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1 Introduction

Non-linear realisations and their associated constraints on scattering amplitudes have provided
a very useful way of classifying scalar field effective field theories (EFTs) [1]. Off-shell, non-
linear symmetries constrain the coupling constants of EFTs by sometimes fixing them to
zero, while at other times dictating relations between them. An example of the former is
the Galileon symmetry that forbids a (∂µϕ)4 vertex [2, 3], while an example of the latter
is the scalar DBI theory where the couplings of all (∂µϕ)2n vertices are fixed by the non-
linear realisation of the five-dimensional Poincaré group (see e.g. [4]).1 In fact, scalar EFTs
with linearly realised four-dimensional Poincaré symmetries, a constant shift symmetry, and
additional symmetries that impose relations between coupling constants are rare, and from
this off-shell perspective this can be best understood by classifying the types of algebras that
can be realised, as done in [5, 6]. For scalars there are only two such theories, which are
the aforementioned DBI theory and the special Galileon [7], while for a spin-1/2 fermion
there is only a single one which is the Volkov-Akulov theory [6] (there is a richer structure
if we allow for additional fields and supersymmetry [8]).

All of these properties can also be understood on-shell at the level of scattering amplitudes.
The constant shift symmetry leads to the Adler zero condition that dictates that amplitudes
vanish when one external momentum is sent to zero [9]. Additional symmetries yield enhanced
Adler zeros with the dependence on the coordinates in the symmetry dictating how quickly
the amplitude vanishes: a symmetry of the form δϕ = bµ1...µmx

µ1 . . . xµm + . . . dictates that
An = O(pm+1) [1, 10]. Note that this soft behaviour holds for both field-dependent and

1The primary difference between these two possibilities is whether the non-linear symmetries of ϕ contain
field dependence or not: only with field dependence can a symmetry enforce non-trivial relations between
coupling constants. Indeed, for the above examples the Galileon theory is characterised by invariance under
δϕ = bµxµ, while the DBI theory is characterised by δϕ = bµxµ + bµϕ∂µϕ (there is also a constant shift
symmetry δϕ = a in both cases).
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field-independent symmetries, with the difference residing in how the soft scaling is realised:
in the absence of field dependence each topology contributing to an amplitude satisfies the
enhanced Adler zero, while if there is field dependence then cancellations between different
topologies are required. EFTs can then be classified based on the number of momenta in
the hard amplitude, and the rate at which the soft amplitude vanishes [10]. With linearly
realised four-dimensional Poincaré symmetries this story is well-understood. See [11–18] for
other work where Poincaré invariance is assumed.

Far less is understood when some of the Poincaré symmetries are broken, however. One
very interesting possibility is where the only broken symmetries are Lorentz boosts with
spacetime translations and rotations kept intact thereby allowing us to set-up consistent
scattering problems. This set-up is neatly related to de Sitter space and inflationary cosmology.
For example, such theories arise by taking the decoupling limit and flat-space limit of the EFT
of inflation [19] (see e.g. [20] for a recent discussion). More concretely, such boost-breaking
scattering amplitudes are contained within cosmological correlators (or more precisely within
inflationary wavefunction coefficients) in a particular singular limit. Indeed, (almost) all
wavefunction coefficients, from which cosmological correlators can be derived by simple
algebraic relations (see e.g. [21, 22]), are singular when the sum of the magnitudes of the
external spatial momenta are taken to zero. It is tempting to associated these magnitudes
with energies, but in fact there are no energies or indeed energy conservation in cosmology
due to the breaking of time translations, but if the (analytically continued) momenta are
tuned such that we realise “energy conservation”, we encounter singularities and these are
usually poles if we consider tree-level correlators of the Goldstone boson in the EFT of
inflation. On these poles we recover boost-breaking amplitudes, with the relation between
wavefunction coefficients and amplitudes given by [23–25]

lim
kT →0

ψn = (normalisation factors) × An

kp
T

, (1.1)

where ψn is an inflationary wavefunction coefficient, An is a flat-space scattering amplitude,
and we write the magnitudes as ka with kT = ∑n

a=1 ka being the “total energy”. The order of
the pole is fixed by the number of derivatives in the theory [26]. If the wavefunction coefficients
are really inflationary i.e. they arise from theories with broken de Sitter boosts, the resulting
amplitudes are of the boost-breaking type we described above, and which were studied
extensively in [25]. If de Sitter boosts are unbroken, then the corresponding amplitudes
are Lorentz invariant. This relationship between cosmology and flat-space amplitudes has
played an important role in the cosmological bootstrap, see [27–29] for reviews, and [30–
33] for examples of where scattering amplitudes have been used as input data for such a
bootstrap procedure.

In our quest to understand non-linearly realised symmetries in cosmology and how they
affect wavefunction coefficients and cosmological correlators, we are therefore motivated to
fully understand boost-breaking amplitudes and how they encode the details of non-linear
realisations. A number of interesting works have already been dedicated to understanding
non-linear symmetries in the absence of linearly realised Poincaré symmetries: non-linear
realisations in exact de Sitter space have been studied in [34–36], algebraic classifications have
been performed in [37, 38], the effects of symmetries on wavefunction coefficients in flat-space
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have been studied in [39], non-linear realisations and unequal time correlation functions were
studied in [40], while soft theorems for boost-breaking amplitudes were studied in [20, 41].
Fermions with shift symmetries in de Sitter have also been studied in [42]. So, what are we
aiming to add to the discussion? Our primary interest is a toy set-up where the non-linear
symmetries are of the Abelian-type i.e. without any field dependence (although our soft
theorems will hold more generally). This is a toy set-up since we know that non-linear boosts
necessarily come with field dependence due to the non-Abelian nature of the commutators of
Lorentz boosts, but as we will see this set-up is rich enough to yield interesting structures.
Within this set-up, we derive soft theorems that the corresponding boost-breaking amplitudes
must satisfy, and we allow for symmetries that treat space and time separately. We want
the solutions to our soft theorems to capture two important properties that are easy to
understand off-shell i.e. at the level of the symmetry algebra or at the level of the Lagrangian,
but are non-trivial on-shell:

• Tower structure: at the level of the symmetry algebra, the presence of linearly realised
space-time translations dictates a tower structure where certain symmetries at some
order in the space-time coordinates can only be realised in addition to lower-order
symmetries. If we have a symmetry of the schematic form δπ ∼ tLxM , then closure
of the algebra requires all symmetries of the form δπ ∼ tlxm with l = 0, . . . , L and
m = 0, . . . ,M . Decreasing the power of t comes from acting with time translations,
while decreasing the power of x comes from acting with spatial translations. We would
like our soft theorems to impose this tower structure.

• Invariance of the free theory: a necessary condition for invariance of some theory
under the Abelian-type symmetries we are considering is invariance of the free theory
(since operators with different powers of π cannot cancel with each other).2 In this
paper we are considering a single scalar field so without loss of generality we can take
its free theory to be the usual two-derivative Lorentz invariant one since any speed of
sound can be fixed to unity by rescaling the spatial coordinates. We therefore have
L2 = 1

2 π̇
2 − 1

2(∂iπ)2. Demanding invariance of the π̇2 part restricts us to consider
symmetries that are at most linear in the time coordinate, while invariance of the (∂iπ)2

part requires the symmetry parameters to be traceless. We would like our soft theorems
to impose that the symmetry parameters are traceless. Furthermore, we would like the
soft theorem to be sensitive to the possibility of traceless symmetry parameters even for
contact diagram contributions to scattering amplitudes since even there the amplitude
itself is sensitive to the on-shell conditions that we will impose.

As we will see, although we are asking quite simple questions within a toy set-up, we find
that the results are quite subtle and lead to interesting structures. We are able to find our
desired tower structure by carefully dealing with derivatives acting on the delta functions
that impose energy and momentum conservation, and we find that non-trivial solutions to
our soft theorems impose traceless conditions on the symmetry parameters, even at the
level of four-point contact diagrams.

2We will use π for the fluctuation around the symmetry breaking vev to match with the inflationary
literature.
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One very important difference between the Lorentz-invariant and boost-breaking set-ups
is that a constant shift symmetry (which we will assume throughout) within the former set-up
does not permit non-trivial cubic vertices i.e. the on-shell three-point amplitude vanishes.
This ensures that we don’t encounter any poles in the soft limit of n-point amplitudes. With
broken boosts, however, non-zero on-shell three-point amplitudes are certainly allowed even
in the presence of a shift symmetry. A simple example is A3 = E1E2(E1 + E2) which comes
from a π̇3 vertex. This causes complications when deriving soft theorems but this problem
was tackled in [20, 41] where the consequences of the cubic vertex have to be subtracted
using knowledge of the corresponding off-shell vertex. In this paper we will impose a π → −π
symmetry such that we don’t have the additional complications of cubic vertices. We already
encounter a number of subtleties associated with energy and momentum-conserving delta
functions and we don’t want to muddy the waters by further adding subtleties associated
with cubic vertices. In practice, the restriction we will impose is that the symmetry current
we will use to derive a soft theorem does not contain terms that are quadratic in π. This
would of course occur if there were cubic vertices but could also arise from field dependence
in the symmetry transformation. In this sense our soft theorems also hold for non-Abelian
algebras (field-dependent symmetries) as long as there are no quadratic terms in the current
i.e. as long as the π → −π symmetry is respected. In an upcoming paper we will drop
this assumption [43].

We begin our soft theorem derivation in section 2 where we use current conservation and
the LSZ reduction formula to analyse the effects of symmetries on on-shell amplitudes. We
pay particular care to the ever-present delta functions that impose energy and momentum
conservation and find that they are crucial in realising our desired tower structure, but
also introduce a neat structure in our soft theorems. Our soft theorems do not contain any
ambiguity in how they should be understood when acting on on-shell amplitudes: our soft
theorems require one to take derivatives with respect to spatial momenta of combinations of
on-shell amplitudes (with energy and momentum conservation imposed) followed by taking
a soft limit. The order of first writing amplitudes in terms of a minimal basis, which we
detail below, taking derivatives and then taking the soft limit is clear from our derivation.
In all cases, even when the symmetries depend on time, our soft theorems only ever require
one to take derivatives of on-shell amplitudes with respect to spatial momenta, as opposed
to with respect to energies. In this section we also present the general solutions to our soft
theorems in terms of soft amplitudes, and show that we recover known Lorentz-invariant
results. In section 3 we put our solutions to the test by performing a soft bootstrap procedure
whereby we construct non-soft amplitudes that yield the desired soft amplitude solutions. We
then compare these results with what we would expect from an off-shell Lagrangian analysis
with the help of the coset construction with details given in appendix A. We find agreement
between the two methods. We conclude and discuss possible future directions in section 4.

Summary of results. Before diving into our soft theorem derivation, let us summarise
our main results here for the benefit of the reader. We have two sets of soft theorems:
one for symmetries that only depend on the spatial coordinates i.e. δπ = bi1...inx

i1 . . . xin
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ÃEp =
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· · ·
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pr+1
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p1

, Ã−Ep =

· · ·

· · ·

p′
pr+1

pr

pn

p1

Figure 1. On the l.h.s. we have the graphical representation of an (n+ 1)-point amplitude ÃEp
with

n hard momenta denoted by p1 to pn and one soft momentum denoted by p = (Ep, p⃗). The tildes
indicate that energy and momentum conservation have been imposed. The figure on the r.h.s. is a
graphical representation of Ã−Ep which is the same amplitude but with the energy of the soft leg
flipped i.e. p′ = (−Ep, p⃗). All hard momenta are identical to those in ÃEp

.

which take the form

bi1...in lim
p⃗→0

{
∂pi1

. . . ∂pik

[
ÃEp + Ã−Ep

]}
= 0 , k = 0, 1, 2, . . . , n , (1.2)

bi1...in lim
p⃗→0

{
∂pi1

. . . ∂pik

[(
ÃEp − Ã−Ep

)
Ep

]}
= 0 , k = 0, 1, 2, . . . , n , (1.3)

and another set for symmetries that depend linearly on the time coordinate i.e. δπ =
ci1...intx

i1 . . . xin which take the form

ci1...in lim
p⃗→0

{
∂pi1

. . . ∂pik

[
ÃEp + Ã−Ep

]}
= 0 , k = 0, 1, 2, . . . , n , (1.4)

ci1...in lim
p⃗→0

{
∂pi1

. . . ∂pik

[
ÃEp − Ã−Ep

Ep

]}
= 0 , k = 0, 1, 2, . . . , n . (1.5)

In these expressions a tilde represents that energy and momentum conservation have been
imposed such that ÃEp is the on-shell amplitude with all conditions imposed and without
the delta functions, while Ã−Ep is the same function but with Ep → −Ep, where Ep is the
energy associated with the momentum that we take soft. These amplitudes are shown in
figure 1. We will usually take this soft momentum to be pµ

1 so in the above expressions we
have pµ ≡ pµ

1 . We note that for a given n, any soft amplitudes that solve (1.5), automatically
solve (1.3) with the same n, which is precisely what is required by the tower structure given
that the corresponding symmetries are related by a time translation.

Minimal basis. When computing scattering amplitudes we will work in the minimal basis
where all on-shell conditions and energy and momentum conservation have been taken into
account. Here we outline this minimal basis and refer the reader to [41] for more details.
We take all particles as incoming for simplicity. For an n-point amplitude, the on-shell
external four-momenta are

pµ
a = (Ea, p⃗a) for 1 ≤ a ≤ n , (1.6)

– 5 –



J
H
E
P
0
7
(
2
0
2
4
)
0
1
1

where Ea ≡ |p⃗a| such that p2
a = 0. Since we are interested in scattering processes that are

constrained by SO(3) symmetry, there are in principle n(n+1)
2 invariant building blocks:

Ea for 1 ≤ a ≤ n , (1.7)
p⃗b · p⃗c for 1 ≤ b < c ≤ n . (1.8)

To impose energy and momentum conservation, we eliminate p⃗n and En by

p⃗n = −
n−1∑
a=1

p⃗a , (1.9)

En = −
n−1∑
a=1

Ea . (1.10)

In terms of the invariant building blocks, these constraints can be used to eliminate En,
and p⃗a · p⃗n with a ̸= n. Moreover, the fact that pn is on-shell allows us to eliminate one
further building block using (

n−1∑
a=1

Ea

)2

=
(

n−1∑
a=1

p⃗a

)2

. (1.11)

We use this constraint to eliminate p⃗n−2 · p⃗n−1. We have now imposed all conditions and are
left with the following invariant building blocks which form the minimal basis:

Ea for 1 ≤ a ≤ n− 1 , (1.12)
p⃗b · p⃗c for 1 ≤ b < c ≤ n− 2 and 1 ≤ b ≤ n− 3, c = n− 1 . (1.13)

There are a total of n(n−1)
2 − 1 such building blocks. As an example, for n = 3 the minimal

basis is simply

{E1, E2} , (1.14)

while for n = 4 we have

{E1, E2, E3, p⃗1 · p⃗2, p⃗1 · p⃗3} . (1.15)

In this case, p⃗2 · p⃗3 has been eliminated using the on-shell condition for p⃗4 which fixes
p⃗2 · p⃗3 = E2E3 + E1E2 + E1E3 − p⃗1 · p⃗2 − p⃗1 · p⃗3.

2 Soft theorems and solutions

We begin our derivation with the Ward-Takahashi identity relating correlation functions arising
from a Lagrangian with a global symmetry π(x) → π(x) + ϵδπ(x), and Noether current Jµ(x):

∂µ ⟨0|T {Jµ(x)π(x1) . . . π(xn)}|0⟩ = −i
n∑

a=1
δ(4)(x− xa) ⟨0|T {π(x1) . . . δπ(xa) . . . π(xn)}|0⟩ ,

(2.1)

– 6 –
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where ∂µ acts on coordinates xµ, T represents the usual time-ordering, and we have expanded
to linear order in ϵ. Our aim is to derive conditions that on-shell amplitudes satisfy as a
consequence of the presence of such a global symmetry, so we use the LSZ reduction formula
on (2.1). As we explained in the introduction, our aim in this work is to derive the soft
theorems associated with field-independent symmetry transformations (and therefore with
Abelian structures for the commutators between broken generators) for which δπ(x) is a
function of the coordinates only. In more familiar Lorentz-invariant cases, this restriction
would capture Galileon field theories, but not DBI ones (see e.g [5, 6]). With this restriction,
the r.h.s. of (2.1) does not generate any poles in the variables associated with the Fourier
transform of the coordinates xa, and therefore there will be no contribution from the r.h.s. once
we apply the LSZ reduction. Indeed, the LSZ reduction formula takes an n-point correlator,
Fourier transforms in each coordinate and puts all momenta on-shell. The coefficient of the
most singular part of the result is an S-matrix element with r particles in the out state and
n − r particles in the in state.3 We therefore concentrate of the l.h.s. of (2.1) from now
on, and will express the LSZ operation as

r∏
a=1

n∏
b=r+1

LSZa+LSZb− [f(π(xa), π(xb))] (2.2)

≡
r∏

a=1

n∏
b=r+1

lim
p0

a→Ea

lim
p0

b
→Eb

∫
xa

∫
xb

eipa·xa e−ipb·xbp2
ap

2
b f(π(xa), π(xb)) ,

where pµ
a = (p0

a, p⃗a) denotes the four-momentum of particle a, p2
a = ηµνp

µ
ap

ν
a, pa ·xa = ηµνp

µ
ax

ν
a,∫

xa
≡
∫
d4xa and Ea ≡ |p⃗a|. To analyse this operation on the l.h.s. of (2.1), we split the

time integrals into three regions:

Far-past Region : t < T− (2.3)
Intermediate Region : T− ≤ t ≤ T+ (2.4)

Far-future Region : t > T+ (2.5)

where T− and T+ are respectively the early and late time slices which before and after the
particles are asymptotically free. Singularities associated with one-particle states can only
arise from the regions where t < T− and t > T+, and so for all time integrals we can ignore
the intermediate regions where T− ≤ t ≤ T+. Since we take the energies to be positive such
that the on-shell conditions are enforced by p0 → Ep rather than p0 → −Ep, poles associated
with particles in the out state only come from the t > T+ region, while poles associated
with particles in the in state only come from the t < T− region. We can therefore work with
the following more compact form of the LSZ operation:

r∏
a=1

n∏
b=r+1

LSZa+LSZb− [f(π(xa), π(xb))] (2.6)

≡
r∏

a=1

n∏
b=r+1

lim
p0

a→Ea

lim
p0

b
→Eb

∫
ta>T +

∫
x⃗a

∫
tb<T −

∫
x⃗b

eipa·xa e−ipb·xbp2
ap

2
b f(π(xa), π(xb)) .

3If we have field dependence in δπ then one can still argue that the r.h.s. gives a vanishing contribution
since the pole associated with the δπ insertion does not correspond to a single external momentum going
on-shell. The vanishing of the r.h.s. requires one to take the on-shell limit prior to the soft limit, see e.g. [44].
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The Ward-Takahashi identity then becomes
r∏

a=1

n∏
b=r+1

LSZa+LSZb− ⟨0|π(x1)π(x2) . . . π(xr)∂µJ
µ(x)π(xr+1)π(xr+2) . . . π(xn)|0⟩ = 0 .

(2.7)
Note that we have not Fourier transformed the current contribution. To proceed we need
to specify a form for the current which always satisfies

∂µJ
µ(x) = δπ□π + O(π3) , (2.8)

thanks to our freedom to take the kinetic term to be Lorentz invariant, and since we impose
a π → −π symmetry.

Constant shift symmetry (δπ = a). Initially, consider the simplest case of a constant
shift symmetry δπ = a in addition to π → −π. We then have

∂µJ
µ(x) = a□π + O(π3). (2.9)

If we plug this expression into (2.7), Fourier transform, and take the momentum associated
with x to zero, we have

lim
q→0

∫
x
q2eiq·x

r∏
a=1

n∏
b=r+1

LSZa+LSZb− ⟨0|π(x1) . . . π(xr)π(x)π(xr+1) . . . π(xn)|0⟩

 = 0 .

(2.10)
Taking qµ → 0 has allowed us to drop all non-linear terms in (2.10) since they are sub-dominant
in this soft limit [44]. Note that at this stage qµ is not on-shell; this expression is more
general. However, we can go on-shell without spoiling this condition in which case we have

lim
q→0

LSZx+

r∏
a=1

n∏
b=r+1

LSZa+LSZb− ⟨0|π(x1) . . . π(xr)π(x)π(xr+1) . . . π(xn)|0⟩

 = 0 , (2.11)

where to go on-shell we have set q0 → Eq. Since the LSZ reduction has now been applied to
all π’s in the correlator, we can write this as a constraint on the (n+ 1)-point amplitude:

lim
q→0

An+1(q⃗, {p⃗a}, {p⃗b})δ

Eq +
r∑

a=1
Ea −

n∑
b=r+1

Eb

 δ(3)

q⃗ +
r∑

a=1
p⃗a −

n∑
b=r+1

p⃗b

 = 0 ,

(2.12)
where {p⃗b} and {p⃗a} collectively denote the momenta of in and out states respectively. This
is the usual Adler zero condition that states that on-shell amplitudes, with energy and
momentum conservation imposed, vanish in the soft limit if there is an underlying constant
shift symmetry. Note that this derivation did not assume Lorentz invariance of the interactions
so the Adler zero holds for boost-breaking amplitudes too.

To arrive at a condition on the fully on-shell amplitude, we put qµ on-shell by hand
since the condition we derived was valid for all qµ. If the Ward-Takahashi identity involves
derivatives, however, which will be the case when the symmetry transformation has explicit
dependence on the coordinates, we cannot simply put qµ on-shell by hand since “going

– 8 –
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on-shell” does not commute with taking the derivative. Let us therefore see how we can still
extract the Adler zero condition without explicitly going on-shell. As we did for the LSZ
reduction, we again split the time integral in

∫
x into three regions:∫

x
eiq·xq2 =

∫
x⃗

[∫
t>T +

eiq·xq2 +
∫

T −≤t≤T +
eiq·xq2 +

∫
t<T −

eiq·xq2
]
, (2.13)

such that (2.10) becomes

lim
q→0

[∫
x⃗

(
G+ +G0 +G−

)]
= 0 , (2.14)

where

G+ =
∫

t>T +
q2eiq·x

r∏
a=1

n∏
b=r+1

LSZa+LSZb−⟨0|π(x1)...π(xr)π(x)π(xr+1)...π(xn)|0⟩ , (2.15)

G0 =
∫

T −≤t≤T +
q2eiq·x

r∏
a=1

n∏
b=r+1

LSZa+LSZb−⟨0|π(x1)...π(xr)π(x)π(xr+1)...π(xn)|0⟩ , (2.16)

G−=
∫

t<T −
q2eiq·x

r∏
a=1

n∏
b=r+1

LSZa+LSZb−⟨0|π(x1)...π(xr)π(x)π(xr+1)...π(xn)|0⟩ , (2.17)

and we have adopted the notation of [45]. The computation of each mirrors that of the LSZ
reduction procedure: we insert a complete set of states and perform the various momentum
and coordinate integrals. Note that we insert on-shell states even within the intermediate
region. For the far-past and far-future regions, all wave packets are well separated, hence each
particle can safely be put on-shell. For the intermediate region, the only contribution comes
from the soft mode since contributions from hard modes are projected out by multiplying
by p2

a, sending p2
a → 0, and noting that there are no singular contributions that can cancel

and yield a finite result. For this reason we can take T+ → T− = T without affecting the
result. The contributions from G+ and G− contain poles as q0 → ±Eq which are cancelled
by the overall factor of q2 in each term. We then have4

lim
q→0

[
q0 + Eq

2Eq
ei(q0−Eq)T ⟨α, q|β⟩ + −q0 + Eq

2Eq
ei(q0+Eq)T ⟨α, q′|β⟩

]
= 0 , (2.18)

where ⟨α, q|β⟩ = ⟨p⃗1p⃗2 . . . p⃗r q⃗|p⃗r+1p⃗r+2 . . . p⃗n⟩ with all |p⃗c⟩ and |q⃗⟩ being on-shell states whose
energies are Ec and Eq respectively. ⟨α, q′|β⟩ is related to ⟨α, q|β⟩ by flipping the sign of
Eq, with the former coming from G− and the latter from G+. As an example of this energy
flipping, consider the quartic interaction g

4! π̇
4. We have (taking all particles as incoming)

Ãπ̇4
E1 = −gE1E2E3(E1 + E2 + E3) , (2.19)

and therefore

Ãπ̇4
−E1 = gE1E2E3(−E1 + E2 + E3) . (2.20)

4In practice we inserted the one-particle completeness relation, however in principle multi-particle states
should also be considered. We drop multi-particle states since they are formally separated, namely their
contributions to scattering process are completely different (the delta function structures are different, regardless
of the soft momentum, for example).
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These two expressions only differ at linear order in E1 (and of course more generally such
expressions will only differ at odd orders in E1). Here we have introduced the notation
that Ã is the amplitude with energy and momentum conservation imposed and with the
corresponding delta functions stripped off. More generally, we compute Ã−E1 by going to
the minimal basis outlined in the introduction, followed by flipping the sign of the indicated
energy once all on-shell conditions and energy and momentum conservation have been applied.

Again the delta functions that impose energy and momentum conservation are going to
play an important role in what follows so let’s write them out explicitly. From (2.18) we have

lim
q→0

{[
q0+Eq

2Eq
ei(q0−Eq)TAEqδ(Eq +p0)+−q0+Eq

2Eq
ei(q0+Eq)TA−Eqδ(−Eq +p0)

]
δ(3)(q⃗+p⃗)

}
=0,

(2.21)
where we have defined a new four-vector pµ with components

p0 =
r∑

a=1
Ea −

n∑
b=r+1

Eb , (2.22)

p⃗ =
r∑

a=1
p⃗a −

n∑
b=r+1

p⃗b . (2.23)

We have suppressed the arguments of A which are simply the on-shell kinematics, but have
used the energy subscript to indicate if the energy associated with the momentum which
we will ultimately take soft should be flipped or not. We can now use the presence of the
overall delta function δ(3)(q⃗+ p⃗) to eliminate the q⃗ dependence in the square brackets followed
by taking the soft limit. This yields[

ÃEpδ(Ep + p0) + Ã−Epδ(−Ep + p0)
]
eip0T δ(3)(p⃗) = 0 . (2.24)

We have added the tildes even though we still explicitly have the energy-conserving delta
functions to emphasise that momentum conservation has been taken care of. We can now treat
p⃗ as an independent variable by e.g. eliminating p⃗n such that the (n+1)-point amplitude with
momentum conservation imposed is a function of the following three-momenta: p⃗, p⃗1, . . . p⃗n−1.5
The delta function is then telling us to take the soft limit thereby resulting in

lim
p⃗→0

{
ÃEp + Ã−Ep

}
= 0 . (2.25)

This recovers the Adler zero condition we derived above: any amplitude which is zeroth
order in the soft momentum is ruled out by both (2.12) and (2.25). Note that we are taking
the spatial momentum to zero, but since this acts on the on-shell amplitude, the energy
is also taken to zero.

Linear in xi symmetry (δπ = bix
i). Let us now turn our attention back to symmetries

that depend on the coordinates, and begin our discussion with the δπ = bix
i symmetry where

∂µJ
µ(x) = bix

i□π + O(π3) . (2.26)
5Bose symmetry ensures that this change of variables is consistent and yields a soft theorem that acts on

the same amplitude that appears in all previous expressions.
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A number of the steps we went through above are very similar here so let’s jump to the
analog of (2.21) which takes the form:

lim
q→0

∂qi

{[
q0+Eq

2Eq
ei(q0−Eq)TAEqδ(Eq+p0)+−q0+Eq

2Eq
ei(q0+Eq)TA−Eqδ(−Eq+p0)

]
δ(3)(q⃗+p⃗)

}
=0,

(2.27)
where the derivative acts on the full bracket, including the delta functions. Using the delta
function for spatial momentum conservation we can then write

lim
q→0

{[
q0+Ep

2Ep
ei(q0−Ep)TAEpδ(Ep+p0)+−q0+Ep

2Ep
ei(q0+Ep)TA−Epδ(−Ep+p0)

]
∂piδ

(3)(q⃗+p⃗)
}

=0,

(2.28)
followed by taking the soft limit to yield[

ÃEpδ(Ep + p0) + Ã−Epδ(−Ep + p0)
]
eip0T∂piδ

(3)(p⃗) = 0 . (2.29)

Again, we have included the tildes to indicate that momentum conservation has been imposed.
This structure is now reminiscent of what one finds in the Lorentz-invariant case, see e.g. [10]
(in the sense that we have an amplitude multiplied a derivative acting on a delta function).
Using properties of the delta function, we then have two conditions given by

lim
p⃗→0

{
ÃEp + Ã−Ep

}
= 0 , (2.30)

lim
p⃗→0

{
∂pi

[
ÃEpe

ip0T δ(Ep + p0) + Ã−Epe
ip0T δ(−Ep + p0)

]}
= 0 . (2.31)

The first of these is simply the Adler zero condition we found before, cf. (2.25). It is comforting
that we found this condition since the presence of a δπ = bix

i symmetry requires the presence
of a δπ = a symmetry for the symmetry algebra to close. The relevant commutator is

[Pi, Bj ] = δijA , (2.32)

where Bi and A generate the above symmetries with parameters bi and a. We see that it
is the commutator with spatial translations that is important to see the necessity of the
constant shift symmetry, and in our soft theorem derivation we see that it is the spatial
derivative acting on the delta function of spatial momentum conservation, that itself is a
consequence of invariance under spatial translations, that gives rise to multiple constraints
with one of these being the Adler zero. We therefore see a nice connection between the
algebra and the soft theorem, and the role of spatial translations. A complete soft theorem
should indeed capture this tower structure.

Let’s now study the other condition we found which is given by (2.31). As before, we
treat the independent three-momenta as p⃗, p⃗1, . . . p⃗n−1 which means that the derivative with
respect to p⃗ acts on both Ep and p0. The fact that it acts on Ep is obvious since Ep = |p⃗|,
while the fact that it acts on p0 follows from

p0 =
r∑

a=1
Ea −

n−1∑
b=r+1

Eb− |
r∑

a=1
p⃗a −

n−1∑
b=r+1

p⃗b − p⃗ | . (2.33)
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To proceed, we Taylor expand the delta functions of energy conservation around p⃗ = 0:

δ(±Ep + p0) = δ(p̄0) ± Epδ
′(p̄0) + O(p⃗ · p⃗c) + O(E2

p) , (2.34)

where

p̄0 =
r∑

a=1
Ea −

n−1∑
b=r+1

Eb− |
r∑

a=1
p⃗a −

n−1∑
b=r+1

p⃗b | , (2.35)

and p⃗ · p⃗c denotes a general dot product between p⃗ and any of the other momenta. For
now we concentrate on the first two terms in these Taylor expansions, then discuss the
corrections. In this case (2.31) becomes

lim
p⃗→0

{
∂pi

[
ÃEp + Ã−Ep

]}
δ(p̄0)eip̄0T

+ lim
p⃗→0

{
ÃEp + Ã−Ep

}
δ(p̄0) lim

p⃗→0
∂pie

ip0T

+ lim
p⃗→0

{
∂pi

[(
ÃEp − Ã−Ep

)
Ep

]}
δ′(p̄0)eip̄0T = 0 . (2.36)

The middle line vanishes by the leading Adler zero cf. (2.30), and so we are left with two
conditions:

lim
p⃗→0

{
∂pi

[
ÃEp + Ã−Ep

]}
= 0 , (2.37)

lim
p⃗→0

{
∂pi

[(
ÃEp − Ã−Ep

)
Ep

]}
= 0 . (2.38)

The higher-order contributions from expanding the delta functions are of the form

lim
p⃗→0

{
∂pi

[(
ÃEp + Ã−Ep

)
E2n

p (p⃗ · p⃗c)m
]}

× delta structure , (2.39)

lim
p⃗→0

{
∂pi

[(
ÃEp − Ã−Ep

)
E2n+1

p (p⃗ · p⃗c)m
]}

× delta structure , (2.40)

which vanish thanks to (2.37) and (2.38), and the Adler zero, and so these two conditions
(along with the Adler zero) are necessary and sufficient to satisfy (2.31).

General purely-spatial symmetry (δπ = bi1...inxi1 . . . xin). The derivation for the more
general symmetry that depends on the spatial coordinates only is very similar to what we
just went through above. We arrive at (2.29) but now with n derivatives with respect to the
spatial momenta acting on the momentum-conserving delta function. Being careful with these
derivatives and the energy-conserving delta functions yields a system of constraints of the form:

bi1...in lim
p⃗→0

{
∂pi1

. . . ∂pik

[
ÃEp + Ã−Ep

]}
= 0 , k = 0, 1, 2, . . . , n , (2.41)

bi1...in lim
p⃗→0

{
∂pi1

. . . ∂pik

[(
ÃEp − Ã−Ep

)
Ep

]}
= 0 , k = 0, 1, 2, . . . , n . (2.42)

Here we explicitly include the symmetry parameters since for n ≥ 2 they can be traceless
and therefore play an important role. Note that the k = 0 and k = 1 conditions of (2.42)
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are trivial. We see that these conditions form a very neat tower structure, as desired. After
discussing symmetries that depend on time, we will discuss the general solutions to these
soft theorems, and present some examples.

Linear-in-time symmetry (δπ = ct). We now turn our attention to symmetries that
depend on time and start with the simplest time-dependent symmetry where there is no
dependence on the spatial coordinates. We will then include additional powers of x. Note
that at this stage we don’t consider symmetries of this type that are non-linear in t since
these can never be a symmetry of the free theory (unless we are in the Lorentz-invariant limit
which we will discuss later), as we discussed in the introduction. The analog of (2.21) is now

lim
q→0

{
∂q0

[
q0+Eq

2Eq
ei(q0−Eq)TAEqδ(Eq+p0)+−q0+Eq

2Eq
ei(q0+Eq)TA−Eqδ(−Eq+p0)

]
δ3(q⃗+p⃗)

}
=0,

(2.43)
and by using the delta functions and taking the derivative we find

lim
p⃗→0

{ÃEp − Ã−Ep

Ep
+ iT (ÃEp + Ã−Ep)

}
= 0 . (2.44)

We want this condition to hold for all T so we actually have two conditions with the first
being the Adler zero and the second a new condition:

lim
p⃗→0

{
ÃEp + Ã−Ep

}
= 0 , (2.45)

lim
p⃗→0

{ÃEp − Ã−Ep

Ep

}
= 0 . (2.46)

Again, it is comforting that we recover the Adler zero condition since it is a necessary condition
for the closure of the algebra with the relevant commutator being

[P0, C] = A , (2.47)

where C is the generator of the δπ = ct symmetry and A is, as before, the generator of
the δπ = a symmetry. Here the tower structure arises from derivatives with respect to q0

acting on the exponential factor.

General linear-in-time symmetry (δπ = ci1...intxi1 . . . xin). We now allow for de-
pendence on the spatial coordinate too. The derivation here is very similar to what we
have encountered above, but now with derivatives with respect to the spatial momentum
acting on the momentum-conserving delta function. By taking care with derivatives and
delta functions we find

ci1...in lim
p⃗→0

{
∂pi1

. . . ∂pik

[
ÃEp + Ã−Ep

]}
= 0 , k = 0, 1, 2, . . . , n , (2.48)

ci1...in lim
p⃗→0

{
∂pi1

. . . ∂pik

[
ÃEp − Ã−Ep

Ep

]}
= 0 , k = 0, 1, 2, . . . , n , (2.49)

as the final form of the linear-in-time soft theorems. We note that any solutions to this
system also solve the general spatial soft theorems for the same n. Indeed, (2.49) are
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Figure 2. These figures depict the solutions to the purely-spatial soft theorems, (2.41) and (2.42),
for which the symmetry parameter is traceful i.e. δi1i2bi1i2...in

̸= 0. The l.h.s. solutions correspond to
even n, while the r.h.s. correspond to odd n.

stronger constraints than (2.42). This is precisely our desired tower structure given that the
corresponding symmetries are related by a time translation. We also note that structure of
the amplitudes in (2.49), namely (ÃEp −Ã−Ep)/Ep, is reminiscent of the shifted wavefunction
coefficient used to derive soft theorems for flat-space wavefunction coefficients in [39].

2.1 Solutions to purely-spatial soft theorems (δπ = bi1...inxi1 . . . xin)

Let’s now consider solutions to these conditions, initially concentrating on the time-
independent symmetries with conditions (2.41) and (2.42). We discuss solutions in terms of
the soft amplitudes and note that finding hard on-shell amplitudes that are Bose symmetric
and reduce to these soft amplitude solutions is still a non-trivial task which we tackle in
section 3. The solutions split into two sets depending on whether the symmetry parameter
is traceless or not. If it is traceful, then the (2.42) conditions require the amplitudes to be
even in the soft energy, or of the form Ã = O(pn

1 ) if they are odd in the soft energy. The
conditions (2.41) then permit the terms that are odd in the soft energy, but those even in the
soft energy must be of the form Ã = O(pn+1

1 ). These solutions are shown in figure 2, where
the solutions are expressed in terms of the minimal basis such that the dependence on the
soft four-momentum only enters via its energy E1 and contractions with other hard momenta
p⃗1 · p⃗c where here a = 2, . . . n − 1. As we discussed in the introduction, invariance of the
free theory requires this symmetry parameter to be traceless, unless we are interested in the
Lorentz-invariant case where this parameter needs to contain a trace which then combines
with symmetries that are non-linear in time to realise invariance of the free theory. We
consider these solutions such that we can discuss the Lorentz-invariant limit below. If the
symmetry parameter is traceless then additional solutions are allowed. The conditions (2.42)
now admit all soft amplitudes since any amplitude that is even in the soft energy trivially
cancels within the round brackets, while those odd in the soft energy survive in the round
brackets but then become even in the soft energy when multiplied by Ep and such terms are
always allowed if the parameter is traceless since taking the derivatives and soft limit will
always yield at least one copy of δij in every non-trivial term. The conditions (2.41) then
trivially allow all terms that are odd in the soft energy, while terms that are even in the soft
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Figure 3. This figure depicts the solutions to the purely-spatial soft theorems, (2.41) and (2.42), for
which the symmetry parameter is traceless i.e. δi1i2bi1i2...in

= 0. These solutions are valid for both
even and odd n.
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Figure 4. These figures depict the solutions to the linear-in-time soft theorems, (2.48) and (2.49),
for which the symmetry parameter is traceful i.e. δi1i2ci1i2...in ̸= 0. The l.h.s. solutions correspond to
even n, while the r.h.s. ones correspond to odd n.

energy are allowed thanks to the traceless condition as long as they are not zeroth order.
Terms that are zeroth order must be of the form Ã = O(pn+1

1 ). These solutions are shown in
figure 3. We see how terms that are energy dependent pass the soft theorems with ease. This
makes sense from a Lagrangian point of view since they arise from time derivatives which
are trivially invariant under the purely-spatial symmetries.

2.2 Solutions to linear-in-time soft theorems (δπ = ci1...intxi1 . . . xin)

We now consider solutions to the soft theorems given in (2.48) and (2.49). Again we consider
the two cases where the symmetry parameter is traceful or traceless. If it is traceful, then all
O(pn+2) solutions are allowed, as are O(pn+1) ones if they are even in the soft energy. These
solutions are shown in figure 4. If the symmetry parameter is traceless then the solution
set is larger and is shown in figure 5.
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Figure 5. This figure depicts solutions to the linear-in-time soft theorems, (2.48) and (2.49), for
which the symmetry parameter is traceless i.e. δi1i1ci1i2...in

= 0. These solutions are valid for both
even and odd n.

2.3 Lorentz-invariant limit (δπ = dµ1...µnxµ1 . . . xµn)

Before discussing these solutions in more detail and providing some examples, let’s see how
we can recover the known Lorentz-invariant results derived in [1, 10] where the symmetry
δπ = dµ1...µnx

µ1 . . . xµn requires amplitudes to scale as Ã = O(pn+1). Here we are assuming
that the amplitude is Lorentz invariant and so is a function of Lorentz-invariant contractions
(pa · pb = ηµνp

µ
ap

ν
b ). To recover this result we need to combine the solutions for the purely-

spatial symmetries, the solutions for the linear-in-time symmetries, but also include a new
set of solutions corresponding to symmetries that are non-linear in time. In each case
we need the symmetry parameters to contain the trace since invariance of the free theory
now dictates ηµ1µ2dµ1µ2µ3...µn = 0. Our first task is therefore to derive the soft theorems
corresponding to symmetries that are non-linear in time. First consider the δπ = eit

2xi

symmetry where the analog of (2.21) is

lim
q→0

{
∂2

q0

[
q0+Ep

2Ep
ei(q0−Ep)TAEpδ(Ep+p0)+−q0+Ep

2Ep
ei(q0+Ep)TA−Epδ(−Ep+p0)

]
∂piδ

3(q⃗+p⃗)
}

=0.

(2.50)
By computing the derivatives and taking the soft limit, we find that the necessary conditions
are the same as (2.48) and (2.49) with n = 1. This is also true for the more general non-
linear-in-time symmetries: the soft theorem constraints are always given by (2.48) and (2.49)
with the powers of the spatial coordinates matched in the two cases. To extract the Lorentz-
invariant solutions we therefore need to combine the solutions we have already discussed
above. We first note the solutions for the purely-spatial symmetries rule out all (p⃗1 · p⃗c)m

terms with m ≤ n, as shown in figure 2. When the amplitudes are Lorentz invariant, this
would also rule out any energy-dependent terms for which the total number of energy and
momentum factors is also given by m. The relevant solutions are then those that scale as
Ã = O(pn+1). These solutions then trivially solve the linear-in-time soft theorems (noting
that the relevant symmetry is δπ = ci1...in−1tx

i1 . . . xin−1). We therefore see that our soft
theorems recover the known Lorentz-invariant results of [1, 10].
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2.4 Examples

Here we consider some examples of interactions that are invariant under some of the symmetries
we have considered and check that the corresponding amplitudes satisfy our soft theorems.

Example 1: π̇4. This interaction is clearly invariant under all of the purely-spatial
symmetries and therefore the corresponding amplitudes should satisfy all the soft theorems
in (2.41) and (2.42). This interaction is not invariant under any of the linear-in-time
symmetries and therefore we would expect the amplitudes to not satisfy any of the soft
theorems in (2.48) and (2.49). The contact four-point scattering amplitude written in terms
of the minimal basis is ÃE1 = −E1E2E3(E1 + E2 + E3), so we have

ÃE1 + Ã−E1 = −2E2
1E2E3 , (2.51)

(ÃE1 − Ã−E1)E1 = −2E2
1E2E3(E2 + E3) . (2.52)

First consider the soft theorems in (2.41). The conditions with k ̸= 2 are trivially satisfied,
while for k = 2 this condition is satisfied if δi1i2bi1i2i3...in = 0 i.e. if the symmetry parameters
are traceless. Similarly, the only non-trivial condition out of those in (2.42) is k = 2 and again
this soft theorem requires the symmetry parameters to be traceless. As we have discussed a
number of times, the free theory is only invariant under these symmetries if the parameters
are traceless so it is comforting that we find such traceless conditions as being necessary at
the level of the soft theorem. Here we see that the tower structure is crucial since for n > 2
it is always the k = 2 condition that is important. For the linear-in-time soft theorems, the
conditions (2.48) are satisfied, however those in (2.49) are not. Indeed, we have

ÃE1 − Ã−E1

E1
= −2E2E3(E2 + E3) , (2.53)

which fails the k = 0 condition of (2.49). This condition is there for all n by the tower
structure so the amplitude does not satisfy any of the linear-in-time soft theorems, as expected.

Example 2: π̈4. This interaction is also invariant under all of the purely-spatial symmetries,
but in contrast to the previous example, it is also invariant under all linear-in-time symmetries.
The corresponding amplitudes should therefore satisfy all of our soft theorems. The four-point
amplitude in the minimal basis is ÃE1 = E2

1E
2
2E

2
3(E1 + E2 + E3)2, and therefore

ÃE1 + Ã−E1 = 2E2
1E

2
2E

2
3 [E2

1 + (E2 + E3)2] , (2.54)
(ÃE1 − Ã−E1)E1 = 4E4

1E
2
2E

2
3(E2 + E3) . (2.55)

We therefore again see that all of the conditions in (2.41) and (2.42) are satisfied as long
as the symmetry parameters are traceless. We then also have

ÃE1 − Ã−E1

E1
= 4E2

1E
2
2E

2
3(E2 + E3) , (2.56)

which satisfies all the conditions in (2.49) as long as the symmetry parameters are traceless.
Note that the overall factor of E2

1 is enough to guarantee that all soft theorems are satisfied.
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Example 3: π̇2(∂i∂jπ)2. This vertex is invariant under the n = 1 purely-spatial symmetry,
but is not invariant under the n ≥ 2 ones. It is also not invariant under any of the linear-in-
time soft theorems. The four-point amplitude without energy and momentum conservation
imposed is

A = [E1E2(p⃗3 · p⃗4)2 + E1E3(p⃗2 · p⃗4)2 + E1E4(p⃗1 · p⃗3)2 + E2E3(p⃗1 · p⃗4)2 (2.57)
+ E2E4(p⃗1 · p⃗3)2 + E3E4(p⃗1 · p⃗2)2]δ(E1 + E2 + E3 + E4)δ(3)(p⃗1 + p⃗2 + p⃗3 + p⃗4).

The expression for the minimal basis amplitude is somewhat messy but the combinations
we care about take a simplified form. For example, we have

ÃE1 + Ã−E1 = −8[(p⃗1 · p⃗2)2(E2
1 + E2

3) − 2E2
1(p⃗1 · p⃗2)E3(3E2 + E3)

+ (p⃗1 · p⃗3)2(E2
1 + E2

2) − 2E2
1(p⃗1 · p⃗3)E2(3E3 + E2)

+ E4
1(E2

2 + E2
3 + E2E3) + 2(p⃗1 · p⃗2)(p⃗1 · p⃗3)(E2

1 − E2E3)] , (2.58)

and given that this combination is at least quadratic in the soft momentum it is simple to
see that the n = 1 purely-spatial soft theorem is satisfied. It is also easy to see that for
n ≥ 2 the soft theorems are not satisfied since

bij lim
p⃗→0

∂pi∂pj (ÃE1 + Ã−E1) ⊃ −16bijp
2
i p

2
jE

2
3 ̸= 0 . (2.59)

This reproduces the correct results for the purely-spatial soft theorems since for n = 1 the
conditions in (2.42) are trivial. For the linear-in-time soft theorems we note that

ÃE1 ⊃ E1E2E3(E2 + E3)(E2
2 + E2E3 + E2

3) , (2.60)

and therefore

ÃE1 − Ã−E1

E1
⊃ 2E2E3(E2 + E3)(E2

2 + E2E3 + E2
3) . (2.61)

It follows that the k = 0 condition of (2.49) is not satisfied. Our soft theorems therefore
reproduce exactly what we would expect.

Example 4: (∂iπ)2[g1(∂2
i π)2 + g2(∂i∂jπ)2]. In this case the four-point amplitude is

A =
{
p⃗1·p⃗2

[
g1E

2
3E

2
4 + g2(p⃗3 · p⃗4)2

]
+perms

}
δ(E1+E2+E3+E4)δ(3)(p⃗1+p⃗2+p⃗3+p⃗4) . (2.62)

The combination ÃE1 − Ã−E1 vanishes since the minimal basis amplitude is even in the
soft energy E1 for any g1 and g2. It follows that the n = 0 linear-in-time soft theorems are
satisfied which makes sense since these vertices enjoy the corresponding symmetry for any
g1 and g2. For the spatial soft theorems, the k = 1 condition of (2.41) yields

lim
p⃗→0

∂pi(ÃE1 + Ã−E1) = 8(g1 + g2)p2
iE

2
3(2E2 + E3) + 8(g1 + g2)p3

iE
2
2(2E3 + E2) , (2.63)

and so this expression only vanishes for g1 = −g2 and indeed the interaction is only invariant
under the δπ = bix

i symmetry if we have this tuning of the couplings. Then according to
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the tower structure, the amplitude would also satisfy the n = 1 linear-in-time soft theorem
and indeed for g1 = −g2 the vertex enjoys the corresponding symmetry. The k = 2 condition
for the purely-spatial soft theorem reads

bij lim
p⃗→0

∂pi∂pj (ÃE1 + Ã−E1) ⊃ −24g1bijp
2
i p

2
jE

2
3 ̸= 0 . (2.64)

Therefore the higher-order soft theorems are not satisfied. As we will show in appendix A,
this vertex is indeed a Wess-Zumino term for the δπ = citx

i and δπ = bix
i symmetries when

picking out g1 = −g2 so our soft theorem analysis agrees with an off-shell analysis.

Example 5: (∂iπ̇)2[g3(∂2
i π̇)2 + g4(∂i∂jπ̇)2]. In this case the four-point amplitude is

A=E1E2E3E4

{
p⃗1·p⃗2

[
g3E

2
3E

2
4+g4(p⃗3·p⃗4)2

]
+perms

}
δ(E1+E2+E3+E4)δ(3)(p⃗1+p⃗2+p⃗3+p⃗4).

(2.65)
The expressions for ÃE1 + Ã−E1 and ÃE1 − Ã−E1 are again quite messy, however thanks to
the overall factor of E1E2E3E4 we know that ÃE1 + Ã−E1 is at least quadratic in the soft
energy and so all conditions in (2.41) are satisfied if the symmetry parameters are traceless.
The overall factor of E1 also ensures that all (2.42) conditions are satisfied. This makes sense
from the symmetry point of view since for any g3 and g4 we clearly have invariance under all
purely-spatial symmetries. Now consider the linear-in-time symmetries. The combination
ÃE1 −Ã−E1 contains a term linear in E1 with a coefficient that is linear in the soft momentum.
It follows that the k = 0 condition of (2.49) is satisfied. We also have

lim
p⃗→0

{
∂pi

[
ÃE1 − Ã−E1

E1

]}
= 8(g3 + g4)p2

iE
2
3(2E2 +E3) + 8(g3 + g4)p3

iE
2
2(2E3 +E2) , (2.66)

and so the k = 1 condition in (2.49) is satisfied if g3 = −g4. We have checked that with
this tuning between the couplings the vertices do indeed enjoy the n = 1 linear-in-time
symmetry (since (∂2

i π̇)2 − (∂i∂j π̇)2 is a total derivative) and in appendix A we show that
this is actually a Wess-Zumino term for the corresponding symmetry. These vertices do
not enjoy the higher-order linear-in-time symmetries and indeed the corresponding soft
theorems are not satisfied.

Example 6: π̇4 at six-points. So far we have concentrated on four-point amplitudes
so let us end with an example at higher-points. We have already checked that the four-
point amplitude for this vertex satisfies all the purely-spatial soft theorems. The relevant
amplitude at six-points is a sum of 10 channels but first consider the one that is singular
when (pµ

1 + pµ
2 + pµ

3 )2 → 0. This propagator is O(1) in the soft limit so let’s consider the other
factors. The amplitude is at least linear in E1 and therefore ÃE1 + Ã−E1 is at least quadratic
in E1 and therefore all (2.41) conditions are satisfied if the symmetry parameters are traceless.
The overall factor of E1 also ensures that the (2.42) conditions are satisfied. For the same
reason, the k = 0 condition in (2.49) is not satisfied. The other channels work out in the same
way. The soft theorem analysis is therefore consistent with an off-shell symmetry analysis.

We have therefore checked that our soft theorems yield the expected results for a number
of examples. In the following section we will further check the validity of these soft theorems
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by bootstrapping amplitudes that solve the conditions we have derived in this section, followed
by comparing them with what we get from the coset construction.

3 Soft bootstrap

Having derived soft theorems and checked their validity against a few examples in the previous
section, in this section we perform a more thorough analysis by using our soft theorems to
derive the leading (in a momentum expansion) invariant quartic (and sextic) vertices for a
number of different symmetries. We will then compare our results to what we would expect
from a Lagrangian analysis by making use of the coset construction. We might naively think
that four-point amplitudes are sufficient for this purpose, however if we have an invariant
vertex then all amplitudes that can arise due to this interaction should satisfy the soft
theorem: consistency of the four-point amplitude is a necessary but not sufficient condition.
Indeed, it can be the case that vertices that are not invariant generate low-point amplitudes
that satisfy our soft theorems, and the lack of invariance is only apparent for higher-point
scattering where soft theorems are violated. As an example, consider the three vertices that
each have only a single derivative per field: π̇4, π̇2(∂iπ)2 and (∂iπ)4. Only the first of these is
invariant under the δπ = bix

i symmetry, but if we take the general four-point amplitude from
these interactions, with three arbitrary coupling constants, the soft theorem associated with
this symmetry imposes only a single constraint (it forbids the π̇2(∂iπ)2 vertex). We have to
go to six-point scattering to also rule out the (∂iπ)4 vertex. We therefore have to go beyond
four-point scattering if we are to use our soft theorems to search for invariant quartic vertices.

Since we are interested in field-independent symmetries, there cannot be cancellations
between different topologies in a given amplitude. Furthermore, if we only have quartic
vertices then all propagators are O(1) in the soft limit. Given that the momentum we will
take soft is on-shell, requiring compatibility with all soft theorems, for all n-point scattering
amplitudes, is equivalent to requiring that four-point amplitudes with one on-shell and three
off-shell momenta satisfy the soft theorems. We would therefore like to look for solutions to
our soft theorems for such semi-on-shell amplitudes and we will go through this procedure
explicitly for amplitudes that scale as A ∼ p4, p5, p6 i.e. that come from vertices with four, five
or six derivatives, while for A ∼ p7, p8 we use this procedure to count the number of invariant
vertices (and number of on-shell quartic amplitudes). To construct such off-shell amplitudes,
we ensure that they are SO(3) invariant and satisfy the leading Adler zero condition which
requires each momentum to appear at least once in each term. Since we are considering
off-shell amplitudes we can independently use E and p⃗ · p⃗, however since we will take p1 → 0,
we will ultimately set p2

1 = 0 and therefore E2
1 = p⃗1 · p⃗1.

Let’s begin with amplitudes that scale as A4 ∼ p4. There are three off-shell amplitudes
that we can write down and there are no degeneracies between these once we impose energy
and momentum conservation. We write these amplitudes as

A4 =
3∑

m=1
gmA(m)

4 , (3.1)
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where

A(1)
4 = (p⃗1 · p⃗2)(p⃗3 · p⃗4) + perms , (3.2)

A(2)
4 = E3E4(p⃗1 · p⃗2) + perms , (3.3)

A(3)
4 = E1E2E3E4 + perms . (3.4)

We now take E2
1 = p⃗1 · p⃗1, impose energy and momentum conservation, and constrain this

system of three amplitudes using various soft theorems.

δπ = ct symmetry. We begin with the simplest linear-in-time symmetry where we need
the amplitudes to satisfy

lim
p⃗1→0

{ÃE1 − Ã−E1

E1

}
= 0 . (3.5)

We find that only a single amplitude passes this condition and corresponds to

Ã4 = g1Ã(1)
4 . (3.6)

In appendix A we go through the coset construction for this symmetry and find that there
are no Wess-Zumino terms, while invariant building blocks are ∂iπ and π̈. Given that each
field must have at least one derivative acting on it and that here we are searching for vertices
with exactly four derivatives, there is only a single allowed vertex which is (∂iπ)4. This agrees
with what we found from the amplitude analysis.

δπ = bix
i symmetry. Now consider the simplest purely-spatial symmetry where we

need to satisfy

lim
p⃗1→0

{
∂pi

[
ÃE1 + Ã−E1

]}
= 0 . (3.7)

We find that only a single amplitude passes this condition and corresponds to

Ã4 = g3Ã(3)
4 . (3.8)

In appendix A we go through the coset construction for this symmetry and find that there
are no Wess-Zumino terms that have exactly four derivatives, while invariant building blocks
are π̇ and ∂i∂jπ. Given that each field must have at least one derivative acting on it and
that here we are searching for vertices with exactly four derivatives, there is only a single
allowed vertex which is π̇4. This agrees with what we found from the amplitude analysis.
This amplitude also satisfies all the soft theorems in (2.41) and indeed the above invariant
vertex has all such symmetries.

δπ = ct + bix
i symmetry. In order for a vertex to be invariant under higher-order

linear-in-time symmetries, it would need to be invariant under the two we have just discussed
by the tower structure. However, we see that there are no common solutions to the two cases
we have just discussed which suggests that there are no invariant quartic vertices which have
four derivatives and this symmetry. We consider the coset construction for this symmetry in
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appendix A and find that invariant building blocks have at least two derivatives and so these
cannot give rise to quartic vertices with four derivatives, while there are no Wess-Zumino
terms with exactly four derivatives. The Lagrangian and amplitude analyses therefore agree.

We now turn our attention to amplitudes that scale as A4 ∼ p5. There are seven off-shell
amplitudes we can construct, but only two of them are non-degenerate once we impose energy
and momentum conservation. We choose to write these as

A4 =
2∑

m=1
gmA(m)

4 , (3.9)

where

A(1)
4 = E1(p⃗2 · p⃗2)(p⃗3 · p⃗4) + perms , (3.10)

A(2)
4 = E1E2E3p⃗4 · p⃗4 + perms . (3.11)

δπ = ct symmetry. We again start with the simplest linear-in-time symmetry, and by
demanding that the amplitude satisfies (3.5) we find that there are no solutions. As we
mentioned before, there are no Wess-Zumino terms for this symmetry while invariants are
built out of ∂iπ and π̈. The only such term that we could construct with five derivatives is
(∂iπ)2∂jπ∂j π̇, however this is a total derivative and therefore yields vanishing amplitudes
once energy and momentum conservation have been imposed. The Lagrangian and amplitude
analyses therefore agree.

δπ = bix
i symmetry. For this symmetry we now demand that the amplitudes satisfy (3.7).

We find a single solution given by

A4 = g2A(2)
4 . (3.12)

As we show in appendix A, there are no Wess-Zumino terms associated with this symmetry
that have exactly five derivatives, while using the invariant building blocks we find a single
vertex given by π̇3∂2

i π. We also find that the corresponding four-point amplitude vanishes
on-shell which is consistent with what we have found from the coset construction since
once we go on-shell this vertex is a total derivative (π̇3∂2

i π ∼ π̇3π̈ ∼ ∂t(π̇4)). The first
non-trivial amplitude arising from this vertex is the six-point one and this amplitude has no
singularities which makes sense since we can perform a field redefinition to turn this quartic
vertex into a sextic one and then the six-point amplitude comes from a contact diagram
rather than an exchange. This invariant vertex also has all purely-spatial symmetries and
satisfies all the corresponding soft theormes as long as the symmetry parameter is traceless.
We therefore again have agreement between the on-shell and off-shell analyses. We note a
crucial difference between this vertex, π̇3∂2

i π, and the one we discussed in regards to the
δπ = ct symmetry, (∂iπ)2∂jπ∂j π̇. The latter is a total derivative even off-shell and so all
amplitudes vanish, while the former is only a total derivative on-shell so as long as we have
a Feynman diagram where at least one of the four legs is off-shell, we will get a non-zero
amplitude (with the first being at six points).
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We now turn our attention to amplitudes that scale as A4 ∼ p6. We find 27 different
possible off-shell amplitudes but a number of these are degenerate once we impose energy
and momentum conservation. We are then left with 12 independent, off-shell amplitudes,
and so we write

A4 =
12∑

m=1
gmA(m)

4 , (3.13)

where

A(1)
4 = (p⃗1 · p⃗1)(p⃗2 · p⃗3)(p⃗2 · p⃗4) + perms , (3.14)

A(2)
4 = (p⃗1 · p⃗1)(p⃗2 · p⃗2)(p⃗3 · p⃗4) + perms , (3.15)

A(3)
4 = (p⃗1 · p⃗2)(p⃗1 · p⃗3)(p⃗1 · p⃗4) + perms , (3.16)

A(4)
4 = E1E3(p⃗1 · p⃗2)(p⃗4 · p⃗2) + perms , (3.17)

A(5)
4 = E1E3(p⃗2 · p⃗2)(p⃗1 · p⃗4) + perms , (3.18)

A(6)
4 = E1E2(p⃗1 · p⃗3)(p⃗1 · p⃗4) + perms , (3.19)

A(7)
4 = E1E2(p⃗1 · p⃗1)(p⃗3 · p⃗4) + perms , (3.20)

A(8)
4 = E2E3(p⃗1 · p⃗1)(p⃗1 · p⃗4) + perms , (3.21)

A(9)
4 = E2

1E
2
2(p⃗3 · p⃗4) + perms , (3.22)

A(10)
4 = E3

1E2(p⃗3 · p⃗4) + perms , (3.23)

A(11)
4 = E2

1E2E3(p⃗1 · p⃗4) + perms , (3.24)

A(12)
4 = E2

1E
2
2E3E4 + perms . (3.25)

We now take E2
1 = p⃗1 · p⃗1, impose energy and momentum conservation, and constrain this

system of 12 amplitudes using various soft theorems.

δπ = ct symmetry. We again start with the simplest linear-in-time symmetry. By
demanding that the amplitude satisfies (3.5) we find a sum of seven amplitudes given by

Ã6 = g1Ã(1)
6 +g2Ã(2)

6 +g3Ã(3)
6 +g5(Ã(5)

6 −Ã(4)
6 )+g6(Ã(6)

6 +2Ã(4)
6 )+g7(Ã(7)

6 +2Ã(4)
6 )+g9Ã(9)

6 ,

(3.26)
which suggests that there are seven invariant quartic interactions with six derivatives. As
we show in appendix A, for this symmetry there are no Wess-Zumino terms. This means
that all invariant quartic interactions need to be constructed out of ∂iπ, π̈, and additional
derivatives. We find exactly seven vertices that are built out of these building blocks, have
exactly six derivatives, and are not degenerate after integration by parts. These vertices are
(organised in terms of the number of time derivatives):

∂iπ∂iπ(∂2
j π)2, ∂iπ∂iπ(∂j∂kπ)2, ∂iπ∂jπ∂i∂jπ∂

2
kπ, (3.27)

∂iπ∂iπ∂j π̇∂j π̇, ∂iπ∂iπ(∂2
j π)π̈, ∂iπ∂jπ∂i∂jππ̈, (3.28)

∂iπ∂iππ̈
2 . (3.29)

This counting therefore agrees with our amplitude analysis.
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δπ = bix
i symmetry. Now consider the simplest purely-spatial symmetry. By demanding

that we satisfy (3.7) we find a sum of five amplitudes given by

Ã6 =g3(Ã(3)
6 +3Ã(1)

6 )+g5(Ã(5)
6 −Ã(4)

6 )+g8(Ã(8)
6 +2Ã(4)

6 )+g9(Ã(9)
6 +Ã(10)

6 −Ã(11)
6 )+g12Ã(12)

6 ,

(3.30)
which suggests that there are five invariant quartic vertices. As we show in appendix A,
for this symmetry we find a single Wess-Zumino term with six derivatives, while all other
invariant vertices are built out of π̇ and ∂i∂jπ, and additional derivatives. We then find
exactly four vertices that are built out of these building blocks, have exactly 6 derivatives,
and are not degenerate after integration by parts. The Wess-Zumino term is

(∂iπ)2
[
(∂2

j π)2 − (∂i∂jπ)2
]
, (3.31)

while the remaining four vertices are (organised in terms of the number of time derivatives)

π̇2(∂2
j π)2, π̇2(∂j∂kπ)2, (3.32)

π̇2(∂j π̇)2, (3.33)
π̇2π̈2 . (3.34)

This therefore agrees with our amplitude analysis.

δπ = ct + bix
i symmetry. Let’s now combine the previous two symmetries such that

we now need to satisfy both of the above soft theorems. We therefore need to pick out the
common solutions of which there are two given by

Ã6 = g3(Ã(3)
6 + 3Ã(1)

6 ) + g5(Ã(5)
6 − Ã(4)

6 ) , (3.35)

which suggests that there are two invariant quartic vertices. In appendix A we go through
the coset construction for this symmetry and find that the invariant building blocks have
at least two derivatives and therefore cannot yield quartic interactions with six derivatives.
We also find two Wess-Zumino terms with six derivatives which are given by

(∂iπ)2
[
(∂2

j π)2 − (∂i∂jπ)2
]
, (∂µπ)2

[
(□π)2 − (∂ν∂ρπ)2

]
, (3.36)

which again agrees with the amplitude analysis. The first of these Wess-Zumino terms is the
one we found for the δπ = bix

i symmetry and it clearly also has the δπ = ct symmetry, while
the second is the familiar quartic Wess-Zumino term of the Lorentz-invariant Galileon [3].
Note that we did not impose Lorentz invariance of the amplitude, rather imposing the soft
theorem organises one of the solutions into something that is Lorentz invariant.

δπ = citx
i symmetry. Now consider the simplest mixed symmetry. Given that our soft

theorems realise the tower structure, any solutions to the full set given by (2.48) and (2.49)
must be a sub-set of the two solutions we have just found since this symmetry is only consistent
if we also have the δπ = ct+ bix

i symmetry. The new condition that we must satisfy is

lim
p⃗1→0

{
∂pi

[
ÃE1 − Ã−E1

E1

]}
= 0 , (3.37)
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and this reduces us to a single amplitude given by

Ã6 = g3(Ã(3)
6 + 3Ã(1)

6 ) , (3.38)

which suggests that there is only a single invariant quartic vertex with six derivatives. In
appendix A we go through the coset construction for this symmetry and as above the invariant
building blocks have at least two derivatives and therefore cannot yield quartic interactions
with six derivatives. We then find a single Wess-Zumino term given by

(∂iπ)2
[
(∂2

j π)2 − (∂i∂jπ)2
]
. (3.39)

We therefore again agree with the amplitude analysis.

δπ = bi1...inxi1 . . . xin symmetry. Now consider the general purely-spatial symmetry
meaning that we need to satisfy all soft theorems in (2.41). We find three solutions given by

Ã6 = g8(Ã(8)
6 + 2Ã(4)

6 ) + g9(Ã(9)
6 + Ã(10)

6 − Ã(11)
6 ) + g12Ã(12)

6 , (3.40)

and so we expect three invariant quartic vertices. Given that we take the symmetry parameters
to be traceless we have two possible building blocks which are π̇ and ∂2

i π plus additional
derivatives, and indeed we find three invariant vertices that have exactly six derivatives and
are not degenerate after integration by parts. These are

π̇2π̈2, π̇2π̈∂2
i π, π̇2(∂2

i π)2 . (3.41)

We therefore again agree with the amplitude analysis.

δπ = ct + bijxixj symmetry. As a final example consider the simplest linear-in-time
symmetry plus the quadratic purely-spatial symmetry. By the tower structure, any solutions
to the corresponding soft theorems must be contained in the solutions corresponding to
the δπ = ct + bix

i symmetry of which we found two. If we now impose the additional
condition here which is

bij lim
p⃗1→0

{
∂pi∂pj

[
ÃE1 + Ã−E1

]}
= 0 , (3.42)

then we find no solutions and therefore there shouldn’t be any invariant quartic vertices with
six derivatives. Indeed, it is straightforward to check that the Wess-Zumino terms that we
found for the δπ = ct+ bix

i symmetry are not invariant under the δπ = bijx
ixj symmetry

so this agrees with the amplitude analysis. Given that there are no solutions in this case,
the tower structure ensures that there are also no solutions if we include additional powers
of xi in either the ct or bijx

ixj part of the symmetry.
So far we have been focused on off-shell four-point amplitudes since we wanted to

find invariant quartic interactions for which our soft theorems should be satisfied by all
corresponding n-point amplitudes. We argued that this requires the semi-on-shell four-point
amplitude to satisfy the soft theorems. We went through this procedure for a number of
different momentum scalings and a number of different symmetries and in all cases the
solutions to our soft theorems match what we get from building invariant Lagrangians using
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Symmetries 1 t x t+ x+ . . .

off-shell A4 ∼ p4 3 1 1 0
on-shell A4 ∼ p4 3 1 1 0

Table 1. Number of four-point amplitudes with a A4 ∼ p4 scaling.

Symmetries 1 t+ . . . x+ . . .

off-shell A4 ∼ p5 2 0 1
on-shell A4 ∼ p5 0 0 0

Table 2. Number of four-point amplitudes with a A4 ∼ p5 scaling.

Symmetries 1 t x t+ x tx xx+ . . . t+ xx+ . . .

off-shell A4 ∼ p6 12 7 5 2 1 3 0
on-shell A4 ∼ p6 6 4 3 2 1 1 0

Table 3. Number of four-point amplitudes with a A4 ∼ p6 scaling.

Symmetries 1 t x t+ x+ . . . xx+ . . .

off-shell A4 ∼ p7 15 7 8 0 6
on-shell A4 ∼ p7 3 2 2 0 1

Table 4. Number of four-point amplitudes with a A4 ∼ p7 scaling.

Symmetries 1 t x t+ x tx xx t+ xx . . . tx+ xx . . . x3 . . .

off-shell A4 ∼ p8 44 31 26 18 11 17 9 5 16
on-shell A4 ∼ p8 13 10 9 8 4 5 3 1 4

Table 5. Number of four-point amplitudes with a A4 ∼ p8 scaling.

the coset construction. However, the soft bootstrap procedure is of course usually concerned
with building on-shell amplitudes, and in the on-shell limit a number of off-shell amplitudes
we have constructed are degenerate. In tables 1–5 we present the number of off-shell and
on-shell amplitudes that satisfy our soft theorems for various symmetries. In all cases “. . .”
indicates the possible inclusion of the purely-spatial symmetries. We also include the counting
for amplitudes scaling as Ã4 ∼ p7, p8.

So far in this section our focus has been on quartic vertices but let us also put our soft
theorems to the test by constructing six-point interactions. Here we restrict ourselves to
those with six derivatives, and again we consider semi-on-shell six-point amplitudes as a
means to construct interactions for which all n-point on-shell amplitudes satisfy the soft
theorems. Again, the only leg that we take on-shell is the one we will ultimately take soft.
At sextic order in momenta there are four off-shell amplitudes that we can construct and
they are all independent after imposing energy and momentum conservation (recall that
we take each momentum to appear at least once in order to satisfy the leading Adler zero
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Symmetries 1 t x t+ x+ . . .

off-shell A6 ∼ p6 4 1 1 0
on-shell A6 ∼ p6 4 1 1 0

Table 6. Number of six-point amplitudes with a A6 ∼ p6 scaling.

condition). We have

A6 =
4∑

m=1
gmA(m)

6 , (3.43)

where

A(1)
6 = (p⃗1 · p⃗2)(p⃗3 · p⃗4)(p⃗5 · p⃗6) + perms , (3.44)

A(2)
6 = E5E6(p⃗1 · p⃗2)(p⃗3 · p⃗4) + perms , (3.45)

A(3)
6 = E3E4E5E6(p⃗1 · p⃗2) + perms , (3.46)

A(4)
6 = E1E2E3E4E5E6 + perms . (3.47)

As before we now set E2
1 = p⃗1 · p⃗1 and impose various soft theorem conditions. If we consider

the δπ = bix
i symmetry then we find that only the g4 term satisfies the soft theorem and

indeed it satisfies all purely-spatial soft theorems. The corresponding interaction is π̇6.
While if we consider the δπ = ct symmetry then only the g1 term is allowed and it doesn’t
satisfy any other soft theorems. The corresponding interaction is (∂iπ)6. These results are
summarised in table 6. Generalising to higher-point interactions and amplitudes is somewhat
tedious but straightforward.

4 Conclusion and outlook

In this paper we have derived soft theorems that must be satisfied by on-shell amplitudes if
the underlying theory has a non-linearly realised symmetry. Motivated by cosmology and
cosmological correlators, we considered boost-breaking amplitudes and non-linear symmetries
that treat time and space on different footings. Such amplitudes are contained within
cosmological correlators in a particular singular limit and so having a solid understanding
of the connection between cosmological observables and non-linear symmetries requires a
solid understanding of such boost-breaking amplitudes. We derived these soft theorems using
current conservation and the LSZ reduction formula, and by being careful with derivatives
and delta functions, we realised a tower of soft theorems which is ultimately related to closure
of the underlying symmetry algebra. Our soft theorems require combination of amplitudes
to vanish with the rate at which they vanish dictated by the structure of the corresponding
symmetry. We considered general soft solutions to these soft theorems and checked that we
recover known Lorentz-invariant results. We further assessed the validity of our soft theorems
by using them to construct off-shell invariant quartic vertices and found agreement in a large
number of examples with what we find using the coset construction.
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There are a number of avenues for future work:

• The soft theorems we derived in this paper take the linear dispersion relation Ep = |p⃗|
as an input. To match with off-shell examples, we find that our soft theorems demand
symmetry parameters to be traceless and this is ultimately due to the fact we impose
this linear dispersion relation. Indeed, the two-derivative kinetic term is only invariant
if the symmetry parameters are traceless. It would be natural to extend the scope of
our work to include non-linear dispersion relations that are discussed in e.g. [46]. We
actually expect that the form of our soft theorems will not change as the dispersion
relation changes, however what we mean by E in our soft theorems will indeed change
and therefore the solutions could impose other conditions on the symmetry parameters
(for example, vanishing of the double trace).

• We imposed a π → −π symmetry in order to exclude quadratic terms in the current
which can introduce poles in the soft amplitudes. It would be interesting to extend our
analysis to include such terms by relaxing the π → −π symmetry and we will explore
this avenue in an upcoming paper [43].

• As we mentioned in section 2, the structure of some of our soft theorems resembles
the shifted wavefunction coefficient that appears in the soft theorems for the flat-space
wavefunction in [39]. It would be interesting to investigate this connection further and
to understand how the tower structure arises for wavefunction soft theorems. It would
then be natural to extend the analysis to the inflationary wavefunction.
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A Coset constructions and Wess-Zumino terms

In this appendix we go through the coset construction for a number of examples and construct
quartic Wess-Zumino terms, with a particular focus on those that yield amplitudes with
a p6 scaling so that we can compare with what we found in section 3. We focus on the
non-linear symmetries: δπ = ct, bix

i, ct + bix
i, citx

i, and in all cases we assume that the
linearly realised symmetries are spacetime translations (generated by P0 and Pi) and spatial
rotations (generated by Jij). We therefore always have an unbroken subgroup with the
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following non-zero commutators:

[Pi, Jjk] = −δijPk + δikPj (A.1)
[Jij , Jkl] = −δikJjl + δilJjk + δjkJil − δjlJik . (A.2)

We also assume a constant shift symmetry in each case which is generated by A. Since A is a
SO(3) scalar and generates a constant shift symmetry, it commutes with the generators of
the unbroken subgroup. It also commutes with all other generators that we might add due to
the tower structure which was explained in detail in [6, 37]. The idea is that the Goldstone
mode associated with this generator is π, which is the field we are interested in constructing
theories of. We are then interested in additional symmetries that are non-linearly realised
by π. This requires us to add additional broken generators in the coset construction which
in turn requires us to introduce additional fields in the coset element. We then rely on
inverse Higgs constraints to eliminate these additional fields. The existence of inverse Higgs
constraints, which enable us to algebraically solve for these additional fields in terms of π and
its derivatives, requires there to be a certain structure in the commutators: the commutator
between a broken generator and a translation (space or time) must yield another broken
generator. This naturally yields a tower structure in which successive actions of translations
should land us on A (paths that do not lead to A are ruled out by Jacobi identities [6]).
For example, if we have the commutator [P0, C] = A then we will have an inverse Higgs
constraint of the form c ∼ ȧ, while the commutator [Pi, Bj ] = δijA will yield bi ∼ ∂ia. If
we also have [P0, C

′] = C, then we will have c′ ∼ ċ ∼ ä.

δπ = c t symmetry. In this case we have a single additional generator which is C. The
additional non-zero commutator is

[P0, C] = A . (A.3)

To construct the invariant building blocks of invariant actions, and to construct Wess-Zumino
terms, we need to compute the Maurer-Cartan form from the coset element g. Choosing
the parametrisation g = exiPietP0eπAeξ0C , yields

ω = g−1dg = ωi
PPi + ω0

PP0 + ωAA+ ωCC , (A.4)

where

ωi
P = dxi ,

ω0
P = dt ,

ωA = dπ + ξ0dt ,

ωC = dξ0 . (A.5)

Since ωA transforms covariantly under all symmetries, it is consistent to set it to zero. After
pulling back to spacetime, this yields the inverse Higgs constraint: ξ0 = −π̇. The invariant
building blocks then come from inserting this solution back into the above one-forms and
pulling back to spacetime. From ωA we then have ∂iπ as a building block, while from ωC

– 29 –



J
H
E
P
0
7
(
2
0
2
4
)
0
1
1

we have ∂iπ̇ and π̈. Since we are free to add additional derivatives to these building blocks
the invariant building blocks are simply ∂iπ and π̈.

Wess-Zumino terms do not follow from this procedure. Rather, to compute them we need
to build closed five-forms out of the above one-forms. Writing such a five-form as ω5 = dω4,
Wess-Zumino terms follow from the pull back of ω4. This is explained in detail in [3] so
we refer the reader there for more details. Since each one-form associated with the broken
generators is exactly linear in π (once we impose the inverse Higgs constraints), an n-point
self-interaction would require the five-form to contain n copies of the one-forms associated
with broken generators. This immediately implies that there are no Wess-Zumino terms
beyond quintic order in the fields. For this particular example, we cannot wedge together
more than one copy of ωA or ωC , and so there cannot be any Wess-Zumino terms beyond
quadratic order in the fields. The only five-form that will yield something quadratic in the
fields, and is consistent with rotations, is then

ω5 = ϵijkω
i
P ∧ ωj

P ∧ ωk
P ∧ ωA ∧ ωC . (A.6)

We can easily check closure:

dω5 = ϵijkω
i
P ∧ ωj

P ∧ ωk
P ∧ (dξ0 ∧ dt) ∧ ωC = ϵijkω

i
P ∧ ωj

P ∧ ωk
P ∧ (ωC ∧ dt) ∧ ωC = 0 . (A.7)

We then have

ω4 = −πϵijkω
i
P ∧ ωj

P ∧ ωk
P ∧ dξ0 − 1

2ξ
2
0ϵijkdt ∧ ωi

P ∧ ωj
P ∧ ωk

P . (A.8)

Once we pull back to spacetime, drop the volume factor, and impose the inverse Higgs
constraint, this Wess-Zumino term, after integration by parts, is then simply the kinetic
term π̇2. It is simple to check that this term when appearing in the Lagrangian is only
invariant under δπ = ct up to a total derivative which is the tell-tale sign that this is a
Wess-Zuimno term. Note that the gradient term (∂iπ)2 is not a Wess-Zumino term since it
can be constructed out of the invariant building block ∂iπ and is trivially invariant under
δπ = ct. At linear order in the fields the only closed five-form is

ω5 = ϵijkω
i
P ∧ ωj

P ∧ ωk
P ∧ ω0

P ∧ ωC , (A.9)

and this yields the tadpole π̇. If we were to replace ωC with ωA then the five-form would not
be closed. From now on we will focus on quartic Wess-Zumino terms.

δπ = bix
i symmetry. In this case we again have a single additional generator but now

with two non-zero new commutators:

[Pi, Bj ] = −δijA , (A.10)
[Jij , Bk] = −δikBj + δjkBi . (A.11)

The Maurer-Cartan form following from the coset parametrisation g = exiPietP0eπAeξiBi is

ω = g−1dg = ωi
PPi + ω0

PP0 + ωAA+ ωi
BBi , (A.12)
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where

ωi
P = dxi ,

ω0
P = dt ,

ωA = dπ + ξidx
i ,

ωi
B = dξi . (A.13)

The story is now somewhat similar to the previous example: the inverse Higgs constraint
that allow us to eliminate ξi is simply ξi = −∂iπ, and the resulting invariant building blocks
are π̇ and ∂i∂jπ. Again there is a Wess-Zumino term at quadratic order which is the gradient
term (∂iπ)2 so let us turn our attention to quartic interactions. We therefore need to build a
five-form that is quartic in ωA and ωi

B . Clearly we can have at most one of the former, while
we also cannot have more then three of the latter since when wedged together four or more
will vanish (since there are only three components in ωi

B). The only possibility is then

ω5 = ϵijkωA ∧ ωi
B ∧ ωj

B ∧ ωk
B ∧ ω0

P . (A.14)

Closure of this five-form then follows from the fact that dωA = δijω
i
B ∧ ωj

P . By finding
the corresponding ω4, pulling back to spacetime, imposing the inverse Higgs constraint
and dropping the volume factor yields the self-interaction: π[(∂i∂iπ)3 − 3∂i∂iπ(∂j∂kπ)2 +
2∂i∂jπ∂j∂kπ∂k∂lπ)], which, unsurprisingly, takes an identical form as the Lorentz-invariant
quartic Galileon Wess-Zumino term derived in [3], but now with Lorentzian derivatives replaced
by spatial ones. Up to a total derivative, this interaction is equivalent to (∂iπ)2[(∂i∂iπ) −
(∂i∂jπ)2]. This is the only quartic Wess-Zumino term for this symmetry, which is consistent
with what we found using our soft theorem in section 3.

δπ = ct + bix
i symmetry. Let’s now consider the combination of the previous two

symmetries. We don’t assume that the interactions we will derive are Lorentz invariant so the
results are not simply those of [3]. The non-zero commutators involving broken generators are

[Pi, Bj ] = −δijA , (A.15)
[P0, C] = A , (A.16)

[Jij , Bk] = −δikBj + δjkBi . (A.17)

The Maurer-Cartan form is then

ω = g−1dg = ωiPi + ω0P0 + ωAA+ ωCC + ωi
BBi , (A.18)

where

ωi
P = dxi ,

ω0
P = dt ,

ωA = dπ + ξ0dt+ ξidx
i ,

ωC = dξ0 ,

ωi
B = dξi . (A.19)
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The solutions to the inverse Higgs constraints are ξ0 = −π̇ and ξi = −∂iπ, and the building
blocks of invariant Lagrangians are ∂i∂jπ, ∂iπ̇ and π̈. Turning to Wess-Zumino terms, we note
that all of the one-forms are closed other than ωA which satisfies dωA = ωC ∧ω0

P + δijω
i
B ∧ωj

P .
There are then three closed five-forms that we can build that can yield quartic interactions
for π. They are

ω
(1)
5 = ϵijkωA ∧ ωi

B ∧ ωj
B ∧ ωk

B ∧ ω0
P , (A.20)

ω
(2)
5 = ϵijkωA ∧ ωC ∧ ωi

B ∧ ωj
B ∧ ωk

P , (A.21)

ω
(3)
5 = ϵijkωC ∧ ωi

B ∧ ωj
B ∧ ωk

B ∧ ω0
P . (A.22)

It turns out that the interaction we get from ω
(3)
5 is a total derivative so we ignore it, while

the second can be written as

ω̃
(2)
5 = ϵµνρσωA ∧ ωµ

B ∧ ων
B ∧ ωρ

B ∧ ωσ
P , (A.23)

by allowing ourselves to add any amount of ω(1)
5 to it. Here ω0

B ≡ ωC and {µνρσ} are
Lorentzian indices. By pulling back to spacetime, imposing the inverse Higgs constraints and
dropping the volume factors we find the following self-interactions: π[(∂2

i π)3 −3∂2
i π(∂j∂kπ)2 +

2∂i∂jπ∂j∂kπ∂k∂lπ)] and π[(∂2
µπ)3−3∂2

µπ(∂ν∂ρπ)2+2∂µ∂νπ∂
ν∂ρπ∂

ρ∂µπ)] which can be written
as (∂iπ)2

[
(∂2

j π)2 − (∂i∂jπ)2
]

and (∂µπ)2 [(□π)2 − (∂ν∂ρπ)2], respectively. There are no other
quartic Wess-Zumino terms which is again consistent with what we found in section 3.

δπ = citx
i symmetry. This is our final example and to not cause confusion with the C

generator, let us write the generator of this symmetry as Si. The non-trivial commutators
are then

[Pi, Bj ] = −δijA , (A.24)
[P0, C] = A , (A.25)
[Pi, Sj ] = −δijC , (A.26)
[P0, Si] = Bi , (A.27)

[Jij , Sk] = −δikSj + δjkSi , (A.28)
[Jij , Bk] = −δikBj + δjkBi . (A.29)

The Maurer-Cartan form is

ω = g−1dg = ωiPi + ω0P0 + ωAA+ ωCC + ωi
BBi + ωi

SSi , (A.30)

where

ωi
P = dxi , (A.31)
ω0

P = dt , (A.32)
ωA = dπ + ξ0dt+ ξidx

i , (A.33)
ωC = dξ0 + ϕidx

i , (A.34)
ωi

B = dξi + ϕidt , (A.35)
ωi

S = dϕi . (A.36)
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The solutions to the inverse Higgs constraints are ξ0 = −π̇, ξi = −∂iπ and ϕi = ∂iπ̇, and
the invariant building blocks are ∂i∂jπ and π̈. Note that compared to the previous example,
the invariant building block ∂iπ̇ is no longer allowed. To compute quartic Wess-zumino
terms we note that the one-forms satisfy

dωi
P = 0 , (A.37)

dω0
P = 0 , (A.38)

dωA = ωC ∧ ω0
P − δijω

i
B ∧ ωj

P , (A.39)
dωC = −δijω

i
S ∧ ωj

P , (A.40)
dωi

B = ωi
S ∧ ω0

P , (A.41)
dωi

S = 0 , (A.42)

and using these relations we can build five closed five-forms which are

ω
(1)
5 = ϵijkωA ∧ ωi

B ∧ ωj
B ∧ ωk

B ∧ ω0
P , (A.43)

ω
(2)
5 = ϵijkω

i
S ∧ ωj

S ∧ ωk
S ∧ ωC ∧ ω0

P , (A.44)

ω
(3)
5 = ϵijkω

i
S ∧ ωj

S ∧ ωl
S ∧ ωl

B ∧ ωk
P , (A.45)

ω
(4)
5 = ϵijkω

i
S ∧ ωj

S ∧ ωk
S ∧ ωl

B ∧ ωl
P , (A.46)

ω
(5)
5 = ϵijkω

i
S ∧ ωj

S ∧ ωl
S ∧ ωk

B ∧ ωl
P . (A.47)

Given how the one forms depend on π, once we impose all inverse Higgs constraints, only the
first of these can yield a quartic interaction with six derivatives. The resulting Wess-Zumino
term is the one we have now seen a number of times: (∂iπ)2

[
(∂2

j π)2 − (∂i∂jπ)2
]
. Note that

is crucial here that only the coefficient of dt in (A.35) is set to zero when we eliminate
the extra fields thereby allowing this first five-form to yield a non-zero result once we pull
back and impose the inverse Higgs constraints. The existence of a single Wess-Zumino
term with six derivatives agrees with what we found in section 3. Moreover, the resulting
vertex (∂iπ̇)2

[
(∂2

j π̇)2 − (∂i∂j π̇)
]

from pulling back ω(2)
5 precisely matches our soft theorem

prediction from example 5 in section 2.
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