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ABSTRACT 

It is important to account for nonlinearity in the deformation of a thermoplastic matrix, as well as fibre 

fracture and matrix cracking, when predicting progressive failure in unidirectional fibre-reinforced 

thermoplastic composites.  In this research, a new high-fidelity damage model approach is developed 

incorporating elastic-plastic non-linearity. In order to validate the model, three-point bend experiments 

were performed on composite specimens, with a lay-up of [03/903]2s, to provide experimental results 

for comparison. Digital Image Correlation (DIC) was employed to record the strain distribution in the 

composite specimens. The developed intralaminar damage model, which is implemented as a user 

defined material (VUMAT in Abaqus/Explicit) subroutine, is then combined with a cohesive surface 

model to simulate three-point bend failure processes. The simulation results, including the load-

displacement curves and damage morphology, are compared with the corresponding experimental 

results to assess the predictive capability of the developed model. Good agreement is achieved 

between the experimental and numerical results. 
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Nomenclature 

Symbols Definition 

𝑑1, 𝑑2, 𝑑3 and 𝑑𝑠 Damage parameters defined in Hanshin’s damage model 

𝑑𝑖𝑛𝑡𝑒𝑟 Damage parameter defined in cohesive surface solution 

𝑓 The plastic potential 

𝑘33, 𝑘31 and 𝑘32 Cohesive stiffness 

𝑙𝑔 Gauge length of the composite specimens 

𝑙𝑡 Total length of the composite specimens 

𝑛 Non-linear parameter for defining the master curve 

𝑡 Thickness of the composite specimens 

𝑤 Width of the composite specimens 

𝐴 Non-linear parameter for defining the master curve 

𝐸𝑋𝑋 Apparent modulus of elasticity in the loading direction, x  

𝐸𝑖𝑖(𝑖 = 1,2,3) Elastic normal moduli in the material coordinate system 

𝐹𝑖𝑇, 𝐹𝑖𝐶 and 𝐹𝑖𝑆 (𝑖 = 1,2,3) Tension and compression failure indexes in NU theory 

𝐺𝑖𝑗(𝑖, 𝑗 = 1,2,3, 𝑖 ≠ 𝑗) Elastic shear moduli in the material coordinate system 

𝐺𝐼𝑐|𝑓𝑡 and 𝐺𝐼𝑐|𝑓𝑐 Fibre-dominated tensile and compressive fracture toughness 

𝐺𝐼𝑐|𝑚𝑡 and 𝐺𝐼𝑐|𝑚𝑐 Matrix-dominated tensile and compressive fracture toughness 

𝐺𝐼𝑐|𝑚𝑠 Matrix-dominated shear fracture toughness 

𝐺𝐼𝑐 and 𝐺𝐼𝐼𝑐 Interlaminar mode I and mode II fracture toughness 

𝑋𝑇 and 𝑋𝐶 Longitudinal tensile and compressive strength 

𝑌𝑇 and 𝑌𝐶 Transverse tensile and compressive strength 

𝑍𝑇 and 𝑍𝐶 Through-thickness tensile and compressive strength 

𝑎𝑖𝑖 (𝑖 = 4,5,6) The coefficients describing the extent of plastic anisotropy 

𝑎𝑖𝑗 (𝑖, 𝑗 = 1,2,3) Coefficients in the quadratic stress-based yield function 

𝛾𝑖𝑗(𝑖, 𝑗 = 1,2,3, 𝑖 ≠ 𝑗) Shear strains in the material coordinate system 

𝛾12
𝑝
 (𝑖, 𝑗 = 1,2,3, 𝑖 ≠ 𝑗) Plastic shear strains in the material coordinate system 

𝜀𝑒𝑓𝑓
𝑝

 Effective plastic strain 

𝜀𝑖𝑖(𝑖 = 1,2,3) Normal strains in the material coordinate system 

𝜀𝑖𝑖
𝑝
 (𝑖 = 1,2,3) Plastic normal strains in the material coordinate system 

𝜂 Benzeggagh–Kenane (B-K) coefficient 

𝜈𝑖𝑗  (𝑖, 𝑗 = 1,2,3) Poisson’s ratios in the material coordinate system 

𝜎𝑖𝑖  (𝑖 = 1,2,3) Normal stresses in the material coordinate system 

𝜎𝑒𝑓𝑓 Effective stress 

𝜏𝑖𝑗  (𝑖, 𝑗 = 1,2,3, 𝑖 ≠ 𝑗) Shear stresses in the material coordinate system 

FE Finite element 

* All given material properties are those for the composite material 
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1. Introduction 

Continuous fibre-reinforced composites are becoming very attractive materials for application the 

commercial aviation industry. This is mainly due to their excellent mechanical, fatigue and corrosion 

resistant properties. In particular, two important performance criteria are high strength to weight ratio 

and high stiffness to weight ratio [1,2]. With regards to the matrix, fibre-reinforced composites can be 

categorised into two main types: thermoset matrix composites and thermoplastic matrix composites. 

Compared to thermoset matrix composites, thermoplastic matrix composites, which utilise polymers 

such as Poly(ether ketone ketone)  (PEKK) and Poly(ether-ether ketone) (PEEK), show higher 

damage tolerance and better recycling capability [3,4]. The presence of a semi-crystalline polymer 

matrix results in the thermoplastic matrix composite exhibiting a more pronounced nonlinear stress-

strain response in the matrix-dominated direction [5]. A high-fidelity model, for predicting this 

nonlinear behaviour and progressive failure, is proposed to better understand failure in thermoplastic 

composites and assist in the design of  high-performance thermoplastic composite structures [6].  

 

In developing efficient and reliable predictive tools for thermoplastic composite materials, a number of 

researchers have made considerable progress. Sun and Chen [7] developed a numerical, finite-

element analysis (FEA) model to predict the residual stresses in components manufactured using a 

carbon-fibre/PEEK composite where a multi-directional lay-up of the fibres was employed. The one-

parameter flow rule for orthotropic plasticity [8] was successfully employed to describe the non-linear 

behaviour of the fibre-reinforced composite using a thermoplastic matrix.  

 

Mokhtari et al. [9] investigated the compression failure of fibre-reinforced thermoplastic composites 

using a combined experimental and numerical method. In their experimental research, two laminate 

specimen lengths with different fibre orientations were considered, to analyse the response of 

thermoplastic composites subjected to compressive loading. Along with the experimental research, a 

numerical model was also developed to further understand the damage mechanisms and damage 

evolution in the thermoplastic composite laminates. The interlaminar damage (delamination) and the 

intralaminar damage (fibre fracture and matrix cracking) were modelled by the combination of the 

Cohesive Zone Model (CZM) and the Matzenmiller-Lubliner-Taylor (MLT) mechanical model. It was 

https://journals.sagepub.com/action/doSearch?target=default&ContribAuthorStored=Mokhtari%2C+Ahcene
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found that the loading conditions of composite laminates and the fibre orientation considerably 

affected the compression failure load of the thermoplastic composites. 

 

With the aim of understanding and predicting the crush behaviour of thermoplastic composites, Tan 

and Falzon [10] conducted both experimental and numerical studies on AS4 carbon reinforced   

PEKK laminates. The damage mechanisms of thermoplastic composites, subjected to quasi-static 

crush loading, were investigated using digital microscopy and post analysed using Scanning Electron 

Microscopy (SEM). It was found that splaying and fragmentation were the primary failure modes. 

Based on further understanding from the experimental research, a mesoscale composite damage 

model was developed to capture the material response under crushing. In this way, Tan and Falzon 

demonstrated that the numerical approach developed could considerably reduce the extent of 

physical testing required for developing crashworthy composite structures. 

 

In this research, an intralaminar damage model, which was implemented as a VUMAT subroutine 

within Abaqus/Explicit, was developed to capture the response of a thermoplastic composite ply. This 

intralaminar damage model was then combined with a cohesive surface model to form a FE model for 

predicting the mechanical response and progressive failure of thermoplastic composite laminates. 

Three-point bend experiments were performed on the thermoplastic composite specimens, 

manufactured using an Out-Of-Autoclave (OOA) route, to extract the experimental data for model 

validation. During the experiments, Digital Image Correlation (DIC) was employed to record the 

deformation and strain in the tested composite specimens. The experimental and numerical results, 

such as loading response and damage morphology, were compared to assess the capability of the 

developed FE model in predicting the mechanical response and progressive failure of a thermoplastic 

matrix composite. 

 

2. The theoretical model 

2.1. Introduction 

The failure modes, presented by the unidirectional fibre reinforced composite laminates, are generally 

fibre fracture, matrix cracking and delamination [11], Fig. 1. In these three types of failure, the fibre 
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fracture/kinking and matrix cracking can be summarised as intralaminar damage, and the 

delamination can be defined as interlaminar damage. 

 

Based on the observed failure modes in composite laminates, both interlaminar and intralaminar 

damage as well as nonlinear response were considered in the developed composite damage model, 

which was implemented as a VUMAT subroutine in Abaqus/explicit. The details of the developed 

composite damage model are given in the following sections. 

 

2.2. Model for intralaminar damage 

2.2.1. Intralaminar damage initiation 

For the intralaminar failure, the North-western University (NU) damage criteria were employed to 

capture the damage initiation. The NU criteria were proposed by Daniel et al [12,13]. These 3D 

criteria are partially interactive failure criteria, in which more than one stress components have been 

used to evaluate the different failure modes. Failure indices for NU criteria involve eight failure modes. 

The failure modes included in the NU criteria are given by: 

 

Longitudinal failure: 

Tension-dominated : 𝐹1𝑇 = (
𝜎11
𝑋𝑇
)
2

+
𝜎12
2 + 𝜎13

2

𝑆12
2 ≤ 1 , (1) 

compression-dominated: 𝐹1𝐶 = (
𝜎11
𝑋𝐶
)
2

≤ 1 ,  (2) 

 

Transverse failure (|𝜎22| ≥ |𝜎33|): 

Tension-dominated 

(|𝜎22| ≥ |𝜏12(𝜏23)| and 𝜎22 ≥ 0): 
𝐹2𝑇 =

𝜎22
𝑌𝑇

+ (
𝐸22
2𝐺12

)
2

(
𝜏12
𝑌𝑇
)
2

+ (
𝐸22
2𝐺23

)
2

(
𝜏23
𝑌𝑇
)
2

≤ 1 , (3) 

Compression-dominated 

(|σ22| ≥ |τ12(τ23)| and σ22 ≤ 0): 
𝐹2𝐶 = (

𝜎22
𝑌𝐶
)
2

+ (
𝐸22
𝐺12

)
2

(
𝜏12
𝑌𝐶
)
2

+ (
𝐸22
𝐺23

)
2

(
𝜏23
𝑌𝐶
)
2

≤ 1 , (4) 

Shear-dominated 

(|σ22| ≤ |τ12(τ23)|): 
𝐹2𝑆 = (

𝜏12
𝑆12
)
2

+ (
𝜏23
𝑆23
)
2

+
2𝐺12
𝐸22

𝜎22
𝑌𝐶

≤ 1 ,  (5) 
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Through-thickness failure (|𝜎33| ≥ |𝜎22|): 

Tension-dominated  

(|𝜎33| ≥ |𝜏13(𝜏23)| and 𝜎33 ≥ 0): 
𝐹3𝑇 =

𝜎22
𝑍𝑇

+ (
𝐸33
2𝐺13

)
2

(
𝜏13
𝑍𝑇
)
2

+ (
𝐸33
2𝐺23

)
2

(
𝜏23
𝑍𝑇
)
2

≤ 1 , (6) 

Compression-dominated 

(|𝜎33| ≥ |𝜏13(𝜏23)| and 𝜎33 ≤ 0): 

𝐹3𝐶 = (
𝜎33
𝑍𝐶
)
2

+ (
𝐸33
𝐺13

)
2

(
𝜏13
𝑍𝐶
)
2

+ (
𝐸33
𝐺23

)
2

(
𝜏23
𝑌𝐶
)
2

≤ 1 , (7) 

Shear-dominated  

(|𝜎33| ≤ |𝜏13(𝜏23)|): 

𝐹3𝑆 = (
𝜏13
𝑆13
)
2

+ (
𝜏23
𝑆23
)
2

+
2𝐺13
𝐸33

𝜎33
𝑍𝐶

≤ 1 
,  (8) 

 

where 𝜎𝑖𝑗 are the stress components. 𝐹𝑖𝑇 (𝑖 = 1,2,3), 𝐹𝑖𝐶  (𝑖 = 1,2,3) and 𝐹𝑖𝑆 (𝑖 = 1,2,3) are the tensile-

dominated, compression-dominated and shear-dominated failure indexes in three respective material 

directions, respectively. 𝑋𝑇, 𝑌𝑇 and 𝑍𝑇 denote the allowable tensile strength in the three respective 

material directions. Similarly, 𝑋𝐶, 𝑌𝐶 and 𝑍𝐶 are the allowable compressive strength in the three 

respective material directions. Further, 𝑆12, 𝑆13 and 𝑆23 represent allowable shear strengths in the 

corresponding principal material directions. 

 

2.2.2. Intralaminar damage evolution 

The damage evolution law, based on the energy dissipated during the damage process and linear 

material softening, was used to predict the evolution of the damage in the composite plies. 

Corresponding to the damage initiation mechanisms defined in NU damage criteria, eight damage 

parameters, 𝑑1𝑡, 𝑑1𝑐, 𝑑2𝑡, 𝑑2𝑐, 𝑑2𝑠, 𝑑3𝑡, 𝑑3𝑐 and 𝑑3𝑠 are defined in the damage evolution model. A 

general form of the damage variable for a particular damage initiation mechanism is given by: 

 𝑑 =
𝜀𝑓(𝜀 − 𝜀0)

𝜀(𝜀𝑓 − 𝜀0)
  (9) 

 

where 𝑑 = 𝑑1𝑡 represents the longitudinal tension-dominated failure, 𝑑 = 𝑑1𝑐 represents the 

longitudinal compression-dominated failure. 𝑑 = 𝑑2𝑡 represents the transverse tension-dominated 

failure, 𝑑 = 𝑑2𝑐 represents the transverse compression-dominated failure and 𝑑 = 𝑑2𝑠 refers to the 

transverse shear-dominated failure. Similarly, 𝑑 = 𝑑3𝑡 represents the through-thickness tension-

dominated failure, 𝑑 = 𝑑3𝑐 and 𝑑 = 𝑑3𝑠 refer to the through-thickness compression-dominated failure 

and the through-thickness shear-dominated failure, respectively. The strain, 𝜀, is the equivalent strain 
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in the composite ply. The strain values, 𝜀0 and 𝜀𝑓, are the equivalent strains corresponding to initial 

failure and final failure, respectively. For longitudinal tension or compression failure, the strains 𝜀, 𝜀0 

and 𝜀𝑓 would be assigned to be 𝜀 = 𝜀11, 𝜀
0 = 𝜀11

0  and 𝜀𝑓 = 𝜀11
𝑓

, respectively. For transverse tension or 

compression failure, strains 𝜀, 𝜀0 and 𝜀𝑓 would be assigned to be 𝜀 = √𝜀22
2 + 𝛾12

2 + 𝛾23
2, 𝜀0 =

√𝜀22
0 2

+ 𝛾12
0 2 + 𝛾23

0 2 and 𝜀𝑓 = √𝜀22
𝑓 2

+ 𝛾12
𝑓 2
+ 𝛾23

𝑓 2
, respectively. For through-thickness tension or 

compression failure, strains 𝜀, 𝜀0 and 𝜀𝑓 would be assigned to be 𝜀 = √𝜀33
2 + 𝛾23

2 + 𝛾13
2, 𝜀0 =

√𝜀22
0 2

+ 𝛾23
0 2 + 𝛾13

0 2 and 𝜀𝑓 = √𝜀22
𝑓 2

+ 𝛾23
𝑓 2
+ 𝛾13

𝑓 2
, respectively. The final failure strain tensor, 𝜀𝑖𝑗

𝑓
 (𝑖, 𝑗 =

1,2,3), can be determined through the following equation: 

𝜀𝑖𝑗
𝑓
=  2𝐺𝑖𝑗/(𝜀𝑖𝑗

0 𝑙𝑐) , (10) 

 

Where 𝐺𝑖𝑗 is the fracture toughness corresponding to different principal materials directions, and 𝜀𝑖𝑗
0  is 

the strain tensor corresponding to the damage initiation. 𝑙𝑐 is the characteristic length, which can be 

determined based on the volume of the elements. For more details of the characteristic length 

calculation, please refer to [6,14–16]. 

 

During the intralaminar damage evolution, the elasticity matrix needs to be degraded to compute the 

values of the degraded stresses. The achieve this, four damage variables, 𝑑1, 𝑑2, 𝑑3 and 𝑑𝑠,  which 

reflect the state of longitudinal damage, transverse damage and through-thickness damage and shear 

damage, respectively, were derived from the damage parameters, 𝑑1𝑡, 𝑑1𝑐, 𝑑2𝑡, 𝑑2𝑐, 𝑑2𝑠, 𝑑3𝑡, 𝑑3𝑐 and 

𝑑3𝑠, corresponding to the failure types previously discussed, as follows: 

Longitudinal damage: 𝑑1 = {
𝑑1𝑡 , 𝜎̂11 ≥ 0
𝑑1𝑐 , 𝜎̂11 ≥ 0

 , (11) 

Transverse damage: 𝑑2 = {

𝑑2𝑡 , |𝜎22| ≥ |𝜏12(𝜏23)| and 𝜎22 ≥ 0

𝑑2𝑐, |𝜎22| ≥ |𝜏12(𝜏23)| and 𝜎22 ≤ 0

𝑑2𝑠, |σ22| ≤ |𝜏12(τ23)|                        

 , (12) 

Through-thickness damage: 𝑑3 = {

𝑑3𝑡 , |𝜎33| ≥ |𝜏13(𝜏23)| and 𝜎33 ≥ 0

𝑑3𝑐, |𝜎33| ≥ |𝜏13(𝜏23)| and 𝜎33 ≤ 0

𝑑3𝑠, |σ33| ≤ |𝜏13(τ23)|                        

 , (13) 

Shear damage: 𝑑𝑠 = 1 − (1 − 𝑑1)(1 − 𝑑2)(1 − 𝑑3) . (14) 
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The derived damage variables, 𝑑1, 𝑑2, 𝑑3 and 𝑑𝑠, were employed to degrade the elasticity matrix to 

form the damaged elasticity matrix, 𝑪𝒅, which can be expressed as: 

𝐶𝑑 =
1

𝐷

[
 
 
 
 
 
 

(1 − 𝑑1)𝐸11 (1 − 𝑑1)(1 − 𝑑2)𝜈21𝐸11 (1 − 𝑑1)(1 − 𝑑3)𝜈31𝐸11 0 0 0
(1 − 𝑑1)(1 − 𝑑2)𝜈12𝐸22 (1 − 𝑑2)𝐸22 (1 − 𝑑2)(1 − 𝑑3)𝜈32𝐸22 0 0 0
(1 − 𝑑1)(1 − 𝑑3)𝜈13𝐸33 (1 − 𝑑2)(1 − 𝑑3)𝜈23𝐸33 (1 − 𝑑3)𝐸33 0 0 0

0 0 0 (1 − 𝑑𝑠)𝐺12𝐷 0 0

0 0 0 0 (1 − 𝑑𝑠)𝐺13𝐷 0

0 0 0 0 0 (1 − 𝑑𝑠)𝐺23𝐷]
 
 
 
 
 
 

  (15) 

 

Where 𝐷 = 1 − (1 − 𝑑1)(1 − 𝑑2)𝜈12𝜈21 − (1 − 𝑑2)(1 − 𝑑3)𝜈23𝜈32 − (1 − 𝑑3)(1 − 𝑑1)𝜈31𝜈13 −

2(1 − 𝑑1)(1 − 𝑑2)(1 − 𝑑3)𝜈12𝜈23𝜈31, 𝐸𝑖𝑖  (𝑖 = 1,2,3) is the elastic modulus in three respective material 

directions, and 𝜈𝑖𝑗  (𝑖, 𝑗 = 1,2,3 𝑖 ≠ 𝑗) are the Poisson's ratios. Thus, the degraded stresses can be 

computed from 𝛔 = 𝐶𝑑𝛆
𝒆, in which 𝛔 is the resulting stress tensor, 𝛆𝒆 is the current elastic strain tensor 

and the 𝐶𝑑 is degradation matrix. 

 

2.3. Model for interlaminar damage 

2.3.1.  Interlaminar damage initiation 

For the interlaminar failure, a quadratic-traction criterion was employed to capture the damage 

initiation in the composite interface, given by: 

 (
〈𝑡33〉

𝑡33
0 )

2

+ (
𝑡31

𝑡31
0 )

2

+ (
𝑡32

𝑡32
0 )

2

≤ 1 , (16) 

 

where 𝑡𝑖(𝑖 = 33, 31,32) represent the current normal and shear tractions and 𝑡𝑖
0 (𝑖 = 33, 31,32) 

represent the normal and shear cohesive strengths, when the separation is either purely normal (i.e. 

the 33) to the interface or purely in the first shear (i.e. 31) or the second shear (i.e. 32) directions, 

respectively. The interlaminar damage is assumed to initiate when the above quadratic interaction 

function reaches a value of one.  

 

To determine a cohesive strength, which can ensure computation accuracy whilst avoiding a very fine 

mesh, Turon et al. [17] proposed a modelling methodology, in which an relatively lower interface 

strength may be used with a relatively coarse mesh size. Thus, a cohesive strength of 𝑡33
0 = 43 MPa, 

for an interface between two unidirectional plies, was employed. The shear cohesive strength, 𝑡31
0 =

𝑡32
0 , can be determined from [17], 
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𝑡31
0 (𝑡32

0 ) = 𝑡33
0 √

𝐺𝐼𝐼𝑐
𝐺𝐼𝑐

 , (17) 

 

where 𝐺𝐼𝑐 and 𝐺𝐼𝐼𝑐 are the interlaminar Mode I and Mode II critical energy release rates, respectively. 

Values of the cohesive stiffness and cohesive strength are shown in Table 2 for an interface between 

two unidirectional plies. 

 

2.3.2. Interlaminar damage evolution 

In the interlaminar damage model, the linear softening law was employed to model the damage 

evolution. During the interlaminar damage evolution, the cohesive stiffness needs to be degraded to 

compute the values of the degraded tractions. To achieve this, a damage parameter, 𝑑𝑖𝑛𝑡𝑒𝑟, was 

defined to degrade the cohesive stiffness, given by: 

 𝑑𝑖𝑛𝑡𝑒𝑟 =
𝛿𝑓(𝛿 − 𝛿0)

𝛿(𝛿𝑓 − 𝛿0)
 , (18) 

 

where 𝛿 = √𝛿33
2 + 𝛿31

2 + 𝛿32
2
 is the equivalent displacement in the composite interface. The strain 

values, 𝛿0 = √𝛿33
0 2

+ 𝛿31
0 2

+ 𝛿32
0 2

 and 𝛿𝑓 = √𝛿33
𝑓 2

+ 𝛿31
𝑓 2

+ 𝛿32
𝑓 2

, are the equivalent displacements 

corresponding to initial failure and final failure, respectively.  The calculated interlaminar damage 

parameter, 𝑑𝑖𝑛𝑡𝑒𝑟, was employed to degrade the cohesive stiffness matrix to form the degraded 

cohesive stiffness matrix. Then, the degraded tractions can be computed from the following 

expression: 

{

𝑡33
𝑡31
𝑡32

} = [

(1 − 𝑑𝑖𝑛𝑡𝑒𝑟)𝑘33 0 0
0 (1 − 𝑑𝑖𝑛𝑡𝑒𝑟)𝑘31 0

0 0 (1 − 𝑑𝑖𝑛𝑡𝑒𝑟)𝑘32

] {

𝛿33
𝛿31
𝛿32

} , (19) 

 

where 𝑡𝑖(𝑖 = 33, 31,32) represent the cohesive normal or shear tractions, and 𝛿𝑖(𝑖 = 33, 31,32) denote 

the cohesive normal or transverse displacements. 𝑘𝑖(𝑖 = 33, 31,32) are the cohesive stiffness defined 

in the cohesive surface model. 
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2.4. Model for nonlinear response 

In the present research, an elastic-plastic constitutive model is employed to capture the nonlinear 

response of the composite ply. The global coordinate system is defined as X-Y-Z and the material 

coordinate system is defined as 1-2-3. To establish the relationship between a complex stress state 

and a simple experimental stress state an effective stress, 𝜎𝑒𝑓𝑓, and strain, 𝜀𝑒𝑓𝑓
𝑝

, for modelling the 

plastic constitutive relationships between the stress and strain need to be derived. 

 

2.4.1. The effective stress, 𝜎𝑒𝑓𝑓 

A quadratic stress-based yield function, arising from the results of a micromechanical FEA approach, 

has been proposed for a general 3-D fibre-reinforced composite [8,18]: 

 2𝑓(𝜎𝑖𝑖  ) = 𝑎11𝜎11
2 + 𝑎22𝜎22

2 + 𝑎33𝜎33
2 + 2𝑎12𝜎11𝜎22 

+2𝑎13𝜎11𝜎33 + 2𝑎23𝜎22𝜎33 

+2𝑎44𝜏23
2 + 2𝑎55𝜏13

2 + 2𝑎66𝜏12
2  

 (20) 

 

where 𝑓 is the plastic potential. The coefficients, 𝑎𝑖𝑗  (𝑖, 𝑗 = 1,2,3,4,5,6), which describe the extent of 

anisotropy in the plastic behaviour of the composite, are assumed to be constant and may be 

determined experimentally. 

 

Now, Sun and Chen [5,8,19] have simplified Eq. (20) by incorporating the fact that for most 

unidirectional fibre composites the stress versus strain relation in the fibre direction is basically linearly 

elastic and they also considered the composite to be transversely isotopic material in the 2-3 plane. 

Further, to establish the relationship between a complex stress state and a simple experimental stress 

state, they defined an effective stress for modelling the plastic constitutive relationship between the 

stress and strain. Thus, the 3-D effective stress, 𝜎𝑒𝑓𝑓 , for a transversely isotopic composite and linearly 

-elastic in the fibre direction is given by [20]: 

 

𝜎𝑒𝑓𝑓 = √
3

2
(𝜎22

2 + 𝜎33
2 ) − 3𝜎22𝜎33 + 3𝑎66(𝜏13

2 + 𝜏12
2 + 𝜏23

2 )  (21) 
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However, it may also be noted that, in off-axis tension tests of a unidirectional composite laminate, a 

state of plane-stress will be present. Hence, the expression in Eq. (21) for the effective stress can be 

reduced to a 2-D version which gives the one-parameter flow rule as [8,18]: 

 

𝜎𝑒𝑓𝑓 = √
3

2
𝜎22
2 + 3𝑎66𝜏12

2   (22) 

 

where the stresses are given by: 

 𝜎11 = 𝑐𝑜𝑠2𝜃𝜎𝑋𝑋  (23) 

 𝜎22 = 𝑠𝑖𝑛2𝜃𝜎𝑋𝑋   (24) 

 12 = −𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃𝜎𝑋𝑋  (25) 

 

and 𝜎𝑋𝑋 is the uniaxial applied stress in the loading direction, x, and 𝜃 is the off-axis angle employed in 

the test. For tests with various off-axis angles, the in-plane stresses, 𝜎22 and 𝜏12, and strains, 𝜀22 and 

𝛾12, can be calculated using the loading stress, 𝜎𝑋𝑋, and transition matrix, [𝑇(𝜃)], more details are given 

in Appendix. Then, substitution of Eqs. (24) and (25) into (22) gives: 

 𝜎𝑒𝑓𝑓 =  𝐻(𝜃)𝜎𝑋𝑋  (26) 

 

where [8,20]: 

 

𝐻(𝜃) = √
3

2
𝑠𝑖𝑛4𝜃 + 3𝑎66𝑠𝑖𝑛

2𝜃𝑐𝑜𝑠2𝜃 

 

(27) 

 

As will be shown later, the value of the single parameter, 𝑎66, which is unknown in Eq. (27) can be 

readily determined experimentally from the off-axis tests conducted at different values of the off-axis 

angle, 𝜃. Thus, this allows the value of 𝜎𝑒𝑓𝑓 to be determined from Eq. (26). In the discussion below, it 

is again assumed that we have a transversely isotopic composite, which behaves in a linear elastic 

manner in the fibre direction and where a state of plane stress is present in our off-axis tension tests of 

a unidirectional composite laminate. 
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2.4.2. The effective plastic strain, 𝜀𝑒𝑓𝑓
𝑝

 

The effective plastic strain, 𝜀𝑒𝑓𝑓
𝑝
,  gives a measure of the amount of plastic, i.e. non-linear, strain in the 

composite. The total strain can be linearly decomposed into the elastic and plastic strains, assuming 

infinitesimal strain conditions, and for the normal strains may be expressed as: 

 𝜀𝑖𝑖 = 𝜀𝑖𝑖
𝑒 + 𝜀𝑖𝑖

𝑝
  (28) 

 

and for the shear strains as: 

 𝑖𝑗 = 𝑖𝑗
𝑒 + 𝑖𝑗

𝑝
  (29) 

 

To define an effective plastic strain, 𝜀𝑒𝑓𝑓
𝑝

, a similar approach to that adopted above for the effective 

stress may be followed [8], which gives: 

 
𝜀𝑒𝑓𝑓
𝑝

=
𝜀𝑋𝑋
𝑝

𝐻(𝜃)
  (30) 

 

where the term 𝐻(𝜃) is given by Eq. (27) and the term 𝜀𝑋𝑋
𝑝

 is the plastic strain resulting from the 

uniaxially applied load in the X-direction, which is given by: 

 𝜀𝑋𝑋
𝑝
= 𝜀𝑋𝑋 −

𝜎𝑋𝑋
𝐸𝑋𝑋

 (31) 

 

In the above equation, 𝐸𝑋𝑋, is the elastic modulus in the loading direction which can be calculated 

from the material properties and off-axis angle employed in the test as given in [8]: 

𝐸𝑋𝑋 =
1

1
𝐸11

𝑐𝑜𝑠4 𝜃 +
1
𝐸22

𝑠𝑖𝑛4 𝜃 + (
1
𝐺12

−
2𝜈12
𝐸11

) 𝑠𝑖𝑛2 𝜃 𝑐𝑜𝑠2 𝜃
 

 (32) 

 

where 𝐸11 and 𝐸22 are the elastic moduli, 𝜈12 is the Poisson’s ratio and 𝐺12 is the elastic shear 

modulus. To characterise the relationship between the effective plastic strain, 𝜀𝑒𝑓𝑓
𝑝

, and the effective 

stress, 𝜎𝑒𝑓𝑓, a power law function can be used to fit all the effective stress versus effective plastic 

strain (𝜎𝑒𝑓𝑓 − 𝜀𝑒𝑓𝑓
𝑝

) data points from the off-axis angle experiments. given by [8]: 

 𝜀𝑒𝑓𝑓
𝑝

= 𝐴𝜎𝑒𝑓𝑓
𝑛 . (33) 
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where 𝐴 and 𝑛 are the nonlinear coefficients, which can give a best fit to the 𝜎𝑒𝑓𝑓 − 𝜀𝑒𝑓𝑓
𝑝

 data points 

obtained from the different-angle off-axis tension experiments. The determination of the single 

parameter, 𝑎66, and the nonlinear coefficients, 𝐴 and 𝑛, facilitates the calculation of the elements in 

the incremental plastic strain tensor, 𝑑𝜀𝑖𝑗
𝑝
(𝑖, 𝑗 = 1,2,3), given by: 

 

{
 
 
 

 
 
 
𝑑𝜀11

𝑝

𝑑𝜀22
𝑝

𝑑𝜀33
𝑝

𝑑𝜀12
𝑝

𝑑𝜀13
𝑝

𝑑𝜀23
𝑝
}
 
 
 

 
 
 

=
𝐴 𝑛

𝜎𝑒𝑓𝑓
𝑛−1

{
  
 

  
 

0
3(𝜎22 − 𝜎33)/2𝜎𝑒𝑓𝑓
3(𝜎33 − 𝜎22)/2𝜎𝑒𝑓𝑓
3𝑎66𝜏12/2𝜎𝑒𝑓𝑓
3𝑎66𝜏13/2𝜎𝑒𝑓𝑓
3𝑎66𝜏23/2𝜎𝑒𝑓𝑓 }

  
 

  
 

𝑑𝜎𝑒𝑓𝑓  (34) 

 

2.4.3. The elastic-plastic constitutive relation 

The classic elastic constitutive equation for the stress versus strain relationship for orthotropic 

elasticity may be expressed as [21]: 

{
 
 

 
 
𝜀11
𝜀22
𝜀33
𝛾12
𝛾13
𝛾23}
 
 

 
 

=

[
 
 
 
 
 
1/𝐸11 −𝜈21/𝐸11 −𝜈31/𝐸11 0 0 0

−𝜈12/𝐸22 1/𝐸22 −𝜈32/𝐸22 0 0 0
−𝜈13/𝐸33 −𝜈23/𝐸33 1/𝐸33 0 0 0

0 0 0 1/𝐺12 0 0
0 0 0 0 1/𝐺13 0
0 0 0 0 0 1/𝐺23]

 
 
 
 
 

{
 
 

 
 
𝜎11
𝜎22
𝜎33
𝜏12
𝜏13
𝜏23}
 
 

 
 

  (35) 

 

where 𝜀𝑖𝑖 are the normal elastic strains, 𝑖𝑖  are the normal elastic stresses,  𝛾𝑖𝑗  are the elastic shear 

strains, 𝜏𝑖𝑗  are the elastic shear stresses, 𝐺𝑖𝑗 are the elastic shear moduli, 𝜈𝑖𝑗   are the Poisson’s ratios 

and 𝐸𝑖𝑖 are the Young’s moduli, either for tension or compression loading [22]. By combining the 

developed plastic model with the classic elastic model, the elastic-plastic constitutive relation for the 

response prior to damage initiation was obtained by: 

{
 
 

 
 
𝑑𝜀11
𝑑𝜀22
𝑑𝜀33
𝑑𝜀12
𝑑𝜀13
𝑑𝜀23}

 
 

 
 

=

[
 
 
 
 
 
1/𝐸11 −𝜈21/𝐸11 −𝜈31/𝐸11 0 0 0

−𝜈12/𝐸22 1/𝐸22 −𝜈32/𝐸22 0 0 0
−𝜈13/𝐸33 −𝜈23/𝐸33 1/𝐸33 0 0 0

0 0 0 1/𝐺12 0 0
0 0 0 0 1/𝐺13 0
0 0 0 0 0 1/𝐺23]

 
 
 
 
 

{
 
 

 
 
𝑑𝜎11
𝑑𝜎22
𝑑𝜎33
𝑑𝜎12
𝑑𝜎13
𝑑𝜎23}

 
 

 
 

+

{
 
 
 

 
 
 
𝑑𝜀11

𝑝

𝑑𝜀22
𝑝

𝑑𝜀33
𝑝

𝑑𝜀12
𝑝

𝑑𝜀13
𝑝

𝑑𝜀23
𝑝
}
 
 
 

 
 
 

 , (36) 

 

where 𝑑𝜀𝑖𝑗  (𝑖, 𝑗 = 1,2,3) are the incremental total strain tensors and 𝑑𝜎𝑖𝑗  (𝑖, 𝑗 = 1,2,3) are the 

incremental stress tensors. 𝐸𝑖𝑖  (𝑖, 𝑗 = 1,2,3) are the Young’s moduli, either for tension or compression 
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loading. Parameters, 𝑑𝜀𝑖𝑗  (𝑖, 𝑗 = 1,2,3), represent the incremental plastic strain tensors. Moduli, 

𝐺𝑖𝑗  (𝑖, 𝑗 = 1,2,3, 𝑖 ≠ 𝑗), are the shear moduli and 𝜈𝑖𝑗  (𝑖, 𝑗 = 1,2,3, 𝑖 ≠ 𝑗)   are the Poisson’s ratios. 

 

3. Experiments 

3.1. Material characterisation 

3.1.1. Fracture toughness characterisation 

In this research, the results presented in [6,14,23,24] was employed to extract the fracture toughness 

required for the numerical modelling. Pre-cracks were introduced into the double-cantilever-beam 

(DCB), four-point end-notched-flexure (4ENF) and mixed-mode-beam (MMB) composite specimens by 

inserting the polytetrafluoroethylene (PTFE) into the laminated composites. The notches in the compact 

tension (CT) and compact compression (CC) specimens for intralaminar characterisation were 

machined using a milling cutter. The test configurations for material characterisation are shown in Fig. 

2 and corresponding dimensions are presented in Table 1.  

 

3.1.2. Nonlinearity characterisation 

The off-axis tension experiments were employed to characterise the nonlinear behaviour of the 

composite ply. The geometry of the specimens for the off-axis tension experiments [25], are shown in 

Fig. 3, where X-Y refers to global coordinate system and 1-2 refers to material coordinate system. In 

this research, the lengthwise direction is parallel to the loading direction. All the composite specimens 

employed in the off-axis tension have the sample dimensions shown in Table 2. 

 

3.2. Experimental validation 

3.2.1. Material and specimen 

Composite panels, for proceeding specimens used in the experimental validation, were manufactured 

using unidirectional AS4 carbon fibre reinforced PEEK prepregs, provided by CYTEC, United States. 

An Out-of-Autoclave (OOA) manufacturing route was employed to consolidate the CF/PEEK prepregs. 

A hydraulic press, manufactured by Mackey Bowley, United Kingdom, was employed to produce the 

CF/PEEK composite panels, Fig. 4a. A diagram of the APC-2 consolidation schedule for the CF/PEEK 

prepregs is shown in Fig. 4b.  
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As a widely-used material testing method, the three-point-bending tests are easy to perform and able 

to introduce various failure modes into specimens, such as tensile, compressive and shear failure, 

which are ideal to assess the predictive capability of the computational model. Based on this, in this 

research, the three-point-bending experiment was employed to conduct model validation. The 

composite specimens for three-point bend experiments were machined from the manufactured 

composite panels using a diamond saw, provided by MetPrep Ltd, United Kingdom. The sample 

geometry and testing apparatus described in ASTM D7265 [26] was employed , Fig. 5, where X-Y-Z 

refers to the global coordinate system. Details of the composite lay-up, the specimen dimensions and 

the testing configurations are summarised in Table 3. All of the thermoplastic composite specimens 

were initially painted using matt white paint before applying a speckle pattern using black dots to 

facilitate the application of DIC. 

 

3.2.2. Experimental procedure 

A screw-driven tensile testing Instron machine was employed to conduct the three-point bend 

experiments. The load cell has a range of 0 to 100 kN. During the experiments, a displacement 

control was applied, by setting the loading rate as 1 mm/s. A DIC system was used to measure the 

strain of the composite specimens under three-point bending. Four composite specimens were tested 

successfully, and good consistency was observed from those experimental results. 

 

4. Numerical simulation 

4.1. Finite element model 

Fig. 6a shows the Computer-Aided Design (CAD) model created in Abaqus 2017, which was then 

converted to a FE model, Fig. 6b. The developed VUMAT subroutine was integrated with the 

cohesive surface model to simulate the three-point bend events performed on the composite 

specimens with a lay-up of [03/903]2s. The virtual specimen was discretised using eight-node linear 

reduced integration (C3D8R) solid elements with a size of 1 mm × 1 mm. The total number of 

elements in the FE model for the three-point bend simulation was 16,224. The computational loading 

speed was set as 0.5 m/s to reduce the computing time and a smooth step was used to ensure the 

quality of the simulation was not affected by the inertial effects. A general contact algorithm was 

employed for the global contact and the cohesive surface solution was used for the interfacial contact 
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between the composite plies. Friction coefficients of 0.2 and 0.25 were defined for the global contact 

and cohesive contact, respectively [6,14]. Computational accuracy was set as double precision to 

reduce the accumulation error during simulation. Selective mass scaling was used to provide a 

compromise between computation time and accuracy. A stable time increment of less than 1e-08 s 

was achieved, yielding an approximate run time of 21 hours on a Linux Cluster consisting of 16 CPUs. 

 

4.2. Properties for model input 

The mechanical properties of the unidirectional CF/PEEK composite ply, such as strength and 

modulus, were obtained from the data sheet [27] provided by CYTEC, United States. The fracture 

toughness values were extracted from the results presented in [28] and [29]. The parameters for 

defining the nonlinearity of the composite ply were determined based on the results reported in [25]. 

The input parameters required for the developed FE model are presented in Table 4. 

 

4.3. Model implementation 

The flow chart of the developed FE model, which includes a cohesive surface model and an elastic-

plastic damage model, is schematically shown in Fig. 7a. The elastic-plastic damage model is also 

highlighted in Fig. 7b. In the flowchart, the time associated with the experiments enters the model with 

the ‘Model state’ being equivalent to a ‘step time’. The numerical model is stopped when the defined 

total step time has expired. The above flow-chart shows one computation step for a single element. 

The computation process was performed for every appropriate single element in the FE model for 

mechanical response and progressive failure of thermoplastic composites. 

 

5. Model validation 

5.1. Load-displacement and major strain response 

The load-displacement and major strain distribution, were obtained from both the experiments and 

simulation. Fig. 8a shows the comparison between the experimentally and numerically obtained load-

displacement responses. It can be found that both the experimental and computational results 

followed a linearly elastic response at the initial stage, which was followed by a nonlinear state prior to 

the damage point. The experimentally measured average maximum load was compared with the 

corresponding computational results, which is shown in Fig. 8b. The average maximum load delivered 
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by the experimental results was 1.04 kN ± 1.6%, and the computational maximum load was 1.02 kN, 

which is only 2% lower than the experimentally measured average value.  

 

During the three-point bend experiments, the major strain of the thermoplastic composite specimens 

was recorded using a DIC system. A typical major strain history of the tested thermoplastic specimens 

is shown in Fig. 9, along with the numerically predicted major strain evolution of the thermoplastic 

composite specimen. During the experiments, it was observed that, prior to initial damage, the 

thermoplastic specimens evenly deformed over the span length, from displacement = 0 mm to 

displacement = 4 mm. Some localised strain was initially observed around the central area when the 

displacement reached 6 mm. This was observed in both the experimental and numerical results. This 

level of correlation between the experimentally recorded major strain and the numerically predicted 

major strain confirms that the developed composite damage model is capable of predicting the major 

strain for thermoplastic matrix composites.  

 

5.2. Energy dissipation 

Fig. 10 presents details of the energy dissipation obtained from the simulation. Prior to damage 

initiation, the energy was mainly stored as elastic energy, which was then released following the 

occurrence of damage. It was interesting to observe that the frictional energy, which was deemed to 

be mainly from the interaction between delaminated or fractured plies, also played a small role during 

the energy dissipation procedure. For comparison, the total energies measured from the experiments 

(shown as “Total energy-exp”) in the figure were also presented in the figure, along with the 

computationally obtained total energy (shown as “Total energy-sim” in the figure). The comparison 

shows that the predicted total energy correlates well with the experimental total energy, which further 

confirms that the developed composite damage model is capable of predicting the energy dissipation 

of thermoplastic matrix composites.  

 

5.3. Damage morphology 

Fig. 11 shows a comparison of the interlaminar damage (delamination) obtained from the experiments 

and simulation. The side view of the tested specimen clearly showed that severe interlaminar damage 

(delamination) occurred within the composite laminates under three-point bend loading. The 
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simulated interlaminar damage (delamination) delivered very good agreement with the experimentally 

observed interlaminar damage (delamination).  

 

The developed damage model can also predict the intralaminar damage in the composite laminates. 

Fig.12 shows the matrix damage obtained from the experiments and simulation. From the photograph 

of the tested specimen, it can be observed that the matrix damage occurred in the central area of the 

tested specimens and this was also demonstrated by the numerical simulation results. 

  

With regards to fibre damage on the top and bottom surfaces, Fig.13 shows the compressive fibre 

damage on the top surface and Fig. 14 shows the tensile fibre damage on the bottom surface, as 

obtained from the three-point bend experiments and simulation. It can be seen that fibre breakage 

occurred in the central area on both the top and bottom surfaces of the simulated specimens 

(compressive fibre damage on top and tensile fibre damage on bottom) which was consistent with the 

experimental coupons. The comparison shows that the predicted damage on the top surface has a 

width of about 7 mm, which is larger than the experimentally obtained damage, which has a width of 

about 4 mm. For damage on the bottom surface, the experimental and numerical results presented a 

damage area with a width of about 7 mm. The comparison of the experimental and simulation results 

indicates that the developed numerical model is able to capture well the failure modes, such as fibre 

breakage, matrix cracking and delamination, in the composite laminates and reproduce the overall 

damage morphology of the post-tested composite specimens. 

 

6. Conclusions 

An elastic-plastic damage model, which accounts for both the nonlinear behaviour and progressive 

failure of a thermoplastic composite ply, was implemented as a VUMAT subroutine in Abaqus/explicit, 

to predict the three-point bend behaviour of thermoplastic matrix composites. The developed elastic-

plastic damage model was then combined with the Abaqus in-built cohesive surface model to form a 

complete Finite Element (FE) model to predict the mechanical response and progressive damage of 

thermoplastic composite laminates. The simulation results e.g. load response, deformation and 

damage morphology, were compared with the experimental results extracted from the three-point 

bend experiments performed on the composite specimens with a lay-up of [03/903]2s. The comparison 
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showed that the computational results yielded good agreement to the experimental results. This 

confirmed the capability of the developed Finite Element (FE) model in predicting the nonlinear 

behaviour and progressive failure of thermoplastic composite laminates. It is considered this elastic-

plastic damage model approach can be more widely applied to other loading configurations, including 

impact, and this will be developed in subsequent papers. This new high-fidelity damage model 

approach should be of much value in the design of high-performance thermoplastic matrix composite 

structures in the aviation industry. 
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(a) (b) 

Fig. 1. The main failure types shown in the unidirectional fibre reinforced composite laminates:  

(a) experimental observed failure modes [12] and (b) schematically categorised failure modes. 

 

   

(a) (b) (c) 

  

(d) (f) 

Fig. 2. Testing configuration for (a) mode I (b) mode II (c) mixed-mode (d) modified compact 

tension and (e) compact compression. 
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Fig. 3. Dimensions of the samples employed in the off-axis tension experiments. 

 

 
 

(a) (b) 

Fig. 4. Photograph and diagram: (a) photograph of the hot-press manufacturing system and (b) the 

diagram of APC-2 consolidation schedule for the CF/PEEK prepregs. 
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Fig. 5. Geometry of the composite specimens for three-point bend experiments. 

 

  

(a) (b) 

Fig. 6. The developed CAD model and FE model: (a) the CAD model and (b) the FE model. 
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(a) (b) 

Fig. 7. The FE model implementation: (a) the flowchart of the main model and (b) the highlighted 

flow-chart of the elastic-plastic damage model. 

 

 
 

(a) (b) 

Fig. 8. The overall response obtained from the experiments and simulation: (a) the loading 

response, (b) the maximum load. 
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Fig. 9. The comparison of major strain obtained from the experiments and simulation. 

 

 

Fig. 10. Total energy obtained from experiments and simulation as well as the details of energy 

dissipation delivered by the computational model. 
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Fig. 11. The interlaminar damage (delamination) obtained from the physical and virtual post-tested 

composite specimen. 

 

 

Fig. 12. The comparison of matrix damage obtained from the physical and virtual post-tested 

composite specimen. 

 



27 
 

 

Fig. 13. The comparison of fibre damage on the top surface, from physical and virtual post-tested 

composite specimen, showing compressive fibre damage. 

 

 

 

Fig. 14. The comparison of fibre damage on the bottom surface, from physical and virtual post-

tested composite specimen, showing tensile fibre damage. 
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Table 1 

Dimensions of specimens for material characterisation (mm) 

Samples 𝐿 ℎ 𝑎0 𝑤 𝑅 𝑑 𝑙 𝑟 

DCB 140 1.6 45 N/A N/A N/A N/A N/A 

4ENF 70 1.6 50 N/A N/A N/A N/A N/A 

MMB 60 1.6 25 N/A N/A N/A N/A N/A 

CT 65 60 26 51 4 4 28 2 

CC 65 60 20 51 4 10 12 2 

 

Table 2 

Nominal dimensions of specimens for off-axis tension and in-plane shear tests. 

Items Total length (𝑙𝑡) Gauge length (𝑙𝑔) Width (𝑤) Thickness (t) Angle (𝜃) 

Values 254 mm 190.5 mm 19 mm 1.27 mm 0˚, 15˚ 30˚, 45˚, 90˚ 

 

Table 3 

The lay-up and dimensions of the composite specimens for three-point bend experiments. 

Items Lay-up Length (L) Width (W) Thickness (T) Radius (R) Support span (D) 

Values [03/903]2s 120 mm 13 mm 3 mm 5 mm 96 mm 
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Table 4  

Input properties required for the modelling of AS4/PEEK composite ply. 

Properties  Values 

Modulus (𝐺𝑃𝑎)  𝐸11 = 127.6; 𝐸22 = 𝐸33 = 10.3; 𝐺12 =  𝐺13 = 6.0; 𝐺23 = 5.7; 

Poisson`s ratios  𝜈12 = 𝜈13 = 0.32; 𝜈23 = 0.35; 

Strength (𝑀𝑃𝑎)  

𝑋𝑇 = 2023.4; 𝑋𝐶 = 1234.1; 𝑌𝑇 = 𝑍𝑇 = 92.7; 𝑌𝐶 = 𝑍𝐶 = 176.0; 

 𝑆12 = 𝑆13 = 𝑆23 = 186.0; 

Intralaminar fracture  

toughness ( 𝑘𝐽/𝑚2) 
 𝐺𝐼𝑐|𝑓𝑡 = 201; 𝐺𝐼𝑐|𝑓𝑐 = 128; 𝐺𝐼𝑐|𝑚𝑡 = 5.6; 𝐺𝐼𝑐|𝑚𝑐 = 9.3; 𝐺𝐼𝑐|𝑚𝑠 = 9.3; 

Interlaminar fracture  

toughness ( 𝑘𝐽/𝑚2) 
 𝐺𝐼𝑐 = 5.6 ;  𝐺𝐼𝐼𝑐 = 9.3; 

B-K coefficient  𝜂 = 1.89 

Cohesive strength (𝑀𝑃𝑎)  𝜎𝐼 = 43 𝑀𝑃𝑎 ;  𝜎𝐼𝐼 = 55 𝑀𝑃𝑎; 

Cohesive stiffness (𝑁/𝑚𝑚)  𝑘 = 6.4 × 105 𝑁/𝑚𝑚 

Nonlinear coefficients  𝑎66 = 1.5; 𝐴 = 3.06𝑒 − 19;  𝑛 = 7.5;  

 


