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Reconstruction of Optical Vector-Fields With
Applications in Endoscopic Imaging

Milana Gataric , George S. D. Gordon, Francesco Renna , Alberto Gil C. P. Ramos,
Maria P. Alcolea, and Sarah E. Bohndiek

Abstract— We introduce a framework for the
reconstruction of the amplitude, phase, and polarization
of an optical vector-field using measurements acquired by
an imaging device characterized by an integral transform
with an unknown spatially variant kernel. By incorporating
effective regularization terms, this new approach is able to
recover an optical vector-field with respect to an arbitrary
representation system, which may be different from the
one used for device calibration. In particular, it enables
the recovery of an optical vector-field with respect to a
Fourier basis, which is shown to yield indicative features of
increased scattering associated with tissue abnormalities.
We demonstrate the effectiveness of our approach using
synthetic holographic images and biological tissue samples
in an experimental setting, where the measurements of
an optical vector-field are acquired by a multicore fiber
endoscope, and observe that indeed the recovered Fourier
coefficients are useful in distinguishing healthy tissues
from tumors in early stages of oesophageal cancer.

Index Terms— Inverse problem, image reconstruction,
calibration, Fourier features, optical phase and polarization,
endoscope.

I. INTRODUCTION

RECENTLY, there has been a significant interest in devel-
oping new types of optical fiber endoscopes for medical
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imaging applications [9], [13], [18], [30], [45]. Typically, these
new endoscopes aim to be thinner, and therefore less invasive,
and/or use different properties of light than conventional white
light endoscopes making them more sensitive for detecting
diseases such as cancer [50]. When a tissue is illuminated by
light of high spatial and temporal coherence, a full optical
vector-field reflected from the tissue consists of amplitude,
phase and polarization information [2], [24], [36], [37], [41].
Phase and polarization have recently shown promise as diag-
nostic indicators, but are discarded by conventional white
light endoscopes which record amplitude information only.
Phase is highly sensitive to surface scattering that arises due
to microstructural tissue changes in early cancer, creating
distorted reflected wavefronts [7], [22], [44], [46], [47]. This
effect has been utilized in phase contrast and quantitative
phase microscopy to predict recurrence of prostate cancer [43].
Similarly, polarization information can indicate the forma-
tion of dense collagen networks [8], and the concentration
of other polarization-sensitive compounds, such as glucose,
linked with early cancer [4], [29]. This has found use in
the diagnosis of colon [3], [33] and gastric cancers [48].
Currently, there are no commercial phase and polarization
endoscopes but many prototype devices have been demon-
strated [18], [34], [39], [45], [49].

To achieve phase and polarization imaging in fiber endo-
scopes, the underlying transformation of the optical fiber needs
to be characterized. In realistic clinical settings, this transfor-
mation changes frequently due to bending and temperature
fluctuations and it is therefore important that the characteriza-
tion is efficient and accurate. For the characterization, typically
a set of known fields that form some kind of a basis are input
into one end of the fiber and the resulting outputs are recorded
at the other end, a procedure termed calibration. The task
then becomes to recover a representation of the optical field
reflected from a tissue given the calibration measurements and
the samples of the output field measured by an imaging sensor
outside of the fiber.

In this paper, we investigate the following questions: (i) is
there a particularly useful representation of the optical field
reflected from a tissue that can be used for detecting optical
aberrations associated with early cancer, and (ii) how can
such a representation be recovered by an efficient and reliable
algorithm from raw endoscopic measurements, i.e. from the
calibration measurements and the samples of the output field?

To address these questions, we show that a Fourier repre-
sentation recovered directly from the raw measurements has
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the statistical power to distinguish healthy tissues from tumors,
and we provide a general reconstruction framework that can
perform such recovery efficiently and stably.

More concretely, after reviewing related previous works
in Section I-A, in Section II we introduce a general recon-
struction framework for the recovery of a two-dimensional
complex vector-field, where different regularization terms are
permitted and the bases used for image representation and
device calibration are allowed to be different and/or non-
orthogonal. In Section III we demonstrate that it is possible to
extract informative features for detecting cancer from images
of simulated tissue samples by projecting them onto a Fourier
basis and observing the decay of their respective Fourier
coefficients. In Section IV, we apply our approach to exper-
imental data acquired using a custom-built fiber endoscope
[25] and recover synthetic holographic images as well as
images of mouse oesophageal tissue containing small tumors
(lesions). In particular, by recovering images of a biological
tissue with respect to a Fourier basis using �1-regularization,
we observe that the corresponding Fourier coefficients are
indicative of differences between lesions and healthy tissues
and demonstrate their potential for medical diagnostic appli-
cations. We conclude with a discussion of our results and
directions for future research in Section V.

A. Relation to Previous Work

In imaging through optical fibers or other scattering media,
typical recovery procedures use the same, finite-dimensional
basis for calibration and image representation in conjunction
with standard inversion techniques. They start by discretizing
the mathematical operator of the fiber as a mapping between
pixels at different ends of the fiber A : x ∈ Ck �→ y ∈ Cn ,
leading to a transmission matrix A ∈ Cn×k which is then
characterized through calibration. The calibration inputs are
collected in the columns of matrix Xcal ∈ Ck×m and the
corresponding outputs in the columns of matrix Ycal ∈ Cn×m .
Most existing systems use a full orthogonal basis of the
discretized input space as the calibration inputs, e.g. a set
of tilted plane waves (a Fourier basis) [16] or a Hadamard
basis generated using a phase-only spatial light modulator [35].
The orthogonality of such bases ensures that Xcal is uni-
tary. Then, by assuming that A is also unitary, images can
be recovered using phase conjugation. In this approach a
(generalized) inverse of the transmission matrix is calculated
as XcalY∗

cal , where ·∗ denotes the conjugate transpose, and
a representation of x with respect to the calibration inputs
is recovered as XcalY∗

caly [17], [18], [35]. Although simple
and straightforward to compute, the unitary assumptions in
this approach are typically violated in practice [14]. In the
context of imaging through scattering media, the inversion of
matrix A was also performed through alternative approaches
to phase-conjugation such as least-squares or Tikhonov regu-
larization [36], [37]. In particular, these applications do not
explore �1-regularization, which becomes a natural choice
when reconstructing images with respect to a sparse basis.
In this paper, we aim to reconstruct the real-world tissue
images which are expected to be sparse in a basis such

as Fourier, since these images are relatively smooth without
abrupt discontinuities.

When compared to these conventional techniques,
we emphasize that our new framework can recover a
representation of the unknown optical field with respect to
any particular infinite-dimensional basis which is allowed
to be different from the one used for calibration, directly
from the raw measurements. If an image representation with
respect to a particular basis (such as Fourier) is desired,
alternatively to our new approach one could in principle
use the conventional techniques to recover an approximation
to such a representation as we now describe. One could
calibrate the fiber with respect to a Fourier basis and use
standard techniques to reconstruct images with respect to the
same basis. However, in high resolution imaging, calibration
with respect to a Fourier basis may become prohibitively
slow in practice and it may be preferable to use different,
more efficient systems for calibration, as we do in this paper.
Another possible approach is to first recover the image with
respect to the calibration basis and then approximate its
Fourier coefficients in a post-processing step. However, as a
two-stage procedure, such approach is inherently less efficient
and suffers from greater error than the approach proposed
in this paper, which is able to recover Fourier coefficients
directly from the raw measurements.

In the earlier work [25], an endoscope with a commercially
available multicore fiber (MCF) bundle was developed to
produce images of phase and polarization for early cancer
detection. There, a set of calibration inputs was chosen to
greatly speed up experimental measurement time. Specifically,
a set of Gaussian-like spots translated in small steps was used
to enable parallelized calibration by exploiting the localized
confinement of light in the MCF structure. However, this input
basis is non-orthogonal so phase-conjugation cannot be naively
applied. Instead, a reconstruction algorithm which solves one
inverse problem per pixel was used to recover the images in a
pixel basis. In particular, representations with respect different
bases were not considered. While preserving the benefits of
efficient experimental calibration achieved with a system tai-
lored to the fiber structure, by using the framework presented
here, we are now able to reconstruct phase and polarization
images with respect to diagnostically relevant representation
systems and produce features useful for cancer detection.
Moreover, our new approach decreases the reconstruction
time to only few seconds from several hours when compared
to the previously implemented technique [25], providing an
important advance towards real-time image reconstruction.

In the past decades, there has been a significant interest in
developing different imaging techniques that capture scattered
light directly in the Fourier domain, such as light scattering
angular spectroscopy [6], [28], [32], Fourier transform light
scattering [27], angle-resolved low-coherence interferometry
[38] and spatial-frequency domain imaging [31]. Some of
these techniques have been successfully applied for detection
of early cancer [51], providing further validation that Fourier
coefficients indeed yield informative features. We remark that
by our new approach, Fourier coefficients can be recovered
without need to take the measurements in the Fourier domain,
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which is important because such measurements are not opti-
mally tailored to the imaging guide such as fiber.

Finally, we mention that changing representation systems
between image recovery and sampling has previously been
applied to inverse problems arising in various image and
signal processing applications (see [1], [23], and references
therein). There, it is assumed that the imaging device of
a known linear transformation provides image samples with
respect to a specified sampling system, while the aim is to
recover a representation of the image with respect to a different
system chosen so that a good approximation of the image is
obtained or the number of required samples is decreased. As in
our paper, different representation systems are modeled by
Riesz bases or frames of infinite-dimensional function-spaces.
By contrast, the imaging device considered here produces
pixel samples of a transformed image where the underlying
transformation is unknown and is characterized through a
calibration procedure.

II. RECONSTRUCTION FRAMEWORK

In this section we introduce our reconstruction framework.
We start by presenting an infinite-dimensional imaging model
in Section II-A. We then consider a simplified scalar-valued
setting in Section II-B, where we derive a linear system and
its regularized solution while providing flexibility in choosing
different systems for calibration and image representation.
We then extend our framework to vector-fields in Section II-C.

A. Imaging Model and Reconstruction Problem

In imaging through fibers or other scattering media, an input
optical vector-field F is related to its corresponding output F̃
through an integral transformation with a spatially-varying ker-
nel G, also called Green’s function or point-spread function.
Specifically, such transformation can be written as

F̃(y) =
�

S
G(y, x)F(x) dx, (1)

where F : S → C2 is a complex-valued vector-field repre-
senting the unknown optical field on the input plane S ⊆ R

2,
F̃ : R2 → C2 is a complex-valued vector-field on the output
plane which can be sampled, and G : R2×R2 → C2×2 is some
unknown bounded matrix-valued function [40]. In general,
the kernel G is also time-dependent as it is affected by bending
of the fiber and temperature. In this paper, we account for
significant measurement noise but only consider imaging at a
single time point; c.f. Section V. In particular, we consider the
input field F to be an object with infinite resolution, and thus,
we model F as an element of an infinite-dimensional function-
space, such as the L2-space of square-integrable functions.

In our novel endoscopic imaging, we want to capture a full
optical field (i.e. amplitude, phase and polarization) reflected
from a human tissue inside the body, which is also called a
wavefront, and which in this paper, we refer to as an image.
In this terminology, F is an image observed indirectly at the
input imaging plane S at the end of the fiber inside the body,
which is termed the distal facet of the fiber. The fiber then
transports light from the distal facet to the proximal facet

outside the body where the imaging sensor directly observes
F̃ at the output imaging plane. Then the question is how to
recover the unknown F from the acquired samples of F̃.

More concretely, given the pointwise measurements of the
output vector-field F̃ collected at the imaging sensor

F̃(yn), n = 1, . . . , N, (2)

where yn ∈ R
2 and N ∈ N is the resolution of the imaging

sensor, the goal is to recover the unknown function F via equa-
tion (1). It is important to note that these measurements will
also contain noise introduced by the measurement procedure.

This linear inverse problem is especially challenging
because both the spatially-varying kernel G as well as the
eigenfunctions associated with the underlying integral trans-
form (1) are unknown. Such eigenfunctions are termed modes
of the fiber and their analytic form is available only for
some limited fibers such as parabolic graded index multimode
fibers [42].

To recover F from finitely many samples of F̃ in scenarios
where neither G nor the eigenfunctions are known, one strat-
egy may be to employ a calibration procedure. Concretely, it is
possible to design calibration input fields Em , m = 1, . . . , M ,
and to measure the corresponding output fields Ẽm , which
in line with the notation above are vector-valued functions
related through the infinite-dimensional model given in (1).
The advantage of calibration is that we now have access not
only to the data given in (2) but also to the calibration data

Em , Ẽm(yn), m = 1, . . . , M, n = 1, . . . , N, (3)

which forms additional information with which to recover F.
It is noted that while the output fields Ẽm are sampled

at an output imaging sensor of resolution N , the calibration
input fields Em can be evaluated on a discretized grid whose
resolution does not depend on any physical limitation imposed
by the fiber or by the sensor collecting the transmitted image;
it only depends on the resolution of the sensors used for
calibration, which may be much larger than M . Therefore,
as for the input F, we model the inputs Em as elements of an
infinite-dimensional function-space. Thus, the representation
of F as well as the device calibration can be considered with
respect to a wide class of infinite-dimensional bases or over-
complete systems that may not be orthogonal.

B. Reconstruction of Scalar-Fields

We approach the general problem of recovering the complex
vector-field F by first solving a simplified problem, which
once solved will provide us with the methodology necessary
to tackle the problem in its full generality in Section II-C.
Specifically, we assume in this subsection that F, F̃ , Em, Ẽm

are scalar valued functions that take values in C rather than C
2,

and accordingly G takes values in C rather than C2×2.
We highlight this difference by using non-bold symbols.

We consider all fields on the input imaging plane S as
elements of the same function-space F , such as the L2-space
of square-integrable scalar-valued functions supported on S,
with inner product defined as �E, H � := �

S E(x)H ∗(x) dx, for
any E, H ∈ F . We aim to recover F ∈ F at resolution K ∈ N
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in terms of some desired representation system {Hk}K
k=1 in F ,

using only the available data (2) and (3). Specifically, we aim
to estimate the coefficients f = �

f1, . . . , fK
�	 ∈ CK of the

K -term approximation of F given as

FK (x) :=
K�

k=1

fk Hk(x), x ∈ S. (4)

Before turning to the computation of fk in (4), it is
insightful to work through special cases of S and {Hk}K

k=1
that are particularly useful in practice. For instance, if we
want to recover a Fourier representation of F and S :=
[−1/2, 1/2]2 ⊆ R2, then {Hk}K

k=1 is the K -dimensional
Fourier basis {e2π ik·x}k∈IK where IK := {k = (k1, k2) ∈ Z2 :
k1, k2 = −
√K/2�, . . . , 
√K/2� − 1}, k · x := k1x1 + k2x2,
x := (x1, x2) ∈ S, and (4) specializes to

FK (x) :=
�

k∈IK

fke2π ik·x, fk :=
�

S
F(x)e−2π ik·x dx. (5)

More generally, {Hk}K
k=1 may contain the first K elements of a

Riesz basis in F , such as B-spline wavelets for example, with
its corresponding biorthogonal sequence denoted by {H̆k}K

k=1,
in which case (4) becomes FK (x) = �K

k=1�F, H̆k�Hk .
Moreover, as we do not require an explicit form of the
coefficients fk , the notion of basis can be further relaxed to
over-complete representation systems such as over-complete
frames [15].

Returning to the key issue of approximating the coefficients
fk in (4) from the given measurements (2)–(3), we write each
Hk in terms of the calibration functions {Em}M

m=1 as

Hk(x) =
M�

m=1

hm,k Em(x) + δk(x), x ∈ S, (6)

for some coefficients hm,k ∈ C, whose computation we discuss
below, and for some error term δk . Since (1) is a linear
transformation of F , by substituting F with FK + (F − FK )
in (1) and writing FK in terms of (4) and (6), we have

F̃(·) =
K�

k=1

M�
m=1

fkhm,k Ẽm(·) +
K�

k=1

fk

�
S

G(·, x)

× δk(x) dx +
�

S
G(·, x)(F(x) − FK (x)) dx. (7)

By evaluating equation (7) at the measurement points {yn}N
n=1,

we obtain the following linear system

g = EHf + ε, (8)

where g := [F̃(y1), . . . , F̃(yN )]	 ∈ CN , E ∈ CN×M is the
matrix with its (n, m)-th entry equal to Ẽm(yn), H ∈ C

M×K is
the matrix with its (m, k)-th entry equal to hm,k and ε ∈ CN

is an error term containing the last two terms in the right-
hand-side of (7). In addition, the error term ε ∈ CN can be
seen also as encapsulating measurement error incurred when
measuring F̃(yn) and Ẽm(yn) in (2) and (3), respectively. We
then opt to define the solution of (8) as

f̄ := argmin
f∈CK

{g − EHf2 + λR(f)} , (9)

where  · 2 denotes the Euclidean norm on CN , while the
regularization term R and its parameter λ ≥ 0 are described
below. Once the coefficients f̄ = �

f̄1, . . . , f̄K
�	 ∈ CK are

computed through (9), then in line with (4) we define the
reconstruction of F as the approximation given by

F̄K (x) :=
K�

k=1

f̄k Hk(x), x ∈ S. (10)

To obtain the explicit solution defined in (10), it remains
to describe the procedure for computing the coefficients of
matrix H and to define the regularization term R.

First, observe that if the same system is used for cali-
bration and reconstruction, then H = I. Otherwise, we can
estimate H as follows. Using (6), we write �Hk, Em� � =�M

m=1 hm,k�Em , Em� � + �δk, Em� �, m� = 1, . . . , M , and thus,
provided �δk, Em� � ≈ 0, we can approximate H by
⎡
⎢⎣

�E1, E1� . . . �EM , E1�
...

...
�E1, EM � . . . �EM , EM �

⎤
⎥⎦

−1 ⎡
⎢⎣

�H1, E1� . . . �HK , E1�
...

...
�H1, EM � . . . �HK , EM �

⎤
⎥⎦.

The first matrix above is known as the Gram matrix, which is
equal to the identity if {Em}M

m=1 are orthonormal. We note
that the accuracy of such estimation of matrix H and its
condition number depend on the gap between the function-
spaces spanned by {Hk}K

k=1 and {Em}M
m=1 as well as on the

conditioning of the Gram matrix. In general, it is required that
{Em}M

m=1 form a good approximation for {Hk}K
k=1.

Turning to the choice of the regularization term R in (9), in
case it is absent, i.e. if λ = 0, then the solution to (9) is equiv-
alent to the least-squares solution f̄ := ((EH)∗EH)−1(EH)∗g.
If the regularization term is given by R(f) := f2, then
(9) is known as Tikhonov regularization and its solution is
given by f̄ := ((EH)∗EH + λI)−1(EH)∗g. However, if EH is
badly conditioned, ε �= 0 and it is known a priori that only
a few elements of {Hk}K

k=1 are sufficient to represent F well,
then R(f) := f0 is an appropriate choice of the regulariza-
tion term. This is known as the �0-regularization, where the
�0-norm f0 is defined as the number of non-zero entries
in f . The �0-regularization bypasses the ill-conditioning by
imposing sparsity in the solution F̄K with respect to {Hk}K

k=1.
In practice, solving the minimization problem with such a non-
convex �0-term is computationally difficult, so typically an
�1-relaxation is considered instead. The corresponding relaxed
minimization problem can then be solved by fast iterative
algorithms [10], [11]. In addition, the parameter λ, which
controls the strength of the regularization, can be chosen by
cross-validation techniques [20].

We conclude this subsection with a discussion on the
accuracy and robustness of the solution defined in (10).

The reconstruction error can be quantified by the magnitude
of F − F̄K = (F − FK ) + (FK − F̄K ). The magnitude of
F − FK depends of how well F can be represented by its
K -term approximation with respect to {Hk}K

k=1, and thus it is
expected to decrease with increasing K . On the other hand,
the magnitude of FK − F̄K depends on the conditioning of
EH and the error term ε in (8), and thus, it is expected to
increase with increasing K and M, N fixed. If the resolution
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K at which we reconstruct is increased, we also need to
increase M and N . However, it may be possible to attain
higher resolutions if some form of regularization is used when
solving (8).

As previously noted, the error term ε contains the measure-
ment error as well as the last two terms in (7), which can be
disregarded provided F−FK and δk are small or they lie in the
span of the eigenfunctions corresponding to a small singular
value. Thus, small ε requires that {Hk}K

k=1 and {Em}M
m=1 form

a good approximation for F or for the eigenfunctions with
large singular values. However, if the singular values of the
underlying integral operator accumulate at zero, the condi-
tioning of the matrix E may become worse if the span of
{Em}M

m=1 includes too many eigenfunctions including those
corresponding to a small singular value. Loosely speaking,
{Em}M

m=1 should form a good representation for the span of
the eigenfunctions, excluding those corresponding to small
singular values if they exist. However, as we do not have
access to the true eigenfunctions, we do not have control over
the ill-conditioning introduced by using a particular choice
of {Em}M

m=1. Thus, the use of regularization in solving (8)
becomes crucial in order to obtain a robust solution.

C. Reconstruction of Vector-Fields

We now extend the scalar-field reconstruction framework
developed in Section II-B to the more general vector-
field problem presented in Section II-A. To begin with, let

F := �
Fh, Fv

�	 (1)�→ F̃ := �
F̃h, F̃v

�	
be the complex-

vector-valued functions related as in equation (1), where the
superscripts h and v correspond to the horizontal and vertical
polarizations of the optical field, respectively. The goal is
to recover both polarizations Fh and Fv , which are scalar-
valued functions, by using data (2)–(3). Since each F̃h and F̃v

depends on both Fh and Fv , instead of reconstructing each
polarization independently, we consider their joint reconstruc-
tion. As we will see in Section IV-A, the reconstruction of
each individual polarization can be improved if they are recon-
structed jointly. Nevertheless, as it will be demonstrated below,
we can still use the framework introduced in Section II-B,
as long as the calibration inputs can form a representation
system for vector-valued functions such as F. To ensure this
is the case, rather than straightforwardly sampling the vector-
valued calibration inputs in (3), we sample the following two
related forms

Am :=
�

Eh
m

Ev
m

�
(1)�→ Ãm :=

�
Ãh

m
Ãv

m

�
,

Bm :=
�

Eh
m

bEv
m

�
(1)�→ B̃m :=

�
B̃h

m
B̃v

m

�
, (11)

where m = 1, . . . , M , b := eβi for a fixed β ∈ (0, 2π) and
Eh

m, Ev
m , Ãh

m, Ãv
m, B̃h

m , B̃v
m are some scalar-valued functions.

To make clear the motivation to sample according to (11),
observe that if {Eh

m}M
m=1 and {Ev

m}M
m=1 are representation

systems for Fh and Fv respectively, then {Am − Bm}M
m=1 and

{Am −b∗Bm}M
m=1 are representation systems for

�
0, Fv

�	 and

�
Fh , 0

�	
, respectively. In other words,�
Am − Bm, Am − b∗Bm : m = 1, . . . , M

�
(12)

can be used to represent the complex vector-valued F.
Mimicking the reasoning of the previous subsection,

we proceed by approximating Fh and Fv with respect to
some desired representation systems {H h

k }K
k=1 and {H v

k }K
k=1.

Namely, we aim to recover Fh
K (x) := �K

k=1 f h
k H h

k (x)

and Fv
K (x) := �K

k=1 f v
k H v

k (x), where we first write these
representations in terms of the calibration inputs, i.e.
H h

k (x) = �M
m=1 hh

m,k Eh
m(x) + δh

k (x) and H v
k (x) =�M

m=1 hv
m,k Ev

m(x) + δv
k (x), for some coefficients

f h
k , f v

k , hh
m , hv

m ∈ C and error terms δh
k , δv

k . It follows that

F(x) =
K�

k=1

M�
m=1

f h
k hh

m,k

�
Eh

m(x)
0

�

+
K�

k=1

M�
m=1

f v
k hv

m,k

�
0

Ev
m(x)

�

+
K�

k=1

�
f h
k δh

k (x)
f v
k δv

k (x)

�
+

�
Fh(x) − Fh

K (x)
Fv (x) − Fv

K (x)

�
. (13)

Since
�
Eh

m(x), 0
�	 = (1 − b∗)−1 (Am(x) − b∗Bm(x)) and�

0, Ev
m(x)

�	 = (1 − b)−1 (Am(x) − Bm(x)) , we obtain

F̃(·) ≈ 1

1 − b∗
K�

k=1

M�
m=1

f h
k hh

m,k

�
Ãm(·) − b∗B̃m(·)

�

+ 1

1 − b

K�
k=1

M�
m=1

f v
k hv

m,k

�
Ãm(·) − B̃m(·)

�
,

by applying (1) to (13), provided the two last terms in (13)
are small or they become small after applying (1). By using
the pointwise measurements from (2) and (11), this leads to

g = EHf + ε, E := �
a∗ (A − b∗B) a (A − B)

�
, (14)

where g := �
F̃h(y1), F̃v (y1), . . . , F̃h(yN ), F̃v (yN )

�	 ∈ C
2N ,

f := �
f h
1 , . . . , f h

K , f v
1 , . . . , f v

K

�	 ∈ C2K , ε ∈ C2N is the
error term, a := 1/(1 − b) ∈ C, A, B ∈ C2N×M are defined as

A :=

⎡
⎢⎢⎢⎢⎢⎣

Ãh
1(y1) . . . Ãh

M (y1)

Ãv
1(y1) . . . Ãv

M (y1)
. . .

Ãh
1(yN ) . . . Ãh

M (yN )

Ãv
1(yN ) . . . Ãv

M (yN )

⎤
⎥⎥⎥⎥⎥⎦
,

B :=

⎡
⎢⎢⎢⎢⎢⎣

B̃h
1 (y1) . . . B̃h

M(y1)

B̃v
1 (y1) . . . B̃v

M(y1)
. . .

B̃h
1 (yN ) . . . B̃h

M (yN )

B̃v
1 (yN ) . . . B̃v

M (yN )

⎤
⎥⎥⎥⎥⎥⎦
,

and H ∈ C
2M×2K is a block-diagonal matrix diag(Hh, Hv ),

where Hh ∈ CM×K is such that its (m, k)-th entry is hh
m,k

and Hv ∈ CM×K is such that its (m, k)-th entry is hv
m,k . We

propose to solve the linear system (14) in a similar manner to
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Fig. 1. Higher phase oscillations (larger τ ) results in a slower decay of the Fourier coefficients (larger σ).

that used in (9). Finally, once (14) is solved for the coefficients
f̄ = �

f̄ h
1 , . . . , f̄ h

K , f̄ v
1 , . . . , f̄ v

K

�	 ∈ C2K , we can define the
reconstructions of Fh and Fv as F̄h

K (·) := �K
m=1 f̄ h

k H h
k (·)

and F̄v
K (·) := �K

m=1 f̄ v
k H v

k (·). Observe that using
�1-regularization in this case imposes sparsity in the
reconstructions F̄h

K and F̄v
K with respect to {H h

k }K
k=1 and

{H v
k }K

k=1, respectively. Also similarly as before, we note that
matrices Hh and Hv are identities when the reconstruction
functions H h

k , H v
k and the calibration functions Eh

m, Ev
m are

the same, otherwise they can be computed approximately
from the equations �H h

k , Eh
m� � ≈ �M

m=1 hh
m,k�Eh

m , Eh
m� � and

�H v
k , Ev

m� � ≈ �M
m=1 hv

m,k�Ev
m, Ev

m� �, m� = 1, . . . , M .
Finally, we note that in order to reduce the impact of noise it

may be possible to include measurements of additional phase-
shifts of the calibration functions. In addition to the calibration
inputs Am and Bm in (11), it may also be possible to measure

Cm := �
Eh

m, cEv
m

�	 (1)�→ C̃m := �
C̃h

m , C̃v
m

�	
, where c is such

that c �= b and b + c �= 2. Thus, rather than using (12), we
can use

�
a∗�Am − b∗

2 Bm − c∗
2 Cm

�
, a

�
Am − 1

2 Bm − 1
2 Cm

� :
m = 1, . . . , M

�
, where a := 1/ (1 − b/2 − c/2) is finite given

that b + c �= 2. We then proceed as above but in place of (14)
get

g = EHf + ε,

E :=
�
a∗

�
A − b∗

2 B − c∗
2 C

�
a

�
A − 1

2 B − 1
2 C

��
, (15)

where E now includes C ∈ C2N×M containing the outputs C̃m .
As we will see in Section IV, augmenting the calibration data
in such a way is indeed an effective manner to decrease the
influence of the measurement noise on the reconstruction.

III. FOURIER COEFFICIENTS AS INFORMATIVE

FEATURES

Since inhomogeneities on a cellular scale caused by cancer
result in increased scattering of an optical field reflected from
a tumouros tissue [21], it is expected that they also result in
higher spatial frequencies of the corresponding optical field.
Hence, we propose that by representing such optical fields
in a Fourier basis and by inspecting the associated Fourier
coefficients it is possible to detect the increased scattering and
thereby gain insight into the disease status of the tissue.

In this section, we focus on the merits of the Fourier
coefficients as indicative features of increased phase scattering.
By using simulated data, we show how increased changes in

phase result in a slower decay of the corresponding Fourier
coefficients and how this effect can be quantified. In the next
section, we confirm these findings on real biological data,
where we use the framework developed in Section II to recover
tissue images directly in a Fourier basis and demonstrate that
the Fourier coefficients are indeed useful for detecting cancer.

A. Fourier Coefficients of a One-Dimensional Example

We first consider a simple 1D example to illustrate the effect
of increased phase oscillations on the decay of the correspond-
ing Fourier coefficients. We compute the Fourier coefficients
of eight different functions F ( j )(x) = R(x) exp(iP( j )(x)),
j = 1, . . . , 8, with the same amplitude R but different
phase P( j ) defined on the interval x ∈ I := [−1/2, 1/2].
For illustration purposes we take R(x) := exp(−x2) and
P( j )(x) := τ ( j ) sin(20x), where 0 < τ(1) < · · · < τ(8) < 2π ,
so that different phase functions exhibit different degrees of
oscillations. These phase functions are shown in the first panel
of Fig. 1. Since the Fourier basis on I is given by {e2π ikx }k∈Z,
for each F ( j ) we compute its first 20 Fourier coefficients as

f ( j )
k :=

�
I

F ( j )(x)e−2π ikx dx,

where k = −10, . . . , 9, and approximate its Fourier trans-
form by the classical Whittaker–Shannon interpolation for-
mula

�
k f ( j )

k sinc(w − k), w ∈ R. The absolute value of
the approximated Fourier transform for each j is shown in
the second panel of Fig. 1. Finally, we quantify the decay
of the Fourier coefficients by the standard deviation σ ( j ) of
a Gaussian function a( j ) exp(−(w − c( j ))2/(2(σ ( j ))2)) fitted
to the amplitude of the approximated Fourier transform on
interval w ∈ [−10, 10). The fitted Gaussian functions are
shown in the third panel of Fig. 1. From the fourth panel of
Fig. 1, we observe that an increased magnitude of the phase
oscillations τ ( j ) results in an increased standard deviation σ ( j ).
It is important to note that although in this example the zeros
of the different phase functions coincide, the same effect is
observed even if this is not the case. Also, if the frequency
of the phase oscillation is increased while their magnitude is
kept constant, then σ ( j ) would increase as well.

The takeaway message from this simple example is that
representing a signal with respect to a Fourier basis is espe-
cially useful to identify variations in oscillating phase, and
that the decay of the corresponding Fourier coefficients is
sensitive to phase scattering in a manner that can be easily
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Fig. 2. Six simulated images with the same amplitude but different phase, which are generated from our model with increasing τ (j)/ρ(j ), j = 1, . . . , 6,
so that larger τ (j)/ρ(j) characterizes larger phase oscillations. In the scatter plot, we report the logarithm of the sum of parameters σ(j)

1 and σ(j)
2 of

the Gaussian fitted to the amplitude of the Fourier transform abs(FT), revealing that increased τ (j)/ρ(j) correlates with larger σ(j)
1 + σ(j)

2 .

identified. As we will see in the remainder of the paper, these
observations remain true also in higher dimensional practical
examples.

B. Fourier Coefficients of Simulated Tissue Images

We now generalize our observations to 2D functions. For
this purpose, we create a model mimicking tissue samples with
a different level of phase oscillations, which we then use to
generate images and compute their Fourier coefficients.

In our model, we use randomness to achieve certain vari-
ability across different samples and two different parameters
to control the degree of phase oscillations. In particular, our
model corresponds to a function F(x) := R(x) exp(iP(x)),
x ∈ S, where the original space-domain S := [−1/2, 1/2]2 is
discretized into a 700 × 700 grid, while R and P are chosen
randomly as we now describe. The phase function P := P(τ,ρ)

depends on two given parameters τ and ρ, controlling the
amplitude and the frequency of phase oscillations, respectively.
To produce P , first 800 × 800 pixel-values are chosen uni-
formly at random from [−1, 1], which are then filtered by
using MATLAB’s function ‘imgaussfilt’ with the smoothing
parameter ρ. Following this step, only 700 × 700 pixels are
kept by removing 50 pixels from each boundary and such
image is then rescaled so that all phase values are between
[−τ, τ ], τ ∈ [0, π]. The amplitude R is selected as the sum
of exp(−50x2

2)/1000 and five additional Gaussian functions
exp(−x − c2

2/d)/2000 with randomly chosen c and d .
In Fig. 2 we demonstrate how changing phase parameters

τ and ρ while keeping amplitude fixed changes the decay of
Fourier coefficients. Specifically, we use six values (ρ( j ), τ ( j )),

Fig. 3. For each of the six categories, we generate 100 images
with different phase and amplitude from our tissue model with fixed
parameters τ (j) and ρ(j), j = 1, . . . ,6, and compute corresponding
σ

(j)
1 + σ(j)

2 .

j = 1, . . . , 6 to create six functions F ( j ), where 0 <
τ(1) < · · · < τ(6) ≤ π and 0.025 < (ρ(1))−1 < · · · <
(ρ(6))−1 ≤ 0.125 are increasing logarithmically. Similarly to
the 1D example of Fig. 1, the decay of corresponding Fourier
coefficients is measured by standard deviation of a Gaussian
function a exp(−(x1 − c1)

2/(2σ 2
1 ) − (x2 − c2)

2/(2σ 2
2 )) fitted

to the absolute value of the Fourier transform approximated
from the first 20×20 Fourier coefficients, which are computed
using the formula in (5). In Fig. 2, for each F ( j ) we report
the sum of the standard deviations σ

( j )
1 + σ

( j )
2 of the fitted

Gaussian, thereby observing that increased phase oscillations,
i.e. increased τ ( j )/ρ( j ), results in slower decay of the corre-
sponding Fourier coefficients, i.e. larger σ

( j )
1 + σ

( j )
2 .

Next, in Fig. 3, for each (ρ( j ), τ ( j )), j = 1, . . . , 6, chosen
as in Fig. 2, we generate 100 images using our model (with
each image having a different phase and a different amplitude)
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Fig. 4. (a): Amplitude and phase of the horizontal polarization of the ground-truth synthetic holographic image at the distal end and the corresponding
raw output at the proximal end. Due to space limitation, the vertical polarization is presented as Fig. 13 in the supplementary material. (b): Amplitude
and phase of the horizontal polarization of one calibration input (Am of Eq. (11)) at the distal end and at the proximal end. More information about
the calibration inputs can be found in the supplementary material, Section I-B.

and we report the value σ
( j )
1 +σ

( j )
2 of the fitted Gaussian. We

observe the same trend in the decay of the Fourier coefficients
in Fig. 3 as in Fig. 2, but now across 600 different images.

We note that the features extracted from Fourier coefficients
as we described above have three additional useful properties.
First, since the amplitude of the Fourier transform is invariant
to the shifts of the corresponding complex function in its
space-domain, the features that we extract are invariant to
the shifts of the tissue images in their space-domain. Second,
the quality of the recovered phase in the space-domain is
dependent on a phase unwrapping procedure and is thus highly
sensitive to noise, which means that phase may bear more
information in the Fourier-domain than in the space-domain.
Third, once the Fourier coefficients are recovered, each image
can easily be represented in both the Fourier and the space-
domain, allowing for additional flexibility.

IV. EXPERIMENTAL RESULTS

Having established the utility of Fourier coefficients in
quantifying phase scattering in Section III, we now apply the
reconstruction framework developed in Section II to measure-
ments obtained experimentally by a fiber endoscope, which is
described in the supplementary material available online in the
supplementary file/multimedia tab. In Section IV-A, we first
demonstrate the recovery of a synthetic holographic image
with a known ground-truth that can be used for validation.
Next, in Section IV-B, we apply our method to biological
images of tissue samples taken from mice and demonstrate
that reconstruction with respect to a Fourier basis can be used
as a diagnostic indicator of early tumorigenesis.

A. Reconstruction of a Synthetic Holographic Image

To demonstrate our reconstruction algorithm on experimen-
tal data we first reconstruct a synthetic holographic image,

which was generated experimentally as explained in the sup-
plementary material, Section I-C. Since in this case we have
access to the ground-truth image, we can visually assess the
quality of our proposed imaging methodology. Specifically,
using the raw output of the holographic image shown in
Fig. 4(a), we test our general reconstruction framework in
combination with different representation systems as well as
different regularization terms.

The MCF system is calibrated using input and output pairs
as exemplified in Fig. 4(b). Given the localized confinement of
light in MCF, for efficient calibration, several input and output
calibration functions are evaluated in parallel. However, for the
reconstruction, individual calibration functions are separated
from the rest by evaluating each of them only over a circular
region around the center of the corresponding Gaussian-like
spot. In particular, the calibration inputs in Fig. 4(b) are
evaluated on a 1200 × 1200 grid and translated to M = 936
different locations across the input imaging plane. Each output
is evaluated at N = 34973 pixels at the output imaging plane.
Thus, considering the two polarization states, the dimension
of the system matrix in (15) is 1872 × 69946.

In Fig. 5, we recover the amplitude and the phase of the
horizontal and vertical polarizations of the holographic image
from raw endoscopic measurements using different inversion
techniques while reconstructing with respect to the calibration
coefficients. In particular, we solve (15) where Hh = Hv = I,
by inverting the linear system in four different ways:

1. the naive inversion f̄ := E∗g, which corresponds to the
principle of phase conjugation as it assumes E∗E = I,

2. the least-squares approach f̄ := (E∗E)−1E∗g,
3. the �2-regularization f̄ := (E∗E + λI)−1E∗g, and,
4. the �1-regularization f̄ := argminf∈C2M g−Ef2+λf1,

using the iterative solver [12].

Fig. 5 shows that �1-regularization performs well when com-
pared to the other approaches. In fact, since this image is
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Fig. 5. Reconstructed amplitude and phase (horizontal polarization) of the holographic image from Fig. 4(a) with respect to the calibration functions
such as those in Fig. 4(b), using naive, least-squares, �2 and �1 approaches. The regularization parameter in the �2 and �1-regularization is λ = 0.3
and λ = 0.267, respectively. The vertical polarization is presented in the supplementary material, Fig. 14. The reconstruction time1 is under 1s for
the naive inversion and the �1-regularization, while it is around 4s for the least-squares and the �2-regularization.

Fig. 6. Top row: each polarization is reconstructed separately by solving a variant of Eq. (15), where only one polarization is considered at the time.
Bottom row: the two polarizations are reconstructed jointly at the same time via (15). All linear systems are solved via �1-regularization, while the
corresponding reconstructions via least squares are shown in the supplementary material, Fig. 15. The scale bar is the same as in Fig. 5.

sparse with respect to the calibration inputs, �1 successfully
removes significant noise while preserving the image details.

Next, we compare the proposed approach to its naive
version, which reconstructs each polarization separately and
thereby excludes the interaction between different polariza-
tions. Specifically, in the upper panels of Fig. 6, the horizon-
tal polarization Fh is reconstructed by solving a variant of
Eq. (15) for the unknown vector [ f h

1 , . . . , f h
K ]	, where only

the samples of the horizontal polarization F̃h are considered
and the corresponding calibration measurements are Eh

m �→
a∗( Ãm − b∗

2 B̃m − c∗
2 C̃m). Similarly, the vertical polarization

Fv is reconstructed by solving another linear system, which

1The reconstruction time is time needed to solve the corresponding linear
system and produce amplitude and phase images for two polarizations and
is computed as an average over 10 runs using Matlab on Intel(R) Core(TM)
i5-4670 CPU @ 3.40GHz [4 CPUs] 3401 Mhz.

accounts for the vertical polarization only. By comparing these
reconstructions to those in the lower panels of Fig. 6, we see
that by reconstructing different polarizations jointly via (15),
we improve the reconstruction of each individual polarization.

Finally, in Fig. 7, we reconstruct the holographic image
with respect to different representation systems, namely we
solve (15) where both Hh and Hv correspond to a Fourier or a
wavelet basis with cardinality K = 1024. Specifically,
we choose both {H h

k }K
k=1 and {H v

k }K
k=1 to be

(i) in the Fourier case, {exp(2π i(k1 x1 + k2 x2)) : k1, k2 =
−√

K/2, . . . ,
√

K/2 − 1}, x = (x1, x2) ∈ [−1/2, 1/2]2,
(ii) in the wavelet case, tensor-products of

√
K 1D boundary-

corrected Daubechies wavelets with four vanishing
moments (DB4) from [19].

Fig. 7 shows that least-squares fails to give a useful estimate,
conveying that it is crucial to use regularization. Although
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Fig. 7. Reconstructed images (horizontal polarization) with respect to the different bases using two inversion approaches. We used 32×32 Fourier
exponentials/DB4 wavelets. In the �1-regularization λ = 0.25 and the reconstruction time1 is around 30s.

Fig. 8. Reconstructed images (horizontal polarization) of healthy and lesion tissue with respect to K = 400 Fourier coefficients by solving the linear
system (15) with �1-regularization and λ = 0.25. The reconstruction time1 is around 15s, while the time of the subsequent phase unwrapping and
Gaussian-fitting is under 1s.

least-squares could still be used when K � M , small K
does not necessarily lead to a good approximation of the
image, and so to achieve the desired resolution one would
need to increase the number of calibration measurements M ,
which is undesirable as it would incur additional experimental
time. Given that our holographic image is sparse with respect
to compactly-supported wavelets, �1-regularization performs
quite well in combination with DB4 even though K > M .

B. Reconstruction and Analysis of Biological Images

We now apply the methodology from Sections II–III
to reconstruct and analyze images of biological tissues.
We imaged ex vivo samples of mouse oesophagus from
healthy controls and carcinogen treated animals with induced

oesophageal tumors using the model presented in [5]. We used
3 control mice (6 healthy areas) and 6 mice with tumors
(6 distinct lesions). Each sample was segmented into areas
of healthy and lesion tissue using the technique of DAPI
fluorescence imaging, which was validated in [5]. For more
details on preparation of tissue samples, we refer to the
supplementary material, Section I-D.

For clarity, we index different areas by n = 1, . . . , 12,
where the first six are healthy and the rest are lesions. Due
to the limited field of view of the endoscope (∼ 200μm)
relative to the sample size (∼2mm), each of the 12 areas
produce 6–20 individual images corresponding to different
parts of the same sample that may overlay by up to 15%. We
thus also introduce index i to denote individual sub-images
within a larger area on a given sample, so that each individual
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Fig. 9. Standard deviation σ(n)
1 + σ(n)

2 , n = 1, . . . ,12, of a Gaussian
fitted to the amplitude of the Fourier transform of 6 healthy and 6 lesion
mouse samples. In the bottom box-plot, prior to the t-test, a 2D feature
corresponding to two different polarizations is rescaled by the mean and
standard deviation of the total of 12 samples.

sample has index (n, i), n = 1, . . . , 12, i = 1, . . . , In , for In

in the range 6–20.
Fig. 8 shows the reconstruction of the horizontal polar-

ization of one healthy image indexed as (1, 1) and one
lesion image indexed as (7, 1), in both the space-domain and
the Fourier-domain. Specifically, we reconstruct K = 400
Fourier coefficients per polarization by solving (15) with
�1-regularization. We then expand these coefficients with
respect to Fourier-exponentials to get images in the space-
domain, and, with respect to sinc-functions to obtain images in
the Fourier-domain. In the space-domain, we show the ampli-
tude and the unwrapped phase of the reconstructed image,
where for the unwrapping we used the efficient algorithm
from [26]. In the Fourier domain, we show the amplitude
of the reconstructed Fourier transform and the correspond-
ing Gaussian fit, where we used the procedure explained in
Section III. While the difference between the healthy and
the lesion sample is not so apparent from the amplitude and
phase in the space-domain, it becomes more pronounced in
the Fourier domain; specifically, we observe that the Fourier
coefficients decay slower in the lesion than in the healthy
tissue, where the decay is quantified by the standard deviation
of the fitted Gaussian. For reference, in Fig. 10 we also include
the microscopic images of the same healthy and lesion regions

Fig. 10. Images obtained by three different microscope modalities:
fluorescence, phase contrast and brightfield imaging. The central parts
(∼ 200 × 200μm2) of the healthy and lesion regions correspond to
the images reconstructed via the proposed method in Fig. 8. Fluo-
rescence images with DAPI stain were used to determine the lesion
vs. healthy regions. The phase contrast images show that phase informa-
tion encodes scattering information in lesion areas, while the brightfield
images show that under normal ’white light’ used in the conventional
endoscopes, features linked with lesions cannot easily be distinguished
from healthy tissue.

as those shown in Fig. 8. Additional images across the data
set can be found in the supplementary material, Fig. 17–18.

Finally, in Fig. 9 we perform a statistical test using all sam-
ples in the data set, which confirms that the standard deviation
of the fitted Gaussians is an informative feature to distinguish
between healthy and lesion tissues. In particular, for each
individual sample (n, i) we compute σ

(n,i)
1 + σ

(n,i)
2 of the

fitted Gaussian. Then, for each tissue sample n = 1, . . . , 12,
we compute the average σ

(n)
1 + σ

(n)
2 := I−1

n
�In

i=1(σ
(n,i)
1 +

σ
(n,i)
2 ) and group them in a box-plot according to their

class label ‘healthy’ or ‘lesion’, for each polarization and for
both polarizations combined. We also compute the p-value
of Welch’s t-test [52], showing the significant difference in
the decay of Fourier coefficients between healthy and lesion
samples.

We conclude that the degree to which the recovered Fourier
coefficients decay, quantified by the standard deviation of the
fitted Gaussian, is a feature with a discriminative power, which
in the future, in conjunction with a larger data set, could be
used to build an automated classifier to distinguish between
healthy and lesion samples.

V. DISCUSSION AND FUTURE RESEARCH

The main contributions of this paper are two-fold. Firstly,
we showed that a Fourier representation of the optical field
reflected from a tissue yields a promising diagnostic indica-
tor, using both simulated and experimental real-world data.
Secondly, we provided a general reconstruction algorithm that
through regularization can stably recover such representation
directly from the calibration measurements and the samples of
the output field transmitted through a fiber, where the system
used for calibration is allowed to be different and thus more
efficient than a Fourier basis.
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Nevertheless several open problems remain. One such prob-
lem relates to learning an ‘optimal’ dictionary (alternative
to Fourier) as a means to minimize the classification error
between healthy and lesion tissues, which would require a
significantly larger number of biological samples to be tested.
More importantly, further work is required to enable real-
time imaging through fiber endoscopes operating in reflection
in realistic clinical settings. Specifically, future research is
needed to lift the time-independence assumption present in the
kernel of the linear model (1), which in everyday clinical use
varies across time with bending and temperature. In practice,
the time-independence assumption means that the calibration
measurements need to be taken often and under similar bend-
ing and temperature conditions as when sampling the output
optical field, which is difficult to achieve in realistic clinical
deployments unless using a rigid endoscope. The development
of a clinically-feasible recovery procedure that accounts for
significant fiber changes thus remains an important open
problem.
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