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Abstract 33 

Lytic polysaccharide monooxygenases (LPMOs) are copper-containing enzymes that play a 34 

key role in the oxidative degradation of various biopolymers such as cellulose and chitin. 35 

While hunting for new LPMOs, we identified in various fungal lineages a new family of 36 

proteins, defined herein as X325. The X325 three-dimensional structure revealed an overall 37 

LPMO fold and a histidine-brace with an additional aspartate ligand to Cu(II). Although 38 

LPMO-type activity of X325 members was initially expected, we demonstrated that X325 39 

members do not perform oxidative cleavage of polysaccharides, establishing that X325s are 40 

not LPMOs. Investigations of the biological role of X325 in the ectomycorrhizal fungus 41 

Laccaria bicolor revealed exposure of the X325 protein at the interface between fungal 42 

hyphae and tree rootlet cells. Our results provide insights into a family of copper-containing 43 

proteins widespread in the fungal kingdom, which is evolutionarily related to LPMOs but has 44 

diverged to biological functions other than polysaccharide degradation. 45 

 46 

 47 

  48 
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Introduction 49 

The discovery of lytic polysaccharide monooxygenases (LPMOs) has overturned much of the 50 

accepted thinking within the field of cellulose and chitin degradation1-3. LPMOs are copper-51 

dependent enzymes that break down polysaccharides through an oxidative mechanism 52 

involving an electron donor and molecular oxygen or H2O2
1,2,4. LPMOs active on cellulose are 53 

able to boost the activity of cellulases to such an extent that they are now incorporated in 54 

industrial enzyme mixtures for the conversion of agricultural residues to biofuels5. At the 55 

active site of LPMOs, the copper ion is bound through a histidine brace, which comprises a 56 

N-terminal histidine that chelates a single copper ion through its amino terminus -NH2 and the 57 

Nδ of its imidazole side chain. This N-terminal histidine residue is usually methylated by 58 

filamentous fungi2,6 and, although recent studies have suggested a role in protecting the 59 

enzyme from self-oxidative inactivation7, the function of this modification is yet to be fully 60 

elucidated. The copper coordination is completed by the Nɛ of an additional histidine side 61 

chain, to form an overall N3 T-shaped geometry8.  62 

 63 

The recently discovered LPMO families have been identified by a “module walking” 64 

approach. This method relies on the fact that many CAZymes are multi-modular with one or 65 

more additional domains, which are often substrate-targeting carbohydrate binding modules 66 

(CBMs)9. The modules attached to known CAZymes were used to search for proteins, which 67 

(i) contained those modules, (ii) contained a conserved histidine immediately after the signal 68 

peptide cleavage site and (iii) displayed insignificant sequence similarity to known AA9 and 69 

AA10 families. This method has led to the discovery of several LPMO families (AA1110, 70 

AA1311,12, AA1513) but does not allow the identification of new LPMOs lacking additional 71 

modules. In a complementary approach based on comparative post-genomic analyses applied 72 

to fungal saprotrophs, we recently identified xylan-active AA14 LPMOs14 and cellulose-73 
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active AA16 LPMOs15. These examples emphasized the fact that fungal secretomes are a 74 

promising ground to hunt for new LPMOs and to gain insights into their biological role16.  75 

 76 

Using a similar approach, here we report the discovery of a widespread copper-containing 77 

protein family, named X325, found in various fungal lineages including saprotrophic and 78 

ectomycorrhizal (ECM) fungi and yeasts. Although X325 family members share many 79 

structural features and a probable common ancestor with biomass-degrading LPMOs, their 80 

copper binding site is atypical and more similar to the ones of other copper-binding proteins 81 

involved in copper homeostasis. This study reveals new prospects for LPMO-like proteins 82 

with biological functions other than polysaccharide degradation. 83 

  84 
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Results 85 

Discovery of the X325 family 86 

The basidiomycete Laetisaria arvalis (strain BRFM514) is able to grow on cellulose or wheat 87 

straw as the sole carbon source and to fully digest cellulose filter paper17. Global 88 

transcriptome and secretome analyses revealed that L. arvalis produces a unique repertoire of 89 

CAZymes, including a complete set of cellulose-acting enzymes17. Searching for proteins 90 

with predicted N-terminal histidine among L. arvalis post-genomic data led to the 91 

identification of a protein of unknown function (GenBank ID MK088083, here termed 92 

“LaX325”) that was secreted during growth on cellulose and wheat straw. In-depth analysis of 93 

the proteomic data obtained from the L. arvalis secretome revealed that the N-terminal 94 

histidine is methylated (mass +14.0157 Da), a feature commonly observed in fungal LPMOs2. 95 

Moreover, a protein fold recognition analysis18 using X325 as a template matched the 96 

cellulose-active AA10 LPMO from Streptomyces coelicolor (PDB code 6F7E19) with 97% 97 

confidence but only 14% sequence identity. This level of sequence relatedness is however 98 

insufficient to group X325 with the bacterial LPMOs that mostly compose family AA10. 99 

Therefore, X325 was used as the query sequence for a BLAST search on the non-redundant 100 

protein sequence database of the NCBI database, and this retrieved approximately 550 101 

significantly related sequences (e-values lower than 4 × 10−4). Alignments of the retrieved 102 

sequences (Supplementary Figure 1) showed two conserved histidine residues, one being 103 

the N-terminal of the mature protein, compatible with a copper-binding histidine brace2, a 104 

hallmark of all known LPMOs. Interestingly, none of the X325 sequences carries a CBM but 105 

instead invariably harbor a glycosylphosphatidylinositol (GPI) anchor at the C-terminus 106 

(Supplementary Figure 1). Usually, proteins attached to a GPI anchor via their carboxyl 107 

terminus are found in the outer leaflet of the lipid bilayer facing the extracellular 108 

environment20. GPI-anchors can also be considered as predetermined breaking points that 109 
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allow the release of proteins into the extracellular environment upon enzymatic cleavage20. 110 

Such a release of the protein from the membrane could explain the presence of LaX325 in the 111 

secretomes of L. arvalis17. The phylogenetic analysis of X325 modules (conducted after 112 

removal of signal peptides and GPI anchors) was performed on 123 protein sequences 113 

encoded by 58 genomes selected to represent the fungal diversity (Figure 1). The analysis 114 

shows that X325 proteins are present across the fungal kingdom including early-diverging 115 

fungi within Mucoromycotina21, saprotrophic fungi, symbiotic fungi, endophytic fungi, 116 

plant/animal pathogens and, more surprisingly, several yeast species lacking plant cell wall-117 

degrading enzymes. This was an indication that X325s may have a different function than 118 

oxidative cleavage of glycoside linkages in plant biomass. The phylogenetic tree of X325 119 

members shows that the family is divided into six distinct clades, two only gathering 120 

basidiomycetes and the four other ones only ascomycetes (Figure 1). On average 2.3 X325-121 

encoding genes are found per fungal species. 122 

 123 

Based on the X325 phylogenetic analysis, we selected several X325 candidate genes from 124 

different clades/subgroups (Figure 1) within model fungi/yeasts and recombinantly expressed 125 

them in Pichia pastoris (Supplementary Table 1). Using this method, we produced and 126 

purified four X325 proteins: LaX325 from the fungal saprotroph Laetisaria arvalis (GenBank 127 

ID MK088083), PaX325 from the coprophilous fungus Podospora anserina (GenBank ID 128 

XM_001907524.1), LbX325 from the ECM fungus Laccaria bicolor (GenBank ID 129 

XM_001874260.1) and YlX325 from the yeast Yarrowia lipolytica (GenBank ID 130 

XM_505821.1). The correct processing of the native signal peptide, which exposed the N-131 

terminal histidine residue at position 1 in the mature polypeptide chain was confirmed using 132 

N-terminal sequencing. ICP-MS analyses revealed that recombinant X325 proteins contained 133 

approximately one copper atom per protein molecule. 134 
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X325 crystal structure displays a fold similar to LPMOs 135 

The three-dimensional structure of LaX325 was solved by single-wavelength anomalous 136 

dispersion (SAD) phasing at the copper edge, and refined in three crystal forms at resolutions 137 

around 2 Å (Supplementary Table 2). The core of the protein folds into a largely antiparallel 138 

immunoglobulin-like β-sandwich, a fold similar to that seen in LPMO structures22 139 

(Figure 2a). The closest structural homologue in the PDB90 database according to the DALI-140 

server23 is the recently determined Thermobia domestica AA15 LPMO structure 141 

(Supplementary Figure 2; PDB 5MSZ, Z-score of 11.0), closely followed by four bacterial 142 

AA10 LPMOs (5FJQ, 2BEM, 5WSZ and 5L2V). Two conserved disulfides (formed by 143 

Cys22/Cys128 and Cys93/Cys145) stabilize the LaX325 structure (Supplementary Figure 144 

1). However, unlike LPMOs implicated in polysaccharide degradation, X325 lacks extended 145 

binding surface capable of accommodating polysaccharide substrates. This can be highlighted 146 

by comparison with LsAA9A in complex with cellohexaose (Figure 3a). Furthermore, the 147 

GPI anchor would protrude from the face of the protein expected to bind polysaccharides 148 

(Figure 3a) and no conservation of residues typically associated with polysaccharide binding 149 

is observed on the surface of X325 near the copper binding site (Supplementary Figure 3).  150 

X325 structure reveals an unusual copper binding site 151 

In addition to the overall folding similarity in the structure of LaX325 to bona fide LPMOs, 152 

the canonical histidine brace coordination formed by two histidines (His1 and His49) is 153 

preserved and the second histidine is found in a loop topologically equivalent to that holding 154 

the second histidine in structurally-characterized LPMOs, although the angle between the two 155 

imidazole planes is somewhat different than usually observed8 (Figure 2b). A tyrosine 156 

(Tyr118) is present below the copper equatorial plane, but on a topologically different strand 157 

to that commonly found in e.g. AA9 LPMOs. Although tyrosine residues within or close to 158 
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axial coordination distance to the copper binding site are a common feature in many LPMOs, 159 

in the LaX325 structures this tyrosine residue is positioned away from the metal ion (average 160 

Cu-O distance = 4.6 Ǻ; Figure 2b). Furthermore, this tyrosine is not conserved across the 161 

X325 family (Supplementary Figure 1).  162 

 163 

In striking contrast with known LPMOs, the copper is further coordinated by an aspartate side 164 

chain (Asp122, average Cu-O = 2.0 Å), in its flat equatorial plane. The second oxygen atom 165 

of the carboxylate of the aspartate side chain lies below the flat equatorial plane of the copper 166 

at an average Cu-O distance of 2.9 Å. Above the plane, density identified as a fully occupied 167 

water molecule is present in the axial position of the copper coordination sphere in both the 168 

P21 and the P212121 crystal structures in four out of six independent molecules. The geometry 169 

of the Cu in terms of θ1, θ2 and θ3 angles falls mostly within the values usually observed for 170 

Cu(II) in LPMOs24 (Supplementary Table 3).  171 

 172 

A similar copper coordination in the three crystal forms confirms Asp122 as copper ligand. 173 

Asp122 is located in a semi-conserved GGDGN loop equivalent to loop 8 in AA9 LPMOs22. 174 

Based on its amino acid composition, the loop is likely to be flexible and perhaps move in 175 

response to a transition to Cu(I), but no conformational change was observed in the crystals 176 

treated with 5 mM L-cysteine or extensively exposed to X-rays.  177 

 178 

Asp is not an unprecedented ligand for copper in metalloproteins. In fact, such coordination 179 

by a carboxylate is seen for LPMOs both in fusolin25 (belonging to the AA10 family, PDB 180 

4YN2, 4OW5, 4X27 and 4X29) and NcAA9F26 (PDB 4QI8) (Supplementary Table 3) 181 

crystals, but only in the crystal, as the Glu/Asp comes from a symmetry-related molecule. 182 

Additionally, the copper binding protein CopC27 (Figure 2b, Supplementary Table 3) has a 183 
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structurally similar binding site with a His brace and an Asp coordinating copper, although the 184 

atomic arrangement is not identical since the Asp and one His have swapped position and the 185 

imidazole Nδ is coordinating the copper (rather than Nε as in canonical LPMOs). Very 186 

recently, it has been proposed that the true active site in particulate methane monooxygenase 187 

(pMMO) is found in the C subunit (CuC site), in which two histidines and one aspartate 188 

coordinate a copper ion (PDB 3RFR and 3RGB), previously interpreted as a zinc in a 189 

tetrahedral configuration not involving the N-terminus NH2 of the polypeptide28,29 and thus 190 

quite different from both LPMOs and X325. Sequence alignments of X325 members showed 191 

that the LaX325 Asp122 is mainly conserved across the family, but - in an important variation 192 

- a subgroup displays a histidine in this position instead (Figure 1b; Supplementary Figure 193 

1). The copper binding site arrangement in this subgroup could thus appear to be very similar 194 

to that seen in the N-terminal copper binding site (CuB site) of pMMOs (Figure 2b; 195 

Supplementary Figure 2) originally believed to be the active site but now challenged28,30. 196 

X325 proteins are spectroscopically similar to LPMOs 197 

Continuous wave (cw) Electron Paramagnetic Resonance (EPR) spectroscopy was carried out 198 

on LaX325 to investigate the copper active site of this protein (Figure 2c) for which the 3D 199 

structure was available. The spin Hamiltonian parameters determined from the simulations of 200 

the X band spectrum (Figure 2c and Supplementary Table 4) showed that the active site of 201 

LaX325 falls within a type 2 classification31, with gz = 2.260 and |Az| = 543 MHz. Due to the 202 

presence of the His-tag, which could potentially offer a competitive binding site for the 203 

copper, a careful Cu titration was performed (Supplementary Figure 4). This titration 204 

reveals that the only observable copper species in the EPR spectra derives from the metal 205 

bound at the histidine brace active site, if no excess copper is present. The spin Hamiltonian 206 

parameters, with a d(x2-y2) SOMO, are similar to those obtained for LPMOs, suggesting that 207 
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the presence of the coordinating Asp residue does not substantially affect the coordination 208 

environment of the active site.  209 

X325s proteins are not LPMOs 210 

To assess whether the four different X325 proteins recombinantly produced are able to act on 211 

polysaccharide substrates in an LPMO-type manner, we performed activity assays on a wide 212 

range of plant cell wall polysaccharides including cellulose, xylan, xyloglucan, (1→3)-213 

(1→4)-β-D-glucan, glucomannan, pectins and soluble oligosaccharides and on fungal cell 214 

wall polysaccharides including chitin, chitosan, β-(1→3) glucan, β-(1→6) glucan, and a 215 

fungal cell wall extract from L. bicolor. No substantial level of oligomeric products was 216 

detected by ionic chromatography except when cellulose was used as substrate, in which case 217 

small soluble cellooligosaccharides peaks were detected concomitantly with barely detectable 218 

peaks eluting at the same retention time as C1-oxidized peaks. Although the oxidative nature 219 

of these C1-oxidized peaks were confirmed by mass spectrometry (Supplementary Figure 5), 220 

their abundance was negligible compared to the copper control condition and to a cellulose-221 

active AA9 LPMO6 that produced large amount of C1-oxidized products (Figure 3b). In an 222 

attempt to explore the reactivity of the X325 proteins and trigger the formation of oxidized 223 

products, other enzyme assays conditions were attempted.  224 

 225 

Recent reports have proposed hydrogen peroxide as an alternative co-substrate4,32,33, but 226 

addition of H2O2 to X325 enzyme reactions had no effect on the product released from 227 

cellulose. In the case of family AA9 LPMOs, it is well-established that LPMOs can receive 228 

electrons from an external reducing agent (ascorbate, cysteine, lignin, etc.) or from cellobiose 229 

dehydrogenase (CDH)34,35. Attempts to use either (i) lignin fractions extracted from wood, (ii) 230 

duroquinol, which is used as reducing agent for pMMOs36, or (iii) P. anserina CDH under the 231 
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experimental conditions used for AA9 LPMOs22 did not trigger the formation of soluble 232 

products. Additionally, mutagenesis work in YlX325 aiming at shortening the side chain of 233 

Asp116 (equivalent to Asp122 in LaX325) to a serine residue (D116S mutation) or replacing 234 

the aspartate by its pMMO analogue (D116H) led to the same product profile as the wild type 235 

YlX325 (i.e. no activity; Supplementary Figure 5), suggesting that the apparent lack of 236 

cellulolytic activity is not due to copper coordination by the Asp side chain. To evaluate 237 

whether X325 displayed any monooxygenase activity on cellulose, experiments were carried 238 

out in the absence of oxygen with and without addition of H2O2 (Supplementary Figure 5). 239 

The release of cellooligosaccharides was neither oxygen- nor H2O2-dependent meaning that 240 

the presence of cellooligosaccharides was probably due to unspecific binding of X325 241 

proteins to cellulose as already shown for bovine serum albumin (BSA) that causes an 242 

increase in soluble reducing ends production37. 243 

Localization of LbX325 in Laccaria bicolor 244 

The LbX325-encoded gene is upregulated during Laccaria-Populus ectomycorrhizae 245 

formation and a similar trend was also observed for some X325 orthologs in some other 246 

symbiotic fungi (Supplementary Table 5). In nature, trees rely on ectomycorrhizal symbiosis 247 

to acquire the scarce nutrients available in soils38. It is widely accepted that ectomycorrhizal 248 

fungi have an extremely reduced enzyme portfolio to degrade plant cell walls as their 249 

symbiotic plant partner provides them with carbon. Fungal hyphae penetrate the tree rootlets 250 

intercellularly to differentiate a hyphal network, the so-called Hartig net39. Although Hartig 251 

net development does not lead to substantial change in cell wall composition, subtle 252 

alterations, such as localized plant cell wall loosening and swelling accompany the hyphal 253 

ingression40,41. Therefore, we performed immunolabelling experiments on ECM from L. 254 

bicolor hyphae colonizing Populus roots to localize LbX325 and gain insights into its 255 

function in vivo. To do so, polyclonal antibodies were raised against the purified recombinant 256 
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protein LbX325 and their specificity was first assessed by western blot on L. bicolor ECM 257 

crude extracts (Supplementary Figure 6). A strong signal corresponding to the LbX325 258 

molecular weight was detected in the fraction containing the membrane bound proteins. This 259 

experiment supported the fungal cell wall localization of LbX325 predicted by the presence of 260 

the C-terminal GPI anchor. On ECM sections, anti-LbX325 antibodies led to an intense 261 

labeling of hyphae constituting the mantle and the Hartig net (Figure 4). Labeling was mainly 262 

detected at the periphery of the hyphae and coincided with the location of cell wall chitin 263 

labeled by wheat germ agglutinin (WGA), supporting a cell wall and/or apoplastic 264 

localization. In the presence of exogenously-added recombinant LbX325 (competitive assay), 265 

the specific binding of antibodies to X325 produced in vivo by L. bicolor was precluded and 266 

no signal was detected, confirming the high specificity of the immune serum (Supplementary 267 

Figure 7). No signal in the L. bicolor free-living mycelium (FLM) was detected using 268 

confocal miscroscopy (Supplementary Figure 7), consistent with LbX325 transcripts being 269 

present at low level. For a better resolution, immunogold labelling was also performed on 270 

FLM and ECM and transmission electronic microscopy confirmed the fungal cell wall 271 

localization of LbX325 (Figure 4). A quantitative assessment indicated a preferential 272 

localization of LbX325 within and beyond the outer layers of the cell wall, consistent with a 273 

GPI anchor that can be cleaved off (Supplementary Figure 8; Supplementary Table 6). 274 

Thus, the upregulation of the LbX325 gene in ECM compared to free-living mycelium, 275 

coupled to its localization, could suggest the involvement of LbX325 in fungal cell wall 276 

remodeling during Laccaria-Populus symbiosis. 277 

 278 

Discussion 279 

The newly discovered X325 family shares several features with LPMOs, which initially led us 280 

to expect LPMO activity from proteins of this family. Indeed, like AA9 LPMOs, (i) X325-281 
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encoding genes are upregulated and X325 proteins are secreted by fungi in a plant cell wall 282 

modification/degradation context, (ii) X325 proteins harbor two strictly conserved histidine 283 

residues, one being at the N-terminal position and methylated in vivo, (iii) X325s are 284 

monocopper-containing proteins with an overall structural fold similar to LPMOs, and (iv) the 285 

coordination by a histidine brace of the copper ion is spectroscopically similar to AA9 286 

LPMOs and geometrically very similar to LPMOs in general. However, X325 members 287 

invariably harbor a GPI anchor at the C-terminus. This feature is generally absent in fungal 288 

LPMOs. Only a subgroup of AA16 LPMO members displays this C-terminal anchor15. GPI-289 

anchored proteins are often involved in biological processes such as cell wall remodeling or 290 

transmembrane signaling42-44. The GPI moiety can be cleaved off by specific phospholipases, 291 

releasing the protein into the extracellular matrix and thus adding a supplemental level of 292 

regulation. Furthermore, no substantial oxidative activity could be detected on tested 293 

polysaccharides, in good agreement with the analysis of the LaX325 crystal structure. Indeed, 294 

LaX325 does not display an extended flat binding surface as described in AA9 LPMOs, and 295 

no conserved aromatic residues that could promote polysaccharide binding are found in the 296 

vicinity of the copper binding site. From a molecular point of view, the LaX325 crystal 297 

structure reveals the presence of an aspartate as the third ligand in the equatorial plane of the 298 

copper coordination sphere. As it has been proposed that LPMOs activate oxygen species at 299 

the free equatorial site, this could explain the lack of monooxygenase activity for X325 300 

members but mutation of the aspartate residue (equivalent to Asp122 in LaX325) did not lead 301 

to any detectable polysaccharide-degrading activity. Interestingly, some of the X325s display 302 

a histidine in place of the LaX325 Asp122, drawing a parallel with the pMMO CuB site, 303 

which has been recently proposed not to be the site of O2 activation for the oxidation of 304 

methane28,29. Notwithstanding the now apparent lack of oxidative activity of this site in 305 

pMMO, the single copper ion is coordinatively saturated in the equatorial coordination plane 306 
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similarly to the copper site in X325. This saturation removes an obvious site for O2 activation, 307 

thus indicating that oxidase activity does not occur either at the pMMO CuB site or in X325 308 

proteins. What the role of the copper site has in each of these enzymes is therefore not clear, 309 

but the obvious parallels between the two would suggest that X325 could contribute to an 310 

overall oxidase activity in conjunction with other yet-to-be-discovered partners. 311 

 312 

The coordination of copper in LaX325 is also similar to the Cu(II) site found in the 313 

periplasmic copper binding protein CopC, which is believed to play a role in bacterial copper 314 

homeostasis27. The unusual copper binding site similar to copper binding proteins, associated 315 

to the absence of oxidative activity on polysaccharides and the conspicuous lack of CBMs, 316 

pose questions about the in vivo activity/role of X325 proteins. Copper is required in multiple 317 

redox-active enzymes such as cytochrome c oxidases, multicopper oxidases (MCOs), or 318 

Cu/Zn superoxide dismutases and, of course, LPMOs in which the redox-cycling of the metal 319 

through its Cu(I)/Cu(II) oxidation states is an essential feature of the mechanistic chemistry, 320 

especially in reactions with O2 and/or H2O2. In the same regard, an excess of copper is also 321 

implicated in the oxidation of proteins and damage to membrane lipids and DNA. Indeed, the 322 

uncontrolled activation of O2 or H2O2 by reduced transition metals leads to harmful reactive 323 

oxygen species. This dual effect forces organisms to maintain a precise copper homeostasis to 324 

enable protein function whilst avoiding metal toxicity45,46. From this point of view, in ECM 325 

fungi, metal transporters, especially those related to Cu trafficking, display the highest 326 

expression levels in mycorrhizae, suggesting extensive translocation of copper to plant root 327 

cells and possibly to fungal metalloenzymes that are strongly upregulated in symbiotic 328 

hyphae47. Indeed, upregulation of the LbX325 gene was observed during the Laccaria-329 

Populus ectomycorrhizal formation and also during fruiting body formation. These data draw 330 

a parallel with other work48 showing that the knock out mutation of one of the P. anserina 331 
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X325 genes (XP_001907047.1, termed IDC2) led to the “Impaired for the Development of 332 

Crippled Growth” phenotype, an epigenetic cell degeneration associated with slow and 333 

abnormal growth as well as with sterility. In the endophytic fungus Epichloë festucae, the 334 

X325 gene SymB (GenBank ID KX827271.1, sharing 75% identity with IDC2) is required for 335 

hyphal cell-cell fusion and maintenance of a mutualistic interaction with ray-grass (Lolium 336 

perenne)49. The X325 family also includes Bim1 from the pathogenic fungus Cryptococcus 337 

neoformans, where it is a critical factor in Cu acquisition in fungal meningitis50. Altogether, 338 

these data suggest that in vivo, X325 proteins may have an important role related to the 339 

morphogenesis and the development of the fungus and symbiosis with plants, for fungi for 340 

which this is a relevant part of the life-cycle. 341 

Therefore, CnBIM1, IDC2 and SymB and other members of the X325 family studied herein 342 

seem to hold biological functions in which copper is central. The interplay between X325 343 

proteins and copper remains to be further investigated to understand the biological role of 344 

X325 proteins in filamentous fungi of different lifestyles. 345 
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Figure legends 506 

Figure 1: Phylogeny of the X325 family.  507 

The phylogenetic tree was built with 123 protein sequences originating from 58 different 508 

genomes. Green patches highlight the clades. Nodes with a red oval shape show the X325s 509 

selected and characterized in this study. The diamond node shows the Cryptococcus 510 

neoformans X325 (CnBIM1). Light blue nodes with the star shape highlight the sequences 511 

displaying a histidine instead of the aspartate residue in the active site. The asterisk indicates 512 

the sequence belonging to early-diverging Mucoromycotina (not part of basidiomycetes). 513 

Modularity and sequence alignment of family X325 are presented in Supplementary 514 

Figure 1. 515 

Figure 2: Structure of X325 and configuration of the copper active site.  516 

(a) Overall three-dimensional structure of LaX325 (grey) and active site residues (cyan). (b) 517 

From top to bottom: Active sites (histidine brace) of LaX325 (cyan) and TdAA15 (green), and 518 

the copper binding site of CopC (magenta) and the CuB center of Methylocystis pMMO 519 

(yellow) aligned with respect to the N-terminal His. Equatorial Cu-coordination is indicated 520 

with full lines. In LaX325 the copper atom is coordinated by His1, His49, Asp122 and a water 521 

molecule in the axial position (red sphere). (c) Continuous wave X-band EPR spectrum with 522 

simulation (red) of LaX325. More data are presented in Supplementary Figures 2, 3 and 4. 523 

Figure 3: LaX325 structural and biochemical features do not support LPMO-type 524 

activity. 525 

(a) Superimposition of LaX325 and LsAA9A in complex with its polysaccharide substrate 526 

(aligned with respect of the N-terminal His). The LaX325 structure (green, PDB 6IBJ) is 527 

shown in cartoon with His1 and Asp122 shown in sticks. The GGDG loop is shown in red and 528 
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the C-terminus shown in magenta (sphere represents the first His of the (His)6-tag that 529 

substitutes the GPI anchor in the recombinant protein). The surface of LsAA9A (PDB 5ACI) 530 

is shown in grey and the structure is shown in ribbon (black). His1, Tyr203 and cellohexaose 531 

of LsAA9A are shown in cyan sticks. (b) The action of X325 proteins on cellulose (Avicel) 532 

was investigated and compared to PaLPMO9E, a C1 cellulose-acting AA9 LPMO. Assays 533 

were performed in the presence of L-cysteine (1 mM). In the control condition, X325 protein 534 

was replaced by CuSO4 at the same concentration (1 µM). Samples were analyzed by ionic 535 

chromatography. Cellohexaose (DP6) is eluted at the same retention time as cellobionic acid 536 

(DP2ox). The experiments were repeated three times independently. More data supporting the 537 

absence of LPMO-type activity of X325 proteins are presented in Supplementary Figure 5. 538 

Figure 4: Immunolocalization of LbX325 in Laccaria bicolor.  539 

 (a) Bright field observation of transverse sections of 3-weeks-old ectomycorrhiza. (b) 540 

Transverse sections of 3-weeks-old ectomycorrhiza stained for LbX325 with anti-LbX325 541 

immune serum (green) and for chitin with WGA (red). Images a and b were obtained by using 542 

indirect immunofluorescence confocal laser microscopy. c, Transmission electron micrograph 543 

obtained after post-embedding double-immunogold labelling of ultra-thin transverse sections 544 

of 3-weeks-old ectomycorrhiza. d, Zoomed-in view of c. Chitin is identified with wheat germ 545 

agglutinin (WGA) coupled to 15 nm gold particles (highlighted by red arrows). LbX325 is 546 

identified with a secondary antibody coupled to 6 nm gold particles (highlighted by blue 547 

arrows). RC = root cell, FC = fungal cell. Selected images are representative of five different 548 

sections. More data are presented in Supplementary Figures 6, 7 and 8. 549 

  550 
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On-line Materials and Methods 551 

Transcriptomics and secretomics data 552 

Transcriptomic and proteomic data of cultures of Laetisaria arvalis strain BRFM514 grown 553 

on cellulose (Avicel), wheat straw, wheat straw residue following traditional saccharification 554 

and maize bran are described in 17. Transcriptomic data of Laccaria bicolor strain S238N are 555 

described in 51. 556 

Bioinformatic analysis of X325 557 

L. arvalis X325 sequence (Genbank ID MK088083) was compared to the NCBI non 558 

redundant sequence database using BlastP55 in December 2017. Blast searches conducted with 559 

X325 did not retrieve AA9s, AA10s, AA11s, AA13s, AA14s or AA15s with significant 560 

scores. MUSCLE56 was used to perform multiple alignments. To avoid interference from the 561 

presence or absence of additional residues, the signal peptides and C-terminal extensions 562 

(linker and GPI anchor) were removed. Bioinformatic analyses were performed on 58 fungal 563 

genomes sequenced and shared by JGI collaborators. A phylogenetic tree has been inferred 564 

using 123 cleaned and merged alignments of proteins from selected clusters of proteins. 565 

Those clusters are present, as much as possible, in all fungi in one copy in order to maximize 566 

the score ∑1/n (with n, the number of copy in the genome). Sequences from clusters were 567 

aligned with MUSCLE and a phylogenetic tree was built using BOOSTER57 568 

(https://booster.pasteur.fr/) with 200 Bootstrap replicates and Fasttree as workflow. The tree is 569 

displayed with Dendroscope58.  570 

Production of X325 proteins 571 

The sequences corresponding to LaX325 (Genbank ID MK088083), LbX325 (Genbank ID 572 

XM_001874260.1), PaX325 (Genbank ID XM_001907524.1) and YlX325 (Genbank ID 573 

XM_505821.1) genes were synthesized after codon optimization for expression in P. pastoris 574 
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(GenScript, Piscataway, USA). The region corresponding to the native signal sequence was 575 

kept while the C-terminal GPI anchor was removed. Synthesized genes were further inserted 576 

into a modified pPICZαA vector (Invitrogen, Cergy-Pontoise, France) using BstBI and XbaI 577 

restriction sites in frame with the (His)6-tag located at the C-terminus of recombinant proteins. 578 

Site-directed mutagenesis of the Asp116 residue of YlX325 to either a Ser or His residue was 579 

performed using the Quikchange site-directed mutagenesis kit (Agilent, Les Ulis, France) 580 

following manufacturer’s conditions. Transformation of competent P. pastoris X33 was 581 

performed by electroporation with PmeI-linearized pPICZαA recombinant plasmids and 582 

zeocin-resistant P. pastoris transformants were screened for protein production as described 583 

in 59. The best-producing transformants were grown in 2 L of BMGY medium in shaken flasks 584 

at 30°C in an orbital shaker (200 rpm) to an OD600 of 2 to 6. Cells were then transferred to 585 

400 mL of BMMY medium containing 1 mL.L−1 of PTM4 salts at 20°C in an orbital shaker 586 

(200 rpm) for 3 days, with supplementation of 3% (v/v) methanol every day. P. pastoris strain 587 

X33 and the pPICZαA vector are components of the P. pastoris Easy Select Expression 588 

System (Invitrogen), all media and protocols are described in the manufacturer’s manual 589 

(Invitrogen). 590 

Purification of X325 proteins 591 

The culture supernatants were recovered by pelleting the cells by centrifugation at 2,700 g for 592 

5 min, 4°C and filtered on 0.45 µm filters (Millipore, Molsheim, France). For (His)6-tagged 593 

enzymes, the pH was adjusted to 7.8 and the supernatants were loaded onto 5 mL His Trap 594 

HP columns (GE healthcare, Buc, France) connected to an Akta Xpress system (GE 595 

healthcare). Prior to loading, the columns were equilibrated in 50 mM Tris HCl pH 7.8; 150 596 

mM NaCl (buffer A). The loaded columns were then washed with 5 column volumes (CV) of 597 

10 mM imidazole in buffer A, before the elution step with 5 CV of 150 mM imidazole in 598 

buffer A. Fractions containing the protein were pooled and concentrated with a 3-kDa 599 
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vivaspin concentrator (Sartorius, Palaiseau, France) and buffer exchanged in 50 mM sodium 600 

acetate buffer pH 5.2. The concentrated proteins were then incubated with ten-fold molar 601 

equivalent of CuSO4 overnight in cold room and buffer exchange in 50 mM sodium acetate 602 

buffer pH 5.2 to remove CuSO4 excess. 603 

Biochemical analysis of X325s 604 

Concentration of purified proteins was determined by using a nanodrop ND-2000 device with 605 

calculated molecular mass and molar extinction coefficients derived from the sequences. 606 

Proteins were loaded onto 10% SDS-PAGE gels (Thermo Fisher Scientific, IL, USA), which 607 

were stained with Coomassie Blue. The molecular mass under denaturating conditions was 608 

determined with reference standard proteins (Page Ruler Prestained Protein Ladder, Thermo 609 

Fisher Scientific).  610 

N-terminal amino acid sequence determination 611 

The N-terminal amino acid sequence of purified LaX325 was determined according to the 612 

Edman degradation. Samples were electroblotted onto a polyvinylidene difluoride membrane 613 

(iBlot, Life Technologies). Analyses were carried out on a Procise Sequencing System 614 

(Thermofisher).  615 

Tandem mass spectrometry analyses (MS/MS)  616 

Experiments were performed on a Synapt G2Si high-definition mass spectrometer (Waters 617 

Corp., Manchester, UK) equipped with an Electrospray ion (ESI) source. Oxidized species 618 

were isolated and fragmented by collision-induced dissociation in the transfer cell of the 619 

instrument (MS/MS). In these experiments, ion mobility (IM) was activated to reduce 620 

interference from sample impurities. IM was performed in a traveling-wave ion mobility 621 

(TWIM) cell. Helium flows was held at 180 mL.min−1 in the helium cell and nitrogen flow 622 
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was adjusted at 90 mL.min−1 in the mobility cell. The IM traveling wave height was set to 40 623 

V, and its wave velocity was set to 300 m.s−1. Samples were diluted ten-fold in MeOH/H2O 624 

(1:1, v/v) and infused at a flow rate of 5 μL.min−1. Acquisitions were conducted in negative 625 

polarity, as well as in ‘sensitivity’ mode. 626 

ICP/MS Analysis 627 

Prior to the analysis, samples were mineralized in a mixture containing 2/3 of nitric acid 628 

(Sigma-Aldrich, 65% Purissime) and 1/3 of hydrochloric acid (Fluka, 37%, Trace Select) at 629 

120°C. The residues were diluted in ultra-pure water (2 mL) before Inductively Coupled 630 

Plasma/Mass Spectrometry (ICP/MS) analysis. The ICP-MS instrument was an ICAP Q 631 

(ThermoElectron, Les Ullis, France), equipped with a collision cell. The calibration curve was 632 

obtained by dilution of a certified multi-element solution (Sigma-Aldrich). Copper 633 

concentrations were determined using Plasmalab software (Thermo-Electron), at a mass of 634 

interest m/z = 63. 635 

Polysaccharides cleavage assays 636 

Avicel was purchased from Sigma-Aldrich and lichenan (from Icelandic moss), xylan, 637 

tamarind xyloglucan, barley β-1,3/1,4-glucan, konjac glucomannan, wheat arabinoxylan, 638 

pachyman, pustulan, chitin and chitosan were purchased from Megazyme (Wicklow, Ireland). 639 

The L. bicolor cell wall extract was supplied by Feng Zhang (INRA, Nancy, France). 640 

All the cleavage assays contained 1 μM of enzyme or 1 µM CuSO4 in the presence of 1 mM 641 

L-cysteine, 0.5% (w/v) polysaccharides and 50 mM sodium acetate buffer pH 5.2. Lignin 642 

fractions extracted from softwood and duroquinol (Sigma Aldrich) were also tested as 643 

reducing agent. The enzyme reactions were performed in 2-mL tubes and incubated in a 644 

thermomixer (Eppendorf, Montesson, France) at 40°C and 850 rpm. After 16 h of incubation, 645 

samples were heated for 10 min at 100°C to stop the enzymatic reaction and then centrifuged 646 
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at 14,000 g for 15 min at 4°C to separate the soluble fraction from the remaining insoluble 647 

fraction before determination of soluble products using HPAEC as described above with 648 

oligosaccharides standards (Megazyme). 649 

Polysaccharides cleavage assays under anaerobic conditions 650 

To assess the monooxygenase activity of X325 proteins, the different reagent solutions used 651 

to compose the reaction mixtures were made anaerobic separately. Solutions of water, buffer 652 

(200 mM sodium acetate pH 5.2), Avicel (1% (w/v)) and NaOH (2 M) were submitted to 10 653 

min sonication followed by 10 min flushing with nitrogen gas before being placed in an 654 

anaerobic chamber (Jacomex GP Campus, Dagneux, France) for 48 hours to ensure complete 655 

O2-free conditions (the lids of the vessels were slightly loose). The stock solution of copper-656 

loaded protein and CuSO4 were frozen in liquid nitrogen and let thawed in the anaerobic 657 

chamber to equilibrate with anaerobic atmosphere during 48 hours. L-cysteine was placed in 658 

the anaerobic chamber as a powder during 48 hours and dissolved in anaerobic water before 659 

the experiment. 660 

To set-up reactions, the copper-loaded protein or CuSO4 (5 µM final concentration) was 661 

added to anaerobic Avicel suspension (0.5% (w/v) final concentration) in 50 mM sodium 662 

acetate buffer pH 5.2. L- cysteine was added to all the reactions to a final concentration of 1 663 

mM. 50 µM of H2O2 was added to the first third of the reactions, while water was added 664 

instead to the second and third third of the reactions to a final volume of 200 µL. While the 665 

second third was kept in the anaerobic chamber (i.e. anaerobic control) the third third was 666 

taken out of the anaerobic chamber and re-equilibrated with atmospheric O2 by vigorous 667 

mixing. The aerobic reactions constitute positive controls ensuring that the treatment of the 668 

different stock solutions (enzyme, L-cysteine) did not harm the integrity of the reactants. After 669 

16 hours incubation at 23°C, all reactions were stopped by addition of 10 µL NaOH solution 670 
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(0.1 M final).  All samples were centrifuged before analysis of soluble products by HPAEC-671 

PAD as described above. Reactions were performed as triplicate independent experiments. 672 

Production of antibodies, protein electrophoresis and Western immunoblotting 673 

A solution of 5 mg of purified recombinant LbX325 protein was used to elicit rabbit 674 

polyclonal antibodies according to the manufacturer’s procedure (Eurogentec, Seraing, 675 

Belgium). Total proteins from free-living mycelium, 15 ectomycorrhizal roots were extracted 676 

according to literature60. Protein analyses were carried out by using 4–20% Mini-Protean 677 

TGX Precast Protein gels in a Mini-Protean electrophoresis cell system (both Bio-Rad). 678 

Specificity of the antibodies was determined by western blot of total protein obtained from 679 

poplar lateral roots not in contact with L. bicolor S238N and from mycorrhizal root tips using 680 

the Bio-Rad alkaline phosphatase immune-blot kit (Bio-Rad Laboratories) according to the 681 

manufacturer’s instructions. 682 

Confocal microscopy and indirect immunofluorescence localization 683 

Three-week-old ectomycorrhizal root tips from grey poplar (cv INRA 717-1-B4) or free 684 

living mycelium of L. bicolor S238N were fixed for 4 h in 4% (w/v) paraformaldehyde in 685 

phosphate-buffered saline (PBS) (137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM 686 

K2HPO4, pH 7.4). The root segments were embedded in agarose 4% (w/v) and cut into 25 μm 687 

longitudinal or 25–30 μm radial sections with a Leica VT1200S Leica vibratome (Leica 688 

Microsystems, Nanterre, France). Sections were retrieved with a brush and carefully 689 

transferred onto watch glasses and then were stained according to literature61. The indirect 690 

immunofluorescent localization of the LbX325 protein was performed by confocal 691 

microscopy as described by62.  692 

  693 
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Transmission electron microscopy 694 

Three-week-old ectomycorrhizal root tips from grey poplar (cv INRA 717-1-B4) or free-695 

living mycelium (FLM) of L. bicolor S238N were dissected from the agar plate and fixed 696 

with 2.5% glutaraldehyde, 2% paraformaldehyde in PBS for 2 h. The samples were washed in 697 

PBS and embedded in 4% agarose. Vibratome sections of 80 µm thickness were made and 698 

post-fixed in 1% osmium tetroxide in distilled water for 1h, washed and incubated in uranyl 699 

acetate 1% in distilled water overnight at 4°C. Vibratome sections were dehydrated in ethanol 700 

and acetone, and embedded in epon resin. Ultrathin 70 nm-sections were performed on a UC7 701 

Leica Ultramicrotome (Leica, Netherlands).  702 

Sections on nickel grids were incubated with saturated sodium metaperiodate for 2 min. The 703 

grids were washed rapidly in TBS with 1% Triton X-100. The grids were then incubated with 704 

10 % normal serum in TBS for 1 hour, followed by an overnight incubation with rabbit anti-705 

LbX325 antibodies (1/20) at 4°C. The grids were washed in TBS and incubated with 706 

secondary antibodies (6 nm anti-rabbit, Aurion, 1/15) for 1 hour, then washed again in TBS. 707 

The grids were incubated for 10 min in 2.5 % glutaraldehyde in 0.05 M cacodylate buffer, 708 

washed, and free aldehydes groups were quenched (0.1 M glycine in TBS for 10 min). The 709 

grids were then stained with WGA-15nm conjugate for 40 min, washed in water and counter-710 

stained by 1% uranyl acetate (5 min) and lead citrate (2 min). Acquisitions were performed on 711 

a Tecnai G2 at 200 kV (FEI, Netherlands). Micrographs were acquired with a Veleta camera 712 

(Olympus, Japan). 713 

Structure determination by X-ray crystallography 714 

To remove N-linked glycans, 20 mg of purified enzymes were treated with 500,000 U of 715 

EndoH (New England Biolabs, Ipswich, MA) under native conditions (48 h at 20°C) 716 

according to the manufacturer’s instructions. Deglycosylated and control samples were 717 
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analyzed by SDS-PAGE (Supplementary Figure 9). To remove EndoH, buffer A was added 718 

to the sample and purification was performed using a 5 mL His Trap HP columns (GE 719 

healthcare, Buc, France) connected to an Akta Xpress system (GE healthcare) as described 720 

above. Fractions containing the protein were pooled and concentrated with a 3-kDa vivaspin 721 

concentrator (Sartorius, Palaiseau, France) and buffer exchanged in 20 mM MES buffer pH 722 

6.0. 723 

Crystals were grown using the sitting-drop vapor diffusion technique set up in MRC plates 724 

(Molecular dimensions) with 100 µL reservoirs at room temperature, using an Oryx-8 robot 725 

(Douglas Instruments). LaX325 (13.3 mg.mL-1 in 20 mM MES pH 6.0) was incubated with 726 

copper acetate in a 1:1 molar ratio for 1 hour at 4°C. Addition of copper acetate made the 727 

sample precipitate, however, the precipitate dissolved again after 1 hour incubation. Screening 728 

was carried out using the commercial JCSG+ and Morpheus screens (Molecular Dimensions). 729 

Crystals were harvested and flash frozen in liquid nitrogen without added cryoprotectant. Two 730 

initial datasets were collected at a wavelength of 0.9799 Å at the BioMAX beamline of 731 

MAXIV on LaX325 crystals grown from Morpheus conditions #40 (P21 dataset in 732 

Supplementary Table 2) and #85 (P43212 dataset in Supplementary Table 2) in a volume 733 

ratio of 1:1 (enzyme:reservoir solution) and 13.3 mg/mL LaX325 in the protein stock 734 

solution. Morpheus screen #40 has the following composition: 20 mM 1,6-hexanediol, 20 735 

mM 1-butanol, 20 mM (RS)1,2-propandiol, 20 mM 2-propanol, 20 mM 1,4-butandiol, 2 mM 736 

1,3-propandiol, 100 mM MES monohydrate pH 6.5, 100 mM imidazole pH 6.5, 12.5% (w/v) 737 

MPD, 12.5% (w/v) PEG1000, 12.5% (w/v) PEG3350. Morpheus screen #85 has the following 738 

composition: 20 mM L-Na-Glutamate, 20 mM DL-Alanine (racemic), 20 mM Glycine, 20 739 

mM DL-Lysine HCl (racemic), 20 mM DL-Serine (racemic), 100 mM MES monohydrate pH 740 

6.5, 100 mM imidazole pH 6.5, 20% (w/v) PEG 500 MME and 10% (w/v) PEG 20,000. The 741 

structure could not be determined from these datasets due to limited anomalous signal at the 742 
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data collection wavelength. The original crystals could not be reproduced spontaneously, but 743 

required seeding, either using the Oryx-8 robot, or by streak seeding using a horse hair. A 744 

third dataset (in P212121, Supplementary Table 2) was collected from a crystal of LaX325 745 

grown by streak seeding into the Morpheus63 #85 condition. Data was collected at beamline 746 

ID29 at the ESRF, using a wavelength of 1.299 Å, close to the copper edge, with an 747 

oscillation of 0.1° and 4000 images for high redundancy. The structure was solved using 748 

anomalous dispersion methods, by running Phenix.autosol64 searching for 4-6 sites (as 749 

indicated by the Matthew’s coefficient) using data automatically processed and scaled to 2.08 750 

Å resolution in P212121 with XDS and XSCALE65. Two additional structures in different 751 

space groups were determined by Molecular Replacement with MOLREP66 and refined with 752 

Refmac567 (of the CCP4 suite) using this initial structure (in P212121) as search model and the 753 

previously collected P43212 and P21 datasets scaled to 2.10 Å and 1.82 Å resolution, 754 

respectively. For all structures 100% of the residues were in the allowed regions of the 755 

Ramachandran plot. Crystals of LaX325 grown from seeds in both Morpheus condition #40 756 

and #85 were soaked for 50-60 minutes in 5 mM L-Cysteine (Sigma Aldrich) dissolved in 757 

reservoir conditions. Diffraction data could be collected to close to 2 Å resolution at the P11 758 

beam line of Petra-III, DESY, Hamburg, Germany, but only on orthorhombic crystals. No 759 

dataset collected resulted in any conformational changes of amino acids as a function of the 760 

reduction of the Cu-atom. The max dose experienced by the crystals were estimated to 724.78 761 

KGy using RADDOSE-3D68. All datasets were collected at cryogenic temperatures (100 K). 762 

Crystallization attempts of LbX325 were not successful.  763 

 764 

Electron Paramagnetic Resonance (EPR) spectroscopy 765 

Continuous wave (cw) X-band frozen solution EPR spectra of a 0.2 mM solution of Cu(II)-766 

LaX325 in 50 mM sodium acetate buffer pH 5.2 were recorded on a Bruker EMX 767 
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spectrometer operating at ~9.30 GHz, with modulation amplitude of 4 G, modulation 768 

frequency of 100 kHz and microwave power of 10.02 mW at 165 K. To check possible 769 

binding of copper to the His-tag, a copper titration was performed starting from the apo-770 

enzyme and adding 0.2 equivalents of Cu (from a CuCl2 stock in water) in 2 µL injections, 771 

which showed binding exclusively to the LPMO active site until addition of ca. one 772 

equivalent of Cu (Supplementary Figure 3). Addition of Avicel to the EPR sample did not 773 

cause any change to the spectrum of LaX325. 774 

Spectral simulations were carried out using EasySpin69 5.2.16 integrated in MatLab software. 775 

Simulation parameters are given in Supplementary Table 4. It was assumed that g and A 776 

tensors were axially coincident. gz and |Az| values were determined accurately from the 777 

absorption at low field. Accurate determination of the gx, gy, |Ax| and |Ay| values was not 778 

possible due to the second order nature of the perpendicular region, although it was noted that 779 

satisfactory simulation could only be achieved with the particular set of values reported in 780 

Supplementary Table 4. Furthermore, it was noted that the simulations were improved by 781 

the addition of coupled nitrogen atoms, although the exact value of the coupling could not be 782 

determined given the lack of well resolved superhyperfine coupling. Raw EPR data are 783 

available on request through the Research Data York (DOI: 10.15124/a034974e-2782-415e-784 

8b02-2b6e4098760e). 785 

 786 

Data availability statement 787 

LaX325 nucleotide sequence was deposited in GenBank under accession number MK088083. 788 

The X-ray structures of LaX325 were deposited in the Protein Data Bank with accession 789 

numbers 6IBH, 6IBI, 6IBJ. Raw EPR data are available on request through the Research Data 790 

York (10.15124/a034974e-2782-415e-8b02-2b6e4098760e). 791 
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