rupture and measurement, corresponding to

15mV.

Liquid junction potentials (LJPs) need to be considered when a liquid-liquid interface changes after

the recorded current has been ‘zeroed’ during a voltage-clamp experiment (e.g. by breaking the seal),

and they are usually corrected by applying a calculated voltage offset. Typical LJP values in patch-

clamp electrophysiology have been estimated as 2–12mV (Neher, 1992). Different values are expected in

different experiments, as different bath and pipette solutions are used. An appropriate correction would

be expected to remove variation completely by providing the appropriate membrane voltage regardless

of solutions. But failure to correct, a systematic error in the correction, or in the worst case a sign error

in the correction, could lead to equal errors in both midpoints of up to 24mV.

INa is characterised by fast time scales and large current amplitudes, both of which cause problems

for membrane potential control in voltage-clamp experiments (Sherman et al., 1999; Lei et al., 2020;

Montnach et al., 2021). In particular, a combination of cell capacitance (which increases with size) and

series resistance (which depends on the quality of the seal) can cause large shifts in either midpoint.

Techniques such as series resistance compensation are commonly used, but even then shifts as large as

10mV can be incurred (Montnach et al., 2021), while under less favourable conditions shifts of 20mV

(Montnach et al., 2021) or 30mV (Abrasheva et al., 2024) can be expected. Because the size of this

effect depends on cell size and seal quality we can expect variability within experiments, and because

it depends on quality control procedures and the precise technology used in the lab, we can also expect

(correlated and uncorrelated) between-experiment effects, so that we classify voltage control errors as

contributing to all three columns of Table 1.

Voltage step protocols vary between studies and can affect the result. For midpoints, which are

steady-state properties, a major factor will be the duration of the steps intended to bring the channel

into steady-state (for an example in IKr see Vandenberg et al., 2012). Different analysis methods also

produce different results, with differences of up to 20mV seen between methods (Clerx et al., 2019,

again in IKr). Assuming this effect depends only on the approach and not on the individual cells, but

not making any assumptions about the direction of the effect, we assign it to both between-experiment

columns of Table 1.

Stretch induced by deliberate pressure applied to oocytes has been shown to shift midpoints of

activation by more than 10mV (Banderali et al., 2010). If smaller amounts of pressure could be applied

accidentally, for example by pressure from liquid flow or a badly positioned pipette, could we expect some

within-experiment variability as a result? Endogenous currents are known to be present in expression

systems, which can interfere with midpoint measurements (Zhang et al., 2022). Use of different cell lines,

with different levels of endogenous currents, may cause between-experiment variability, while differing

expression levels in each cell could cause within-experiment variability. Finally, several factors including

channel glycosylation and phosphorylation regulate INa in cardiomyocytes (Marionneau and Abriel, 2015;

Daimi et al., 2022). While some of these mechanisms may be highly specialised to cardiomyocytes, we

might expect some forms of biological regulation even in cells non-natively expressing sodium channels,

which could cause any type of variability depending on how the mechanisms themselves vary.

Implications

The existence of substantial variability, along with the scope for error in these notoriously difficult

experiments, has practical implications for experiments and data integration. First, it underscores the

already well-established need for control measurements with every mutant, drug, or other moderating

factor studied. And when measuring multiple mutants over a longer period of time, multiple controls

also seem advised. But if we conclude that pairing is always necessary, then how do we interpret studies
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measuring the ‘canonical’ electrophysiology in a particular cell type and species (e.g. Sakakibara et al.,

1992)? And does it imply that stem-cell studies always require simultaneous measurements in a healthy

volunteer?

A second consequence is that data integration, combining data from different sources through nu-

merical modelling or some other theoretical framework, can only rely on relative differences between

subgroups. For example, in studies of mutants, a shift in a midpoint should be the preferred piece of

information, while the absolute measured midpoints should be taken to be accurate only to within about

40mV! The situation becomes more complicated if these results extrapolate to other features of INa. For

example, if one study investigates activation, one looks at fast inactivation, and a third at recovery, can

we combine these results in a single model, or does the variability prohibit this? An emerging technology

that could help address this issue is the use of short information-rich voltage-protocols, which target

multiple features of ionic currents at once (Beattie et al., 2018) — although these protocols are them-

selves derived from preliminary modelling work on conventional protocol data. The difficulties posed by

between-experiment variability for data integration are likely to also be relevant to funders, publishers,

and universities, who are increasingly trying to move away from treating papers as insular results, instead

trying to build strongly linked networks of reusable resources.

Thirdly, as it is possible that most of the variability is due to experimental factors that were not

reported but known or easily measurable at the time, this study re-emphasises the need for greater

sharing of data and meta data, already acknowledged in standards such as MICEE (Quinn et al., 2011).

For example, the data set used here was created by extracting only 6 numbers per experiment from

each study, while 1000s of data points were recorded originally for each cell. Taking advantage of

modern data sharing techniques will allow future researchers to perform far more in-depth analyses. An

exciting new opportunity for meta data is offered by recent USB-connected patch-clamp amplifiers, which

can automatically store the applied voltage protocols, series resistance, cell capacitance, correction and

compensation settings and more, all in the same file as the measured currents. This has the potential

to greatly enhance what future meta analyses can do, particularly if (1) a strong data and meta data-

sharing culture is established, and (2) either open-source or open-but-proprietary file formats are used

(e.g. the HEKA PatchMaster format).

Finally, even when confounding variables are controlled in a single-lab multi-experiment study, a

between-experiment variability of 7–11mV remains (Tan et al., 2005; Kapplinger et al., 2015). It is a

fascinating question whether this is due to as-of-yet unknown seasonal processes native to the cell, a

more mundane drift in experimental conditions, or even a result of limited sample size.

Conclusion and future directions

We reviewed 158 reported mean midpoints of activation (µa) and 167 reported mean midpoints of inacti-

vation (µi), gathered from 120 publications, and found both within-experiment and between-experiment

variability. Within experiments, the median standard deviation was 4.0mV (σa) or 3.6mV (σi), equiva-

lent to 5th-to-95th percentile ranges of 13mV and 12mV respectively. Between experiments, values varied

over a range of 39mV (µa) or 51mV (µi), with 5th-to-95th percentile ranges of 29mV and 36mV. Group-

ing by the known and reported confounders α subunit, β1 co-expression, and cell type did not explain

this variability. In the 151 experiments providing both µa and µi, we found a significant correlation with

a slope almost equal to 1, hinting at some unknown factor(s) affecting both midpoints equally. While

it is tempting to look for biological causes of such variability, several experimental confounders exist,

which mean no such conclusions can be drawn from an analysis of the published literature. These results

show that care must be taken in situations where paired experiments are not possible, or when data
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about different facets of channel behaviour is taken from different studies (e.g. in modelling). They also

highlight the need to take full advantage of new data recording and sharing opportunities, far beyond the

scope of traditional methods sections, so that future meta analyses may untangle the different possible

sources of variability. We conclude that a larger than hitherto reported variability exists in the mid-

points of activation and inactivation of INa, and that these are highly correlated. And while the available

evidence leaves room for the existence of cell-to-cell variability in the voltage-dependence of INa (with

some regulatory mechanism maintaining a certain difference between the two), a simpler explanation at

this point is that unreported experimental confounders give rise to the observed variability.
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