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José L. Barbero, Paula E. Cohen,

J. Kim Holloway

Correspondence
paula.cohen@cornell.edu (P.E.C.),
jkh44@cornell.edu (J.K.H.)

In Brief

Brieño-Enrı́quez et al. identify a role for

NEK1 in the regulation of WAPL during

meiotic prophase I, via an interaction

between NEK1 and PDS5B. Regulation of

WAPL by NEK1-PDS5B is mediated by

the phosphatase PP1g. NEK1

phosphorylates PP1g, leading to the

dephosphorylation of WAPL and

promoting loss of cohesion at prophase I.

mailto:paula.cohen@cornell.edu
mailto:jkh44@cornell.edu
http://dx.doi.org/10.1016/j.celrep.2016.09.059
http://crossmark.crossref.org/dialog/?doi=10.1016/j.celrep.2016.09.059&domain=pdf


Cell Reports

Report
Cohesin Removal along the Chromosome Arms
during the First Meiotic Division Depends
on a NEK1-PP1g-WAPL Axis in the Mouse
Miguel A. Brieño-Enrı́quez,1 Stefannie L. Moak,1 Melissa Toledo,1 Joshua J. Filter,2 Stephen Gray,1 José L. Barbero,3
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SUMMARY

Mammalian NIMA-like kinase-1 (NEK1) is a dual-
specificity kinase highly expressed in mouse germ
cells during prophase I of meiosis. Loss of NEK1
induces retention of cohesin on chromosomes at
meiotic prophase I. Timely deposition and removal
of cohesin is essential for accurate chromosome
segregation. Two processes regulate cohesin
removal: a non-proteolytic mechanism involving
WAPL, sororin, and PDS5B and direct cleavage by
separase. Here, we demonstrate a role for NEK1 in
the regulation of WAPL loading during meiotic pro-
phase I, via an interaction between NEK1 and
PDS5B. This regulation of WAPL by NEK1-PDS5B
is mediated by protein phosphatase 1 gamma
(PP1g), which both interacts with and is a phos-
photarget of NEK1. Taken together, our results reveal
that NEK1 phosphorylates PP1g, leading to the
dephosphorylation of WAPL, which, in turn, re-
sults in its retention on chromosome cores to
promote loss of cohesion at the end of prophase I
in mammals.

INTRODUCTION

Meiosis is a specialized cell division characterized by a single

round of DNA replication followed by two rounds of chromosome

segregation, resulting in the formation of haploid gametes. In

order to achieve accurate segregation at both divisions, tension

must be established on the meiotic spindles, which is achieved

by the formation of crossovers between homologous chromo-

somes in prophase I of meiosis, and by cohesion between sister

chromatids in both meiosis I and meiosis II. Cohesion is estab-

lished by the cohesin complex and is an essential component

of prophase I events, along with the defining feature of prophase

I: the synaptonemal complex. Early in prophase I of meiosis,
Cell
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a proteinaceous structure called the axial element (AE) begins

to form along replicated sister chromatids, consisting of proteins

such as synaptonemal complex proteins-2 and -3 (SYCP2 and

SYCP3), along with several cohesin components. Subsequently,

the AEs of homologous chromosomes become juxtaposed by

proteins of the central element of the synaptonemal complex

(SYCP1, TEX12, etc.). The paired AEs, now termed lateral

elements (LEs), are now joined by the transverse elements of

the central element, collectively forming the tripartite synap-

tonemal complex (SC) that connects all homologs at pachytene

(Llano et al., 2012).

Timely deposition and removal of cohesin is essential for SC

dynamics and for accurate chromosome segregation during

both mitosis and meiosis. Cohesin complexes differ in mitosis

compared to meiosis, consisting of SMC3, SMC1a, STAG1/2,

and RAD21 in the former (Haering and Jessberger, 2012; Hirano,

2015; Nasmyth and Haering, 2009) and consisting of REC8,

RAD21L, STAG3, SMC1a/b, and SMC3 in the latter (Haering

and Jessberger, 2012; McNicoll et al., 2013). Cohesin removal

during mitosis is a two-step process, beginning in prophase

(the ‘‘prophase pathway’’) and continuing with separase-medi-

ated proteolytic cleavage of centromeric cohesin during the

metaphase-anaphase transition. During mitosis, the prophase

pathwaymediates cohesin removal via a non-enzymatic process

that involves the cohesin-associated proteins, WAPL (Wings

apart-like homolog), PDS5B (Sister chromatid cohesion protein

PDS5 homolog B), and sororin (Tedeschi et al., 2013). WAPL

facilitates the unloading of cohesin through an antagonistic

mechanism that involves competition with sororin for binding

to PDS5B (Nishiyama et al., 2010). In mitotic prophase, sororin

is phosphorylated by cyclin-dependent kinase (CDK) 1 (CDK1)

and Aurora kinase B (AURKB), which results in its release from

PDS5B, thus allowing the interaction of WAPL and PDS5B that

leads to cohesin release (Dreier et al., 2011; Nishiyama et al.,

2013). Thus, sororin-PDS5B interactions mediate cohesin

loading/stabilization, while WAPL-PDS5B interactions mediate

cohesin unloading.

WAPL is highly expressed in mouse testis and is localized to

meiotic chromosome cores during zygotene and pachytene of
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prophase I in the mouse (Kuroda et al., 2005). In mouse oocytes,

WAPL colocalizes with SYCP2 during pachytene (Zhang et al.,

2008). PDS5B is present in spermatogonia and spermatocytes,

and during meiotic prophase, it is associated with the AE inde-

pendently of the presence of synaptonemal complex proteins

(Fukuda and Hoog, 2010). Sororin is also localized within the

central element of the SC independently of the presence of co-

hesin (Gómez et al., 2016). However, to date, the function of

these proteins and the importance of the prophase pathway in

mammalian meiosis remain undescribed.

The never-in-mitosis-gene-A (NIMA)-related kinases (NEKs)

are a family of serine/threonine kinases involved in mitotic and

meiotic events (Fry et al., 2012; Meirelles et al., 2014), the found-

ing member of which is Aspergillus nidulans NIMA (Oakley and

Morris, 1983). In mammals, there are 11 orthologous Nek genes,

but Nek1 is a unique, dual-specificity kinase highly expressed in

mouse germ cells (Letwin et al., 1992; Upadhya et al., 2000). We

previously showed that NEK1 interacts with FKBP6, a compo-

nent of themammalian synaptonemal complex, during prophase

I (Crackower et al., 2003; Holloway et al., 2011) Furthermore, our

studies of Nek1kat2j/kat2j mice showed that the loss of NEK1 in-

duces retention of the cohesin component SMC3 during diplo-

tene (Holloway et al., 2011), leading us to propose a role for

NEK1 in the sequential removal of cohesin during meiosis.

Here, we demonstrate that the release of cohesin during

prophase I is dependent on NEK1 regulation of WAPL during

prophase I. This regulation of WAPL by NEK1 is mediated by

NEK1-PDS5B interaction and by protein phosphatase 1 gamma

(PP1g), which both interacts with NEK1 and is a phosphotarget

thereof. In support of this, loss of PP1g activity mimics the

meiosis I phenotype observed in Nek1kat2j/kat2j mice, while

overexpression of PP1g results in retention of WAPL into diplo-

tene and premature release of cohesin subunits. Thus, we

have established a phosphorylation cascade regulating timely

cohesin removal that involves NEK1-mediated phosphorylation

of targets during prophase I. Importantly, this study establishes

a role for the prophase pathway in chromosome segregation

events during meiosis I.

RESULTS

Loss of NEK1 Induces Abnormal Phosphorylation of
WAPL and Premature Release from Chromosome Cores
Loss of NEK1 in mouse spermatocytes leads to abnormal reten-

tion of SMC3 on chromosome arms at the diplotene and diaki-

nesis (Figure S1) (Holloway et al., 2011). To identify candidate

targets of NEK1 that might affect the removal of cohesin during

prophase I, we compared the spectrum of phosphorylated pro-

teins in Nek1+/+ and Nek1kat2j/kat2j littermate testes by mass

spectrometry (MS) (Figure 1A; Table S1). A total of 445 proteins

were found to have abnormal phosphorylation profiles in the

mutants compared to WT mice, with 105 proteins showing

increased phosphorylation in the mutant protein extracts and

340 showing a reduction in phosphorylation. Of particular rele-

vance to the persistent cohesin retention was the prophase

pathway component, WAPL, which showed an abnormal eleva-

tion in phosphorylation at the serine residue in position 226 (Fig-

ure 1A). In light of the well-documented role of WAPL in cohesin
978 Cell Reports 17, 977–986, October 18, 2016
release in mitotic cells, deregulation of WAPL during meiosis

would be well placed to be causative for the abnormal persis-

tence of cohesin during prophase I. Moreover, no direct post-

translational regulation of WAPL, such as we describe herein,

has been reported, either in mitosis or in meiosis. Confoundingly,

however, the fact that loss of NEK1 kinase activity leads to

increased phosphorylation of WAPL, rather than a predicted

decline in phosphorylation, led us to predict that WAPL was

not a direct target of NEK1 but might be phosphorylated or de-

phosphorylated by another protein that is, itself, a target of

NEK1. Therefore, we performed an immunoprecipitation (IP)

experiment with an antibody against NEK1 in both mutant and

WT mouse testis extracts followed by MS (proteins that appear

in both IP-MS results were considered as false positive and

eliminated) (Table S2). Interestingly, our results demonstrated

that PDS5B is a binding partner of NEK1, whereas WAPL is

not. The NEK1-PDS5B interaction and lack of interaction be-

tween NEK1 and WAPL were both confirmed by IP followed by

western blotting (WB) (Figure S2).

The proteomics data described earlier indicate a physical

interaction between PDS5B and NEK1, and at least a functional

(though indirect) interaction between WAPL and NEK1, leading

us to hypothesize that WAPL/PDS5B interactions with NEK1

might explain the retention of SMC3 during prophase I. To

examine this further, chromosome spreads were prepared

from spermatocytes of both Nek1kat2j/kat2j mice and Nek1+/+

mice and were subjected to immunofluorescence (IF) using anti-

bodies against components of the prophase pathway (PDS5B,

WAPL, and sororin). The distribution of PDS5B observed in our

studies was similar to that described previously (Fukuda and

Hoog, 2010), with no difference being observed in the temporal

distribution or frequency of PDS5B loading on chromosome

cores in Nek1kat2j/kat2j mice compared to Nek1+/+ mice (Fig-

ure 1A). The presence and dynamics of WAPL protein localiza-

tion were evaluated in both WT and mutant animals. In Nek1+/+

male spermatocytes, WAPL is observed from leptotene to

pachytene of prophase I, colocalizing with SYCP3 along the

chromosome cores independently of the synapsis. Finally, at

diplotene, WAPL is removed from chromosome cores (Fig-

ure 1C). However, in the absence of NEK1, WAPL shows prema-

ture release from the chromosome cores in early prophase I, as

early as late zygotene in Nek1kat2j/kat2j males (Figure 1C).

Release of cohesion via the prophase pathway represents a

balance between WAPL and sororin (Nishiyama et al., 2010).

Given the premature release of WAPL from PDS5B in the

absence of NEK1, we evaluated the localization of sororin by

IF. Indeed, analysis of chromosome spreads shows the retention

of sororin along cores during pachytene in theNek1kat2j/kat2jmice

compared to WT littermates (Figure 1D). Our data are consistent

with the requirement for sororin removal in order to facilitate co-

hesin removal at the end of prophase I, with a stronger and more

persistent signal of sororin found inNek1kat2j/kat2j spermatocytes.

The changes we observed in the dynamics of WAPL and sororin

presence during late prophase I were analyzed by WB of protein

extracts from isolated pachytene spermatocytes, with WAPL

showing a decrease in protein abundance in Nek1kat2j/kat2j mice

(Figure S2B). By contrast, sororin shows a subtle increase in pro-

tein abundance in extracts from Nek1kat2j/kat2j males, while no



Figure 1. Loss of NEK1 InducesChanges in Phosphorylation Profile, Provoking a Premature Removal ofWAPL fromChromosomeCores and
Retention of Sororin

(A) Distribution of phosphoproteins analyzed by mass spectrometry. Black dots indicate detected phosphopeptides without changes in�log10 of p value or fold

change (FC); red dots indicate p > 0.05 without change in log2 FC; orange dots show�log10 of p > 0.05 and log2 FC > 1. Green dots indicate�log10 of p > 0.05 and

log2 FC > 1 (n = 3).

(B) IF against WAPL (green) and SYCP3 (red) in spermatocyte spreads from Nek1+/+ and Nek1kat2j/kat2j male mice.

(C) IF against PDS5B (green) and SYCP3 (red) in spermatocyte spreads from Nek1+/+ and Nek1kat2j/kat2j male mice.

(D) IF against sororin (green) and SYCP3 (red) in spermatocyte spreads from Nek1+/+ and Nek1kat2j/kat2j male mice.

See also Figures S1 and S4 and Table S1.
changes were observed in PDS5B protein extracts from

Nek1kat2j/kat2j relative to that seen in WT extracts (Figure S2B).

Localization of all three components of the prophase pathway

(WAPL, PDS5B, and sororin) is coincident with the localization

of NEK1 described previously (on chromosome cores and

increased signal at the sex body) (Yeo et al., 2015).

Identification of PP1g as a Candidate Phosphatase that
Is a Target of NEK1
The aforementioned data demonstrate that loss of NEK1 results

in abnormal phosphorylation of WAPL. We hypothesize that this

aberrant phosphorylation leads to the premature release of

WAPL from chromosome cores during prophase I, allowing

for the retention of sororin, although certainly this is, by no
means, the only possible explanation for such an observation.

However, the abnormal phosphorylation of WAPL is consistent

with the idea that, under physiological conditions, NEK1 could

be phosphorylating a phosphatase that promotes the dephos-

phorylation of WAPL to aid its retention on chromosome cores.

To test this hypothesis, IP-MS was performed using an antibody

against WAPL (Table S3). Results obtained from WAPL IP-MS

(Table S3) were cross-referenced with MS results obtained

from the aforementioned phosphoproteomics of NEK1 targets

(Table S1) and with NEK1 IP-MS data (Table S2). A single candi-

date emerged that was present in all three sets of results: PP1g.

PP1g is reduced in the global MS data from Nek1kat2j/kat2j males,

is found in the IP-MS data for NEK1 interactors, and shows a

reduction in phosphorylation at serine 129 in Nek1kat2j/kat2j males
Cell Reports 17, 977–986, October 18, 2016 979



Figure 2. Loss of NEK1 Induces Low Protein Levels and Premature Removal of PP1g from Chromosome Cores

(A) Immunoprecipitation with WAPL, PP1g, and NEK1 antibodies, followed by WB.

(B) PP1g protein levels in isolated pachytene cells from Nek1+/+ and Nek1kat2j/kat2j testes relative to actin (n = 3).

(C) IF against PP1g (green) and SYCP3 (red) in spermatoctyes from Nek1+/+ and Nek1kat2j/kat2j male mice. Arrowheads indicate the flare pattern of PP1g along

chromosome cores from pachytene and diplotene spermatocytes.

See also Figure S2 and Tables S2 and S3.
(Table S1). Thus, PP1g emerges as a strong candidate to interact

with, and becomemodified (directly or indirectly) by, NEK1 while

at the same time potentially phosphorylating WAPL.

Lack of NEK1 Disrupts PP1g Localization and Levels in
Spermatocytes
The interaction between WAPL and PP1g was confirmed by

IP-WB (Figure 2A). Evaluation of total protein level revealed a sig-

nificant reduction in PP1g in protein extracts from isolated

pachytene cells from Nek1kat2j/kat2j males, as detected by WB

(Figure 2B). In addition, PP1g localization on chromosome

spreads from WT and NEK1-deficient males was demonstrated

by IF using antibodies against total PP1g and was found to be

loaded along the chromosome cores in WT males at late zygo-

tene, after which time, the protein signal diminishes and is

restricted to occasional ‘‘flares’’ that cross the chromosome
980 Cell Reports 17, 977–986, October 18, 2016
axes in a perpendicular direction. These flares are detectable

on chromosome spreads until pachytene (Figure 2C). By

contrast, chromosome spreads from Nek1kat2j/kat2j males show

no detectable PP1g at zygotene, and few cells displaying limited

flare pattern at pachytene (Figure 2C).

Inhibition of PP1g Induces Phosphorylation of WAPL
The identification of PP1g as an interacting protein for bothWAPL

and NEK1, its status as a potential phosphotarget for NEK1, and

the reduction of PP1g protein during pachytene in Nek1kat2j/kat2j

mutants all implicatePP1g asa candidate phosphatase thatmight

dephosphorylate WAPL during prophase I under normal condi-

tions. Thus, we hypothesized that the reduction in PP1g levels

and/or activity in NEK1-deficient males would result in the WAPL

phosphorylation observed during prophase I in these animals.

To test this directly, we used a pharmacological approach by



inhibiting PP1g activity and assaying for the status ofWAPL phos-

phorylation. Spermatocytes fromNek1+/+ males were cultured for

6 hr in the presence of the pan-phosphatase inhibitors, okadaic

acid (OA) and calyculin A (CLA). OAwas used at doses thatmainly

inhibit protein phosphatase 2 (1, 10, and 100 nM), while CLA was

usedatdoses that inhibitPP1 (2and20nM) (Kitaetal., 2002;Swin-

gle et al., 2007). WB revealed that CLA significantly reduced the

amount of WAPL protein compared to those spermatocytes

culturedwith vehicle alone (ethanol) (Figure 3A). By contrast, there

were no changes in WAPL protein when spermatocytes were

cultured in the presence of OA (Figure 3B). Interestingly, IP with

anti-phosphoserine antibody followed by WB with an antibody

against WAPL revealed that CLA, but not OA, induced increased

all the possible forms of phosphorylated WAPL (phospho-WAPL)

in short-term cultures of WT spermatocytes (Figure 3C). Thus,

pharmacological inhibition of PP1g using CLA in WT spermato-

cytes results in increasedphospho-WAPLand subsequent desta-

bilizationofWAPLprotein, supporting thehypothesis thatWAPL is

a direct target of PP1g activity.

PP1g Mutant Mice Showed a Phenotype that Mimics
Nek1 Mutant Mice
To confirm our in vitro inhibitor results, an in vivo genetics

approach was used with previously characterized PP1g

knockout mice (Ppp1cc�/�) (Varmuza et al., 1999). Chromosome

spread analysis of WAPL localization in Ppp1cc�/� mice phe-

nocopied the spermatocyte phenotypes observed in

Nek1kat2j/kat2j mice, with premature release of WAPL from the

chromosome cores at late zygotene, leaving a faint residual

signal during pachytene in the Ppp1cc�/� mice compared to

WT controls (Figure 3D). WB with an antibody against WAPL

on testis protein from Ppp1cc�/� mice confirmed these results,

with a reduction in the WAPL protein level in the mutant testis

extracts compared to that observed in WT testis extracts (Fig-

ure 3E). IP with anti-phosphoserine antibody followed by WB

with an antibody against WAPL confirmed an increase in phos-

pho-WAPL in the spermatocytes of Ppp1cc�/� mice (Figure 3F).

To test indirectly the activity of PP1g on WAPL and SMC3, we

performed IF in the previously describedPpp1cc overexpressing

PPP1CC2 mouse (Ppp1cc+/+Tg(Ppp1cc2/Ppp1cc2) (Sinha et al.,

2013). Our results show that PP1g overexpression leads to the

retention of WAPL into diplotene and release of SMC3 (Fig-

ure S3). Thus, these data demonstrate that the absence of

NEK1, or of PP1g phosphatase activity, results in abnormal

phosphorylation of WAPL, leading to premature release of

WAPL from chromosome cores in late prophase I, disrupting

the prophase pathway in mouse meiosis.

DISCUSSION

During mitosis, WAPL is a constituent of the prophase pathway

(Gandhi et al., 2006; Huis in ’t Veld et al., 2014; Kueng et al.,

2006; Tedeschi et al., 2013), forming a complex with PDS5B to

facilitate the unloading of cohesin during prophase (Carretero

et al., 2013; Shintomi and Hirano, 2009). During S phase,

WAPL-PDS5B function is antagonized by sororin, which dis-

places WAPL from PDS5B, thereby promoting cohesin loading

and/or stabilization (Shintomi and Hirano, 2009; Zhang et al.,
2008). Recent studies in Caenorhabditis elegans, Saccharo-

myces cerevisiae, and Arabidopsis thaliana demonstrated a

role for WAPL in cohesin regulation during meiosis (Challa

et al., 2016; Crawley et al., 2016; De et al., 2014). In C. elegans

oogenesis, WAPL-1 antagonizes the binding of cohesin

containing the COH-3/4 kleisins, but not REC-8, and promotes

a WAPL-1-independent mechanism that removes cohesin

before metaphase I (Crawley et al., 2016). In S. cerevisiae, the or-

tholog ofWAPL (Rad61/Wpl1) negatively regulates chromosome

axis compaction and is required for the efficient resolution of

telomere clustering during meiosis I (Challa et al., 2016). Muta-

tion of WAPL in A. thaliana blocks the removal of cohesin from

chromosomes during meiosis, resulting in chromosome bridges,

broken chromosomes, and uneven chromosome segregation

(De et al., 2014). However, studies in the mouse have been

limited only to a brief description of WAPL localization on chro-

mosome core (Kuroda et al., 2005; Zhang et al., 2008). Here,

we demonstrate that loss of NEK1 results in abnormal phosphor-

ylation ofWAPL, which leads to premature loss ofWAPL from the

chromosome cores and reduction of protein levels in prophase I

(Figure 1C). The premature release of WAPL in the absence of

NEK1 allows for the persistence of sororin (Figure 1D) and

subsequent retention of SMC3 during diplotene and diakinesis

(Figure S1). Our data also indicate that NEK1 mutant spermato-

cytes retain RAD21L onmeiotic chromosome cores at the end of

prophase I (Figure S4), indicating that SMC3 is not the only

cohesin subunit to be disrupted. Post-translational modifications

of WAPL have been described in the phosphoproteomics

screening of polo-like kinase targets (Grosstessner-Hain et al.,

2011) and in PP1gmutantmice (MacLeod et al., 2014). However,

the role of such regulation of WAPL has not been described in

mammalianmeiosis, nor have changes in the phosphoproteomic

profile of WAPL been associated with prophase I defects in the

mouse. Alignment of WAPL orthologs across species (Figure S5)

shows conservation of serine 226 in mouse and human but

within a larger domain of other conserved serines (for example,

serine 228 and serine 236). In all, at least five serine residues

in this region are conserved across mammals and in

D. melanogaster, providing the potential for this region to be

highly regulated by phosphorylation events.

Interaction between PDS5B and WAPL is mediated by HEAT

repeats (Losada et al., 2005; Nishiyama et al., 2010; Shintomi

and Hirano, 2009) and by a YSR motif (Ouyang et al., 2016) on

PDS5B. These domains interact with three FGF motifs of

WAPL, none of which include the serine 226 identified herein.

Thus, NEK1 activity through PP1g is not directed to the FGF re-

peats in WAPL. Instead, we propose that phosphorylation of

serine 226, or of any of the other highly conserved serines in

the vicinity of serine 226, could induce a conformational change

in the WAPL protein that destabilizes its interaction with PDS5B,

allowing PDS5B-sororin interactions to predominate and result-

ing in cohesin retention. Alternatively, WAPL phosphorylation

could act as a signal for WAPL degradation, resulting in its

premature removal from chromosome cores. Finally, the phos-

phorylation of WAPL at serine 226 may act to suppress key

phosphorylation events on other residues. Taken together, our

studies implicate a direct regulatory action on WAPL itself, lead-

ing to activation of the prophase pathway rather than an indirect
Cell Reports 17, 977–986, October 18, 2016 981



Figure 3. Increased WAPL Phosphorylation

Is Caused by the Lack of Phosphorylation of

PP1g by NEK1

(A) Quantitation of WAPL protein levels in extracts

from Nek1+/+ testes relative to GAPDH control in

cultured spermatocytes treated with calyculin A

(CLA; 2–20 nM) (n = 5).

(B) Quantitation of WAPL protein levels in extracts

from Nek1+/+ testes relative to GAPDH control in

cultured spermatocytes treated with okadaic acid

(n = 5).

(C) In vitro phosphorylation of WAPL in cultured

spermatocytes vehicle (ethanol), calyculin A (CLA)

(2 and 20 nM), and okadaic acid (OA) (1, 10, and

100 nM), analyzed by immunoprecipitation

pull-downs with antibody against phospho-serine

followed by WB. Input lane represents spe-

rmatocyte protein extracts without immuno-

precipitation.

(D) IF against WAPL (green) and SYCP3 (red) in

spermatocytes from Ppp1cc+/+ and Ppp1cc�/�

male mice.

(E) Quantitation of WAPL protein levels relative to

GAPDH control in extracts from Ppp1cc+/+ and

Ppp1cc�/� testes using antibody against WAPL

(n = 3).

(F) In vivo phosphorylation of WAPL in Ppp1cc+/+

and Ppp1cc�/� whole testis lysate using immu-

noprecipitation pull-downs with antibody against

phospho-serine followed by western blotting.

*Statistically significant differences (one-way

ANOVA followed by Dunnett’s multiple compari-

sons test, p < 0.05).

See also Figure S3.
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Figure 4. Model the Role of NEK1 during Meiotic Prophase I

(A) Top panel represents the role of NEK1 during meiotic prophase I in WTmice. During prophase I, NEK1 binds to PDS5B at the cohesin ring. Additionally, NEK1

binds to PP1g and phosphorylates it; phosphorylation of PP1g subsequently inhibits WAPL phosphorylation and permits its activity during the prophase-

metaphase transition without changes in sororin.

(B) The bottom panel represents the effects of loss of NEK1, which results in retention of SMC3. The absence of NEK1 prevents PP1g phosphorylation which, in

turn, permits a hyper-phosphorylation of WAPL. Hyper-phosphorylation of WAPL affects its stability and/or binding to PDS5B, inducing a premature removal of

WAPL from the cohesin ring and persistence of sororin. Light gray text denotes events that require further confirmatory studies.
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action through regulation of sororin, as has previously been

described in other cell systems (Nishiyama et al., 2010; Rankin

et al., 2005; Zhang and Pati, 2012).

The data presented herein demonstrate a role for NEK1 during

meiotic prophase I, regulating—directly or indirectly—the pro-

teins involved in the prophase pathway, specifically in regulation

of the PDS5B-WAPL complex. Importantly, NEK1 function on

the PDS5B-WAPL complex appears predicated on its interaction

with PDS5B, yet PDS5B itself is not a target of either of the two-

kinase activities of NEK1. Instead, our data indicate that this

function could be mediated through NEK1 interaction with

PP1g and through the altered phosphorylation status of PP1g.

During mitosis, PP1g phosphorylation is orchestrated preferen-

tially by CDKs (Dohadwala et al., 1994; Eto, 2009; Kim et al.,

2003; Li et al., 2007). However, our phosphoproteomics analysis

did not reveal any changes in the phosphorylation status of

CDKs in the absence of NEK1.Moreover, the NEK1 IP data failed

to identify a candidate CDK that could be a potential substrate

for NEK1, and/or kinase for PP1g. It is highly unlikely, therefore,

that PP1g is phosphorylated by a canonical CDK during meiotic

prophase. Instead, we propose that PP1g is a substrate of NEK1,

or that another kinase is acting as an intermediary between these

two proteins. Our analysis of the phosphoproteomics and NEK1-

IP data failed to reveal such a candidate kinase, but it is possible,

as withmany kinase-substrate interactions, that NEK1-substrate

interactions may be too rapid/transient to permit their identifica-

tion by IP-MS. Another important factor is the regulation of PP1g

by its regulatory subunits and natural inhibitors. Our MS results

showed that there are changes in the protein levels of some of

these regulatory subunits and that these may, in turn, regulate

the activity or abundance of PP1g. Thus, analysis of NEK1/

PP1g/WAPL interactions during meiosis are made more com-

plex by involvement of a complex PP1 regulatory network, the

particularly large size of the protein constituents of this network,

and the potential for multiple serines on WAPL to be the targets

of PP1g activity.

In summary, we propose a model whereby NEK1 docks with

PDS5B tobring it into close proximitywith the cohesin ring,where-

upon it phosphorylates a number of direct targets, altering the

phosphorylation status of PP1g and, hence, its localization and/or

activity. PP1g, in turn, dephosphorylatesWAPL, securing its inter-

action with PDS5B and displacing sororin, resulting in accurate

and timely opening of the cohesin ring to facilitate loss of cohesion

along the chromosome arms at the end of meiosis I (Figure 4).

EXPERIMENTAL PROCEDURES

All mouse studies were conducted with the prior approval of the Cornell

Institutional Animal Care and Use Committee (protocol 2010-0054). The

Nek1kat2j/kat2j mouse line was obtained originally from The Jackson

Laboratory and maintained on a C57Bl/6J line for >10 years at Cornell

University. At least three sets of 8-week-old homozygous mutant animals

(Nek1kat2J/kat2J) were compared with WT (Nek1+/+) littermates. Ppp1cc�/� and

Pppc1+/+Tg(Ppp1cc2/Ppp1cc2)miceweregenerously donatedbyDr. Vijayaraghavan

(Department of Biomedical Sciences, Kent State University).

Chromosome Spread Preparations and IF Staining

Prophase I spermatocyte chromosome spreads were performed as

previously described (Sun et al., 2015). Primary antibodies included: rabbit

anti-Sororin (anti-Sororin serum C-106 was generated using a full-length re-
984 Cell Reports 17, 977–986, October 18, 2016
combinant mouse protein cloned in pET-12a vector and expressed in E. coli

[Carretero et al., 2013]), anti-mouse SYCP3 (ab97672), rabbit anti-PDS5B

(ab84918) (both from Abcam), rabbit anti-WAPL (16370-1-AP, from

Proteintech), rabbit anti-PP1g (PA5-21671, from Thermo Fisher), rabbit

anti-SMC3 (from J.L.B.), and rabbit anti-RAD21L (from Alberto Pendás).

Alexa Fluor secondary antibodies were used (Molecular Probes). Image

acquisition was performed using a Zeiss Imager Z1 microscope and

captured using a Zeiss charge-coupled device (CCD). Images were

processed using AxioVision (version 4.8, Zeiss).

Isolation of Pachytene Cells

Nek1+/+ andNek1kat2j/kat2j enrichment of specific spermatogenic cell typeswas

performed using the STA-PUT method based on separation by cell diameter/

density at unit gravity (Bellvé, 1993; Romrell et al., 1976). Purity of resulting

fractions was determined by microscopy based on cell diameter and

morphology.

Culture of Spermatocytes

Culture was performed following the protocol described elsewhere (Wiltshire

et al., 1995), with some modifications. Briefly, we dissociated testes in 4 mL

of spermatocyte culture medium (SCM) (DMEM without red phenol [21063-

029], fetal calf serum [10082139], penicillin-streptomycin 1003 [15140-122],

all from GIBCO; lactic acid [L13750, NaHCO3 9s8761] and sodium pyruvate

1003 [11360-070], both from Sigma). Cells were placed in treated culture

dishes (#430167, Corning), washed five times with SCM, and centrifuged

1,000 3 g for 1 min to pellet cells. The pellet was resuspended in 600 mL

SCM. 100 mL cell suspension was placed into each 35-mm plate with and

without okadaic acid (135 mM, 50 mg/mL) (O9381, Sigma) or with and without

calyculin A (2–200 nM) (sc-24000, Santa Cruz Biotechnology). Cells were

cultured for 6 hr at 32�C before analysis.

Western Blot and IP

Proteins were extracted by sonication in RIPA buffer, denaturalized, and

then separated using 4%–15% Mini-PROTEAN TGX Precast Protein Gels

(#4561086, from Bio-Rad) and transferred onto nitrocellulose membrane.

Primary antibody incubation was performed for 12 hr at 4�C at 1:1,000

dilution. Secondary HRP (horseradish peroxidase)-conjugated antibodies

were obtained from Pierce and Life Technologies. Signal detection was

carried out using the SuperSignal substrate (Thermo Scientific). Images

were captured with Bio-Rad Image Lab 5.1 and analyzed by ImageJ

(http://rsbweb.nih.gov/ij). IP was performed using 1 mg of whole testis

protein. Incubation with the specific antibody was performed at 4�C over-

night. The protein lysate was then centrifuged, and the supernatant was

removed. The remaining beads were washed in fresh cold RIPA buffer

three times, and the final bead slurry was resuspended in 40 mL 2 3 SDS

protein loading dye and run in 4%–15% Mini-PROTEAN TGX Precast

Protein Gels.

Mass Spectrometry

MS was performed in the Cornell University Proteomics and Mass Spectrom-

etry Facility. Experiments were performed using three different sets of Nek1+/+

and Nek1kat2j/kat2j mice. To obtain the specific postranslational modification of

the peptides, we performed TiO2 enrichment followed by the proteomics anal-

ysis. After nano-liquid chromatography-tandem MS (nano-LC-MS/MS), raw

data files were acquired using Orbitrap Elite (Thermo Scientific). We performed

a database search against the SwissProt mouse database from the UniProt

website (http://www.uniprot.org) usingMascot software version 2.3.02 (Matrix

Science) and MouseRefSeq (http://www.ncbi.nlm.nih.gov/refseq). The default

Mascot search settings were as follows:

1. One missed cleavage site by trypsin allowed with fixed MMTS

modification of cysteine; fixed 4-plex iTRAQ modifications on Lys and

N-terminal amines; and variable modifications of methionine oxidation,

deamidation of Asn and Gln residues, and 4-plex iTRAQ on Tyr for

iTRAQ 4-plex analysis.

2. One or two missed cleavage sites by trypsin allowed with fixed carbox-

amidomethyl modification of cysteine; fixed 6-plex TMT modifications

http://rsbweb.nih.gov/ij
http://www.uniprot.org
http://www.ncbi.nlm.nih.gov/refseq


on Lys andN-terminal amines; and variable modifications ofmethionine

oxidation, deamidation of Asn and Gln residues, and 6-plex TMT on Tyr

for TMT 6-plex analysis.

3. Peptide mass tolerance was set at 0.01 Da, and fragment mass toler-

ance was set at 0.1 Da; decoy search: yes; ion score cutoff: 0.1.

4. The quantitative protein ratios were weighted and normalized by the

median ratio with outlier removal set automatically in Mascot for each

set of experiments.

We performed NEK1-IP on three different protein sets (from three distinct

mice) following the parameters described earlier. Quantification analysis of

NEK1-IP was performed following the label-free quantitation analysis using

MaxQuant software (Max Planck Institute of Biochemistry; http://www.

biochem.mpg.de/5111795/maxquant).

Statistics

Statistical analyses were performed using GraphPad Prism version 6.00 for

Macintosh (GraphPad Software; http://www.graphpad.com).
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Gómez, R., Felipe-Medina, N., Ruiz-Torres, M., Berenguer, I., Viera, A., Pérez,
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