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A B S T R A C T

In Resin Transfer Moulding (RTM), local variations in reinforcement properties (porosity and permeability) and
the formation of gaps along the reinforcement edges result in non-uniform resin flow patterns, which may cause
defects in the produced composite component. The ensemble Kalman inversion (EKI) algorithm has previously
been used to invert in-process data to estimate local reinforcement properties. However, implementation of this
algorithm in some applications is limited by the requirement to run thousands of computationally expensive
resin flow simulations. In this study, a machine learning approach is used to train a surrogate model which can
emulate resin flow simulations near-instantaneously. A partition of the flow domain into a low-dimensional
representation enables an artificial neural network (ANN) surrogate to make accurate predictions, with a
simple architecture. When the ANN is integrated within the EKI algorithm, estimates for local reinforcement
permeability and porosity can be achieved in real time, as was verified by virtual and lab experiments. Since
EKI utilises the Bayesian framework, estimates are given within confidence intervals and statements can be
made on-line regarding the probability of defects within sections of the reinforcement. The proposed framework
has shown good predictive capabilities for the set of laboratory experiments and estimates for reinforcement
properties were always computed within 1 s.
1. Introduction

Resin transfer moulding (RTM) is a type of liquid composites mould-
ing technique, commonly used for the production of high performance
fibre-reinforced composite materials. Desirable due to their high spe-
cific stiffness and strength and the ability to form complex shapes,
composites underpin the modern aerospace, automotive and marine
industries [1]. The RTM process begins by placing a dry fibrous rein-
forcement (typically consisting of carbon, glass or aramid fibre) within
a rigid mould. Liquid thermoset resin is then injected through an inlet,
driven by a pressure gradient applied across the tool and it fills the
pores of the reinforcement. Upon completion of the injection phase,
the composite is left in the tool until curing is complete. The cured
part is subsequently demoulded, finished and inspected as to whether
its quality is acceptable for use according to its intended purpose, e.g. as
an automotive or aircraft part.

Complete impregnation of the reinforcement during the resin injec-
tion phase is essential for the quality of the manufactured component.
Consequently, there is considerable interest in predicting and con-
trolling resin flow. Flow patterns during injection depend upon the

∗ Corresponding author.
E-mail address: pmymc12@nottingham.ac.uk (M.E. Causon).

material properties of the reinforcement, such as fibre volume frac-
tion and fibre orientations. Real resin injections often depart from
idealised resin flow simulations which do not account for uncertainties
introduced throughout the RTM process. In particular, it has been
widely observed [2–6] that the material properties of reinforcements
are typically not uniform, exhibiting local variations in permeabil-
ity and porosity. Discrepancies from the design may originate from
inherent stochasticity of fibre arrangements in reinforcements, and
deformation of reinforcements (mainly in shear) during the forming of
three-dimensional shapes.

Due to local variations in reinforcement properties, the resin flow
velocity is higher in some regions of the reinforcement than in others,
leading to irregular flow front shapes. In extreme cases, resin may flow
around a low permeability region and enclose a pocket of air, poten-
tially leading to the formation of resin-free dry spots in the final part.
Another undesirable effect in RTM is race-tracking (RT). Gaps formed
between the reinforcement and mould cavity edges may occur, which
provide low resistance to resin flow (compared to the permeability of
the reinforcement) around the edges of the reinforcement. The resulting
difference in local resin flow velocities will cause significant distortions
vailable online 15 July 2024
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in flow front shapes, which makes the flow front propagation difficult
to control. RT can vary in strength and may only partially affect
edges. Non-uniform resin flow front propagation may result in partially
impregnated, i.e. defective parts, and lead to high scrap rates [1,6].

There have been various attempts to either predict or avoid defect
formation. Early approaches to detect distorted resin flow patterns used
decision trees [7] and genetic algorithms [8,9] to classify different
RT phenomena amongst a defined set of scenarios. They successfully
detected RT, but relied heavily upon experiments being comparable
to the set of simulated scenarios. In cases where experiments deviate,
such as the presence of central defects or partial RT, the estimates are
likely to be less accurate. This inflexibility was alleviated later when
partial RT was introduced [10], however only a small collection of
permeability values were considered in the RT region, and deviations
from this face the same issue. Another study used a gradient-boosting
classifier to detect defects [11]. This work assumed that local perme-
ability variations could be captured by segmenting the domain into
32 rectangular zones, each with its own permeability value. The idea
was successful, identifying over 80% of test cases correctly. However,
the classifier relied upon a large number of sensors, with a pressure
sensor at the centre of each zone. This sensor density is expensive
and likely impractical when considering industrial applications. Other
approaches view RTM as an inverse problem. In order to understand
this perspective, it is first necessary to formally introduce the forward
problem.

1.1. Resin flow model — formulation of the forward model

Resin injection is frequently modelled as a single-phase Darcy flow
problem [1,12,13], describing flow of a viscous liquid (the resin)
through a porous medium with homogenised properties (the reinforce-
ment). The reinforcement occupies the domain 𝐷, whose boundary 𝜕𝐷
consists of an inlet 𝜕𝐷𝐼 , an outlet 𝜕𝐷0, and perfectly sealed boundaries
𝜕𝐷𝑁 (where the normal component of the flow velocity is zero).
The reinforcement properties, permeability �̃�(𝐱) and porosity 𝜙(𝐱), are
spatially varying functions for 𝐱 ∈ 𝐷.

From the inlet boundary, resin with viscosity 𝜇 is injected into
the domain 𝐷 at a constant pressure 𝑝𝐼 . The constant pressure on
the moving boundary is given by 𝑝0. It is assumed that the process
is isothermal and that the resin does not cure during injection, thus
𝜇 is constant. During injection, the resin occupies a time-dependent
domain 𝐷(𝑡), bounded by the inlet 𝜕𝐷𝐼 , a moving boundary 𝛶 (𝑡), and
the relevant parts of 𝜕𝐷𝑁 .

In the fully saturated region of the domain 𝐷(𝑡), the phase-averaged
flow velocity is given by Darcy’s law,

𝐯(𝐱, 𝑡) = −
�̃�(𝐱)
𝜇

⋅ ∇𝑝(𝐱, 𝑡), (1)

where 𝑝 denotes the resin pressure. The resin is assumed incompress-
ible, and thus the continuity equation applies:

∇ ⋅ 𝐯 = 0. (2)

Combining these equations yields

−∇ ⋅

[

�̃�(𝐱)
𝜇

⋅ ∇𝑝(𝐱, 𝑡)
]

= 0, 𝐱 ∈ 𝐷(𝑡), (3)

which is augmented with the following initial conditions and boundary
conditions:

𝑉 (𝐱, 𝑡) = 𝐯(𝐱, 𝑡)
𝜙(𝐱)

⋅ 𝐧𝛶 (𝐱, 𝑡), 𝐱 ∈ 𝛶 (𝑡), 𝑡 ≥ 0, (4)

𝑝(𝐱, 𝑡) = 𝑝𝐼 , 𝐱 ∈ 𝜕𝐷𝐼 , 𝑡 ≥ 0, (5)

𝑝(𝐱, 𝑡) ⋅ 𝐧(𝐱) = 0, 𝐱 ∈ 𝜕𝐷𝑁 , 𝑡 ≥ 0, (6)

(𝐱, 𝑡) = 𝑝0, 𝐱 ∈ 𝛶 (𝑡), 𝑝(𝐱, 𝑡) = 𝑝0, 𝐱 ∈ 𝜕𝐷0, 𝑡 > 0, (7)

𝑝(𝐱, 0) = 𝑝0, 𝐱 ∈ 𝐷, 𝛶 (0) = 𝜕𝐷𝐼 , (8)
2

where 𝐧𝛶 (𝐱, 𝑡) and 𝐧(𝐱) denote the unit outer normals to the moving
boundary and the sealed boundaries, respectively, and 𝑉 (𝐱, 𝑡) is the
velocity of the moving boundary 𝛶 (𝑡) in the direction of 𝐧𝛶 (𝐱, 𝑡). Here,
�̃�(𝐱) and 𝜙(𝐱) will be treated as independent input parameters. Perme-
ability and porosity are typically assumed to be connected through a
geometry factor, which encodes information regarding fibre arrange-
ment, orientation and cross-sectional area. All of these features are to
some extent stochastic in nature [14], meaning that the relationship
between porosity and permeability is not unique.

In this work, permeability is assumed to be isotropic, so the second-
rank permeability tensor, �̃�(𝐱), can be replaced by the scalar function
𝐾(𝐱). This approach can be generalised to the anisotropic case [1,13].
t is also assumed, without loss of generality, that 𝑝0 = 0 Pa.

Given a specific tool geometry, the Darcy flow formulation can be
iewed as mapping from the known inputs to the solution of the moving
oundary problem:

𝐾(𝐱), 𝜙(𝐱), 𝜇, 𝑝𝐼
)

↦
(

𝑝(𝐱, 𝑡), 𝛶 (𝑡)
)

. (9)

his is often called the forward problem and amounts to solving Eqs. (3)
o (8) given the set of inputs, (𝐾(𝐱), 𝜙(𝐱), 𝜇, 𝑝𝐼 ). Conversely, the natural
nverse problem to consider is to estimate (𝐾(𝐱), 𝜙(𝐱), 𝜇, 𝑝𝐼 ), given space-
nd time-discrete observations of (𝑝(𝐱, 𝑡), 𝛶 (𝑡)) which can be collected
uring the resin injection process (e.g. pressure measurements using
ensors and/or flow front tracking). Since 𝜇 and 𝑝𝐼 are experimentally
ontrolled (and thus known), the inverse problem is posed only in
erms of estimating reinforcement properties 𝐾(𝐱) and 𝜙(𝐱). Solving
he inverse problem enables the identification and characterisation of
otential material defects (i.e. local variations in properties).

.2. Inferring properties from RTM measurements

It is of particular interest to develop efficient algorithms to solve the
nverse problem rapidly [15,16], preferably as resin flows through the
einforcement, i.e. on-line. This would allow to: (i) incorporate active
ontrol measures to control the flow front propagation, e.g. varying
ressure gradients, with the aim of reducing the risk of defects in the
inal product, and (ii) pair each RTM injection with a digital twin that
an be used for non-destructive evaluation (NDE) or structural health
onitoring purposes concurrently with the manufacturing process.

Machine learning approaches have previously been used to rapidly
stimate reinforcement permeability during injection. A convolutional
eural network (CNN) was trained to address the inverse problem,
sing pressure measurements recorded during injection to estimate
ectangular defects in the reinforcement structure [17]. Though this
odel recovered rectangular defects almost instantaneously, it strug-

led to generalise to non-rectangular shapes and was not applicable to
ases with multiple defects. RT was addressed separately using a similar
outine [18]. Finally, this work was unified by developing a single
ncoder–decoder model to address both central and RT defects [19].
he model, however, dealt with each defect type separately and could
ot detect both simultaneously. More recently, the model was used in
onjunction with a so-called disturbance detector [20] to form a digital
win which detected disturbances in unidirectional flow fronts, due to
T, in real time.

Elsewhere, disturbances in radial flow fronts have been rapidly
haracterised by using physics-informed neural networks (PINNs) to
nvert images taken during injection, before propagating the estimated
ermeability field through a CNN surrogate forward model to predict
he resin front location [21]. A simulation-to-real transfer learning
pproach has also been employed [22] to enhance CNNs, transformers
nd convolutional long short-term memory neural networks, trained
o predict textile properties using images of the moving front, by
nriching models trained on simulations with real data. Other attempts
sed optimisation procedures to find a permeability function that min-
mised the difference between observed and predicted (i.e. solving
he forward problem) radial resin flow fronts [23] or control volume
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arrival times [24]. Whilst successful in many cases, all of the aforemen-
tioned techniques produce deterministic estimates and, therefore, fail
to address the non-uniqueness property that characterise inverse prob-
lems [25,26]: an array of different parameter sets can often feasibly
produce the observed data.

The issue of non-uniqueness was addressed successfully [14,27] by
presenting the problem within the standard inverse problem frame-
work [25,26]. Using ideas from Bayesian inference, reinforcement
porosity and permeability were estimated probabilistically, using data
from pressure transducers and images of the resin front. Crucially,
the ensemble Kalman inversion (EKI) algorithm [14] used was able to
accurately detect defects in the structure of flat or preformed (in 3D)
reinforcements without making assumptions about the shape, position
or number of defects, and demonstrated success on both virtual and
lab experiments. However, estimating reinforcement properties using
EKI requires solving the forward problem, which can take minutes to
compute, hundreds or even thousands of times with different input
parameters. This prohibits real-time estimation of the algorithm, in
spite of efforts to exploit its parallelisable nature.

1.3. Contributions

So far, solving the inverse problem has been attempted using ma-
chine learning models [17–19], which are fast but lack the mathemat-
ical rigour required for such ill-posed problems, and which can lead
to unstable estimates when used outside of the setting in which those
models are trained. On the other hand, posing the problem within
a more suitable Bayesian inversion framework [14,27] addresses the
ill-posedness of inverse problems, but the framework itself has so far
prohibited on-line parameter estimation. In this study, the problem is
viewed from the Bayesian perspective, but the aim is to solve it in real
time. As such, the use of simple artificial neural network (ANN) sur-
rogate models will be explored to accelerate the most time-consuming
aspect of Bayesian inversion: simulating the forward problem. Unlike
previous work [14,27], where the functions 𝐾(𝐱) and 𝜙(𝐱) are inferred
on every point 𝐱 of a fine computational mesh (thus leading to a high-
dimensional inference problem), reinforcement properties are instead
parameterised within a low-dimensional input space. More specifically,
the tool domain is partitioned into rectangular sub-regions in order to
capture local heterogeneities in permeability and porosity, reminiscent
of the work by Mendikute et al. [11]. Here, however, a higher density
of sub-regions is used with fewer pressure sensors. Moreover, sub-
regions are allocated specifically in RT locations which enables the
discovery of central and RT defects, simultaneously. To avoid the sur-
rogate leading to less accurate estimates for permeability and porosity,
modelling errors incurred by the surrogate are incorporated within
the inversion process. The proposed surrogate-based Bayesian inversion
approach is successfully tested using both synthetic and lab experiment
data, demonstrating the power of the carefully designed surrogate in
allowing the real-time estimation of reinforcement permeability and
porosity.

2. Bayesian inversion methodology

2.1. Partitioning the domain

A low-dimensional parameterisation of the unknown properties
𝐾(𝐱) and 𝜙(𝐱) is employed by defining a partition, in terms of a finite
number of 𝑁𝑟 sub-regions [𝑅1,… , 𝑅𝑁𝑟 ]. It is assumed that on each sub-
region, 𝑅𝑖, 𝐾(𝐱) and 𝜙(𝐱) take constant values 𝐾𝑖 and 𝜙𝑖, respectively.
In other words,

𝐾(𝐱) =
𝑁𝑟
∑

𝐾𝑖I𝑅𝑖 (𝐱), 𝜙(𝐱) =
𝑁𝑟
∑

𝜙𝑖I𝑅𝑖 (𝐱), (10)
3

𝑖=1 𝑖=1
Fig. 1. Partition of the tool domain into 85 sub-regions: 81 central and 4 RT. Also
labelled are the inlet 𝜕𝐷𝐼 , outlet 𝜕𝐷0 and no-flow boundaries 𝜕𝐷𝑁 .

where I𝑅𝑖 (𝐱) denotes the indicator function of 𝑅𝑖 (i.e., I𝑅𝑖 (𝐱) = 1 if
𝐱 ∈ 𝑅𝑖 and I𝑅𝑖 (𝐱) = 0 otherwise). Eq. (10) delivers a parameterisation
of 𝐾(𝐱) and 𝜙(𝐱) in terms of the following vectors:

𝐊 ∶= [𝐾1,… , 𝐾𝑁𝑟 ], 𝝓 ∶= [𝜙1,… , 𝜙𝑁𝑟 ]. (11)

This approach can easily be extended to the anisotropic case by replac-
ing the scalar permeability value assigned to each region by elements
of a permeability tensor, defined in an analogous manner. However,
estimating more unknowns may require more data, either through more
pressure sensors or images of the resin front.

In each of the following examples, 𝐷 is a square domain of dimen-
sions 300 mm × 300 mm, where a linear resin inlet 𝜕𝐷𝐼 and a linear
vent 𝜕𝐷0 are placed on opposite edges of the domain. The domain
is split into 𝑁𝑟 = 85 sub-regions, which are labelled in Fig. 1. Two
regions are assumed to run along the top and bottom edges of the
reinforcement, protruding 2 mm into the domain. In order to identify
partial RT, each region is bisected vertically, creating 4 total RT sub-
regions of dimension 150 mm × 2 mm. The purpose of these sub-regions
is to identify effective porosity and permeability values, which average
over properties near the edge of the reinforcement and properties
within the RT-causing gaps (should they exist). The remainder of the
reinforcement, framed above and below by the RT sub-regions, are split
equally into a 9 × 9 grid consisting of 33.33 mm × 32.89 mm sub-regions.

2.2. The forward map

The inputs of the forward problem in Eq. (9) can be written using
the parameterisation introduced in Eq. (11):

𝐮 ∶= (𝐊,𝝓, 𝜇, 𝑝𝐼 ). (12)

As stated in Section 1.1, the forward problem involves finding the
solution, (𝑝(𝐱, 𝑡), 𝛶 (𝑡)), to the moving boundary problem (3)–(8) for a
given set of inputs. Here, the forward problem is solved numerically
using an implementation [28] of the Control Volume Finite Element
Method (CVFEM) [1,13,29]. The forward map  (𝐮) between the input
𝐮 and the output – the resin pressure evaluated at specific points in
space (sensor locations) and time – is defined as:

 (𝐮) ∶=
{

{𝑝(𝐱1, 𝑡1) … , 𝑝(𝐱𝑀 , 𝑡1)},… , {𝑝(𝐱1, 𝑡𝑁 ) … , 𝑝(𝐱𝑀 , 𝑡𝑁 )}
}

, (13)

where𝑀 is the total number of pressure sensors with locations {𝐱𝑚}𝑀𝑚=1 ⊂
𝐷, and 𝑁 is the number of observation times denoted by {𝑡 }𝑁 .
𝑛 𝑛=1



Composites Part A 185 (2024) 108355M.E. Causon et al.

(
T
p
o
a
p

2

e
P
m
a
p

i
r
a


𝜽
o
a

q
P

b
u
o
c
v
t
t
r
𝐽
A
b
f

3

i
o
f
p
a
c
m
w
P
C
s
i
G
f

i
t

2.3. The Bayesian approach

The Bayesian approach to inverse problems consists of three ele-
ments. Firstly, an initial guess - or, in Bayesian Statistics terminology,
a prior distribution - is provided. In the context of RTM, this guess
encompasses prior knowledge of reinforcement porosity and permeabil-
ity, for example the expected target values and the natural variability
according to the design. A lack of confidence in the design may be
reflected by choosing a prior with large variance. The probability
density of the prior distribution is denoted by P(𝐊,𝝓).

Secondly, an observational model that relates the in-process pres-
sure measurements  and the unknown inputs (𝐊,𝝓) must be adopted.
Following standard assumptions [14,26,27,30], the observed measure-
ments  are assumed to be a realisation of the random variable:

 =  (𝐮) + 𝜂, (14)

where 𝜂 is measurement noise, reflecting the sensors’ accuracy and
uncertainty. It is assumed that 𝜂 comes from a Gaussian distribution
with zero mean and, for simplicity, known diagonal covariance matrix
𝛤 , i.e. 𝜂 ∼ 𝑁(0, 𝛤 ). It is possible to modify this approach to incorporate
dependencies within 𝛤 , if known. From Eq. (14), it follows that the
likelihood function, |𝐮, is Gaussian with mean  (𝐮) and covariance 𝛤 ,
with probability density

P(|𝐮) ∝ exp
(

−1
2
‖

‖

‖

𝛤−1∕2( −  (𝐮))‖‖
‖

2)
. (15)

The third and final element of the Bayesian approach is the pos-
terior distribution which comprises of the probabilistic knowledge for
reinforcement porosity and permeability given the measurements, bal-
ancing both prior and data uncertainty. From Bayes’ rule and Eq. (15),
the posterior probability density, denoted by P(𝐊,𝝓|, 𝜇, 𝑝𝐼 ), is given
by

P(𝐊,𝝓|, 𝜇, 𝑝𝐼 ) =
1
𝑍
P(𝐊,𝝓) exp

(

−1
2
‖

‖

‖

𝛤−1∕2( −  (𝐮))‖‖
‖

2)
, (16)

where 𝑍 is the normalising constant.
Since the forward map  (𝐮) is nonlinear, no analytical expression

is available for the normalisation constant 𝑍. On the other hand, nu-
merical integration becomes futile for high-dimensional problems (here
𝑁𝑟 = 85). Therefore, the posterior can only be characterised using sam-
pling algorithms such as Markov chain Monte Carlo (MCMC) [31] or
Sequential Monte Carlo (SMC) methods which avoid the computation
of 𝑍 altogether. Once a large number of samples from the posterior are
computed, quantities such as the mean, variance and credible intervals
can be approximated via Monte Carlo estimation.

The main computational bottleneck of MCMC and, in general, any
sampling methodology lies in the evaluation of the likelihood given by
Eq. (15) and thus the evaluation of the forward map  (𝐮) which is re-
quired for the computation of each sample along an MCMC chain. Each
of these evaluations involves solving the moving boundary problem in
Eqs. (3)–(8) via CVFEM, which takes minutes. This makes MCMC algo-
rithms infeasible for inference problems of such dimension, which often
require hundreds of thousands or even millions of samples to achieve
significant decorrelation to enable accurate estimates of posterior quan-
tities. While more sophisticated implementations of MCMC can reduce
the computational burden via parallel computing, these are only sub-
stantially beneficial when vast computational resources from High
Performance Computing (HPC) facilities are available. Furthermore,
assessing the convergence of these methods is not straightforward and
often requires a substantial level of expertise to determine optimal
tuning parameters.

The above limitations for approximating the posterior motivate the
need for a surrogate of the forward map that, once trained offline, can
deliver sub-second approximations of the forward map, thus expediting
the overall computations of the chosen sampling algorithm. However,
4

even when using a fast surrogate, sampling algorithms such as MCMC i
cannot be expected to produce accurate approximations of the posterior
in real time. Instead, the present work combines the ensemble Kalman
inversion (EKI) algorithm [30] with a parameterisation of the unknown
variable (𝐊,𝝓) that enables one to enforce constraints on the admissible
i.e. physically realistic) values that the unknown variables can take.
he proposed EKI algorithm can provide an approximation of the
osterior with a considerably smaller number of samples (e.g. in the
rder of hundreds). Moreover, the EKI algorithm is simple to implement
nd requires no tuning to produce stable and accurate estimates of the
osterior.

.4. Ensemble Kalman inversion

The employed EKI algorithm, shown in Appendix A, starts with an
nsemble of 𝐽 samples (called particles), {(𝐊(𝑗)

0 ,𝝓
(𝑗)
0 )}𝐽𝑗=1, from the prior

(𝐊,𝝓). The goal is to iteratively update each particle in a smooth
anner controlled by a regularisation parameter 𝛼𝑛. Upon converging

fter 𝑞 iterations, the final ensemble provides an approximation of the
osterior.

The prior ensemble is generated so that the permeability and poros-
ty values in central sub-regions lie within [𝐾min, 𝐾max] and [𝜙min, 𝜙max],
espectively. The upper bounds are extended in RT sub-regions to 𝐾RT

max
nd 𝜙RT

max, respectively. To preserve these bounds, a parameterisation
(𝜽) = (𝐊,𝝓) is introduced as described in Appendix A.

The EKI algorithm [30] is applied to the unconstrained variable
with the initial ensemble 𝜽(𝑗)0 = −1(𝐊(𝑗)

0 ,𝝓
(𝑗)
0 ). At the 𝑛th iteration

f the EKI algorithm, the ensemble {𝜽(𝑗)𝑛 }𝐽𝑗=1, consists of samples from
Gaussian P𝑛(𝜽). The ensemble of transformed particles (𝐊(𝑗)

𝑛 ,𝝓(𝑗)
𝑛 ) =

(𝜽(𝑗)𝑛 ) approximate an intermediate distribution on (𝐊,𝝓) from a se-
uence of distributions that gradually transitions from prior to posterior
(𝐊,𝝓|, 𝜇, 𝑝𝐼 ) over 𝑞 iterations.

In the EKI algorithm [30], the number of iterations 𝑞 is controlled
y the selection of 𝛼𝑛 which is done automatically without the need for
ser defined inputs. Although the optimal choice of particles 𝐽 is an
pen problem, with only a few hundred particles, the EKI algorithm
an achieve estimates of the posterior (and therefore its mean and
ariance) of the reinforcement permeability with accuracy comparable
o SMC but with two orders of magnitude reduction in the compu-
ational cost [27]. Despite the computational advantages of EKI with
espect to other methods, its computational cost is owed to requiring

evaluations of the forward map { (𝐮(𝑗)𝑛 )}𝐽𝑗=1 (see Algorithm 1 in
ppendix A) at each iteration of the algorithm, which cannot feasibly
e achieved for on-line applications when conventional solvers are used
or evaluating the forward map.

. Surrogate modelling

One of the underpinning principles of supervised machine learning
s to learn an input to output map using data. Recently, the simulation
f partial differential equations (PDEs) – which in its most primitive
orm is an input to output map – has been posed as a machine learning
roblem [32]. The data are generated by running the computation-
lly expensive PDE solver for a large number of parameter sets and
ollecting the outputs. This data set is receptive to a vast array of
achine learning techniques, most prominently artificial neural net-
orks (ANNs) and Gaussian processes (GPs), which can emulate the
DE solver; the model that emulates the solver is called the surrogate.
ompared to the computationally expensive PDE solver, the data driven
urrogate model interpolates outputs for unseen parameter sets near-
nstantaneously. Model order reduction techniques, such as Proper
eneralised Decomposition [33], are not considered here but also offer

ast simulations of expensive, high-dimensional forward models.
GPs are a popular choice of surrogate model [34,35], which use

deas from Bayesian inference to provide probabilistic estimates of
he output. Probabilistic estimates are beneficial, particularly when

nterpolating over a sparse data set; either when there are few data
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Fig. 2. Various sensor configurations of increasing density, along with the partition described in Section 2.1. The total sensors used by each configuration are as follows: 𝑀 = 12
(2 × 2), 𝑀 = 19 (3 × 3), 𝑀 = 24 (4 × 4), 𝑀 = 33 (5 × 5), 𝑀 = 49 (Half), 𝑀 = 93 (All).
available, or when the parameter space is high-dimensional. However,
very high-dimensional problems like the one considered in this paper
suffer from the curse of dimensionality [36] and thus require large
data sets for accurate predictions. Coupled with the non-parametric
nature of GPs (the size of the model increases with the size of the
data), computer memory management soon becomes impractical even
on powerful GPUs, where training and inference are usually performed,
since the burden of the computational complexity is so high that CPUs
(due to their architecture) are impractical for the task. Approximations,
such as the use of inducing points [37,38], can, to some extent, relieve
memory issues but often to the detriment of accuracy and uncertainty
calibration on validation sets.

ANNs are another common approach in surrogate modelling [17–
21]. Since ANNs are parametric, they are far more efficient than
GPs for large and high-dimensional data sets. Recently, PINNs have
demonstrated significant predictive power [21,39], however the design
of the cost function and model architecture often poses a substantial
challenge. CNNs [21,40] and encoder–decoders [19,20] have success-
fully been applied to create surrogate models but, like PINNs, can
be highly complex. The model architecture can require significant
experimentation in order to choose the number and combination of
layers (e.g. convolutional, pooling and fully connected), along with the
size/type of kernels and stride length used. Here, standard feedforward
ANNs trained on simulated data are considered, which are straight-
forward to implement and can therefore easily be replicated in many
experimental settings. Compared to more complex models, they are also
more efficient to evaluate, and require far less computational overhead
to train.

3.1. Building the ANN surrogate

The general premise of feedforward ANNs is to connect the input
nodes to the output nodes via a series of node-containing hidden
layers. Connections between nodes in adjacent layers are weighted
randomly initially, before being learnt using training data with op-
timisation procedures (e.g., stochastic gradient descent or the Adam
algorithm [36,40]). Weights are adjusted to minimise a selected loss
function, using gradients, in a process called backpropagation. There
is a limited literature regarding the optimal architecture for ANNs,
along with the choice of activation functions, so the final model is
5

Table 1
Bounds with which the surrogate is trained on.
Parameter Range

[𝐾min , 𝐾max] [2 × 10−10 , 7 × 10−10] mm2

[𝜙min , 𝜙max] [0.40, 0.85]

𝐾RT
max 500 × 10−10 mm2

𝜙RT
max 0.9882
𝜇 [0.099, 0.11] Pa s
𝑝𝐼 [90, 110] kPa

often selected through trial and error by assessing performance on a
validation data set (or by using cross-validation).

The first step in building the ANN surrogate of the forward map
 (𝐮) is to compute the input and output sets, 𝑋 and 𝑌 , defined by

𝑋 =
{

𝐮1,… ,𝐮𝑁𝑠
}

, 𝑌 =
{

 (𝐮1),… , (𝐮𝑁𝑠 )
}

. (17)

From the definition in Eq. (12), each of the 𝑁𝑠 inputs takes the
form 𝐮𝑖 = (𝐊𝑖,𝝓𝑖, 𝜇𝑖, (𝑝𝐼 )𝑖). The parameterisation introduced in Ap-
pendix A ensures that the ensemble members always produce perme-
ability and porosity estimates in central sub-regions within [𝐾min, 𝐾max]
and [𝜙min, 𝜙max], respectively, with extended upper bounds in RT sub-
regions, denoted by 𝐾RT

max and 𝜙RT
min. Hence, one need only train the

surrogate to interpolate accurately within these bounds for 𝐊 and 𝝓.
Even though the pair (𝜇, 𝑝𝐼 ) is known from the perspective of the
inverse problem, the surrogate for the forward map is built to account
for small variations from their target values, since they vary between
the lab experiments described in Section 5; it is essential to build a
flexible surrogate which is robust to this variability in order to avoid
retraining the surrogate every time the experimental conditions change.

In order to efficiently explore the high-dimensional space of inputs,
𝑋, a Sobol sequence [41] is first used to generate 𝑁𝑠 = 50,000 points.
According to the bounds in Table 1, these points undergo an affine
transformation to generate the corresponding elements of the input set
𝑋. The bounds for permeability and porosity are selected in accordance
with the lab experiments, and ensure that the surrogate interpolates
accurately for both target values and values corresponding to defects
for the reinforcement properties. These bounds can be adapted accord-
ing to a particular experimental setting, but it must be ensured that
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the model is presented with the most extreme (yet possible) defects
during the training process. The bounds for the inlet pressure and resin
viscosity are selected so that the ANN is able to accommodate a ±10%
eviation from the intended experimental conditions of 𝑝𝐼 = 100 kPa

and 𝜇 = 0.1 Pa s. More general surrogates which interpolate over wider
intervals can be used, but require more data to populate the enlarged
parameter space.

For each input 𝐮𝑖, the output  (𝐮𝑖) is computed via Eq. (13), where
𝑝(𝐱, 𝑡) is the solution to Eqs. (3)–(8) discretised via CVFEM on a highly
refined computational mesh that consists of 4096 cells. In order to
resolve the narrow RT channels more precisely, the mesh has greater
refinement in the RT regions. The numerical solution is then evaluated
at 𝑀 = 116 locations, corresponding to all of the sensors used for the
various sensor configurations shown in Fig. 2. These configurations will
be used for both virtual and laboratory experiments. Only the 2 × 2
and 3 × 3 configurations are available in the lab experiments outlined
in Section 5. At each sensor location, 𝐱𝑚, the numerical approximation
is evaluated at the following 𝑁 = 14 observation times:

(𝑡1,… , 𝑡14) = (1, 3, 5, 7, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55) s. (18)

The final observation time was selected by conducting several lab
experiments on a nominal reinforcement, described later in Section 5.1.
Prior knowledge regarding the approximate filling time is beneficial
in characterising the properties of the entire reinforcement; estimates
will be provided only within the resin impregnated region at the final
observation time, which is particularly problematic if the true filling
time is far longer. The intermediate observation times are chosen such
that increments in the resin front are approximately uniform. The
workload for the computations of the set of outputs 𝑌 was distributed
over 35 cores of a Supermicro 620U Linux RHEL8.8 server with 48 Intel
Xeon (Ice Lake class) CPUs and 1.5Tb RAM and took approximately 67
CPU-hours to run.

3.2. Training and performance

The ANN architecture consists of 172 input neurons: 85 permeability-
porosity pairs, inlet pressure and resin viscosity. For the purpose of
training, each component of the input is normalised into [0, 1]. The
unpacking and normalisation processes are shown in Fig. 3. Since each
of the 𝑀 = 116 sensors measure pressure at 𝑁 = 14 observation times,
there is a total of 1624 output neurons. To ensure positivity in pressure
predictions, each output neuron is parameterised before training with
�̃�(𝐱𝑚, 𝑡𝑛) = log

(

𝑝(𝐱𝑚, 𝑡𝑛) + 1000
)

, where 𝑝(𝐱𝑚, 𝑡𝑛) is the pressure at
a generic output neuron. Once trained, the surrogate predicts each
�̃�(𝐱𝑚, 𝑡𝑛), before being converted to positive 𝑝(𝐱𝑚, 𝑡𝑛) by reversing the
parameterisation.

One thousand samples from 𝑋 and 𝑌 are assigned to testing sets,
with input and output denoted by 𝑋test and 𝑌test, respectively. Upon
training the surrogate, the testing set will be used to provide Monte
Carlo estimates for the accuracy of the solution to the inverse problem.
The remaining data, used to generate the surrogate model, are split
70:30 between training (𝑋train, 𝑌train) and validation (𝑋val, 𝑌val) sets.

In order to demonstrate the simplicity and flexibility of this ap-
proach, a minimalist architecture is considered with only one hidden
layer, accompanied by a Sigmoid activation function as shown in Fig. 3.
Using the mean-squared error (MSE) loss function, ANNs are trained
with various hidden layer sizes using PyTorch [42]. In each case, the
Adam algorithm is used with a learning rate of 0.001 and a mini-
batch size of 128. In order to avoid overfitting, the training process is
terminated when validation MSE fails to improve upon the minimum
for 50 consecutive epochs. The selected model parameters correspond
to those at the epoch which achieved the best validation MSE. The
output of the trained ANN surrogate for a given input 𝐮 is denoted by
6

𝑠(𝐮). w
The optimal hidden layer size was determined by evaluating the
average relative error over the validation set, defined by

𝐸val =
1

|𝑆val|

∑

𝑖∈𝑆val

‖ (𝐮𝑖) − 𝑠(𝐮𝑖)‖
‖ (𝐮𝑖)‖

, (19)

where 𝑆val is the set of indices of 𝑋 and 𝑌 that belong to the validation
set. Fig. 4 indicates that the optimal hidden layer size is approximately
1000, and any additional complexity is detrimental to the surrogate’s
accuracy. This model took less than eight minutes to train, using an
NVIDIA RTX A5000 24 GB GPU card on a Windows 10 Workstation
with an AMD Threadripper Pro 3945WX Processor (12-cores) 128 GB
RAM. The surrogate predictions yield only 1.47% average relative
error. More complex models with two and three hidden layers were
trained using the same routine but did not significantly improve upon
this relative error. Compared to the CVFEM solver which typically takes
109 s to simulate a single injection, a single surrogate model call on
the aforementioned GPU takes (430 ± 24) μs. In contrast to the CVFEM
solver, however, the trained surrogate can only provide approximations
to pressure at the discrete sensor locations.

3.3. Using the surrogate for Bayesian inversion

With the aid of the surrogate 𝑠(𝐮), the aim is to apply EKI to
compute the posterior of the reinforcement porosity and permeability.
In the context of inverse problems, simply replacing the forward map
with a surrogate model has been shown to be substantially detrimental
to the accuracy of the estimates of the unknown that one wishes to
infer. Instead, modelling errors incurred by the surrogate must be
incorporated within the inversion. Here, an enhanced modelling error
approach [43] is employed.

When the surrogate model is used for the inversion, the observa-
tional model defined in Eq. (14) can be re-written as

 = 𝑠(𝐮) + 𝜀 + 𝜂, 𝜂 ∼ 𝑁(0, 𝛤 ), (20)

where 𝜀 =  (𝐮)−𝑠(𝐮) is the error incurred by using the surrogate. The
enhanced modelling error approach assumes that the surrogate error
does not depend on the inputs (𝐮) and that it is normally distributed

ith 𝜀 ∼ 𝑁(�̄�, 𝛴). The surrogate error covariance 𝛴 encompasses the
rror uncertainty inherent in the surrogate predictions at each of the
ressure sensor locations. By setting 𝛾 = 𝜀 − �̄� + 𝜂, the formulation can
e written as

− �̄� = 𝑠(𝐮) + 𝛾, 𝛾 ∼ 𝑁(0, 𝛤 + 𝛴). (21)

The standard practice is to approximate �̄� and 𝛴 empirically by
omputing the mean and covariance of a large number of sample errors.
hen building the surrogate, this comes at no extra cost since such

amples are available from the validation set, { (𝐮𝑖) − 𝑠(𝐮𝑖)}𝑖∈𝑆val .
ig. 17 in Appendix B shows estimates for �̄� and

√

diag(𝛴). The
urrogate-augmented inverse formulation in Eq. (21) is solved in pre-
isely the same way as Eq. (14) by using Algorithm 1 from Appendix A,
ut with surrogate evaluations 𝑠, adjusted data  − �̄�, and inflated
ovariance 𝛤 +𝛴. The inflation due to surrogate error covariance works
y assigning greater importance to data arriving from sensor locations
hat the surrogate predicts with greater accuracy.

. Virtual experiments

.1. Inversion of the test set

Unlike the training and validation data which have been used to
roduce and evaluate the surrogate for the forward map, the remaining
est data will be used in conjunction with the surrogate to rapidly
olve the inverse problem. Consider a generic element of 𝑋test, 𝐮 =
𝐊†,𝝓†, 𝜇, 𝑝𝐼 ), with corresponding output  (𝐮) in 𝑌test. The aim is to
ecover the true reinforcement properties, (𝐊†,𝝓†), using synthetic data
hich are generated by adding noise to  (𝐮). The noise perturbation
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Fig. 3. Process of making predictions with a trained neural network. Also included is a visualisation of surrogate predictions for the 2 × 2 configuration: the true pressures
(generated by the expensive solver) are shown in red, whilst the surrogate predictions are shown in black. The 95% uncertainty bands are calculated using the surrogate error
uncertainty matrix, 𝛴.
Fig. 4. (Left) average relative error over validation set with respect to the hidden layer size, (right) training and validation MSE of best performing model over the training period,
along with the epoch that minimised validation MSE.
mimics sensor inaccuracy by producing data of the form  =  (𝐮) + 𝜂
where 𝜂 ∼ 𝑁(0, 𝛤 ). It is assumed that 𝛤 is a diagonal matrix with 𝑘th
entry

𝛤𝑘𝑘 = 𝜎20
(

max (𝐮) − min (𝐮)
)2
, (22)

where 𝜎0 scales the size of the noise added. In practice, 𝜎0 may be in-
formed by the manufacturer-specified precision of the sensors. In cases
where the approach in Eq. (22) is not general enough (e.g. non-constant
noise), one can otherwise estimate elements of 𝛤 using Gaussian pro-
cess regression [14].

A prior ensemble is generated at 𝑡0 = 0 by sampling permeability
and porosity values uniformly and independently from the bounds
provided in Table 1, denoted by

{

(𝐊(𝑗)(𝑡0),𝝓(𝑗)(𝑡0))
}𝐽
𝑗=1. By sampling

from such an uninformed prior, the posterior will depend largely
on the information provided by the sensor data which, in turn, will
demonstrate the effect of sensor density and precision on the solution
to the inverse problem. Later, more complex priors will be considered
that integrate a natural relationship between porosity and permeability.

At any arbitrary time during the injection, one can collect all
of the newly acquired measurements and perform an inversion us-
ing Algorithm 1 (see Appendix A). As mentioned in Section 3.3, the
surrogate-accelerated approach to EKI requires that the forward map
 is replaced with the surrogate 𝑠, and that any instance of the
observational noise covariance matrix 𝛤 is inflated with surrogate
uncertainty to become 𝛤 + 𝛴. Resin viscosity 𝜇 and inlet pressure 𝑝𝐼 ,
required for every evaluation of  , are assumed given in the final two
7

𝑠

elements of 𝐮. Following a successful inversion, the resulting posterior
serves as a prior for any subsequent inversions as new data becomes
available. With this in mind, it is important to make a distinction
between observation times and inversion times — though it is feasible
to perform the inversion at each observation time in Eq. (18) (or indeed
at any time during injection), for clarity, only 7 inversion times are
considered: (𝑡1, 𝑡3, 𝑡5, 𝑡7, 𝑡9, 𝑡11, 𝑡14).

Denote by
(

𝐊(𝑗)(𝑡𝑛),𝝓(𝑗)(𝑡𝑛)
)

the posterior approximation of (𝐊†,𝝓†)
by the 𝑗th ensemble member at time 𝑡 = 𝑡𝑛. The time-dependent
ensemble mean and standard deviation estimates for 𝐊† are computed
simply via

𝜇𝐊(𝑡𝑛) =
1
𝐽

𝐽
∑

𝑗=1
𝐊(𝑗)(𝑡𝑛) and 𝜎𝐊(𝑡𝑛) =

√

√

√

√

√

1
𝐽 − 1

𝐽
∑

𝑗=1

(

𝐊(𝑗)(𝑡𝑛) − 𝜇𝐊(𝑡𝑛)
)

,

(23)

and analogously for 𝜇𝝓(𝑡𝑛) and 𝜎𝝓(𝑡𝑛), the mean and standard deviation
estimates for 𝝓†. For ease of visualisation, the natural logarithm of
permeability samples will often be considered, with mean and standard
deviation 𝜇log𝐊 and 𝜎log𝐊, respectively.

Fig. 5 shows the reconstruction of one example (𝐊†,𝝓†) from 𝑋test at
each inversion time. The mean and standard deviation vectors are each
plotted in accordance with the partition described in Eq. (10), though
the width of the RT regions are exaggerated for ease of viewing. All
of the available sensors were used (see ‘‘All’’ configuration in Fig. 2)
with 𝜎 = 0.005 (i.e. 0.5% noise perturbation). A conservative ensemble
0
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Fig. 5. (Left) true but unknown log-permeability log𝐾†(𝐱) and porosity 𝜙†(𝐱) to be recovered, (right) mean and standard deviation of the posterior ensemble for log-permeability
and porosity at each inversion time. Also included is the true resin front location (according to the CVFEM solver) and the computation time taken, in seconds, to carry out each
inversion, 𝑡(𝑖)c .
Fig. 6. Boxplots of the final-time posterior ensemble, with the true log-permeability and porosity values shown in red. The first 81 boxes of each plot correspond to the (unpacked)
central sub-regions, whilst the final 4 correspond to RT sub-regions.
of size 𝐽 = 10,000 is used to ensure that the algorithm is robust
under the selection of the (random) initial ensemble. The ensemble
mean estimate for log-permeability is accurate in both central and RT
sub-regions. Porosity is recovered with less accuracy, a result which is
discussed later in this section, though one can still recover many of the
broader patterns. The ensemble standard deviation estimates behave
as expected, since uncertainty is high in areas which are yet to be
impregnated with resin; with such a high sensor density, one can even
approximately locate the resin front at each inversion time. Crucially,
the surrogate-accelerated EKI algorithm is able to compute the approx-
imate posterior in real time. Boxplots of the ensemble estimates are
shown in Fig. 6, providing greater clarity regarding the accuracy of the
final-time posterior distribution.

However, this setting is idealistic; such a high density of accurate
sensors is not realistic when considering industrial applications. In
order to assess the effect of using inferior sensors and of using only
a limited number of them, the (final-time) relative error of the solution
to the inverse problem is introduced, defined by

𝐸𝐊 =
‖𝐊† − 𝜇𝐊(𝑡14)‖

‖𝐊†
‖

, and 𝐸𝜙 =
‖𝝓† − 𝜇𝝓(𝑡14)‖

‖𝝓†
‖

. (24)

Relative error indicates the fidelity with which the true perme-
ability and porosity values are recovered. In order to investigate the
dependence of relative error on the number of sensors and noise levels,
the procedure described above is carried out for all 1000 elements of
8

the test set, using each sensor configuration and various noise levels.
Fig. 7 shows the expected result that by increasing sensor density
or by improving the quality of sensors, the true parameter set can
be recovered with greater accuracy, on average. Also included is the
average error achieved by using the prior ensemble means, 𝜇𝐊(𝑡0) and
𝜇𝝓(𝑡0), which represents the estimate for reinforcement properties that
one might suggest without access to in-process sensors. The average
computation time in every case is negligible compared to the filling
time in this setting.

Fig. 7 supports the result shown in Fig. 5 that porosity is more
difficult to recover than permeability; the posterior performs only
marginally better than the prior. Porosity has previously been recov-
ered accurately [14,27] but required both pressure measurements and
tracking of the propagating resin flow front. Though the trigger times
of many pressure sensors in unison provide some information about the
flow front location, it appears that higher resolution images of the front
via cameras or multiple linear sensors for front detection are required
to characterise the porosity of reinforcements more accurately.

4.2. Synthetic defects

Though the previous section demonstrates the effect of in-process
measurements on the solution to the inverse problem, there are no
guarantees that the true permeability and porosity functions lie con-
veniently within the partition defined in Section 2.1. In cases which
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Fig. 7. Average final-time relative error in permeability and porosity estimates over test set for varied noise levels and sensor densities, along with the average computation time.
The dashed black line represents the average relative error using the prior ensemble mean.
Table 2
Details for the synthetic cases. Permeability in the background, defect regions and RT
channels are denoted by 𝐾bg, 𝐾defect and 𝐾RT, respectively.

Exp. 𝑝𝐼 (kPa) 𝜇 (Pa s) 𝐾bg (mm2) 𝐾defect (mm2) 𝐾RT (mm2)

1 110.0 0.091 4.50 × 10−10 7.00 × 10−10 –
2 105.0 0.105 4.50 × 10−10 – 2.00 × 10−8

3 102.5 0.095 4.50 × 10−10 2.04 × 10−10 2.50 × 10−8

4 100.0 0.100 4.50 × 10−10 2.04 × 10−10 1.00 × 10−8

deviate from this, the aim is to recover the ‘closest’ low-dimensional
representation of reinforcement properties.

In order to demonstrate the efficacy of the proposed approach in
defect discovery, 4 synthetic configurations with defects are consid-
ered: (1) a high permeability circular defect of radius 40 mm centred
about (75, 150) mm, (2) a one-sided RT channel of width 2 mm, (3)
two low permeability circular defects of radius 40 mm centred about
(100, 100) mm and (200, 200) mm, along with 2 mm RT channels on
opposite corners, (4) a low permeability circular defect of radius 35 mm
centred about (200, 100) mm and rectangle of size 23.4 mm × 206.3 mm
along with 2 mm RT channels in the first half of the domain. In each
case, regions of the reinforcement which are not considered as contain-
ing defects have a fixed permeability value. Further details regarding
each case are listed in Table 2. Once the true permeability fields
are generated, porosity fields are resolved by assuming a power-law
relationship

𝜙 = 1 −
(𝐾
𝑎

)
1
𝑏 ∶= 𝑓 (𝐾), (25)

where 𝑎 = 10−10 m2 and 𝑏 = −1.4.
Synthetic data for each scenario are generated by running the ac-

curate (but computationally expensive) CVFEM solver for the true per-
meability and porosity fields, before perturbing the simulated pressure
values in the same manner as before, i.e. with 𝜎0 = 0.005.

It became evident from Figs. 5 to 7 that generating a prior en-
semble which disregards the relationship between permeability and
porosity yields less accurate estimates of porosity fields. To this end,
the Bayesian approach is exploited by proposing a prior ensemble
which is consistent with the relationship in Eq. (25). A prior ensem-
ble,

{

(𝐊(𝑗)(𝑡0),𝝓(𝑗)(𝑡0))
}𝐽
𝑗=1, of size 𝐽 = 10,000 is constructed by first

sampling
{

𝐊(𝑗)(𝑡0)
}𝐽
𝑗=1 uniformly from the bounds in Table 1, before

calculating each of the corresponding porosity particles via 𝝓(𝑗)(𝑡0) =
𝑓 (𝐊(𝑗)(𝑡0)) using Eq. (25). The image of these permeability samples
under 𝑓 is not contained within the bounds for porosity in Table 1,
so any element of 𝝓(𝑗)(𝑡0) that exceeds these bounds is assigned the
maximum or minimum possible values, respectively. In the interest of
presentation, rather than performing sequential inversions as described
in Section 4.1, a single inversion is performed at the final observation
time, using all of the data collected.
9

The final-time ensemble means, 𝜇log𝐊(𝑡14) and 𝜇𝝓(𝑡14), obtained
using various sensor densities are shown in Figs. 8 and 9 with the
ensemble standard deviations, 𝜎log𝐊(𝑡14) and 𝜎𝝓(𝑡14), deferred to Ap-
pendix C. For each experiment, the surrogate-accelerated EKI algorithm
converges in 3 to 5 iterations. Estimates using low sensor densities
appear less accurate, as expected, but often allude to the broad defect
shapes and locations well. Predictably, the size, accuracy and uncer-
tainty of each estimate improves with increase of sensor density. For
the most dense sensor configurations, mean estimates give the best
low-dimensional representation of the defect.

The probabilistic nature of the Bayesian approach allows one to
make statements about the probability of defect occurrence, by using
the entire posterior ensemble (from which the mean and standard
deviation are computed). Recall that the true but unknown vectors are
given by 𝐊† = [𝐾†

1 ,… , 𝐾†
85] and 𝝓† = [𝜙†

1,… , 𝜙†
85]. For each sub-region

𝑅𝑖, with the true permeability and porosity value (𝐾†
𝑖 , 𝜙

†
𝑖 ), denote its

posterior ensemble approximation by {(𝐾 (𝑗)
𝑖 , 𝜙(𝑗)

𝑖 )}𝐽𝑗=1. The probability
that sub-region 𝑅𝑖, 𝑖 = 1,… , 85, is defective is given by

P(𝑅𝑖 is defective) = 1
𝐽

𝐽
∑

𝑗=1
I𝐷𝑖

(

(𝐾 (𝑗)
𝑖 , 𝜙(𝑗)

𝑖 )
)

, (26)

where I𝐷𝑖 is the indicator function of the set 𝐷𝑖 which is the range of
permeability and porosity values corresponding to a defect associated
with the sub-region 𝑅𝑖; 𝐷𝑖 will differ based on the context of the
problem. For example, if one were interested in RT, then the sets 𝐷𝑖,
𝑖 ∈ {82,… , 85}, are defined as 𝐷𝑖 = 𝐷RT ≡ {(𝐾,𝜙) ∈ R2

|𝐾 > 𝐾RT, 𝜙 >
𝜙RT} for pre-defined thresholds, 𝐾RT and 𝜙RT. The defect probability
is the proportion of the posterior ensemble which satisfies the defect
condition.

Here, the RT threshold for permeability is defined to be an order
of magnitude larger than the average value in the central sub-regions
according to Table 1, 𝐾RT = 45 × 10−10 mm2. The corresponding RT
threshold for porosity is set using Eq. (25) to 𝜙RT = 𝑓 (𝐾RT) = 0.934.

The sets 𝐷𝑖, 𝑖 ∈ {1,… , 81}, corresponding to the central sub-regions
may consist of either one-sided or two-sided conditions, depending on
the expected nature of a synthetic defect. For virtual experiments, the
sets will be one of the following:

𝐷low = {(𝐾,𝜙) ∈ R2
|𝐾 < 3 × 10−10, 𝜙 < 0.544}, (27)

𝐷high = {(𝐾,𝜙) ∈ R2
|𝐾 > 6 × 10−10, 𝜙 > 0.722}, (28)

𝐷both = 𝐷low ∪𝐷high. (29)

For 𝑖 ∈ {1,… , 81}, experiment 1 has 𝐷𝑖 = 𝐷high, experiment 2 has
𝐷𝑖 = 𝐷both, and experiments 3 and 4 have 𝐷𝑖 = 𝐷low. The thresholds
in Eqs. (27) to (29) can be chosen easily for virtual experiments since
the true permeability and porosity fields are known; in Section 5, a
general method of threshold selection is described which does not
require knowledge of the true underlying material properties.

Fig. 10 shows the defect probability map for each of the virtual
experiments. Probability maps are more informative, in general, than
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Fig. 8. (Left) true log-permeability log𝐾†(𝐱) for each experiment, (right) ensemble mean estimates using different sensor configurations.
Fig. 9. (Left) true porosity 𝜙†(𝐱) for each experiment, (right) ensemble mean estimates using different sensor configurations.
the ensemble mean estimates shown in Figs. 8 and 9 since they utilise
predictive uncertainty which is central to the Bayesian methodology
used here. Regions in close proximity of defects are assigned elevated
defect probability, even when using lower sensor densities. The use of
more sensors increases the confidence with which defects are predicted
and reduces the false positive rate of detecting defects. Moreover, RT
10
defects (or lack thereof) are identified successfully for each experiment,
regardless of the sensor configuration.

4.3. Comparing surrogate-accelerated EKI with full-model EKI

While the predictions of the surrogate model, 𝑠(𝐮), are highly
accurate as shown in Section 3.2, there are unavoidable modelling



Composites Part A 185 (2024) 108355M.E. Causon et al.
Fig. 10. (Left) true log-permeability log𝐾†(𝐱) for each experiment, (right) defect probability map using different sensor configurations.
errors that arise from using the surrogate rather than CVFEM simula-
tions,  (𝐮), referred to in this section as the full-model. These errors
could potentially be detrimental to the accuracy of the inference of
the unknown reinforcement properties. Since surrogate-accelerated EKI
involves inflating the error covariance matrix (see Section 3.3), this
approach to inversion effectively amounts to having more uncertain
measurements. However, it is shown in this section that those detrimen-
tal effects are not substantial, while the computational advantages of
the surrogate-accelerated inversion are significant, enabling real-time
inference of reinforcement properties.

In order to compare surrogate-accelerated and full-model EKI, syn-
thetic experiment 1 is considered for the set of measurement config-
urations in Fig. 2. For full-model EKI, the algorithm introduced in
Section 2.4 is applied using the same prior on the unknown (𝐊,𝝓) as
discussed in Section 4.2. It is worth reiterating that every iteration of
full-model EKI (see step (a) in Algorithm 1) involves the evaluation of
 (𝐮(𝑗)), i.e. a run of the CVFEM simulator, for each particle 𝐮(𝑗) which
is computationally costly. To amortise this cost, a reduced number of
𝐽 = 103 particles is employed (compared to 𝐽 = 104 for the surrogate-
accelerated EKI). Furthermore, the EKI algorithm is run on the UK Tier
2 Midlands Plus HPC platform and, at every iteration, step (a) of EKI is
distributed over 100 cores. The total number of iterations required to
achieve convergence for each measurement configuration varied from
5 to 6.

Table 3 shows the cost, in terms of wall-time, of full-model EKI on
the HPC versus surrogate-accelerated EKI on the GPU. The probabil-
ity maps for experiment 1 are computed as described in Section 4.2
(i.e. using Eq. (26) with 𝐷𝑖 = 𝐷high for 𝑖 ∈ {1,… , 81} and 𝐷𝑖 = 𝐷RT

for 𝑖 ∈ {82,… , 85}) and are shown in Fig. 11. There is little difference
between the probability maps generated by each approach, indicating
that the inherent error incurred by the surrogate does not considerably
change estimates for reinforcement properties.

5. Lab experiments

5.1. Experimental setup

An injection tool, shown in Fig. 12, with a steel bottom and a trans-
parent PMMA top (with a thickness of 90 mm) was manufactured for
11
Table 3
Computation times using full-model EKI versus surrogate-accelerated EKI.

2 × 2 3 × 3 4 × 4 5 × 5 Half All

Full-model EKI time (h) 2.40 2.40 2.40 1.96 1.96 1.96
Surrogate-accelerated EKI time (s) 0.339 0.113 0.147 0.190 0.381 0.775

the laboratory experiments. The tool was designed to hold specimens
with 300 mm × 300 mm edge length. Galleries along two opposite
edges act as linear inlet and linear vent to promote unidirectional
flow. The tool was equipped with 23 pressure sensors, arrangements
of which are shown in the 2 × 2 and 3 × 3 configurations in Fig. 2.
One additional sensor is placed at the inlet to record inlet pressure. The
pressure sensors are connected to a data acquisition system that collects
readings of the fluid pressure at a rate of 10 s−1. A video camera is used
to record the flow front propagation.

A continuous random glass fibre reinforcement with an areal weight
of (210 ± 15) g/m2 was used in all experiments. The baseline specimen
consisted of 7 layers of the reinforcement. The fibre volume fraction of
the specimen was controlled by a spacer frame between the top and
bottom parts of the mould. The frame, together with the seals, had a
thickness of approximately 2.1 mm. The mould deflection with the rein-
forcement placed in the mould was measured and found to be < 0.1 mm
for the baseline specimen of 7 layers. Therefore, the porosity of the
baseline specimen is equal to approximately 0.73. The reinforcement
permeability can be approximately described by Eq. (25).

Circles of 80 mm diameter were cut from the same reinforcement.
For experiments with inclusions, several layers of these circles were
placed between the layers of a specimen, distributed evenly through
the thickness. Three additional layers of the reinforcement resulted
in a local porosity of approximately 0.62. Race-tracking defects were
created by cutting off a narrow strip in the selected location in a
specimen. Several configurations were considered.

Synthetic oil was used as a test fluid. The viscosity of the oil
had been characterised, at a range of temperatures, using a Brook-
field viscometer. The temperature of the oil was measured before the
experiments, which allowed the viscosity to be determined from the
viscosity–temperature curve. Experiments were carried out with an
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Fig. 11. Comparison of defect probability for experiment 1 using surrogate-accelerated EKI (top), full-model EKI (bottom).
Fig. 12. The experimental tool. Highlighted are the sensor locations (red circles), the
inlet (green) and the vent (yellow).

Table 4
Setup for each lab experiment.

Experiment 𝑝𝐼 (Pa) 𝜇 (Pa s)

1 96 066 0.1088
2 106 050 0.0922
3 97 633 0.1088
4 104 410 0.0922

approximate inlet (gauge) pressure of 105 Pa. The inlet pressure and
resin viscosity associated with each experiment are provided in Table 4.

Here, the prior ensemble is generated dependently, similarly to the
virtual experiments in Section 4, by first uniformly sampling perme-
ability values

{

𝐊(𝑗)(𝑡0)
}𝐽
𝑗=1 before using Eq. (25) to generate porosity

samples. To replicate the worst-case scenario, knowledge of the approx-
imate reinforcement properties are ignored. As stated in Section 4.1,
an uniformed prior demonstrates purely the effect of pressure data on
the solution to the inverse problem. In practice, more informed priors,
such as the truncated Gaussian or beta distributions, are beneficial
in estimating reinforcement properties, if designed appropriately. It is
assumed that the data are corrupted by 1% noise (i.e. 𝜎0 = 0.01).

For the defect probability maps, the same defect thresholds are
employed in RT regions, i.e. 𝐷𝑖 = 𝐷RT ≡ {(𝐾,𝜙) ∈ R2

|𝐾 > 45 ×
10−10, 𝜙 > 0.934} for 𝑖 ∈ {82,… , 85}. In central sub-regions, defect
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thresholds are selected on a case-by-case basis by pooling all central
ensemble estimates for permeability and porosity, i.e.

{

{𝐾 (𝑗)
𝑖 (𝑡𝑛)}𝐽𝑗=1

}81
𝑖=1

and
{

{𝜙(𝑗)
𝑖 (𝑡𝑛)}𝐽𝑗=1

}81
𝑖=1, and finding the 𝛼− and (1−𝛼)−quantiles, denoted

respectively by 𝑞𝐾𝛼 , 𝑞𝐾1−𝛼 , 𝑞
𝜙
𝛼 and 𝑞𝜙1−𝛼 . Defects are then defined as

regions of the reinforcement which have permeability and porosity
values which are consistently higher or lower than the extreme values
in the central pool, according to the defect sets:

𝐷low
𝛼 = {(𝐾,𝜙) ∈ R2

|𝐾 < 𝑞𝐾𝛼 , 𝜙 < 𝑞
𝜙
𝛼 }, (30)

𝐷high
𝛼 = {(𝐾,𝜙) ∈ R2

|𝐾 > 𝑞𝐾1−𝛼 , 𝜙 > 𝑞
𝜙
1−𝛼}, (31)

𝐷both
𝛼 = 𝐷low

𝛼∕2 ∪𝐷
high
𝛼∕2 . (32)

5.2. Example 1 — no defect

In order to demonstrate this approach in the absence of defects,
the first experiment contains no intended variations in reinforcement
properties. The defect sets in central sub-regions are each set to 𝐷both

0.2 .
Fig. 13 shows the inversion of experiment 1. In spite of attempts to pro-
duce a specimen with homogeneous material properties, the resin front
is not uniform. Hence, sub-regions with high defect probability are
unlikely to be false positives, rather genuine variations in reinforcement
properties. This is evident when cross-referencing local disturbances in
the flow front with the location of sub-regions with elevated defect
probability.

Since the prior pessimistically assumes the presence of RT (on
average) unless proven otherwise using data, permeability values in RT
regions remain slightly elevated compared to the permeability in the
rest of the perform. However, uncertainty within these regions remains
high, which is reflected within the probability of defect occurrence:
surrogate-accelerated EKI detects an absence of RT which is consistent
with images of the experiment. Computation times do not exceed 0.22
s.

5.3. Example 2 — circular defect

The second experiment consists of a specimen with a circular low
porosity defect. The inversion of experiment 2 is shown in Fig. 14,
using the central defect sets 𝐷low

0.2 . The approximate size and location
of the central defect are found with high probability within the first 20
s of the experiment with minimal false positives. The false positives in
the corners of the reinforcement at earlier times are likely due to the
location of sensors providing information in this region. Fig. 2 indicates
that the pressure sensors in the problematic corners are located at the
border between the RT and central sub-regions. Therefore, although
the purpose of these sensors is to provide information regarding RT
behaviour, they simultaneously provide information regarding central
sub-regions, which could lead to errors in estimates for reinforcement
properties. These errors may be exacerbated by, for example, unfore-
seen deviations in experimental conditions or in the data acquisition
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Fig. 13. Inversion of the control (experiment 1). From top to bottom row: images of the lab experiment at each inversion time overlayed with the 3 × 3 sensor configuration,
the posterior mean for log-permeability, the posterior standard deviation for log-permeability, the posterior mean for porosity, the posterior standard deviation for porosity, the
defect probability map. The computation time, in seconds, required for each inversion is denoted by 𝑡(𝑖)c .
Fig. 14. Inversion of the circular defect (experiment 2). See Fig. 13 for description.
system. The risk of this could be mitigated by ensuring that RT sensors
are fully contained within RT sub-regions. Nonetheless, the severity
of these false positives is reduced as more data is collected. RT is
successfully rejected and the posterior mean porosity in the background
is approximately equal to the nominal value of 0.73. Computation times
do not exceed 0.09 s.
13
5.4. Example 3 — RT

For the third experiment, 5 mm strips were cut from the second half
of the specimen, along each of the walls. Fig. 15 shows the inversion for
the data from experiment 3 using the central defect sets 𝐷both

0.2 . The RT
channels are located successfully, with no obvious defects found in the
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Fig. 15. Inversion of the RT defects (experiment 3). See Fig. 13 for description.
central sub-regions. Before the resin reaches the RT channels, the shape
of the front is described well by the mean permeability and porosity
estimates. Computation times do not exceed 0.15 s.

5.5. Example 4 — circular defect with RT

Finally, the most complex example is shown in Fig. 16, which
includes both a central defect and a 3 mm RT channel along the top
edge of the specimen. The central defects sets are each given by 𝐷low

0.2 .
Although the central defect is located reasonably accurately, some false
positives are also found. Sub-regions with elevated defect probability
near the inlet are likely due to a small period of time required for
inlet pressure to rise to its specified value, which is compensated for
by reducing reinforcement permeability and porosity near the inlet.
One could mitigate this artefact by introducing a time-dependent inlet
pressure condition, e.g. 𝑝𝐼 (𝑡) = 𝑝𝐼 (1 − 𝑒−𝛾𝑡), where 𝛾 > 0 becomes
another input to the neural network surrogate model. RT along the top
edge of the specimen is found, and is successfully rejected along the
bottom edge. Computation times do not exceed 0.12 s.

6. Discussion

The surrogate-accelerated approach to EKI presented in this study
offers real-time probabilistic estimation of reinforcement properties by
inverting pressure data obtained during the RTM process. The approach
was validated with 4 lab experiments, using real data. Circular defects
were successfully found, where present, using only 9 sensors within
the central region. Sub-regions that were assigned elevated defect
probability in locations which were not purposefully designed as de-
fects were frequently caused by unintended variations in reinforcement
properties, rather than false positives, which can be explained by cross-
referencing images of the propagating resin. RT (or lack thereof) was
correctly identified in each of the experiments. Over all of the tested
cases (virtual and real), computation times did not exceed 1 s.

By considering a low-dimensional parameterisation of the perme-
ability and porosity functions across the reinforcement, an effective
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emulator of the Darcy flow forward model can be achieved with only
a simple single hidden layer ANN. The surrogate expedites CVFEM
simulations of RTM injection, required by the EKI algorithm, reducing
computation time from minutes to sub-milliseconds, with only 1.47 %
relative error.

Surrogate-accelerated EKI performed well in cases when the defects
align with the selected low-dimensional parameterisation. In cases
where defects fall outside of the low-dimensional parameterisation,
it was demonstrated through virtual experiments that estimates for
reinforcement properties approach (with increasing sensor density) the
best low-dimensional representation of the high-dimensional truth.

However, a limitation of the parameterisation employed is that,
in more extreme cases, there is no guarantee that the size and shape
of defects can be accurately represented by a collection of 𝑁𝑟 =
85 sub-regions. In particular, more complex RT behaviour cannot be
accurately expressed using only 4 RT sub-regions. A more descriptive
representation might be achieved by using a more refined partition
or using the entire mesh, though one must consider the increase in
input dimensionality of the problem and/or the need to incorporate
some degree of correlation between the values on these regions. In
this case, a deeper architecture with convolutional layers is necessary.
Surrogates of this nature may require more training data and computa-
tional resources, but have shown success [19,20,44] in image-to-image
regression of both pressure fields and moving boundaries. Utilising a
surrogate which predicts the moving resin front location allows for the
integration of flow front information (e.g., through images of the front
or arrival time sensors), which could significantly improve estimates
for reinforcement properties.

An investigation into the effect of sensor density and sensor preci-
sion on the solution to the inverse problem concluded that uninformed
prior estimates for reinforcement properties were indeed improved
upon by utilising in-process data, particularly in the case of permeabil-
ity. As expected, reinforcement properties were recovered with greater
accuracy when using either a higher density of sensors or more precise
sensors.

A method of calculating defect probability was described which
exploits the probabilistic nature of the Bayesian approach used here.
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Fig. 16. Inversion of the circular defect with RT (experiment 4). See Fig. 13 for description.
In each of the virtual experiments, which included central and RT de-
fects (both separately and simultaneously), defective sub-regions were
successfully assigned elevated defect probability, which was naturally
accentuated when using higher sensor densities.

A comparison was made between the full-model EKI algorithm and
the surrogate-accelerated approach. It was shown that each method
provided comparable estimates for reinforcement properties. It is worth
pointing out that the computational resources required by each ap-
proach differ hugely — compared to HPCs, sufficiently powerful GPUs
are more readily available and comparatively inexpensive. Even with
the computational resources of an HPC, full-model EKI takes hours
to perform each inversion. In comparison, surrogate-accelerated EKI
yields similar results in sub-second times.

The significance of the real-time inversion is that it enables the
implementation of active control measures to prevent formation of
irregular flow front shapes and to minimise the probability of void for-
mation in the composite. Aiming at uniform flow velocity fields, local
pressure gradients in the injection tool can be optimised to compensate
for areas of low porosity and permeability in the reinforcement as soon
as they are detected (see e.g. [9,45–47] and references therein). For in-
stance, resin inlets and/or vents can be opened or closed, and pressure
values at inlets/vents can be adjusted to implement interventions while
the resin injection process is running. In addition, the map of local
reinforcement properties obtained for each individual component can
stay with the component (as a digital twin) and inform the following
processing steps as well as the assessment of the mechanical properties.

7. Conclusions

This study demonstrates that reinforcement properties can be es-
timated in real time using in-process data, even when sensors are
distributed sparingly, a claim which is supported by both virtual and
lab experiments. Since computation times were negligible in each case,
surrogate-accelerated EKI enables rapid NDE. Likewise, integration of
this algorithm within active control systems is feasible and warrants
further investigation.
15
It was shown that with a relatively small number 𝑁𝑟 = 85 of
sub-regions, the surrogate, which is ultimately responsible for on-line
estimation, need not be particularly elaborate in order to be effective.
Whilst more sophisticated models can be powerful (particularly, in
the context of more complex fluid flow models or tool geometries),
the uncomplicated nature of this approach benefits from being com-
putationally efficient, highly adaptable to other settings, and does not
necessitate vast expertise in the field of machine learning. It is worth
pointing out that the surrogate is used as a black box in this setting and
can be replaced with a model of any desired complexity. Therefore,
a natural extension of this work is towards estimation of properties
of formed reinforcements in the 3D setting, where a more complex
surrogate model is essential in enabling real-time inversion required
for active control of RTM.
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Appendix A. The EKI algorithm

The ensemble Kalman inversion algorithm shown in Algorithm 1
is the version proposed by Iglesias and Yang [30] (see also [14,27])
combined with a parameterisation of the reinforcement permeability
and porosity to incorporate some constraints. In more detail, each
permeability-porosity pair must be strictly positive. According to the
particular experimental setting, it is further imposed that permeability
and porosity values in central sub-regions lie within [𝐾min, 𝐾max] and
[𝜙min, 𝜙max], respectively. To account for RT effects, the upper bounds
are extended in RT sub-regions to 𝐾RT

max and 𝜙RT
max, respectively.

Even when the prior ensemble {(𝐊(𝑗)
0 ,𝝓

(𝑗)
0 )}𝐽𝑗=1 is designed to satisfy

the above constraints, there is no guarantee that sequence of intermedi-
ate distributions generated by EKI does. To address this, it is common
practice to parameterise the unknown in order to enforce these con-
straints. Here, this parameterisation is represented by  , which links
(𝐊,𝝓) with an intermediate variable 𝜽 = (𝝍 , 𝝃) via (𝐊,𝝓) = (𝜽), which
is defined as describe below.

First, the variable 𝐊 = [𝐾1,… , 𝐾𝑁𝑟 ] is parameterised in terms of an
intermediate (artificial) variable 𝝍 = [𝜓1,… , 𝜓𝑁𝑟 ] as follows:

𝐾𝑖 = 𝐾 (𝜓𝑖) =
⎧

⎪

⎨

⎪

⎩


[

𝜓𝑖, 𝐾max, 𝐾min

]

, 1 ≤ 𝑖 ≤ 81,


[

𝜓𝑖, 𝐾RT
max, 𝐾min

]

, 𝑖 > 81,
(A.1)

where


[

𝜓,𝐴,𝐵
]

= 𝐵 + 𝐴𝑒𝜓
1 + 𝑒𝜓

. (A.2)

The machine learning notation 𝐾 (𝝍) is employed to denote the vector
that results from the evaluation of 𝐾 on each component of 𝝍 .

With an analogous parameterisation 𝝓 = 𝜙(𝝃) for reinforcement
porosity, the sought parameterisation is defined as

(𝐊,𝝓) = (𝜽) =
(

𝐾 (𝝍),𝜙(𝝃)
)

(A.3)

Note that the intermediate variable 𝜽 = (𝝍 , 𝝃) need not have
physical meaning so, unlike (𝐊,𝝓), can be unconstrained without
consequence. The EKI algorithm in Algorithm 1 is therefore performed
on 𝜽, before being transformed to (𝐊,𝝓) via  . Consequently, upon con-
vergence, Algorithm 1 produces an ensemble {𝜽𝑛}𝐽𝑛=1 which are samples
from a Gaussian that approximates the posterior on 𝜽, i.e. P(𝜽|, 𝜇, 𝑝𝐼 , 𝑝0
Thus, the corresponding transformed samples {(𝐊(𝑗)

𝑛 ,𝝓(𝑗)
𝑛 )}𝐽𝑛=1 are aimed

at approximating the posterior P(𝐊,𝝍|, 𝜇, 𝑝 , 𝑝 ).
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𝐼 0
Algorithm 1: The EKI algorithm.
Input : Fixed/known parameters: 𝜇, 𝑝𝐼 , 𝑝0

Forward map  (𝐮)
Measurements: 
Noise covariance matrix: 𝛤
Prior ensemble: {(𝐊(𝑗)

0 ,𝝓
(𝑗)
0 )}𝐽𝑗=1

Output: Posterior ensemble: {(𝐊(𝑗)
𝑛 ,𝝓(𝑗)

𝑛 )}𝐽𝑗=1
Let 𝑀 be the number of measurements. Set 𝑛 = 0 and 𝑠𝑛 = 0.
Transform the initial ensemble: 𝜽(𝑗)0 = −1(𝐊(𝑗)

0 ,𝝓
(𝑗)
0 ) (for

𝑗 ∈ {1,… , 𝐽}).
while 𝑠𝑛 < 1 do

(a) Evaluate  (𝑗)
𝑛 =  (𝐮(𝑗)𝑛 ) for 𝑗 ∈ {1,… , 𝐽}, where

𝐮(𝑗)𝑛 = (𝐊(𝑗)
𝑛 ,𝝓(𝑗)

𝑛 , 𝜇, 𝑝𝐼 , 𝑝0),
and compute:


𝑛 = 1

𝐽−1
∑𝐽
𝑗=1

(

 (𝑗)
𝑛 − ̄𝑛

)(

 (𝑗)
𝑛 − ̄𝑛

)𝑇 ,
where ̄𝑛 =

1
𝐽
∑𝐽
𝑗=1 

(𝑗)
𝑛 .

(b) Calculate 𝛼∗𝑛 = 1
𝑀

1
𝐽
∑𝐽
𝑗=1 ‖𝛤

−1∕2( −  (𝑗)
𝑛 )‖2

(c) if 𝑠𝑛 +
1
𝛼∗𝑛

≥ 1 then
Set 𝛼𝑛 =

1
1−𝑠𝑛

and 𝑠𝑛+1 = 1

else
Set 𝛼𝑛 = 𝛼∗𝑛 and 𝑠𝑛+1 = 𝑠𝑛 +

1
𝛼𝑛

end
(d) Compute:

𝜽𝑛 = 1
𝐽−1

∑𝐽
𝑗=1

(

𝜽𝑛 − �̄�𝑛
)(

 (𝑗)
𝑛 − ̄𝑛

)𝑇 ,
where �̄�𝑛 =

1
𝐽
∑𝐽
𝑗=1 𝜽

(𝑗)
𝑛 .

(e) Sample 𝜂(𝑗) ∼ 𝑁(0, 𝛤 ) and update the ensemble via
𝜽(𝑗)𝑛 → 𝜽(𝑗)𝑛 +𝜽𝑛 (

𝑛 + 𝛼𝑛𝛤 )−1(− (𝑗)
𝑛 + 𝜂(𝑗)), 𝑗 ∈ {1,… , 𝐽}

(f) Transform back: (𝐊(𝑗)
𝑛 ,𝝓(𝑗)

𝑛 ) = (𝜽(𝑗)𝑛 )
(g) Update 𝑛→ 𝑛 + 1

end

Appendix B. Surrogate error statistics

It is assumed that the surrogate error is Gaussian, with 𝜀 ∼ 𝑁(�̄�, 𝛴).
Estimates for �̄� and 𝛴, are computed by finding the mean and covari-
ance of samples from the validation set, {𝐹 (𝑢𝑖) − 𝐹𝑠(𝑢𝑖)}𝑖∈𝑆val . Fig. 17
shows estimates for �̄� and

√

diag(𝛴).

Appendix C. Standard deviations for virtual experiments

The final-time approximations for standard deviation for each of the
four virtual experiments considered in Section 4.2 are shown in Figs. 18
and 19.
Fig. 17. Visualisation of the estimates for �̄� and 𝛴, using the validation set.
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Fig. 18. (Left) true log-permeability log𝐾†(𝐱) for each experiment, (right) ensemble standard deviation estimates for log-permeability using different sensor configurations.
Fig. 19. (Left) true porosity 𝜙†(𝐱) for each experiment, (right) ensemble standard deviation estimates for porosity using different sensor configurations.
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