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Scalable simulation of nonequilibrium quantum dynamics via classically optimized unitary circuits
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The advent of near-term digital quantum computers could offer us an exciting opportunity to investigate
quantum many-body phenomena beyond that of classical computing. To make the best use of the hardware
available, it is paramount that we have methods that accurately simulate Hamiltonian dynamics for limited circuit
depths. In this paper, we propose a method to classically optimize unitary brickwall circuits to approximate
quantum time evolution operators. Our method is scalable in system size through the use of tensor networks.
We demonstrate that, for various three-body Hamiltonians, our approach produces quantum circuits that can
outperform trotterization in both their accuracy and the quantum circuit depth needed to implement the dynamics,
with the exact details being dependent on the Hamiltonian. We also explain how to choose an optimal time step
that minimizes the combined errors of the quantum device and the brickwall circuit approximation.
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I. INTRODUCTION

Quantum computers and quantum simulators provide the
potential for a quantum advantage in complex computational
problems [1], such as quantum chemistry [2–9] and quantum
machine learning [10–12]. It is expected that one of the ear-
liest applications will be in the field of quantum many-body
physics [13–16]. Broadly speaking, the current methods to
study quantum many-body systems fall into one of the three
scenarios: (i) exact numerics for small enough system sizes
where the Hamiltonian can be diagonalized [17,18], (ii) ap-
proximate numerics through low-rank approximations such as
tensor networks for quantum states which have sufficiently
small (area-law) entanglement [19–23], or (iii) exact results
for models which are simple enough to allow for a compre-
hensive analytical treatment [24–32]. The limiting factor for
(i) and (ii) is the curse of dimensionality; the Hilbert space
grows exponentially in the number of degrees of freedom
(e.g., the number of qubits). Digital quantum computers, how-
ever, would allow us to faithfully simulate the dynamics of the
system for large times through tunable quantum gates [14,33].
Such simulations could pave the way for a more thorough
understanding of many important quantum phenomena such
as thermalization and ergodicity [34–36].
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Despite the prospects of quantum advantage [37,38],
modern-day quantum computers are still subject to strong
noise, limiting the depths of the quantum circuits that can be
simulated before the onset of decoherence. This provides us
with a strong incentive to engineer optimal quantum circuits
designed to achieve a specific task with minimal circuit depth.
Various approaches to achieve this have been proposed for the
simulation of quantum many-body dynamics. The most stan-
dard approach for simulating dynamics is to “trotterize” the
Hamiltonian [39,40], which can be implemented on a quan-
tum computer [14,41–43]. However, to achieve large times
with a desired accuracy, this can require a circuit depth that
scales at least linearly in time [44,45]. One proposed method
to overcome this complexity is to, at each time step, compress
the quantum state as a unitary circuit of fixed depth [46–48].
However, while this approach reduces the effects of noise
from the quantum computer, it can also reduce the accuracy of
the simulation. Furthermore, it requires a costly optimization
task at each time step.

An alternative approach is to leverage classical computing
to find optimal quantum circuits that can simulate quan-
tum dynamics with a higher accuracy and smaller circuit
depth when compared to trotterization. On one hand, this
could extend the times for which accurate simulations can be
achieved. On the other hand, unlike the approach described
previously, would not require a costly optimization task at
each time step. This approach was proven effective for the
transverse field Ising model in Refs. [49,50], which optimized
two-body brickwall circuits using gradient descent, and in
Ref. [51], which made use of tensor networks for a restricted
circuit ansatz. A similar approach was taken in Ref. [52] for
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the Heisenberg model on a chain, and a ladder with next-
nearest-neighbor interactions, which optimized over arbitrary
two-qubit gates using automatic differentiation.

In this paper, we propose a tensor network (TN) approach
to classically optimize brickwall (BW) unitary circuits. Our
method approximates the time propagator for Hamiltonian
dynamics at small times as a matrix product operator (MPO)
[53–55]. This MPO is then used along with the polar decom-
position [46,56] to variationally optimize a unitary BW circuit
on a classical computer by maximising their “overlap.” The
advantage of using an MPO to approximate the time propaga-
tor is that it can reach a desired accuracy with resources which
scale only linearly in system size [57–59]. The classically op-
timized circuit can thus be used as part of a larger calculation
on a digital quantum computer to reach a total time larger than
what is accessible on a classical computer.

Our paper is structured as follows. In Sec. II, we give
a brief introduction to simulating quantum dynamics with
trotterization. The optimization procedure is then explained in
Sec. III. We demonstrate our approach in Sec. IV for various
three-body Hamiltonians. Using numerous metrics, we com-
pare our results to trotterization to demonstrate the practical
advantage of classically optimized BW circuits. We show that
the optimized circuits outperform trotterization in two ways:
(i) they approximate the true time evolution operator with
less error than trotterization, and (ii) they can be implemented
on digital quantum computers with less two-body entangling
layers, thus reducing the error from decoherence. We also
benchmark convergence for our method. In Sec. V, we explore
the trade-off between optimization errors and decoherence
errors from the device. We use these considerations to explain
how to estimate the optimal time step which minimizes the
compounded error. We give our conclusions in Sec. VI.

II. TROTTERIZATION

We consider locally interacting one-dimensional Hamilto-
nians, Ĥ . Although our optimization method will be general,
we will focus on local three-body interactions,

Ĥ =
N∑

j=1

Ô(1)
j +

N−1∑
j=1

Ô(2)
j, j+1 +

N−2∑
j=1

Ô(3)
j, j+1, j+2, (1)

where Ô(r)
j1,..., jr

describes some local operator which acts on lat-
tice sites j1, . . . , jr . We assume each lattice site has the same
finite physical dimension d . While, in principle, everything in
this paper is applicable to arbitrary d , we will focus on the
case of d = 2 (e.g., qubits). One area of interest is quench
dynamics: starting from some out-of-equilibrium initial state,
|ψ0〉, we study the dynamics |ψt 〉 = U (t ) |ψ0〉, where U (t ) =
e−it Ĥ is the time evolution operator. Calculating |ψt 〉 for ar-
bitrary t can often be difficult due to the complexity of U (t ),
which can be exponential in system size.

This difficulty could be overcome by simulating the Hamil-
tonian dynamics on a quantum computer. We first use the
product formula to slice the exponential into n parts, U (t ) =
U (�t )n for �t = t/n [14]. The unitary for the smaller time
step �t can then be approximated by some other unitary
ansatz that can be efficiently implemented on the quantum
device, V (�t ), such as the Trotter-Suzuki decomposition (see

below for details) [39,40]. The error of this unitary is

||U (�t ) − V (�t )|| � O(�t k+1), (2)

where k � 1 is the order of the approximation and || · || is the
operator norm. It can then be shown that the total simulation
error goes as [60,61]

||U (t ) − V (�t )n|| � n||U (�t ) − V (�t )|| = O(t�t k ). (3)

While only approximate, this approach offers the advantage
that the error is well controlled through the choice of time
step �t .

A. Trotter-Suzuki decomposition

A standard approach for approximating U (�t ) is to
decompose it into a product of local unitary operators,

U (r)
j1,..., jr

(�t ) = e−i�t Ô(r)
j1 ,..., jr . This is achieved through the

Trotter-Suzuki decomposition [39,40]: for two operators Â
and B̂, the first-order Trotter-Suzuki decomposition allows us
to write

e−i�t (Â+B̂) = e−i�t B̂e−i�t Â + O(�t2). (4)

In essence, this allows us to achieve the evolution by first
evolving by Â, then followed by B̂. This has an error of order
O(t2). This is easily improved on through the second-order
Trotter-Suzuki decomposition,

e−i�t (Â+B̂) = e−i�t Â/2e−i�t B̂e−i�t Â/2 + O(�t3). (5)

Like the first-order decomposition, this evolves the state in a
Floquet manner. It first does a partial evolution over Â, fol-
lowed by a full evolution over B̂, and then a partial evolution
over Â. While this can be generalized to higher orders with
more complex sequences of evolutions, here we will only
consider up to the second order.

The Trotter-Suzuki decomposition allows for a way to
approximately decompose U (�t ) into a sequential applica-
tion of local unitary operators. For the Hamiltonian Eq. (1),
one must first split the Hamiltonian into various components
which are each a sum over commuting operators. An easy way
to achieve this is to first write the Hamiltonian as Ĥ = Ĥ (1) +
Ĥ (2) + Ĥ (3), with each the sum over all operators which act
locally on (r) qubits. The first term, Ĥ (1), is already a sum
over commuting operators. The second and third terms need
to be split further,

Ĥ (2) =
∑

j

Ô(2)
2 j−1,2 j +

∑
j

Ô(2)
2 j,2 j+1 := Ĥ (2)

1 + Ĥ (2)
2 , (6)

Ĥ (3) =
∑

j

Ô(3)
3 j−2,3 j−1,3 j +

∑
j

Ô(3)
3 j−1,3 j,3 j+1

+
∑

j

Ô(3)
3 j,3 j+1,3 j+2 := Ĥ (3)

1 + Ĥ (3)
2 + Ĥ (3)

3 . (7)

The Hamiltonian is now composed of six individual sums. The
Trotter-Suzuki decompositions can be applied five times in
total to obtain a product over local unitary gates. Since each
sum contains commuting operators, this can be exactly split
into the product of unitaries, e.g., e−�t Ĥ (1) = ∏

j U (1)
j (�t ).

Writing the full product of unitaries is rather cumber-
some. As such, it is convenient to write the full evolution
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FIG. 1. Simulating time evolution with trotterization. The time
evolution operator U (�t ) = e−i�t Ĥ can be approximated using the
Trotter-Suzuki decomposition, as illustrated for local three-body in-
teractions, see Eq. (1), and N = 11 qubits. The lines indicate the
direction of time for each qubit, and the green rectangles are local
unitary operators. (a) The first-order Trotter-Suzuki decomposition
first evolves the system by all the single-body unitaries, followed
by commuting two-body unitaries and finally three-body unitaries.
Unitary operators which act on different qubits can be applied in
parallel. Each unitary is the exponential of operators in Eq. (1) with
time �t . (b) The second-order Trotter-Suzuki decomposition is done
symmetrically in time: all layers of unitaries are the exponential of
operators with time �t/2, apart from the middle layer, which is done
with time �t .

diagrammatically, as shown in Figs. 1(a) and 1(b) for the
first- and second-order decompositions respectively. The lines
show the evolution of a particular qubit (which are arranged in
spatial order), the green rectangles show the action of a unitary
gate on the given qubits. For the first-order decomposition, we
first evolve by all single-body unitaries in parallel. The next
two layers demonstrate the application of two-body unitaries.
Notice that unitary gates that commute (act on different lattice
sites) are applied in parallel. Finally, we evolve over the three-
body unitaries with three layers of gates. For the second-order
decomposition, we evolve in a symmetric way: each gate is
evolved for a time �t/2, except for the middle layer of gates,
which are evolved for the full time �t .

III. CLASSICAL OPTIMIZATION OF UNITARY CIRCUITS

Trotterization provides a systematic way to approximate
the time-evolution operator for a many-body quantum system
by decomposing it into the product of local unitary opera-
tors. One drawback to this approach is that it still relies on
many-body unitaries which might not be simple to implement
on current quantum devices. For example, the Trotter-Suzuki
decomposition for the three-body Hamiltonian Eq. (1) would
require us to implement three-body unitaries. However, the
native gates on popular platforms commonly only include
two-body entangling gates, such as controlled-NOT (CNOT)
gates. While these provide a foundation for a universal set
of quantum gates (i.e., any many-body unitary can be im-
plemented to arbitrary accuracy), there is no promise that the
three-body unitaries can be well implemented using a shallow
quantum circuit.

In this section, we explain how one can optimize a BW
unitary circuit with two-site gates and depth M to approximate
U (�t ) (for small �t) in a way that is scalable with system size
N . They are arranged compactly such that each layer has a uni-
tary gate acting on each lattice site (except for lattice sites at
the edges), see Figs. 2(a) and 2(b) for visualizations of circuit

FIG. 2. Unitary brickwall circuits. A unitary BW circuit can be
used as a variational ansatz for the time-evolution operator U (�t ),
as shown for N = 11 qubits and a circuit depth of (a) M = 3 and
(b) M = 4. The lines indicate the direction of time for the circuit,
and each rectangle is a two-qubit unitary matrix.

depths M = 3 and 4. Note that, while there is no guarantee
that a BW circuit with a fixed depth M can well approximate
U (�t ), the operator entanglement of U (�t ) for any local
Hamiltonian is bounded by Lieb-Robinson bounds [62] and
thus it is reasonable to expect that for sufficiently small times,
U (�t ) can be well-approximated by a BW circuit with a small
depth [63]. Additionally, unlike the Trotter circuits, there is
no direct way to determine an optimal BW circuit for general
Ĥ . However, they have the distinct advantage that they can
be easily implemented on current quantum computers with a
number of layers of two-body entangling gates that is constant
in M, see Appendix B.

We will optimize the BW unitary circuits to maximize the
“overlap” with the true time evolution operator U (�t ), which
we approximate using an MPO. Our method is reminiscent
of standard variational matrix-product state methods and is
not limited by system size (for example, Refs. [64–66]): we
find an optimal update for a single gate in the BW circuit,
keeping all other gates fixed. This is done for each gate in the
circuit, which we sweep through multiple times until we find
convergence. While there is freedom in deciding the order to
update the gates, the strategy we found to work best is given
in Fig. 3. We sweep back and forth through the lattice sites
2 � j � N − 1. For each lattice site, we update every gate
which acts on the lattice site. Every sweep from left-to-right
(or right-to-left) will update each unitary gate twice, apart
from those on the edges, which are only updated once.

A. MPO approximation of U (�t )

In general, it is possible to write U (�t ) as a (dN , dN )-
matrix. This is illustrated diagrammatically as a TN in
Fig. 4(a), where each leg corresponds to a physical dimension
d . However, this quickly becomes intractable to calculate due
to its exponential cost with N . One strategy to overcome this
cost is to instead approximate U (�t ) with an MPO. This is a
decomposition into a TN with a rank-4 tensor for each lattice

FIG. 3. Sweeping order. We sweep back-and-forth through the
lattice sites j = 2 to N − 1. At each lattice site, we sequentially
optimize each unitary gate which acts on site j in the order shown
in the diagram.
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FIG. 4. Matrix product operators. (a) The time propagator
U (�t ) = e−i�t Ĥ can be represented as a full-rank matrix. (b) For
small times, U (�t ) can be well approximated with an MPO, where
the pink circles represent rank-4 tensors. The virtual bond dimension,
χ � dN , can be used to control the accuracy of the approximation.

site,

UMPO =
∑

n1···nN

∑
m1···mN

T m1···mN
n1···nN

|m1 · · · mN 〉 〈n1 · · · nN | , (8)

with the matrix coefficients determined by a matrix product,

T m1···mN
n1···nN

= Tr
[
M (1)

n1m1
· · · M (N )

nN mN

]
. (9)

Each M ( j)
n j mj is a (χ, χ ) matrix, where χ is the virtual bond

dimension which controls the accuracy of the approximation.
When the labels nj and mj are unspecified, M ( j)

n j mj is a rank-4
tensor with two physical dimensions and two bond dimen-
sions which connect the tensor to the tensors of neighboring
lattice sites, see Fig. 4(b). Each circle represents a tensor, the
open legs the physical dimensions, and the connected legs the
bond dimensions.

The MPO is described by O(Nχ2d2) parameters, which is
compared to the O(d2N ) parameters of the full-rank matrix.
The caveat of this is that the MPO requires a bond dimen-
sion χ ∼ O(dN ) to attain full accuracy for arbitrary U (�t ).
Nevertheless, for small times, U (�t ) can be approximated to
some accuracy with a bond dimension which is independent
of system size, χ ∼ O(dγ�t ) [57–59]. This fact will be used
throughout the paper.

Our method will assume that we have access to a high
accuracy MPO approximation of U (�t ). For system sizes
N � 12, we construct the MPO by calculating U (�t ) as a
full-rank matrix to numerical precision, and then decompose
it as an MPO using singular value decompositions (SVDs),
see Ref. [66] for details. For N � 12, we construct the ap-
proximation by evolving an MPO using trotterization [67],
although we note there are other methods which might be
more effective, e.g., Refs. [68–70].

We start with the identity matrix UMPO(τ = 0) = 1̂. To
ensure the MPO approximation is accurate [71], we evolve
it using one-hundred second-order Trotter steps with time
step �τ = �t/100, which we denote by UTrotter (�τ ). At each
evolution step, the time evolution operator is approximated by

UMPO(τ + �τ ) ≈ UTrotter (�τ )UMPO(τ ). (10)

The application of each gate will give a new MPO with a bond
dimension χexact = rχ , where r > 1 is some integer which de-
pends on the circuit. Thus the bond dimension of the resulting
MPO will grow exponentially in the number of applications
of the trotterized circuit. To prevent this, at each time step,
we approximate the MPO with another MPO with a smaller
bond dimension χ ′ such that χ � χ ′ � χexact. In practice, this
is achieved by compressing the MPO using SVDs after each
application of unitary gate [66]. We allow the bond dimen-

sion to grow dynamically, with its value determined through
the SVD. We use an SVD truncation error of ε = 10−16 to
ensure that the truncation error is minimal [72]. Notice that
this setup allows for each individual bond dimension between
lattice sites to take its own value. Assuming a maximal bond
dimension χ , the cost of constructing U (�t ) as an MPO is
O(N�t�τ−1χ3d8).

B. The cost function

Suppose we want to update the unitary gate at depth m �
M which acts on a lattice site l , which for simplicity we call
G. The objective is to choose the gate G while keeping all
other gates fixed such that the BW circuit best approximates
the MPO. To this end, we use the squared Frobenius norm

F (2)(UBW(�t )) = ||UMPO(�t ) − UBW(�t )||2F
= Tr[U †

MPO(�t )UMPO(�t )]

+ Tr[U †
BW(�t )UBW(�t )]

− 2Re(Tr[U †
MPO(�t )UBW(�t )]) (11)

as a cost function. To find the optimal choice for the gate, Gopt,
one needs to minimize Eq. (11) with respect to G,

Gopt = argminG∈U (d2 ){F (2)(UBW(�t ))}, (12)

where U (d2) denotes the group of unitary matrices with di-
mensions (d2, d2). The first term in Eq. (11) depends only on
the MPO, which has no variational parameters, and is thus
constant. The second term is the trace of the product of the
BW circuit with its Hermitian adjoint. Since all gates are
unitary, the product of any gate with its Hermitian adjoint is
the identity matrix, as shown in Fig. 5(a). It follows that this
term is constant, Tr[U †

BW(�t )UBW(�t )] = 2N . Note that this
is true for all choices of unitary gates, G. The final term is the
trace of the BW circuit with the Hermitian adjoint of the MPO.
This is shown in Fig. 5(b). The gate which is being optimized
is colored green. Since the previous two terms are both con-
stants, it follows that minimizing the squared Frobenius norm
is equivalent to

Gopt = argmaxG∈U (d2 ){Re(Tr[U †
MPO(�t )UBW(�t )])}. (13)

C. Updating the gates

We now explain how to find the unitary gate, Gopt, which
maximizes Re(Tr[U †

MPO(�t )UBW(�t )]). We first contract all
tensors and gates in Tr[U †

MPO(�t )UBW(�t )] except for the
gate G. It is convenient to group together all tensors and
gates which act on lattice sites j < l (but not those which
act on j = l) to give the tensor Ll−1. Similarly, we group
together all tensors and gates which act on lattice sites j > l
(but not those which act on j = l) to give the tensor Rl+1.
For more details, see Sec. III D. The gives the TN shown in
Fig. 5(c), which can be fully contracted to give the tensor
G̃†. The exact contraction will differ depending on l , m and
M. The cost of contracting the TN in Fig. 5(c) is at most
O(χMd4+2	M/2
 + χ2d2+2	M/2
). Note that, while the cost of
contracting the network is exponential in the circuit depth M,
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FIG. 5. Updating unitary gates. The procedure for updating
a gate G illustrated for a circuit with depth M = 3. The tar-
get gate is at site l = 7 and depth m = 2. The optimal update
for the gate is determined through Eq. (12). (a) A unitary gate
(blue rectangle), multiplied with its Hermitian adjoint (orange rect-
angle), gives the identity matrix. (b) The TN representation of
Tr[U †

MPO(�t )UBW(�t )]. The green rectangle is the target gate. The
tensors and gates which act on lattice sites j < l (but not on j = l)
can be contracted to give tensor Ll−1. Similarly, the tensors and gates
which act on lattice sites j > l (but not on j = l) can be grouped
to give the tensor Rl+1. (c) The tensor G̃† can be found by partially
contracting over the TN in (c), excluding the gate G. (d) The choice
of unitary gate which maximizes Re(Tr[U †

MPO(�t )UBW(�t )]) can
be found through the polar decomposition. In practice, we perform
an SVD on the tensor G̃ = USV †, and discard the matrix of singu-
lar values S. Multiplying U and V † gives the optimal unitary gate
Gopt = UV †.

in practice one wants to find a good approximation with as
minimal depth as possible.

The unitary gate Gopt which maximizes Re(Tr[U †
MPO

(�t )UBW(�t )]) can then be found through the polar decom-
position of G̃ [46,56]. In practice, this is found by performing
an SVD on G̃ = USV †, where U and V † are unitary matrices,
and S is a diagonal matrix of singular values. The polar de-
composition can then be retrieved by replacing S with identity,
i.e., Gopt = UV †. This is shown in Fig. 5(d), and is achieved
with a computational cost O(d6).

D. Contracting the environment

As is often done in TN methods, it is convenient and
efficient to recycle partially contracted networks [66]. For this
method, it will be useful to save each of the blocks Lj and Rj

to memory for two reasons. The first is the blocks Lk−1 and
Rk+1 will be the same for each of the M gates which act on
site k. They can be calculated and then recycled to update
each of the M gates. The second reason is that the blocks
Lj and Rj can be used iteratively to calculate the blocks at
all sites j. That is, Lj can be calculated using Lj−1 and Rj

can be calculated using Rj+1. This procedure is illustrated in
Fig. 6 for a circuit depth M = 3, although the exact calcu-
lations will differ for other circuit depths. The left column

FIG. 6. Contracting the environment. Building the environment
blocks, illustrated for a circuit depth M = 3 circuit. [(a) and (b)]
Building the left block Lj from the previous Lj−1 for even and odd
j, respectively. [(c) and (d)] Building the right block Rj from the
previous Rj+1 for even and odd j, respectively.

shows how to construct the blocks for even j, and the right
column for odd j. The block Lj−1 is contracted with all the
gates which act on both sites j − 1 and j, along with the
adjoint of the MPO tensor at site j to form the block Lj .
Similarly, the block Rj+1 is contracted with the gates which
act on both sites j and j + 1, along with the adjoint of the
MPO tensor at site j to give Rj . The cost of expanding such
blocks is at most O(χ2d2+2	M/2
 + χMd4+2	M/2
), and storing
to memory is at most O(χd2	M/2
) per block. See Table I for
a complete description of all the computational costs in our
method.

IV. RESULTS

We now benchmark our approach for numerous models of
interest for system sizes N = 8 to 512. To assess the quality
of the dynamics, we first measure the error of the BW circuit
with respect to the high-accuracy MPO approximation, and
investigate violations of conserved quantities. We then cal-
culate the number of CNOT layers needed to implement the

TABLE I. The computational complexity for each of the steps
in the optimization method. N is the number of lattice sites; d is
the local dimension of the system; �t is the time step of unitary
U (�T ) = e−i�t Ĥ ; �τ is the time step in trotterization; χ is the bond
dimension of the MPO U (�t ); M is the depth of the BW circuit.

Estimating U (�t ) as an MPO

O(N�t �τ−1χ 3d8)

Updating the environment

O(χ 2d2+2	M/2
) + O(χMd4+2	M/2
)

Updating the gates (per gate)

O(χ 2d2+2	M/2
) + O(χMd4+2	M/2
)
Cost per sweep

O(Nχ 2d2+2	M/2
) + O(NχMd4+2	M/2
)

033062-5



CAUSER, JUNG, MITRA, POLLMANN, AND GAMMON-SMITH PHYSICAL REVIEW RESEARCH 6, 033062 (2024)

circuits on a quantum computer, which we compare to trotter-
ization. Finally, we investigate the convergence properties of
our method to demonstrate its practicality.

A. Error metrics

We first consider the performance of the unitary cir-
cuits with respect to the time step, �t . One instructive
measure is the error density of the circuit with respect to
the MPO [73],

δ(�t ) =
√

2 − Re(Tr[U †
MPO(�t )UBW(�t )])1/N . (14)

For small �t , the error density for first and second-order
trotterization will scale as O(�t2) and O(�t3) respectively;
this will provide both a qualitative and quantitative criterion
to compare our results to. It is also important to note that we
must achieve a scaling better than O(�t ) to have meaningful
results: if the error of the gates goes as O(�t ), then the total
error for time t is O(�t ), and using a smaller �t will yield no
improvements.

A second quantity to consider is the Frobenius norm of the
commutator of the BW circuit with some conserved quantities
Ô,

C(UBW(�t ), Ô) = ||[UBW(�t ), Ô]||F
||Ô||F

, (15)

which is normalized by the Frobenius norm of the operator
Ô. Note that unlike δ(�t )—which calculates the error with
respect to a high accuracy approximation of the true time
propagator—this quantity can be calculated exactly if Ô has
an efficient MPO representation. For example, Eq. (15) can
be used with any local Hamiltonian, Ô = Ĥ , to investigate the
conservation of energy.

1. Cluster Ising model

The first model we consider is a cluster Ising (CI) model,

ĤCI = − (1 + g)2
N∑

j=1

X̂ j − 2(1 − g2)
N−1∑
j=1

Ẑ j Ẑ j+1

+ (g − 1)2
N−2∑
j=1

Ẑ j X̂ j+1Ẑ j+2, (16)

where g ∈ [−1, 1] is a tuning parameter which interpolates
between a symmetry protected topological phase for g < 0
and topologically trivial phase for g > 0 [74,75]. The oper-
ators X̂ j and Ẑ j are the usual Pauli operators for two-level
systems, acting at the lattice site j. This choice of Hamil-
tonian is motivated by recent works [76] which show how
the ground state of Eq. (16) can be prepared on quantum
simulators.

We apply our variational approach to Eq. (16). We choose a
random initial unitary circuit with each gate random, but close
to identity. For g � 0, we find the initial circuit plays little role
in convergence: the method is able to consistently converge to
some optimal value.

FIG. 7. Error scaling for the CI model. [(a) and (b)] The error
density of the BW circuit with respect to the MPO approximation,
δ(�t ) and [(c) and (d)] the Frobenius norm of the commutator with
the Hamiltonian, Eq. (15). The data points show the results from
variational optimization for system sizes N = 8 to 512. The solid
lines show the same results for first and second-order trotterization
with N = 8. The dashed lines show the scaling O(�t2) and the
dotted lines show the scaling O(�t3). The left column is for depth
M = 3, and the right column is for depth M = 4. All results are for
g = −0.75.

Figure 7 show the results for the symmetry protected phase
with depths M = 3 (left panels) and M = 4 (right panels).
The top panels show the error density, δ(�t ), and the bot-
tom panels show the error in the conservation of energy,
C(UBW(�t ), ĤCI). Similar results for the trivial phase are
found in Appendix A. In each case, we find the minimal
depth needed to obtain at least a scaling O(�t2) is M � 3.
Interestingly, there are no circuit depths which yield results
comparable to first-order trotterization, shown by the darker
solid line (which has scaling O(�t2), shown by the dashed
line). Instead, the circuit depth M = 3 has scaling O(�t3)
(dotted line), matching the results of second-order trotter-
ization (lighter solid line). Indeed, we find the variational
optimization is even able to give prefactor improvements to
trotterization, but with a drastic reduction in the number of
CNOT layers required, see Sec. IV B.

We also observe O(�t3) behavior for the circuit depth
M = 4. However, it should be noted that the extra BW layer
yields an order of magnitude improvement in the error and
conservation of energy. Furthermore, we observe a dip in
the error around �t ∼ 0.4 which is consistent with system
size. While we are not able to offer an explanation for this
behavior, the key observation is that additional layers might
provide significant improvement. Notice that, for small times
�t ∼ 10−2, the optimization method can struggle to converge
to the expected scaling. Nevertheless, the errors are on the
order of numerical precision.
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FIG. 8. Error scaling for the PXP model. Error metrics for the
PXP model with circuit depths M = 4 (left panels) and M = 5
(right panels). [(a) and (b)] The error density δ(�t ) as a func-
tion of �t . [(c) and (d)] Violation of the conservation of energy,
C(UBW(�t ), ĤPXP ). [(e) and (f)] Violation of the conserved quan-
tities, 〈C(UBW(�t ), Q̂ jQ̂ j+1)〉. The data points and curves are as
defined in Fig. 7.

2. The PXP model

The second model we consider is the PXP model [77–79],

ĤPXP = X̂1P̂2 +
N−1∑
j=2

P̂j−1X̂ j P̂j+1 + P̂N−1X̂N , (17)

where P̂j = 1
2 (1̂ − Ẑ j ) is the local projection onto the spin

down state, and 1̂ is the identity operator. The PXP model is
an idealized kinetically constrained model for realising the dy-
namics of cold atom platforms [80] in a strong coupling limit,
and has recently received much attention due to its connection
to quantum many-body scars [79,81]. Furthermore, unlike the
CI model considered in the previous section, the PXP model
is nonintegrable [79].

Figure 8 shows the results of our optimization method.
We use the variational approach with an annealing strategy
which reduces the time �t of the MPO from an initial time
of �t = 1.0 to the target time. The first column is for depth
M = 4 (which was the minimal depth needed to reach order
k = 1), and the second column shows depth M = 5. The first
row shows the error density δ(�t ). For a depth of M = 4, we

are able to obtain an O(�t2) scaling, with prefactor improve-
ments on first-order trotterization. For a depth of M = 5, this
can be improved to an O(�t3) scaling, matching the results of
second-order trotterization. Notice that, as was the case for the
CI model, the variational approach can sometimes struggle to
converge for small �t .

The second row of Fig. 8 shows the error in the con-
servation of energy, C(UBW(�t ), ĤPXP). This value scales in
the same way as the error density, and also closely matches
the results of trotterization. The PXP model also conserves the
quantities Q̂ jQ̂ j+1 for all j, with Q̂ j = 1̂ − P̂j . We calculate
how well this quantity is conserved through the lattice site
average

〈C(UBW(�t ), Q̂ jQ̂ j+1)〉

= (N − 1)−1
N−1∑
j=1

C(UBW(�t ), Q̂ jQ̂ j+1), (18)

shown in the bottom row of Fig. 8. The error in these con-
served quantities is qualitatively the same as the error density
and the error in the conservation of energy. However, it is
important to note that the conserved quantities of the PXP
models are a result of the kinetic constraints in Eq. (17) and
are exactly conserved by trotterization.

3. The next-nearest-neighbor Ising model

The final model we consider is the next-nearest-neighbor
Ising (NNNI) model,

ĤNNNI = gx

N∑
j=1

X̂ j + gzz

N−1∑
j=1

Ẑ j Ẑ j+1 + gz1z

N−2∑
j=1

Ẑ j Ẑ j+2. (19)

Its second-order trotterization can be written as a BW uni-
tary circuit through a decomposition into SWAP gates and
Rzz(2�t ) = e−i�t Ẑ⊗Ẑ gates, as illustrated in Fig. 9(a). By
grouping gates together (shown by the dashed lines), the
second-order decomposition becomes a BW circuit with depth
M = 6. For gzz = 0, this can be done for M = 5 by removing
the gates responsible for the nearest-neighbor interactions in
Eq. (19).

Unlike the two previous models, we find that the optimiza-
tion for the NNNI model is highly susceptible to becoming
stuck in local minima. Because of this, optimising the circuits
to achieve a scaling that beats O(�t ) is extremely difficult,
and only happens on rare occasions for some choice of initial
guess. This effect becomes more apparent for larger system
sizes. As such, this model serves as an interesting example
where the solution is known explicitly, but the variational
optimization method is unable to reliably obtain a good result.
Instead, we propose an initial guess which uses the structure
of the circuit in Fig. 9(a), but only for the SWAP gates, see
Fig. 9(b). All other gates are set to identity. With this choice of
initial guess, we find the error metrics converge to those of the
second-order trotterization solution, see Figs. 9(c) and 9(d) for
the error density and Figs. 9(e) and 9(f) for the conservation of
energy. These results could motivate the future investigation
of strategies to systemically suggest more optimal choices of
initial guesses. Notice that in this instance, we observe little
improvement when compared to the results of trotterization.
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FIG. 9. Error scaling for the NNNI model. (a) A second-order
trotter decomposition for the NNNI model can be written as a
BW circuit composed of SWAP gates, Rx (�t ) = e−i�t X̂/2 gates and
Rzz(2�t ) = e−i�t Ẑ⊗Ẑ gates. The dashed lines show where gates can
be compressed to give one layer of the BW circuit. (b) As an initial
guess for variational optimization with circuit depth M = 6, we use a
similar circuit where the SWAP gates are placed in the same positions
as (a). The remainder of the gates are set to identity. For depth
M = 5, the initial guess is the same, but with the final layer removed.
[(c) and (d)] The error density, δ(�t ). [(e) and (f)] The error in the
conservation of energy, C(UBW(�t ), ĤNNNI). (c) and (e) show results
for gx = gz1z = 1 and gzz = 0 with circuit depth M = 5, while (d) and
(f) show results for gx = gzz = gz1z = 1 and M = 6. The data points
and curves are as defined in Fig. 7.

B. Number of CNOT layers

While two-qubit gates are required to create entangle-
ment, they are often the operations which take the longest
to implement on quantum computers, and thus are most re-
sponsible for decoherence. For many popular platforms, such
as IBM’s quantum processors, they are implemented using
CNOT gates. Because of this, it is essential to implement
quantum dynamics using as few CNOT layers as possible. We
discuss how both the BW circuits and trotterized circuits can
be implemented using just single qubit operations and CNOT
gates in Appendix B, but summarize the results here and in
Table II.

Each layer of BW unitary gates can be decomposed into a
quantum circuit with three layers of CNOT gates. It follows

TABLE II. We compare the circuits from trotterization to ones
from our optimization method. The maximal number of CNOT layers
required to implement a single time step of the trotterized circuits
and BW circuits for any system size is shown in the second column.
The final column shows the error density δ(�t ) (rounded to three
significant figures), for time step �t = 0.1 and system size N = 8.
Results are shown for the cluster Ising (CI) model, the PXP model,
and a next-nearest-neighbor Ising (NNNI) model. The order of the
approximation k is given for each circuit. Note that the error density
scales as O(�t k+1) for small �t . The CI model is for g = −0.75 and
the NNNI model is for gx = gzz = gz1z = 1.

Circuit CNOT Layers Error, δ(�t = 0.1)

Trotter k = 1 16 3.03 × 10−2

CI Trotter k = 2 28 6.32 × 10−3

Brickwall k = 2 9 3.03 × 10−3

Trotter k = 1 42 1.87 × 10−3

PXP Trotter k = 2 70 4.23 × 10−5

Brickwall k = 1 12 6.67 × 10−4

Brickwall k = 2 15 3.06 × 10−5

Trotter k = 1 13 1.78 × 10−2

NNNI Trotter k = 2 15 1.81 × 10−3

Brickwall k = 2 18 1.04 × 10−3

that a BW circuit of depth M has at most 3M layers of CNOT
gates. The trotterized circuits for each of the models requires
more care. The first and second-order trotterized circuits for
the CI model can be implemented with 16 CNOT layers and
28 CNOT layers respectively. On the contrary, a BW circuit
of depth M = 3 gives a second-order scaling while requiring
only nine CNOT layers. This yields an enhancement factor of
∼3.1 when compared to second-order trotterization, and can
even be implemented with fewer CNOT layers than first-order
trotterization. A circuit depth of M = 4 also has a second-
order scaling, but with order-of-magnitude improvements on
second-order trotterization. This can be implemented with 12
CNOT layers.

For the PXP model, we found that circuit depths M =
4 and 5 gave first- and second-order scaling respectively,
requiring a total of 12 and 15 layers of CNOTs. On the
contrary, first-order trotterization requires 42 CNOT layers
(assuming there are only CNOT connections between neigh-
boring qubits), giving an enhancement factor of 3.5. Similarly,
second-order trotterization requires 70 CNOT layers, giving
an enhancement factor of ∼4.6.

The final model we considered was the NNNI model. Here,
both the BW circuits and the trotterized circuit gave a second-
order scaling with the same number of layers of two-qubit
gates. Naively, one might assume they can be implemented
with the same number of CNOT gates. However, it is impor-
tant to note that the two-qubit gates in the trotterized circuit
only include SWAP gates and Rzz(�t ) gates, while the clas-
sically optimized BW circuits allow for arbitrary two-qubit
gates. Any general two-qubit gate (including SWAP gates) can
be implemented with three CNOT gates, while the Rzz(�t )
requires only two CNOTs. Because of this, the trotterized
circuit can be implemented with fewer CNOT layers than
the classically optimized circuits. For gzz = 0 (gzz �= 0), the
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optimized BW circuit requires 15 (18) CNOT layers, while
the trotterized circuit requires only 13 (15) layers. Note that,
while the BW circuit requires more CNOT layers to imple-
ment the dynamics, it yields an improvement in the error
density, see Table II.

C. Convergence of optimization

We now benchmark the performance of the variational
optimization. In particular, we test the number of sweeps
required for convergence. After each sweep l , we measure
the Frobenius norm of the difference between our BW circuit
ansatz and the MPO approximation, F (1)

l =
√
F (2)

l , where
F (2)

l is Eq. (11) after the l-th sweep. We define convergence to
be when the relative difference in the Frobenius norm between
successive sweeps falls below some value ε

F (1)
l−1 − F (1)

l

F (1)
l−1

< ε. (20)

In practice, we use ε = 10−6.
We first check the number of sweeps required for conver-

gence as a function of time, with a fixed depth M, which we
choose to be the minimum depth that is required to yield an
error density that scales better than O(�t ). For the CI model,
this is a circuit depth of M = 3, and for the PXP model,
a circuit depth of M = 4. This is shown in Figs. 10(a) and
10(b)] for the CI and PXP models respectively with system
sizes N = 64, 128, and 256. Each data point shows the av-
erage over one hundred independent runs. Notice that in both
cases, the number of sweeps required to converge looks to
be independent of system size. Furthermore, for small times
�t � 1, the number of sweeps needed to converge appears
to go as a power law, O(�t−α ); for the CI model, there is
an exponent α = 2, and for the PXP model, an exponent of
α ≈ 2.5. While we cannot offer a compelling explanation for
the exact values of these exponents, we speculate they are
related to the transport properties of the models. Nevertheless,
the key point is that this scales subexponentially. Notice that
the number of sweeps deviate from the scaling at large times,
where the error density no longer scales as a polynomial (cf.
Fig. 7). Furthermore, while it might seem counterintuitive
that the number of sweeps needed for convergence decreases
with larger time step �t , note that the accumulated error for
evolving to a total time t with a small time step �t goes as
O(t�t k ), with k = 2 for the CI model and k = 1 for the PXP
model. It follows that decreasing the time step will result in a
more accurate evolution.

We also investigate convergence for a fixed time step t
and variable circuit depth M. Figures 10(c) and 10(d) show
the average number of sweeps required for convergence as
a function of M for system sizes N = 8, 16, and 32 for the
CI model and PXP model respectively. While there is no
obvious trend, it is clear that the number of sweeps needed
for convergence scales subexponetially in the circuit depth.
However, we emphasize that while the number of sweeps
might not scale exponentially, the cost required for updating
unitary gates does. We also show the average error density for
the converged circuits in Figs. 10(e) and 10(f), for the same

FIG. 10. Convergence of variational optimization. The left pan-
els are for the CI model with g = −0.5, and the right panels are
for the PXP model. [(a) and (b)] The number of sweeps required to
converge for a fixed circuit depth M as a function of time, �t . Data
are shown for N = 64, 128, and 256 with a circuit depth of M = 3
for the CI model, and M = 4 for the PXP model. For small times,
the number of sweeps required to converge goes as some power law,
�t−α , with α = 2 for the CI model and α ≈ 2.5 for the PXP model,
shown by the dashed lines. [(c) and (d)] The number of sweeps
required to converge for a fixed time �t as a function of circuit depth,
M. Data is shown for N = 8, 16, 32 with a time of �t = 0.1 for the
CI model, and t = 0.5 for the PXP model. [(e) and (f)] The error
density, δ(�t ), averaged over all runs for the same systems as (c) and
(d). Each data point is the mean of 100 independent runs.

systems as before. Notice that while increasing the circuit
depth consistently provides an improvement to the error, it
looks to be diminishing. The most substantial improvements
are found when increasing the circuit depth changes the scal-
ing of the error density for small times, i.e., increasing the
depth M increases the exponent k for δ(�t ) ∼ O(�t k+1). This
is evident from panel (f), where circuit depths M = 3, 4, 5
gives orders k = 0, 1, 2, respectively. In practice, we find that
is it more effective to optimize for a shallow circuit which also
yields a desirable scaling.
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FIG. 11. Optimal time step. (a) The optimal time step for quan-
tum simulation can be determined through considerations of the
errors native to the quantum device (blue dashed line) and the al-
gorithmic errors from the optimization of BW circuits (red dashed
line). Small time steps, �t , require a large circuit depth to reach time
t , and accumulate a large error from the device. On the contrary, the
BW circuit is unable to well approximate the true time evolution op-
erator for large time steps. The optimal time step �topt is determined
through a combination of the two. (b) The native error of a quantum
computer can be measured by running a BW circuit U forwards and
then in reverse, and taking measurements. In practice, the quantum
computer will add noise to the evolution, and we can consider this
the same as evolving by some noisy circuits Ũ and Û †. The error can
be calculated from the discrepancy between the initial state and the
measurements; see the main text for details. (c) The algorithmic error
can be calculated with a similar setup, where this time we evolve
using the BW circuit, UBW(�t ), but then evolve using the adjoint of
the MPO, U †

MPO(�t ).

V. OPTIMAL TIME STEP

We have explained how to optimize a BW circuit to effi-
ciently simulate quantum dynamics for some time �t , which
can then be used repeatedly to achieve some target time t
that is unobtainable on a classical computer. However, it is
not immediately clear what time step �t should be chosen
to simulate the dynamics. On one hand, we have shown that
choosing a smaller time step can reduce the algorithmic error
for evolving to time t . Indeed, if a BW circuit of depth M gives
a kth-order approximation (e.g., M = 3 for the CI model has
order k = 2), then the cost of evolving to time t is O(t�t k ).
This error is illustrated by the dashed red line in Fig. 11. This
entices us to pick a small time step, resulting in a deeper quan-
tum circuit. On the other hand, quantum computers are never
completely isolated from their environment. This introduces
errors which are native to the device. We assume that this error

is exponential in the circuit depth, as shown by the blue dashed
line in Fig. 11. This indicates that our simulations would
benefit from a shallower quantum circuit. The total simulation
error is a combination of the two, shown by the black curve,
and the optimal time step is the one which minimizes this
error. In what follows, we explain how to estimate each of
these errors to guide us in determining an optimal time step.
We note that a similar analysis was done for trotterization in
Ref. [82].

A. Measures of fidelity on quantum devices

One way to estimate the error native to a quantum com-
puter is to simulate a unitary BW circuit, followed by the
same circuit, but in reverse. For a perfect quantum computer,
the resulting operation is the identity matrix, UU † = 1̂, and
the initial state will be retrieved with certainty. However, in
practice, each layer of the quantum circuit will incur some
random error native to the device, and the circuit described
above will not yield the identity matrix. This allows us to
estimate a layer-dependent error of the device through the
fidelity of the state.

Let us assume the system is prepared in a state such
that each qubit is an eigenstate of the Z basis, e.g., |ψ〉 =⊗N

j=1 |σ j〉 with σ j = ±1. We can then evolve the system
using a unitary BW circuit, followed by the same circuit in
reverse. Following this, one can then take a measurement for
each qubit in the Z-basis. This is shown in Fig. 11(b). Note
that, in practice, the error might depend on the unitary circuit,
and one should use a circuit which resembles the circuits that
simulate the dynamics of the Hamiltonian. The fidelity of the
device for the total circuit goes as

F d = 1

2N

〈∑
σ

| 〈σ|Û †Ũ |σ〉 |2
〉

noise

, (21)

where |σ〉 = |σ1 · · · σN 〉, and Ũ and Û are the unitary circuit
U subject to two independent realizations of the random noise
of the quantum computer. The 〈·〉noise indicates an average
over random noise. In practice, one can estimate Eq. (21) by
simulating the circuit shown in Fig. 11(b) a finite number of
times (sometimes referred to as shots) each with a random
initial state.

While the fidelity provides an unbiased way to estimate
the native errors of quantum simulation, in practice it is ex-
ponentially difficult to measure in the number of qubits: the
number of shots needed for a measurement with some desired
accuracy goes as O(eN ) [83]. Typically, one is interested in
studying the evolution of local quantities, such as the expecta-
tion value of local observables. As such, it could be beneficial
to instead determine an error using only local measurements.
As before, we can prepare the initial state of the system to
be a product state of Z-basis eigenstates, and then evolve it
forwards and backwards. We then take measurements in the Z
basis. However, this time, we calculate a local fidelity,

F̃ d = 1

N2N

〈∑
σ

N∑
j=1

〈σ|Û †Ũ σ̂ jŨ
†Û |σ〉

〉
noise

, (22)

where σ̂ j = (1̂ + sgn(σ j )Ẑ j )/2 is a projector onto the state σ j

(i.e., the jth spin in the initial state σ). Notice that Eq. (22) can
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FIG. 12. Fidelity of the quantum device. We run the forwards-
backwards setup from Fig. 11(b) to measure the errors on the device
ibm_brisbane, which was accessed on the 11th of November 2023.
Results are for the CI model with g = −0.5, N = 5 qubits (each
starting from spin down), and time step �t = 0.25. The top panel
shows the normalized fidelity as a function of the total number appli-
cations of each circuit. The bottom panel shows the same, but for the
normalized local fidelity. Data are shown for first-order trotterization,
second-order trotterization, and optimized BW circuits with depths
M = 3 and 4. The dashed/dotted line shows the exponential function
with exponent −η, with η given in the legends. Each data point is
averaged over 8192 shots.

be measured with the same set up as Eq. (21). Furthermore,
the definition can easily be extended to consider multiple-site
observables.

We demonstrate our approach in Fig. 12 using the
ibm_brisbane device, where we simulate the dynamics of the
CI Ising for N = 5 qubits using a time-step of �t = 0.25, with
first and second-order trotterization, and with BW circuits
with depths M = 3 and 4. We first evolve forwards in time by
multiple applications of time step �t , and then backwards in
time, with the same number of applications of time step −�t ,
as described in the setup above. While technical limitations
only allowed us to run the circuits with the initial state where
all spins are σ j = −1, in practice, one should average over
many initial conditions.

The top panel shows the normalized fidelity (F d −
2−N )/(1 − 2−N ) as a function of the number of total appli-
cations of each circuit (which is twice the number of forward
applications). The bottom panel shows the same, but for the
normalized local fidelity, 2F̃ d − 1 [84]. The dashed/dotted
lines show the exponential fit e−ηx for each type of circuit,

where x is the number of applications. It is clear that the fi-
delity decays approximately exponentially for both measures.
While the number of applications of each circuit is the same, it
is important to note that each circuit will differ in its quantum
circuit depth. We expect the most significant source of error
to come from the number of CNOT layers. Indeed, the BW
circuit with M = 3 outperforms both first and second-order
trotterization while attaining an error density on par with
second-order trotterization (cf. Fig. 7). The BW circuit with
depth M = 4 has a native error similar to that of first-order
trotterization, but with an error density which outperforms
second-order trotterization by a significant prefactor.

B. Measures of fidelity for classically optimized circuits

The error density from Sec. IV allows us to understand the
algorithmic error of a single time step with respect to the true
evolution operator. However, it cannot be used comparatively
with the fidelity measures of the previous section. We can
instead use a forwards and backwards scheme as was done in
the previous section, but this time, with the forwards evolution
done with the BW circuit approximation, and the backwards
evolution done with the true dynamics, U †(�t ), which in
practice we approximate with an MPO, U (�t ) ≈ UMPO(�t ).
That is, we calculate

F a
�t = 1

2N

∑
σ

| 〈σ|U †
MPO(�t )UBW(�t )|σ〉 |2. (23)

This is illustrated in Fig. 11(c).
While we are unable to bound the fidelity using the

error density (or the Frobenius norm), it is possible to
bound the fidelity using the operator norm [85]. If we have
||U (�t ) − UBW(�t )|| � E (�t ), then it also follows that 1 −
F a

�t � E (�t )2, see Appendix C. For the local fidelity, we can
calculate

F̃ a
�t = 1

N2N

∑
σ

N∑
j=1

〈σ|U †
BW(�t )UMPO(�t ) σ̂ j

× U †
MPO(�t )UBW(�t )|σ〉. (24)

We explain how to calculate Eqs. (23) and (24) using TNs in
Appendix C. It is important to note that Eqs. (23) and (24)
do not give the infidelity (or a bound on the infidelity) for
the evolution of arbitrary state |ψ〉. Instead, they provide the
infidelity averaged over all possible states. Nevertheless, they
will serve as a useful estimate of the algorithmic error for a
single time step.

Equations (23) and (24) provide us with a way to estimate
the fidelity of the time-evolved state with a BW circuit for the
time step, �t . However, in practice, we would like to calculate
the fidelity for n applications of the circuit, i.e., the fidelity of
evolving to time t = n�t using the product formula. While
calculating this exactly for large N and large t is generally not
possible, we can again bound it by the operator norm error,
F a

n�t � 1 − n2E (�t )2. We estimate that the total infidelity for
n applications of the circuit to go as

Ia
n�t ≈ n2

(
1 − F a

�t

)
(25)

and similarly for the local infidelity. We expect that 1 − F a
�t ∼

O(�t2k+2) for a kth-order approximation and small �t , which
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is numerically verified for the CI model in Appendix C.
Appendix C also demonstrates that while Eq. (25) can overes-
timate the true error for large n, it can still give a reasonable
approximation.

C. The total error

We can now use our estimates of the fidelity to estimate a
total fidelity for simulating a total time t with n time steps on
a quantum device. We expect the fidelity to be multiplicative,

Fn�t ≈ e−ηn
[
1 − n2

(
1 − F a

�t

)]
, (26)

where η is the exponential decay rate of the fidelity due to
native errors from the quantum device. For some target simu-
lation time, t , one can estimate the infidelity In�t = 1 − Fn�t

for a range of n, and use it to predict what choice of �t = t/n
gives minimal infidelity. While the values of η recorded from
the ibm_brisbane are too large to reliably predict an optimal
time, we show an example of calculating the optimal time step
�topt with fictional values of η in Appendix C.

VI. CONCLUSIONS

In this paper, we have proposed a method to classically
optimize BW circuits to efficiently simulate the dynamics
of quantum many-body systems, building on the works of
Refs. [49–52,86]. Like Refs. [51,52], we make use of MPO
approximations of the time evolution operator to variationally
update unitary gates in the BW circuits, allowing the method
to efficiently scale with system size. The previous works
chose particular parametrizations of the two-qubit gates to en-
force unitarity, which were optimized using gradient descent
approaches. However, our method makes use of the polar
decomposition to find efficient and optimal unitary gates [46].
We successively apply our method to multiple Hamiltonians
with neighboring three-body interactions (whereas previous
works were limited to just two-body interactions), demon-
strating that the dynamics of many-body Hamiltonians can be
efficiently implemented using a BW structure with a shallow
depth. This is significant because BW circuits can easily be
implemented on current digital quantum computers [46].

The first model we considered is a cluster Ising model. We
successfully demonstrated that dynamics of the model could
be implemented with an accuracy that outperforms second-
order trotterization with a BW circuit depth of M = 3, with
significantly less CNOT layers required. We then tested our
method on the PXP model, a kinetically constrained model
relevant to cold atom experiments. Here, we were also able
to find circuits with depths M = 4 and 5 which outperform
both first and second-order trotterization, respectively. Like
the cluster Ising model, this is done with drastically less
CNOT layers. However, this came with the trade-off that the
conserved quantities of the PXP model are violated (whereas
trotterization exactly conserves these quantities). Finally, we
tested our model on a next-nearing-neighbor Ising model.
Here, we were only able to find slight improvements on the
accuracy when compared to second-order trotterization, but
requires a small increase in the number of CNOT layers. For
this model, we found that our method often suffered from
local minima; to overcome this, we used an initial ansatz in-

spired by the second-order trotterization. This could motivate
future studies to find strategies to overcome these optimization
difficulties.

We have shown that our optimization method can generate
BW circuits which are more accurate and efficient than those
produced by first- and second-order trotterization, reducing
the amount of algorithmic error. This could allow us to sim-
ulate dynamics using larger time steps, and thus allow us
to simulate dynamics for longer times before the onset of
decoherence. Furthermore, we show that the same circuits can
be implemented on quantum computers using fewer layers
of CNOTs than trotterization. This reduces the accumulated
native errors of the quantum device, allowing us to simulate
more time steps, again increasing the possible simulation
window

We have also explained how the errors from optimization
and those from the quantum computer can be used to guide
us in our choice of time step to minimize the total error. We
first implemented the optimized BW circuits and trotterized
circuits on IBM’s quantum processor ibm_brisbane, demon-
strating that optimized BW circuits can achieve a more precise
dynamics while being subject to less noise. We then pro-
posed that the optimal time step could be estimated through
the infidelity of a single time step (with respect to the true
time evolution operator), and the errors native to the quantum
simulator. This assumed that the algorithmic error from the
optimization of BW circuits grew linearly with the number
of applications. Indeed, for trotterization it is known that this
overestimates the error at large times [87]. This estimation
can be improved by finding tighter bounds on the errors
[88–90]. Similar advancements for BW circuits could facil-
itate a better choice of time step. Alternatively, one could
use adaptive methods to find the optimal choice of time
step [91,92].

One avenue for future works could be to investigate how
to generalize the method to two dimensions. While BW
circuits are a natural ansatz for one-dimensional systems,
two-dimensional systems can allow for more complex ar-
rangements. This could allow for the possibility to also
optimize the geometry of the circuits. Furthermore, the use
of TNs allowed our method to scale well with system size.
Unfortunately, two-dimensional TNs, such as projected-
entangled pair states [93], are known to suffer from a poor
scaling with system size due to the inability to exactly con-
tract them in an efficient manner [94,95]. Nevertheless, there
are promising developments in two-dimensional TNs which
might allow for this to soon be a possibility [96–99]. We hope
to report on this at a later date.

The code for optimising unitary brickwall circuits can be
found at [100].
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APPENDIX A: ERROR SCALING IN THE TRIVIAL PHASE
OF THE CLUSTER ISING MODEL.

The variational optimization method proposed in Sec. III
worked well for CI in the symmetry protected phase (g < 0)
and had little dependence on initial state. Conversely, the
approach can struggle for g � 0, often getting stuck in local
minimum. A reliable strategy to combat this is to anneal the
parameter g over the range [−1, 1], using the result from a
previous choice of g as an initial seed. In practice, we start
from a value of g = −1.0 and optimize a random initial guess
using our variational method. We then iteratively reduce the
parameter g ← g − 0.05 and optimize using the previous re-
sult as the initial guess. This is repeated until the target value
of g is obtained. The results of this approach are shown in
Fig. 13 for g = 0 and g = 0.25 with circuit depth M = 3. The
top panel shows the error density and the bottom panel shows
the error in the conservation of energy. The results closely
match that of Fig. 7.

APPENDIX B: IMPLEMENTING BRICKWALL AND
TROTTERIZED CIRCUITS ON QUANTUM COMPUTERS

The first unitary gate we consider is a general two-qubit
gate, such as those in unitary BW circuits. Any two-qubit
gate can be decomposed into a circuit of CNOT gates and
single-qubit gates, which requires at most three CNOTs.
This is shown in Fig. 14(a). The single-qubit gates need to
be carefully chosen to make this decomposition valid; see
Refs. [43,101] for more details. While the general decompo-
sition can be achieved with three CNOTs, some gates can be
implemented with less. For example, the two-qubit rotation
gate

Rzz(�t ) = e−i �t
2 Ẑ⊗Ẑ (B1)

can be implemented with a single-qubit rotation gate
Rz(�t ) = e−i �t

2 Ẑ placed on the target qubit in-between two
identical CNOTs [60]. Notice that this gate is used in the
trotterization for both the CI model and the NNNI model.

Three-qubit entangling gates require more care to imple-
ment. For rotations of Pauli strings on three qubits, it is well
understood how to efficiently implement such gates using
only single-qubit gates and CNOTs [102]. For example, the
rotation gate

Rzxz(�t ) = e−i �t
2 Ẑ⊗X̂⊗Ẑ , (B2)

is shown in Fig. 14(c). We first note that

Rzxz(�t ) = (1̂ ⊗ H ⊗ 1̂) Rzzz(�t ) (1̂ ⊗ H ⊗ 1̂), (B3)

with Rzzz(�t ) = e−i �t
2 Ẑ⊗Ẑ⊗Ẑ . The Rzzz(�t ) gate can then be

decomposed into four CNOTs and an Rz(�t ) gate [60].
To implement the three-body gates in the trotterized cir-

cuits for the PXP model, we first note that

Rpxp(�t ) = e−i �t
2 P̂⊗X̂⊗P̂

= (X̂ ⊗ H ⊗ X̂ ) Rqzq(�t ) (X̂ ⊗ H ⊗ X̂ ), (B4)

where Q̂ = 1̂ − P̂ and Rqzq(�t ) = e−i �t
2 Q̂⊗Ẑ⊗Q̂. We can then

write

Rqzq(�t ) = (Q̂ ⊗ Rz(�t ) ⊗ Q̂) + (P̂ ⊗ 1̂ ⊗ Q̂)

+ (Q̂ ⊗ 1̂ ⊗ P̂) + (P̂ ⊗ 1̂ ⊗ P̂). (B5)

This can be considered to be a three-qubit gate where the
first and last qubit act as control gates for the rotation gate
on the central qubit. The remainder of the circuit makes
use of six Rz(�t ) gates and eight CNOT gates to implement
the trotterized PXP dynamics [60], and is shown in Fig. 14(d).
While we will not give the complete details of how the circuit
is derived, one can carefully check that this correctly imple-
ments the gate Rpxp(�t ). Notice that the circuit has two CNOT
gates which act on next-nearest-neighboring qubits. If the
quantum computer simulating the dynamics has connections
between these qubits, then the circuit can be used as presented.
However, if the quantum computer only has connections be-
tween neighboring qubits, then these CNOT gates must be
decomposed into CNOTs acting only on neighboring qubits;
the most optimal known decomposition for this is shown in
Fig. 14(e), and requires four CNOTs [103]. This increases the
number of CNOTs required for the Rpxp(�t ) gate to fourteen.
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FIG. 14. Decompositions of unitary gates. (a) A decomposition for any two-qubit unitary gate in terms of single-qubit unitaries and three
CNOT gates. (b) The two-qubit rotation gate Rzz(�t ) = e−i �t

2 Ẑ⊗Ẑ can be implemented using only two CNOT gates, and a single-qubit rotation
Rz(�t ) = e−i �t

2 Ẑ . (c) The three-qubit gate Rzxz(�t ) = e−i �t
2 Ẑ⊗X̂⊗Ẑ can be decomposed as four CNOT gates, an Rz(�t ) gate and two Hadamard

gates, denoted by H . (d) The PXP gate, Rpxp(�t ) = e−i �t
2 P̂⊗X̂⊗P̂, can be decomposed into eight CNOT gates, six Rz(±�t/4) rotation gates, two

Hadamard gates and four Pauli-X gates, denoted by X . (e) A CNOT gate which acts on two next-nearest-neighboring qubits can be decomposed
into 4 CNOTs which act only on neighboring qubits.

1. The number of CNOT layers required for brickwall
circuits and trotterization

We can now calculate the number of CNOT layers required
to implement both the BW circuits and trotterized circuits for
each of the models considered in Sec. IV. BW circuits require
three CNOT layers per BW layer. For the CI model, a BW
circuit with depths M = 3 and M = 4 both give a second-
order scaling, requiring 9 and 12 CNOT layers. respectively.
First-order trotterization for the CI model requires two layers
of Rzz(�t ) gates and three layers of Rzzz(�t ) gates, with each
layer requiring two and four CNOTs respectively. This gives
a total of 16 CNOT layers for the whole circuit. Second-order
trotterization requires four layers of Rzz(�t ) gates and five
layers of Rzzz(�t ) gates, giving a total of 28 CNOT layers.

For the PXP model, first- and second-order scaling are
achieved with circuit depths M = 4 and M = 5 respectively
for the BW circuit. These require a total of 12 and 15
CNOT layers. First-order trotterization requires three layers
of Rpxp(�t ) gates, each of which can be implemented using
fourteen layers of neighbouring CNOTs, giving a total of 42
CNOT layers. Similarly, second-order trotterization requires
five layers of Rpxp(�t ) gates, giving a total of 70 CNOT lay-
ers. If next-nearest-neighbors connections are available, then
this can be reduced to 24 and 40 CNOT layers, respectively.

BW circuits with depths M = 5 or M = 6 are required
to yield a second-order scaling for the NNNI model, which
can be implemented with a total of 15 and 18 CNOT layers,
respectively. The optimal second-order trotterization is shown

in Fig. 9(a). Note that while the structure of the circuit looks
similar to that of the BW circuit, the two-qubit entangling
gates here are exclusively SWAP gates (which require three
CNOTs) and Rzz(�t ) gates. Rzz(�t ) can be implemented us-
ing only two CNOTs, compared to the more general two-qubit
gate which requires three CNOTs. This gives an improvement,
only requiring a total of 13 CNOT layers if gzz = 0, or 15
CNOT layers if gzz �= 0.

APPENDIX C: NATIVE AND ALGORITHMIC ERRORS
FOR SIMULATING DYNAMICS

In this Appendix, we provide further details for the discus-
sion in Sec. V. We first prove that the infidelity of a unitary
approximation is bounded by its operator norm error. We then
show how the infidelity averaged over all initial basis states
can be calculated using TNs, and how this error propagates
after multiple applications of the unitary approximation. Fi-
nally, we use our results to determine optimal time steps for
simulating dynamics.

1. Error bounds on the infidelity

Given the exact unitary operator, U (�t ) = e−i�t Ĥ and
some unitary approximation, V (�t ), we want to find an upper
bound on the infidelity

Iψ = 1 − | 〈ψ |U †(�t )nV (�t )n|ψ〉 |2 (C1)
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FIG. 15. Fidelity calculations as TNs. (a) A BW circuit with
circuit depth M can be written as an MPO with bond dimension
χ = 2	M/2
. (b) The fidelity Eq. (23) can be calculated as a TN; the
(almost) exact time propagator, and its adjoint, are represented by
an MPO with the pink circles. The BW circuit is an MPO with blue
circles. The black dots are three-point delta functions. (b) The local
fidelity at site j is calculated in the same way, but the delta functions
are only placed at site j (with a sum over j).

for some normalized wavefunction |ψ〉. We first assume
that the error of the approximation is ||U (�t ) − V (�t )|| =
E (�t ), where ‖ · ‖ is the operator norm of a matrix. This
implies that ‖[U (�t ) − V (�t )] |ψ〉 ‖ � E (�t )‖ |ψ〉 ‖ for all
|ψ〉, where ‖ |ψ〉 ‖ = 〈ψ |ψ〉 is the Euclidean vector norm. We
can then bound the error for the product formula,

‖U (�t )n − V (�t )n‖

=
∣∣∣∣
∣∣∣∣

n−1∑
m=0

U (�t )m[U (�t ) − V (�t )]V (�t )n−m−1

∣∣∣∣
∣∣∣∣

�
n−1∑
m=0

‖U (�t )m[U (�t ) − V (�t )]V (�t )n−m−1‖

�
n−1∑
m=0

‖U (�t )m|| ‖U (�t ) − V (�t )‖ ‖V (�t )n−m−1‖

=
n−1∑
m=0

‖U (�t ) − V (�t )‖ = nE (�t ). (C2)

The first equality can be shown by induction, and the inequal-
ities follow from the properties of the operator norm. It then
follows that

Re(〈ψ |U †(�t )nV (�t )n|ψ〉)

= 1 − 1

2
||[U (�t )n − V (�t )n] |ψ〉 ||2 � 1 − 1

2
n2E (�t )2.

(C3)

FIG. 16. The algorithmic infidelity. The square root of the algo-
rithmic infidelity scaled by system size,

√
Ia
�t/N , (top panel) and the

square root of the algorithmic local infidelity,
√

Ĩa
�t (bottom panel),

as functions of the time step, �t . Results are for the CI model with
g = −0.75 and circuit depth M = 3. The data points and curves are
as defined in Fig. 7.

This allows us to bound the infidelity by the error of the
unitary approximation,

Iψ � 1 −
(

1 − 1

2
n2E (�t )2

)2

� n2E (�t )2. (C4)

Notice that this holds for all normalized |ψ〉.

2. Estimating the state-averaged infidelity using TNs

The algorithmic fidelity Eq. (23) and the local fidelity
Eq. (24) can be well estimated using the MPO approximation
U (�t ) ≈ UMPO(�t ) and the BW circuit UBW(�t ). It is first
convenient to write the BW circuit as an MPO, which can be
achieved exactly using bond dimension χ = 2	M/2
 (although
in practice it might be advantageous to compress this into
an MPO with smaller bond dimension). This is shown in
Fig. 15(a). To calculate the fidelity, we can write

F a
�t = 1

2N

∑
σ1···σN

∑
σ ′

1···σ ′
N

〈σ1 · · · σN |U †
MPO(�t )UBW(�t )|σ ′

1 · · · σ ′
N 〉

×
∑

φ1···φN

∑
φ′

1···φ′
N

〈φ1 · · ·φN |U †
BW(�t )UMPO(�t )|φ′

1 · · ·φ′
N 〉

×
N∏

j=1

∑
k j

δσ j ,σ
′
j ,k j δφ j ,φ

′
j ,k j , (C5)
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where δσ j ,σ
′
j ,k j is the three-point delta functions for spins

σ j , σ ′
j and k j . The delta functions enforce the condi-

tion σ j = σ ′
j = φ j = φ′

j . Despite the fact that Eq. (C5)
appears more complicated than Eq. (23), it is very con-

venient to write the fidelity in this way if we want to
calculate it as a TN. The TN representation is shown in
Fig. 15(b), where the black dots represent the three-point delta
functions.

The algorithmic local fidelity can be calculated similarly. Here, we write

F̃ a
�t = 1

N2N

N∑
j=1

∑
σ1···σN

∑
σ ′

1···σ ′
N

〈σ1 · · · σ j · · · σN |U †
MPO(�t )UBW(�t )|σ ′

1 · · · σ ′
j · · · σ ′

N 〉
∑
φ j ,φ

′
j

〈σ ′
1 · · ·φ j · · · σ ′

N |U †
BW(�t )UMPO(�t )|

× σ1 · · · φ′
j · · · σN 〉

∑
k j

δσ j ,σ
′
j ,k j δφ j ,φ

′
j ,k j . (C6)

Notice that we only need to introduce the delta functions at spin j. This is shown as a TN in Fig. 15(c).

Figure 16 shows the square root of infidelity and local infi-
delity for optimized BW circuits with depth M = 3, calculated
using Eqs. (C5) and (C6). The plot for the fidelity is scaled by
system size. The infidelities are obtained using Ia

�t = 1 − F a
�t

and Ĩa
�t = 1 − F̃ a

�t . As was the case for the error density, both
of these quantities scale as O(�t3) respectively (dotted line),
and outperform the results of both first- and second-order
trotterization (solid lines).

FIG. 17. The propagated algorithmic infidelity. The (top) infi-
delity and (bottom) local infidelity of UBW(�t )n when compared
to the exact time evolution operator UBW(n�t ) as a function of
t = n�t . The results are shown for the CI model with g = −0.75
and N = 8, with time step �t = 0.1. Results for both BW circuits
and trotterization are shown. The dashed lines show the estimate
Ia
n�t ≈ n2Ia

�t .

3. State-averaged infidelity of the product formula

We now comment on the propagation of algorithmic errors
when using the product formula U (t = n�t ) ≈ UBW(�t )n.
In the main text, the estimation of the infidelity Ia

n�t ≈ n2Ia
�t

was motivated by the bound from the error. For small system
sizes, we are able to calculate both U (n�t ) and UBW(�t )n

exactly and decompose them as MPOs. This allows us to use

FIG. 18. Predicting an optimal time step. The algorithmic infi-
delity and the error from the device can be used to predicted an
optimal time step. (a) The estimated infidelity using Eq. (26) as a
function of time step �t for the CI model with g = −0.5, N = 5,
and M = 3. Each curve shows the estimated different total simulated
time, t . The markers indicate the optimal time step �topt. The curves
are shown for fictional η = 0.03. (b) The optimal time step �topt as
a function of t for various fictional η.

033062-16



SCALABLE SIMULATION OF NONEQUILIBRIUM … PHYSICAL REVIEW RESEARCH 6, 033062 (2024)

Eqs. (C5) and (C6) and thus calculate the infidelity using the
product formulas.

Figure 17 shows the results for the CI model with
g = −0.75 and N = 8 with time step �t = 0.1. We show
both BW circuits with depths M = 3 and M = 4, and also
first- and second-order trotterization. The dashed lines show
the estimate. Notice that at early times, both BW circuit
depths outperform both orders of trotterization. However, this
is superseded at later times, when both first- and second-order
trotterization perform better than the BW with depth M = 3.
While this is surprising, it is consistent with recent results [90]
which have shown that the time-propagated Trotter error can
have stricter bounds than originally expected [14], albeit for
systems with nearest-neighbor interactions. It is important to
note that, however, the BW circuit with depth M = 3 is still
subject to significantly less noise than both first- and second-
order trotterization due to its shallower quantum circuit
implementation. The same is true for depth M = 4, which has
a smaller time-propagated infidelity than both orders of trotte-
rization. In each case, the estimate over-estimates the true
error. Nevertheless, it serves as a useful estimate for both BW
circuits.

4. Predicting an optimal time step

We now demonstrate how the algorithmic infidelity and
the infidelity measured from the quantum device can be
used to predict an optimal time step to minimize the to-
tal error. Note that, unfortunately, the errors measured from
the ibm_brisbane device are too large to do our analy-
sis. We instead use Eq. (26) with some fictional choices
of η.

Figure 18(a) shows Eq. (26) as a function of time step,
�t , for various total simulation times, t , and η = 0.03. No-
tice that for small time steps �t , the estimated infidelity is
large due to the number of applications of BW circuit that
is needed. On the contrary, for large �t , the error is large
because the BW approximation has substantial errors. The
optimal time steps, shown by the circle markers, is the choice
which balances the two errors. This is shown in Fig. 18(b) as
a function of t for multiple η. Notice that the optimal time
step decreases with t . While we have also observed this is the
case for other choices of g, the exact details might depend on
the problem.
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