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ABSTRACT 
Analytical solutions of the temperature profile of a fluid in a Couette flow between two 
parallel plates are reported. The upper plate moves in the direction of the flow with a 

constant velocity and the lower plate is stationary, to simulate the conditions of a stationary 
seal mounted on a rotating shaft. The energy equation is solved for steady-state, laminar 
flow, taking into account the viscous dissipation effect of the flow due to the high shear 
rate of the fluid and rotational speeds being studied. An imposed temperature gradient 
between the two plates is used as well. The solutions use different boundary conditions of 
no-slip condition and a first-order slip to study the effect on the temperature profile as a 
result of the first-order slip condition. Brinkman number and temperature difference 
between the plates is also varied to see how it influences the temperature profile in the gap 

between the seal and the shaft. These parameters and boundary conditions influence this 
temperature profile. Results illustrate how slip boundary conditions at the wall show a 
control of the temperature rise in the annuli, resulting in reduced energy accumulation 
within the annuli.  
 

NOMENCLATURE  
I Length scale of molecular structure 
E 

L 

𝑘𝑠 
dH 
Br 
AFM 
Kn 

DSMC 
𝐷𝐶𝐹  
𝐷𝑡 
𝜖 
𝑦 
𝑧 
𝑢 
𝑃 
𝑏 

Length scale of surface roughness 

Length scale of bulk fluid 
Sand-grain roughness 
Hydraulic Diameter 
Brinkman Number 
Atomic Force Microscopy 
Knudsen Number 
Direct Simulation Monte Carlo 
Constricted Flow Diameter 
Base Diameter 

Roughness 
Normal direction distance 
Axial Distance  
Velocity 
Pressure 
Distance between the two plates 



𝜇 
𝑘 
𝑞 
ℎ 
𝑇 
𝑇𝑜 
𝑇𝑏 
𝑉 
𝜏 
𝜆 
𝑢̅ 
𝑦 
𝑆 
𝜌 
𝜎𝑣  
𝑅𝑎 
 𝑅𝑝 
𝑅𝑠𝑚  
𝐹𝑝 
𝑐𝑝 
𝜂 
𝑢𝑠 
𝑙𝑠 

Dynamic Viscosity 
Thermal Conductivity  
Heat flux 
Co-efficient of heat transfer 
Temperature 
Initial Temperature 
Temperature in the annuli 

Velocity of the top plate 
Tangential momentum (initial, reflected, wall) 
Mean Free Path 
Dimensionless velocity 
Dimensionless distance 
Source term 
Density 
Tangential momentum accommodation co-

efficient 
Roughness average  
Maximum profile peak height 
Mean spacing of profile irregularities 
Floor distance to mean line 
Specific heat capacity 
Normal direction to the wall 
Slip velocity 
Slip length 

 
 

1 INTRODUCTION 
 
In recent years, fluid flow through micro-channels has been given great significance, as 
heat transfer through such channels is dependent on physical properties of the flow like 
geometry and boundary conditions, among others. In fact, it is mainly these channels’ 
surface roughness that helps not only achieve an effective seal [1, 2], but also impacts heat 

and viscous heat dissipation within the channel. An example of this is the fluid flow of an 
annulus between two cylinders, a common occurrence in engineering. When the innermost 
of these cylinders is rotating and the other is stationary, heat is generated within the annulus 
due to the viscous motion of the fluid layers slipping past each other. The rotation of the 
inner cylinder results in a high velocity gradient of the annulus fluid, manifesting as a 
significant temperature rise. Here, this model represents a stationary seal mounted on a 
rotating shaft with an interference fit to study the flow of a 1-10 micron thin layer of 
lubricant within the annulus. Specific parameters of turbine engine oil, Aeroshell 555 are 

considered in this analysis.  
 
The sealing mechanisms of radial lip seals is investigated from a thermal analysis 
perspective, to study the presence of viscous heat generation and its potential role in how 
seals work. This model studies the rise in temperature effect of viscous dissipation in the 
annulus, demonstrating how changing certain conditions can alter the temperature profile 
across the annuli. 
 

Previous studies employing experimental and numerical analysis of viscous dissipation in 
micro-flows drew the following conclusions on its impact on the flow [3-5]: 

i. The viscous dissipation effect becomes more prominent, especially on the 

friction factor as the dimension of the system being studied decreases below 50 



 

microns. Neglecting to account for it in micro-conduits can result in skewed 

results.  

ii. As channel size decreases, viscous dissipation effects will increase and they 

should be considered in cases with imposed boundary heat sources as well.  

iii. Some key factors that play a critical role in determining the extent of impact of 

the viscous dissipation on the flow are the Reynolds number, Brinkman 

number and channel dimensions. Fluids that are highly viscous and have a low 

specific heat capacity will still experience strong viscous dissipation effects, 

even if they are laminar with a low Reynolds number. 

iv. Aspect ratio of the channel and overall geometrical parameters also contribute 

to the effect of viscous dissipation. In particular, channels with an aspect ratio 

that moves away from unity will experience an increased effect. .  

 
In regards to solid-wall proximal motion, three relevant length scales exist [1]: i) I, length 
scale associated with the molecular structure of the fluid (this is irrelevant as it is 
dimensionally not comparable), ii) E, length scale associated with the solid surface 

roughness, and iii) L, length scale associated with the fluid’s bulk motion. It can be the 
dimension of the channel or diameter of the tube through which the fluid flows. In this 
case, L is comparable in size to E. Hence, the difference in flow between that in micro-
channels and macroscopic scales is due to a) the predominance of molecular effects in a 
small scale, and b) the extreme amplification of the magnitudes of ordinary continuum 
parameters. It has been previously mentioned [7] that thermal effects may play an 
important role in sealing performance. However, such investigations are not always 
included in the current analysis of seals. 

 

2 FLOW BETWEEN TWO PARALLEL PLATES – NO SLIP BOUNDARY 

CONDITION 
 
The annuli is very small in comparison to the radius and the radial system has been 
modelled as a planar system for simplification. We are studying micro channels and as the 
dimension of the channels being analysed are scaled down, the viscous dissipation effect 
is of critical importance. This is known as the scaling effect in a micro-flows and becomes 

prominent in flows where L is less than 100 microns. Fluid flow through such micro-
channels and microfluidic devices is characterized by a very high velocity gradient due to 
the channel dimension. Hence, viscous effects will be high, irrespective of the Prandtl 
number the flow [2]. This study is carried out to analyse the heat transfer mechanism in 
the system and the resulting temperature rise in the fluid. The thermal response of the fluid 
for different brinkman numbers is also studied. 
 
A Couette flow is shown below where one plate is moving with a velocity V m/s and the 

other plate is stationary. This will result in a linear velocity profile as shown below. If a 
negative pressure gradient is also imposed, then the velocity profile will be parabolic in 
nature. The type of flow being studied here is a simple Couette flow. 



 
Figure 1a: Flow between two rotating cylinders   Figure 1b: Flow between two parallel plates 

 

2.1 Velocity Profile  
 
To model the velocity profile, a combined Couette-Poiseuille flow is considered to derive 
the full velocity equation and the parabolic term with pressure gradient can be equated to 
zero to get the linear Couette flow profile. For the combined flow, the Navier stokes 
equations are used with the boundary conditions changed for one moving plate.  
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Boundary conditions 
 
1) 𝑎𝑡 𝑦 = 0, 𝑢 = 0 
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Equation 1 is the final equation that describes the velocity profile within the annuli. The 
first term is the parabolic term describing the Poiseuille element of the flow and the second 

term is the linear term describing the Couette flow. Flow the Couette only flow, the first 

term can be set to 0 as the pressure gradient 
𝑑𝑃

𝑑𝑧
= 0. Note that this is pressure in the 

circumferential direction and is not relevant to the application of sealing.  
 

To model the velocity profile, dimensionless parameters can be introduced where equation 
2 is the non-dimension equation for velocity that is plotted in figure 2. 
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Figure 2: Velocity Profile Couette & Couette-Poiseuille Flow 

𝑃 = 0 is the case of simple Couette flow, which is the only case relevant to the application 
of sealing. Figure 2 displays the velocity profile for positive and negative pressure gradient 
in the system by changing the values of dimensionless pressure gradient P. This analysis 
has been done in an attempt to verify the analytical solution and equations being derived 
with previous analysis done by [3] on a Couette-Poiseuille case. Turbine engine oil is taken 
as the fluid being analysed in the annuli and its properties are considered (Aeroshell 555). 
The dimensions are considered of an annuli of 1-10 microns with a shaft and seal radius of 
~ 49-50 mm. 

 

2.2 Heat Transfer  
 
Considering the thermal analysis of the system, as the outer cylinder rotates, heat is 
generated within the fluid due to the viscous dissipation. This dissipation is a result of the 
adjacent layers of the fluid slipping past one another with a very high velocity gradient and 
turns mechanical and kinetic energy into heat energy. It is then accounted for as a 
significant rise in the temperature of the fluid as thermal energy is generated in the fluid 
[4]. As can be seen in equation 3, it will appear in the energy equation as the source term 

in the fluid flow. The importance of viscous dissipation in a flow can be quantified by a 
dimensionless number known as the Brinkman number. It is used to account for the 
unusual heat transfer behaviour in micro channels, particularly because they drastically 
differ from the behaviour of conventionally sized channels. 

 
The heat generation term is a function of the velocity profile. The source term, 𝑆 =

−𝜏𝑧𝑥 (
𝜕𝑢

𝜕𝑦
) where 𝜏𝑧𝑦 = −𝜇 (

𝜕𝑢

𝜕𝑦
). Hence, the viscous term in the energy equation is given 

as 𝑆 = 𝜇 (
𝜕𝑢

𝜕𝑦
)

2

. To derive the viscous term in the energy equation, we first need the velocity 

equation as seen in the formulae above. 
 

The final energy equation is equation 3 below: 
 
𝜌𝑐𝑝∆𝑇

∆𝑡
= 𝑘𝛻2𝑇 − 𝑇 (

𝜕𝑃

 𝜕𝑇
) 𝛻𝑉 + 𝑆   Equation 3 



In this case, we will neglect the convection term and assume that the main mode of heat 
transfer is conduction as the flow is laminar and not turbulent. The expansion effects are 
also neglected and we assume that density is not a function of temperature. The density 
and viscosity of the engine oil can be assumed to vary with pressure, however the pressures 
experienced in this case are almost insignificant and can be assumed to be low enough to 
be unable to alter the properties of the bulk flow. Only Couette flow is considered here to 
get the temperature rise through the annuli 
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Boundary conditions: 
1) 𝑎𝑡 𝑦 = 0,         𝑇 = 𝑇𝑜  
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Applying the BC’s 
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Equation 4 dictates the temperature rise through the annuli for simple Couette flow case 

and ∆𝑇 = 𝑇𝑏 − 𝑇𝑜. The Brinkman number is an indication of the importance of the viscous 
heat generation with respect to the heat that will flow due to an imposed temperature 

difference. As the Brinkman number increases, the effect of viscous dissipation becomes 
more apparent. When Br > 2, the point of maximum temperature will move toward the 
centre of the annulus, resulting in a more parabolic temperature profile rather than linear 



 

due to the temperature rise. The equation derived governing temperature distribution is 

solved for different 𝐵𝑟 & ∆𝑇 with oil as the fluid in the annuli  
 
Figures 3, 4 and 5 below show the temperature variations across the width of the annuli 

with the dimensionless distance 
𝑦

𝑏
 for a brinkman number of 0.2, 2 and 4. The ∆𝑇 is varied 

to observe the temperature in the annuli because of differences in wall temperatures. As 
seen in figure 3, for a Br = 0.2, the temperature in the annuli increases as the dimensionless 
distance increases toward the centre of the annuli. Note that the rate of temperature rise is 

seen to increase with increasing ∆𝑇. This indicates that the heat conduction due to the 
imposed temperature gradient across the annulus is dominating the temperature profile 

over the viscous generation, and therefore the mechanism of heat transfer in the system. In 
figure 3, the temperature profiles for Br = 2 are similar to those corresponding to Br = 0.2. 
However, in this case, the temperature profile in the annuli becomes parabolic rather than 
linear. This indicates that the heat energy generated due to viscous dissipation in the annuli 
results in a rise of the fluid temperature. Therefore, the temperature gradient decreases as 
y/b increases and approaches the moving wall which is the outer rotating cylinder. The 
temperature in the fluid here approaches that of the rotating wall, reducing the heat 
transferred from the rotating cylinder to the fluid. As an equilibrium temperature is reached 

between the fluid and the rotating cylinder, there is little to no heat conduction observed. 
As seen in figure 5, for the final case of Br = 4, the temperature profile becomes even more 

parabolic at the ∆𝑇 increases and it reaches its maximum at y/b ∼ 0.75. This can be 
attributed to a higher rate of viscous heat dissipation in the fluid and therefore, the fluid 
temperature increases more than the temperature of the wall. For this final case, the amount 
of heat generated results in the fluid reaching a higher temperature than that of the rotating 
cylinder, which can be seen below. 
 

 
    Figure 3: Br=0.2 (Couette Flow Case 1)    Figure 4: Br= 2 (Couette Flow Case 1) 

 
Figure 5: Br = 4 (Couette Flow Case 1) 

 

3 FLOW BETWEEN TWO PARALLEL PLATES–SLIP BOUNDARY 

CONDITION 
 



A similar flow is modelled to the previous case, but with different boundary conditions to 
include the surface roughness and slip boundary conditions to investigate the effect it will 
have on the temperature profile across the annulus. As mentioned in the introduction, since 
the L is comparable in size to E, this means that the surface roughness effects will be 
prominent enough that they must be considered – even in laminar flow. While traditional 
theory neglects roughness effects in laminar flow, recent literature suggests that in micro-
flows, the effects of surface roughness should be included [5][6]. Since the annuli being 

considered is a few microns thick, calculation of the Knudsen number suggests that it may 
not lie within the classical continuum flow regime and slip must be applied at the boundary 
conditions [7]. Intuitively, we would expect that the surface roughness would reduce the 
effect of slip flow – however, since the cohesive forces between the liquid are able to 
overcome the adhesive forces between the liquid and solid wall, they can manage to detach 
from the surface and exhibit slip at the wall. The shear effect within this fluid is also very 
high, which is why the viscous term can be considered to begin with. This will also help 
the bulk liquid detach from the wall and pull the liquid particles along with them, possibly 

resulting in finite slip at the stationary wall.   
 

3.1 Velocity Profile  
 
To include roughness effects and to incorporate the Knudsen number regime of the flow 
in this analytical model [8] 
 

(i) the flow area constriction theory is used and  
(ii) Increase in the wall shear stress by using a velocity slip boundary condition.  

 
To successfully implement (i), AFM (atomic force microscopy) and a ZETA profilometer 
was utilized to test for the roughness profile of samples of specimens to obtain the values 
that are relevant to this application. Surface roughness parameters were found for the 
specimens to ensure that they fall within the desired range of suggested roughness for 
aerospace seals. The data from those tests are used here. The constricted flow theory 
proposed by [8] is summarized and applied as follows. Different roughness heights would 
mean that the flow separation of the fluid would be different and in each case, the flow 

would or would not re-attach to the wall. The new flow boundary established as a result of 
this roughness element exceeding a certain size is now suspended above the actual pipe 
wall at a distance supposedly named y away from the pipe wall. The effectively diameter 
of the flow is then reduced by the presence of the surface roughness elements on the surface 
of the tube and this lays the foundation of Kandlikar’s constricted flow theory. The exact 
value of y is not known, but can be found through data in the following manner. It is 
bounded between 0 and the height of the roughness and sits somewhere in between these 
two values. The new effective flow diameter can then be based on the constricted flow, 
𝐷𝐶𝐹 = 𝐷𝑡 − 2𝜖 
 

This is assuming the new value suggested as y closely resembles 𝜖, the value suggested by 
Nikuradse [9] in his sand grain experiments to quantify surface roughness and is the 

pioneer of the relative roughness values established in the moody chart. Here, 𝐷𝐶𝐹  is 

known as the constricted flow diameter, 𝐷𝑡 is known as the base diameter of the actual 

pipe and 𝜖 is known as the average roughness height. An approach that is used in rarefied 
gas flow dynamics is to introduce a slip velocity boundary condition after roughness effects 
and parameters are included and a similar approach is taken in this case.  
 
To successfully account for the wall shear stress in (ii), a slip velocity boundary condition 
is then introduced once the roughness features have been defined as mentioned above.  
 



 

 
Figure 6: Knudsen number regimes 

The Knudsen number represents how rarefied the fluid flow system is where  𝐾𝑛 =
𝜆

𝐿
 

 𝜆 = 𝑚𝑒𝑎𝑛 𝑓𝑟𝑒𝑒 𝑝𝑎𝑡ℎ, 𝐿 = 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑡𝑖𝑠𝑡𝑖𝑐 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑏𝑢𝑙𝑘 𝑓𝑙𝑜𝑤 𝑚𝑜𝑡𝑖𝑜𝑛  

 
For Knudsen numbers < 0.001, the system is considered to be in a continuum state as seen 
in figure 9 above. This means that Navier-Stokes equations can be applied with a no-slip 
boundary condition. However, as the system becomes more rarefied, it moves further along 
on the spectrum. In the first part of the transitional regime where 0.001 < Kn < 0.1, the 
Navier-stokes equations are still valid – however a slip velocity must be applied as a no-
slip condition is ideal and unrealistic. A first order slip velocity is known to be sufficient 

for this regime and for the second half of the transitional regime, higher order slip 
conditions may be valid amongst other models. Maxwell’s slip equation can be expanded 
to second and third order, however we use a first order model here. 𝑢𝑔 = 𝑢𝑤 + 𝛼𝐾𝑛 +

𝛽𝐾𝑛2 + ⋯ 
For the case of the shaft and seal, we assume the mean free path of air 𝜆𝐴𝐼𝑅 = 68 𝑛𝑚, 𝐿 =

1 − 10𝜇𝑚 & 𝐾𝑛~0.022 for this system as an approximation since it is not possible to 
know the mean free path of the actual system. We can only assume that due to the scale of 

L, we may be in a slightly rarefied state. Further, surface roughness effects have been 
shown to introduce a finite slip at the boundary [10].  
 
The rarefaction of a system does not only depend on the mean free path of the system it 
also depends on the length scale. Extremely small channels i.e. micro channels can 
compensate for a not so low mean free paths and result in a higher Knudsen numbers which 
can be the case here. When Knudsen numbers are on the higher side (or in the transition 
regime), the Knudsen layer becomes significant. It is the sublayer at the surface interface 
a few mean free path thick. In such cases, collision frequency is low because the channel 

is so small and therefore equilibrium between the velocity and temperature near the wall 
cannot be easily established whilst considering the macro flow. We use no-slip boundary 
conditions to see how it will affect the temperature profile in the annuli. 
 
The simplest extension to the no-slip boundary condition is the simplistic Navier slip where 
the boundary velocity is proportional to the velocity gradient. Maxwell’s first order slip 
boundary condition and Navier’s slip theory aligned well as they were the same concept, 
presented differently. Maxwell’s equation for first order slip flow is 

 

𝑢𝑔 − 𝑢𝑤 =
2−𝜎𝑣

𝜎𝑣
[𝜆

𝜕𝑢

𝜕𝑦
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𝜏𝑖−𝜏𝑟

𝜏𝑖−𝜏𝑤
  

𝑢𝑠 = 𝑢𝑔 − 𝑢𝑤 

 

The slip velocity in terms of a physical system can be defined as the tangential velocity 

one mean free path away from the wall [7]. 𝜎𝑣 is the tangential momentum accommodation 
coefficient. It can be said that the slip velocity can be defined as the mean velocity of the 
layer of fluid one mean free path away from the wall. Therefore, a higher proportion of 
specular reflections will result in higher slip velocity as well. This definition is relevant to 
slightly rarefied systems as a longer mean free path will result in the presence of fluid-
solid collisions near the surface [11]. The effect of varying the tangential momentum 
accommodation co-efficient on the velocity in this system is presented here. The final 



equations for the slip flow boundary conditions in non-dimensional form are presented 
below.  
 
For Couette flow with first order slip, the solution is: 
 

𝑢∗ =
1

1 + 2𝛼
𝑦∗ +

𝛼

1 + 2𝛼
 

 

Where 𝛼 =
2−𝜎𝑣

𝜎𝑣
𝐾𝑛 

 

𝑢∗  =
𝑢

𝑉
, 𝑦∗ =

𝑦

𝑏
, 𝐾𝑛 =

𝜆

𝐿
 

 
Figure 7: Velocity profile for Couette first order slip 

 
As seen in figure 10 above, a slip velocity results in a steeper gradient on the velocity graph 
with a ‘slip’ at the boundary. The tangential momentum accommodation co-efficient is 

seen to vary and the degree of slip based on the value of 𝜎𝑣 can be seen. The 𝜎𝑣 = 0.1 
presents with the highest slip as explained above that a higher proportion of specular 
reflections results in higher slip velocity.  
 

Following this, the non-dimensional equation of the micro-Couette flow with first order 
slip is equation 6 below. 
 

𝑢 =
𝑣

𝑏
.

1

1+2𝛼
𝑦 +

𝑣𝛼

1+2𝛼
   Equation 5  

 

3.2 Heat Transfer  
 
Once the equation for micro Couette flow with velocity slip boundary equations has been 
derived, this section aims to study the effect of incorporating the Knudsen number and 
surface roughness in the analytical model to see the effect on temperature variation in the 
fluid as a result of viscous dissipation effect and constricted flow theory.  
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The energy equation with the viscous dissipation term is presented below.  
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Boundary conditions: 
1) 𝑎𝑡 𝑦 = 0,         𝑇 = 𝑇𝑜  

2) 𝑎𝑡 𝑦 = 𝑏, 𝑇 = 𝑇𝑏 
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Equation 8 dictates the temperature profile in the annuli as: 
 
𝑇−𝑇0
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𝑦

𝑏
+

1

2

𝜇𝑣2
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𝜎𝑣
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2 (
𝑦

𝑏
) (1 −

𝑦

𝑏
)    Equation 6 

Following is the Couette flow with slip boundary conditions with a brinkman number of 
0.2. As seen in figure 11, the effect of viscous dissipation has not taken effect here as yet 
and no significant temperature increase can be seen. When increasing the Brinkman 
number to 2 in figure 12, a slight rise in temperature is seen due to the viscous generation 
within the annuli. However, due to the presence of the slip term, the temperature rise is 
controlled. If it is compared to the Couette flow case without the slip (as it will be in the 
discussion), the curve is more parabolic in nature due to the heat generation. The same 

effect is not seen here even though the exact same dimensions and conditions are kept 
with the exception of the slip term being included. Further increasing the Brinkman 
number to a value of 4 as seen in figure 13 results in a slightly more parabolic curve. 
However, the temperature rise is again controlled to a large extent as seen in the graph 
below. The true parabolic nature of the Couette flow is not observed as it is earlier.  
 

 
Figure 8: Br = 0.2 (Couette Flow Case 2)          Figure 9: Br = 2 (Couette Flow Case 2) 



 
Figure 10: Br = 4 (Couette Flow Case 2) 

 
 

4 DISCUSSION  
 

4.1 Couette-flow – Slip vs no Slip BC’s 
 
Incorporating a slip velocity boundary condition to model the problem in the right Knudsen 
number regime along with accounting for roughness on the surface results in a clear control 
of the rise in temperature within the annuli. The viscous dissipation effect is controlled to 
a certain extent as seen when you compare between figure 14 and 15. All conditions are 
kept constant – however in the second model we have modified the Navier Stokes 
equations by adding a first order slip boundary condition. We note that the temperature 

rise due to viscous heat dissipation is not as profound.  
 

 
Figure 11: No-Slip BC – Couette flow heat transfer      Figure 12: Slip BC – Couette flow heat transfer 

As can be seen in figure 14 and 15 above, there is clear control over the temperature rise 
and viscous dissipation effect with the addition of the slip at the boundary conditions. Even 
with a brinkman number of 4, it is evident when compared to the profile in figure 14, that 
the heat generation in the annuli of figure 15 is limited. This suggests that the slippage is 
limiting the temperature rise by some means. Looking at the final equation,  
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In this case, Br and S are the two terms that can dominate the thermal behaviour of the 
fluid across the annulus. One circumstance of the flow is where the brinkman number 
dictates the flow, dominated by temperature rise due to viscous effects. The other 



 

circumstance is when the slip effect is introduced through the tangential momentum 
accommodation coefficient and the roughness effect dictates the thermal behaviour of the 
fluid. Following this, a possible explanation is hypothesized in the following section.  
 

4.2 Effect of Surface Roughness 
 
The association of surface roughness with slip is still under debate as there is contradicting 

research regarding it. While some research associates slip with smooth surfaces, assuming 
that a smoother wall will enhance slip, other work suggests quite the opposite. In many 
cases, a surface roughness is seen to enhance the effect of slip and results in a higher slip 
velocity [10], especially in flows that are not in a fully continuum regime and are slightly 
rarefied.  
 
As a result of including the tangential momentum accommodation coefficient, Knudsen 
number and slip conditions, a clear control over the viscous dissipation effect is observed. 

The effect is seen subdue to heat generation by offsetting the effect of the rising brinkman 
number as the shear in the fluid increases. The viscous dissipation effect is found through 
the gradient of the velocity profile, as seen in section 3.2. Therefore, introducing a slip 
velocity would change the gradient of this velocity profile as it is no longer meeting the 
zero velocity condition at the boundary. Surface roughness is presumed to play a critical 
role for this control in energy accumulation at the surface, contributing to the finite slip at 
the boundary. The temperature control would indicate that the local viscosity of oil would 
not decrease as it would if the temperature were to rise by a higher amount. This could be 
a deciding factor in controlling the leakage in the seal. Further, a theory regarding the 

presence of a thermal instability is presented. 
 

4.3 Thermal Instability in Seals 
 
The stability of fluid flow is a problem that has been contemplated for many decades. Fluid 
flows can be characterized as either stable or unstable. If a flow is stable and it is perturbed 
from its initial state, the flow field will return back to its original state. On the other hand, 
an unstable flow, when perturbed would result in a different flow field. This can also be 

applied to the case of a rotating shaft and a stationary seal with a film of lubricant in 
between these two components. Studying the fluid flow of this lubricant layer in between 
the shaft and seal is essential in understanding how the fluid is being sealed. For further 
research, this includes assessing the system from a stability standpoint to investigate 
whether the energy accumulation in the flow due to the viscous heat dissipation is enough 
to perturb the initial state of the fluid so that it will result in a different flow field.  
 
We hypothesize that the energy feedback can result in an occurrence of a harmonic 

oscillation due to the instability of the flow. The maintenance of such an oscillation implies 
the existence of a feedback loop in the system. The presence of the instability essentially 
is fed by this feedback loop. The indication that a thermal instability may exist within the 
seal, where the state of the instability would arguably transfer between two states, each 
dominated by a different effect. One state would be dominated by the rising brinkman 
number and viscous dissipation effect. The second state would be the slip, representing the 
surface roughness and rarefied regime and the seal would alternate between these two 
states periodically, resulting in a self-oscillating instability that would not go off into 

infinity but would rather sustain itself, explaining some of the micro-flow mechanics 
behind effective sealing mechanisms. Assuming there is enough momentum in energy 
being accumulated in the annuli to push the system into a full 180 degree phase lag, this 
would explain the presence of a self-sustaining oscillation of the temperature profile within 



the gap between the seal and shaft. Extended research on this is ongoing in an effort to 
further this hypothesis and research possibilities that may support this theory. 
 

5 CONCLUSION 
 
The momentum and energy equations were solved analytically for the steady state case 
with laminar flow of the incompressible turbine engine oil between a seal and shaft, of a 

Couette flow between two plates. Both cases of (a) no slip conditions and (b) first order 
slip condition were solved analytically and the equations dictating the temperature profile 
across the annuli were plotted. The results showed that the presence of viscous dissipation 
in micro-channels is profound with increasing Brinkman number due to the small gaps 
being considered and high shear flows. Viscous dissipation term cannot be neglected in 
the consideration of such flows and should be taken account in any thermal analysis of 
such seals in the future. Secondly, the effect of including slip conditions at the boundary’s 
analytically showed a control in the temperature rise in the gap. Even with a brinkman 

number higher than 2, where the effect of the viscous dissipation is meant to dominate the 
flow, it is possible to control that effect due to the presence of a slip. Slip is associated with 
the micron dimensions of the annuli and it is also believed that in this case, the surface 
roughness is a factor that will also result in slip observed at the wall.  
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