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ABSTRACT
We use Bayesian convolutional neural networks and a novel generative model of Galaxy
Zoo volunteer responses to infer posteriors for the visual morphology of galaxies. Bayesian
CNN can learn from galaxy images with uncertain labels and then, for previously unlabelled
galaxies, predict the probability of each possible label. Our posteriors are well-calibrated (e.g.
for predicting bars, we achieve coverage errors of 11.8 per cent within a vote fraction deviation
of 0.2) and hence are reliable for practical use. Further, using our posteriors, we apply the
active learning strategy BALD to request volunteer responses for the subset of galaxies which,
if labelled, would be most informative for training our network. We show that training our
Bayesian CNNs using active learning requires up to 35–60 per cent fewer labelled galaxies,
depending on the morphological feature being classified. By combining human and machine
intelligence, Galaxy zoo will be able to classify surveys of any conceivable scale on a time-
scale of weeks, providing massive and detailed morphology catalogues to support research
into galaxy evolution.

Key words: methods: data analysis – methods: statistical – galaxies: evolution – galaxies:
statistics – galaxies: structure.

1 IN T RO D U C T I O N

Galaxy Zoo was created because Sloan Digital Sky Survey (SDSS)
scale surveys could not be visually classified by professional
astronomers (Lintott et al. 2008). In turn, Galaxy Zoo is being
gradually outpaced by the increasing scale of modern surveys like
DES (Flaugher 2005), PanSTARRS (Kaiser et al. 2010), the Kilo-
Degree Survey (de Jong et al. 2015), and Hyper Suprime-Cam
(Aihara et al. 2018).

Each of these surveys can image galaxies as fast or faster than
those galaxies are being classified by volunteers. For example,
DECaLS (Dey et al. 2018) contains (as of Data Release 5)
approximately 350 000 galaxies suitable for detailed morphological

� E-mail: mike.walmsley@physics.ox.ac.uk

classification (applying r < 17 and petroR90 r1 > 3 arcsec, the
cuts used for Galaxy Zoo 2 in Willett et al. 2013). Collecting
40 independent volunteer classifications for each galaxy, as for
Galaxy Zoo 2 (Willett et al. 2013), would take approximately 5 yr
at the current classification rate. The Galaxy Zoo science team
must therefore both judiciously select which surveys to classify
and, for the selected surveys, reduce the number of independent
classifications per galaxy. The speed at which we can accurately
classify galaxies severely limits the scale, detail, and quality of our
morphology catalogues, diminishing the scientific value of such
surveys.

1petroR90 r is the Petrosian radius which contains 90 per cent of the
r-band flux
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The next generation of surveys will make this speed limitation
even more stark. Euclid,2 LSST3, and WFIRST 4 are expected to
resolve the morphology of unprecedented numbers of galaxies. This
could be revolutionary for our understanding of galaxy evolution,
but only if such galaxies can be classified. The future of morphology
research therefore inevitably relies on automated classification
methods. Supervised approaches (given human-labelled galaxies,
predict labels for new galaxies) using convolutional neural networks
(CNNs) are increasingly common and effective (Cheng et al. 2019).
CNNs outperform previous non-parametric approaches (Dieleman,
Willett & Dambre 2015; Huertas-Company et al. 2015), and can be
rapidly adapted to new surveys (Domı́nguez Sánchez et al. 2019)
and to related tasks such as light profile fitting (Tuccillo et al. 2018).
Unsupervised approaches (cluster examples without any human
labels) also show promise (Hocking et al. 2015).

However, despite major progress in raw performance, the increas-
ing complexity of classification methods poses a problem for scien-
tific inquiry. In particular, CNNs are ‘black box’ algorithms which
are difficult to introspect and do not typically provide estimates of
uncertainty. In this work, we combine a novel generative model
of volunteer responses with Monte Carlo dropout (Gal, Islam &
Ghahramani 2017a) to create Bayesian CNNs that predict posteriors
for the morphology of each galaxy. Posteriors are crucial for drawing
statistical conclusions that account for uncertainty, and so including
posteriors significantly increases the scientific value of morphology
catalogues. Our Bayesian CNNs can predict posteriors for surveys
of any conceivable scale.

Limited volunteer classification speed remains a hurdle; we need
to collect enough responses to train our Bayesian networks. How
do we train Bayesian networks to perform well while minimizing
the number of new responses required? Recent work suggests that
transfer learning (Lu et al. 2015) may be effective. In transfer
learning, models are first trained to solve similar tasks where
training data are plentiful and then ‘fine-tuned’ with new data to
solve the task at hand. Results using transfer learning to classify new
surveys, or to answer new morphological questions, suggest that
models can be fine-tuned using only thousands (Ackermann et al.
2018; Khan et al. 2019) or even hundreds (Domı́nguez Sánchez et al.
2019) of newly labelled galaxies, with only moderate performance
losses compared to the original task.

Each of these authors randomly selects which new galaxies to
label. However, this may not be optimal. Each galaxy, if labelled,
provides information to our model; they are informative. Our
hypothesis is that all galaxies are informative, but some galaxies
are more informative than others. We use our galaxy morphology
posteriors to apply an active learning strategy (Houlsby et al. 2011):
intelligently selecting the most informative galaxies for labelling by
volunteers. By prioritizing the galaxies that our strategy suggests
would, if labelled, be most informative to the model, we can create
or fine-tune models with even fewer newly labelled data.

In the first half of this work (Section 2), we present Bayesian
CNNs that predict posteriors for the morphology of each galaxy. In
the second (Section 3), we simulate using our posteriors to select
the most informative galaxies for labelling by volunteers.

215 000 deg2 at 0.30 arcsec half-light radius PSF from 2022, Laureijs et al.
(2011)
318 000 deg2 to 0.39 arcsec half-light radius PSF from 2023, LSST Science
Collaboration (2009)
42 000 deg2 at 0.12 arcsec half-light radius PSF from approximately 2025,
Spergel et al. (2013)

2 PO S T E R I O R S F O R G A L A X Y M O R P H O L O G Y

A vast number of automated methods have been used as proxies for
‘traditional’ visual morphological classification. Non-parametric
methods such as CAS (Conselice 2003) and Gini (Lotz, Primack &
Madau 2004) have been commonly used, both directly and to
provide features which can be used by increasingly sophisticated
machine learning strategies (Scarlata et al. 2007; Banerji et al. 2010;
Huertas-Company et al. 2011; Freeman et al. 2013; Peth et al.
2016). Most of these methods provide imperfect proxies for expert
classification (Lintott et al. 2008). The key advantage of CNNs is
that they learn to approximate human classifications directly from
data, without the need to hand-design functions aimed at identifying
relevant features (LeCun, Bengio & Hinton 2015). CNNs work
by applying a series of spatially invariant transformations to
represent the input image at increasing levels of abstraction, and
then interpreting the final abstraction level as a prediction. These
transformations are initially random, and are ‘learned’ by iteratively
minimizing the difference between predictions and known labels.
We refer the reader to LeCun et al. (2015) for a brief introduction to
CNNs and to Dieleman et al. (2015), Lanusse et al. (2018), Kim &
Brunner (2017), and Hezaveh, Levasseur & Marshall (2017) for
astrophysical applications.

Early work with CNNs immediately surpassed non-parametric
methods in approximating human classifications (Dieleman et al.
2015; Huertas-Company et al. 2015). Recent work extends CNNs
across different surveys (Domı́nguez Sánchez et al. 2019; Khan
et al. 2019) or increasingly specific tasks (Domı́nguez Sánchez
et al. 2018; Huertas-Company et al. 2018; Tuccillo et al. 2018;
Walmsley et al. 2018). However, these previous CNNs do not
account for uncertainty in training labels, limiting their ability to
learn from all available data (one common approach is to train
only on ‘clean’ subsets). Previous CNNs are also not designed to
make probabilistic predictions (though they have been interpreted
as such), limiting the reliability of conclusions drawn using such
methods (see Appendix A).

Here, we present Bayesian CNNs for morphology classification.
Bayesian CNNs provide two key improvements over previous
work:

(i) We account for varying (i.e. heteroskedastic) uncertainty in
volunteer responses

(ii) We predict full posteriors over the morphology of each galaxy

We first introduce a novel framework for thinking about Galaxy
Zoo classifications in probabilistic terms, where volunteer responses
are drawn from a binomial distribution according to an unobserved
(latent) parameter: the ‘typical’ response probability (Section 2.1).
We use this framework to construct CNNs that make probabilistic
predictions of Galaxy Zoo classifications (Section 2.2). These CNNs
predict a typical response probability for each galaxy by maximizing
the likelihood of the observed responses. By maximizing the
likelihood, they learn effectively from heteroskedastic labels; the
likelihood reflects the fact that more volunteer responses are more
indicative of the ‘typical’ response than fewer responses. To account
for the uncertainty in the CNN weights, we use Monte Carlo
dropout (Gal et al. 2017a) to marginalize over possible CNNs
(Section 2.3). Our final predictions (Section 2.7) are posteriors of
how a typical volunteer would have responded, had they been asked
about each galaxy. These can then be used to classify surveys of
any conceivable scale (e.g. LSST, Euclid), helping researchers make
reliable inferences about galaxy evolution using millions of labelled
galaxy images.
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Figure 1. The Galaxy Zoo web interface as shown to volunteers. This
screenshot shows the first question in the decision tree: is the galaxy smooth
or featured?.

2.1 Probabilistic framework for Galaxy Zoo

Galaxy Zoo asks members of the public to volunteer as ‘citizen
scientists’ and label galaxy images by answering a series of
questions. Fig. 1 illustrates the web interface.

We aim to make a probabilistic prediction for the response of a
typical volunteer. To do this, we need to model how each volunteer
response is generated. Formally, each Galaxy Zoo decision tree
question asks Ni volunteers to view galaxy image xi and select the
most appropriate answer Aj from the available answers {A}. This
reduces to a binary choice; where there are more than two available
answers (|{A}| > 2), we can consider each volunteer response as
either Aj (positive response) or not Aj (negative response). We can
therefore apply our model to questions with any number of answers.

Let kij be the number of volunteers (out of Ni) observed to answer
Aj for image xi. We assume that there is a true fraction ρ ij of the
population (i.e. all possible volunteers) who would give the answer
Aj for image xi. We assume that volunteers are drawn uniformly
from this population, so that if we ask Ni volunteers about image xi,
we expect that the distribution over the number of positive answers
kij to be binomial:

kij ∼ Bin(ρij , Ni) (1)

p(kij |xij , Ni) =
(

Ni

ki

)
ρ

kij

ij (1 − ρij )Ni−kij (2)

This will be our model for how each volunteer response kij was
generated. Note that ρ ij is a latent variable: we only observe the
responses kij, never ρ ij itself.

2.2 Probabilistic prediction with CNNs

Having established a novel generative model for our data, we now
aim to infer the likelihood of observing a particular k for each galaxy
x (for brevity, we omit subscripts).

Let us consider the scalar output from our neural network fw(x)
as a (deterministic) prediction for ρ, and hence a probabilistic
prediction for k:

p(k|x,w) = Bin(k|f w(x), N ) (3)

For each labelled galaxy, we have observed k positive responses.
We would like to find the network weights w such that p(k|x, N) is
maximized (i.e. to make a maximum likelihood estimate given the
observations):

max
w

[p(k|x,w)] = max
w

[Bin(k|f w(x), N )] (4)

= max
w

[log

(
N

k

)
+ k log f w(x) + (N − k) log(1 − f w(x))]. (5)

The combinatorial term is fixed and hence our objective function
to minimize is

L = k log f w(x) + (N − k) log(1 − f w(x)). (6)

We can create a probabilistic model for k by optimizing our
network to make maximum likelihood estimates ρ̂ = f w(x) for the
latent parameter ρ from which k is drawn.

In short, each network w predicts the response probability ρ that
a random volunteer will select a given answer for a given image.

2.3 From probabilistic to Bayesian CNN

So far, our model is probabilistic (i.e. the output is the parameter of a
probabilistic model) but not Bayesian. If we asked N volunteers, we
would predict k answers with a posterior of p(k|w) = Bin(k|fw(x), N)
(where fw(x) is our network prediction of ρ for galaxy x). However,
this treats the model, w, as fixed and known. Instead, the Bayesian
approach treats the model itself as a random variable.

Intuitively, there are many possible models that could be trained
from the same training data D. To predict the posterior of k given
D, we should marginalize over these possible models:

p(k|x,D) =
∫

p(k|x,w)p(w|D)dw. (7)

We need to know how likely we were to train a particular model
w given the data available, p(w|D). Unfortunately, we do not know
how likely each model is. We only observe the single model we
actually trained.

Instead, consider dropout (Srivastava et al. 2014). Dropout is a
regularization method that temporarily removes random neurons
according to a Bernoulli distribution, where the probability of
removal (‘dropout rate’) is a hyperparameter to be chosen. Dropout
may be interpreted as taking the trained model and permuting it into
a different one (Srivastava et al. 2014). Gal (2016) introduced the
approach of approximating the distributions of models one might
have trained, but didn’t, with the distribution of networks from
applying dropout:

p(w|D) ≈ q∗ (8)

removing neurons according to dropout distribution q∗. This is the
Monte Carlo Dropout approximation (hereafter MC Dropout). See
Appendix B for a more formal overview.

Choosing the dropout rate affects the approximation; greater
dropout rates lead the model to estimate higher uncertainties (on
average). Following convention, we arbitrarily choose a dropout
rate of 0.5. We discuss the implications of using an arbitrary dropout
rate, and opportunities for improvement, in Section 4.

Applying MC dropout to marginalize over models (equation 7):

p(k|x,D) =
∫

p(k|x,w)q∗dw. (9)

In practice, following Gal (2016), we sample from q∗ with
T forward passes using dropout at test time (i.e. Monte Carlo
integration):
∫

p(k|x, w)q∗dw ≈ 1

T

∑
t

p(k|x,wt ). (10)
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Using MC Dropout, we can improve our posteriors by (approx-
imately) marginalizing over the possible models we might have
trained.

To demonstrate our probabilistic model and the use of MC
dropout, we train models to predict volunteer responses to the
‘Smooth or Featured’ and ‘Bar’ questions on Galaxy Zoo 2
(Section 2.5).

2.4 Data - Galaxy Zoo 2

Galaxy Zoo 2 (GZ2) classified all 304 122 galaxies from the SDSS
DR7 Main Galaxy Sample (Strauss et al. 2002; Abazajian et al.
2009) with r < 17 and petroR90 r5 > 3 arcsec. Classifying
304 122 galaxies required ∼60 million volunteer responses col-
lected over 14 months.

GZ2 is the largest homogenous galaxy sample with reliable
measurements of detailed morphology, and hence an ideal data
source for this work. GZ2 has been extensively used as a bench-
mark to compare machine learning methods for classifying galaxy
morphology. The original GZ2 data release (Willett et al. 2013)
included comparisons with (pre-CNN) machine learning methods
by Baillard et al. (2011) and Huertas-Company et al. (2011).
GZ2 subsequently provided the data for seminal work on CNN
morphology classification (Dieleman et al. 2015) and continues to
be used for validating new approaches (Domı́nguez Sánchez et al.
2018; Khan et al. 2019).

We use the ‘GZ2 Full Sample’ catalogue (hereafter ‘GZ2 cata-
logue’), available from data.galaxyzoo.org. To avoid the possibility
of duplicated galaxies or varying depth imaging, we exclude the
‘stripe82’ subset.

The GZ2 catalogue provides aggregate volunteer responses at
each of the three post-processing stages: raw vote counts (and
derived vote fractions), consensus vote fractions, and redshift-
debiased vote fractions. The raw vote counts are simply the number
of users who selected each answer. The consensus vote fractions
are calculated by iteratively re-weighting each user based on their
overall agreement with other users. The debiased fractions estimate
how the galaxy would have been classified if viewed at z = 0.03
(Hart et al. 2016). Unlike recent work (Domı́nguez Sánchez et al.
2018; Khan et al. 2019), we use the raw vote counts. The redshift-
debiased fractions estimate the true morphology of a galaxy, not
what the image actually shows. To predict what volunteers would
say about an image, we should only consider what the volunteers
see. We believe that debiasing is better applied after predicting
responses, not before. We caution the reader that our performance
metrics are therefore not directly comparable to those of Domı́nguez
Sánchez et al. (2018) and Khan et al. (2019), who use the debiased
fractions as ground truth.

2.5 Application

2.5.1 Tasks

To test our probabilistic CNNs, we aim to predict volunteer
responses for the ‘Smooth or Featured’ and ‘Bar’ questions.

The ‘Smooth or Featured’ question asks volunteers ‘Is the
galaxy simply smooth and rounded, with no sign of a disc?’ with

5petroR90 r is the Petrosian radius which contains 90 per cent of the
r-band flux

Figure 2. Mean responses (N) by GZ2 question. Being the first question,
‘Smooth or Featured’ has an unusually high (∼40) number of responses.
Most questions (6 of 11), including ‘Bar’, are only asked for ‘Featured’
galaxies, and hence have only ∼10 responses. Training CNNs while
accounting for the label uncertainty caused by low N responses is a key
goal of this work.

(common6) answers ‘Smooth’ and ‘Featured or Disc’. As ‘Smooth
or Featured’ is the first decision tree question, this question is
always asked, and therefore every galaxy has ∼ 40 ‘Smooth or
Featured’ responses.7 With N fixed to ∼40 responses, the loss
function (equation 6) depends only on k (for a given model w).

The ‘Bar’ question asks volunteers ‘Is there a sign of a bar feature
through the centre of the galaxy?’ with answers ‘Bar (Yes)’ and ‘No
Bar’. Because ‘Bar’ is only asked if volunteers respond ‘Featured’
and ‘Not Edge-On’ to previous questions, each galaxy can have
anywhere from 0 to 40 total responses – typically around 10 (Fig. 2).
This scenario is common; only two questions are always asked, and
most questions have N < <40 total responses (Fig. 2). Building
probabilistic CNNs that learn better by appreciating the varying
count uncertainty in volunteer responses is a key advantage of
our design. We achieve this by maximizing the likelihood of the
observed responses given our predicted ‘typical’ response and N
(Section 2.2).

2.5.2 Architecture

Our CNN architecture is shown in Fig. 3. This architecture is
inspired by VGG16 (Simonyan & Zisserman 2015), but scaled
down to be shallower and narrower in order to fit our computational
budget. We use a softmax final layer to ensure the predicted typical
vote fraction ρ lies between 0 and 1, as required by our binomial
loss function (equation 6).

We are primarily concerned with accounting for label uncertainty
and predicting posteriors, rather than maximizing performance
metrics. That said, our architecture is competitive with, or out-
performs, previous work (Section 2.7.1). Our overall performance
can likely be significantly improved with more recent architectures
(He et al. 2015; Szegedy et al. 2015; Huang et al. 2017) or a larger
computational budget.

6‘Smooth or Featured’ includes a third ‘Artefact’ answer. However, artefacts
are sufficiently rare (0.08 per cent of galaxies have ‘Artefact’ as the majority
response) that predicting ‘Smooth’ or ‘Not Smooth’ is sufficient to separate
smooth and featured galaxies in practice
7Technical limitations during GZ2 caused 26 530 galaxies to have N < 36.
We exclude these galaxies for simplicity.
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Figure 3. The CNN architecture used throughout. The input image, after
applying augmentations (Section 2.5.3), is of dimension 128x128x1. The
first pair of convolutional layers are each of dimension 128 × 128 × 32 with
3 × 3 kernels. We then max-pool down to a second pair of convolutional
layers of dimension 64 × 64 × 32 with 3 × 3 kernels, then again to a final
pair of dimension 32 × 32 × 16 with 3 × 3 kernels. We finish with a 128
neuron linear dense layer and a 2 neuron softmax dense layer.

2.5.3 Augmentations

To generate our training and test images, we resize the origi-
nal 424 × 424 × 3 pixel GZ2 png images shown to volunteers
into 256 × 256 × 3 uint88 matrices and save these matrices in
TFRecords (to facilitate rapid loading). When serving training
images to our model, each image has the following transformations
applied:

(i) Average over channels to create a greyscale image
(ii) Random horizontal and/or vertical flips
(iii) Rotation through an angle randomly selected from 0◦ to 90◦

(using nearest-neighbour interpolation to fill pixels)
(iv) Adjusting the image contrast to a contrast uniformly selected

from 98 per cent to 102 per cent of the original contrast
(v) Cropping either randomly (‘Smooth or Featured’) or centrally

(‘Bar’) according to a zoom level uniformly selected from 1.1 × to
1.3 × (‘Smooth or Featured’) or 1.7 × to 1.9 × (‘Bar’)

(vi) Resizing to a target size of 128 × 128( × 1)

We train on greyscale images because colour is often predictive of
galaxy type (E and S0 are predominantly redder, while S are bluer;
Roberts & Haynes 1994) and we wish to ensure that our classifier
does not learn to make biased predictions from this correlation.
For example, a galaxy should be classified as smooth because it
appears smooth, and not because it is red and therefore more likely
to be smooth. Otherwise, we bias any later research investigating
correlations between morphology and colour.

Random flips, rotations, contrast adjustment, and zooms (via
crops) help the CNN learn that predictions should be invariant to
these transformations – our predictions should not change because
the image is flipped, for example. We choose a higher zoom level
for ‘Bar’ because the original image radius for GZ2 was designed
to show the full galaxy and any immediate neighbours (Willett
et al. 2013) yet bars are generally found in the centre of galaxies
(Kruk et al. 2017). We know that the ‘Bar’ classification should
be invariant to all but the central region of the image, and therefore

8Unsigned 8-bit integer i.e. 0–255 inclusive. After rescaling, this is sufficient
to express the dynamic range of the images (as judged by visual inspection)
while significantly reducing memory requirements versus the original 32-bit
float flux measurements.

choose to sacrifice the outer regions in favour of increased resolution
in the centre. Cropping and resizing are performed last to minimize
resolution loss due to aliasing. Images are resized to match our
computational budget.

We also apply these augmentations at test time. This allows us to
marginalize over any unlearned invariance using MC Dropout, as
part of marginalizing over networks (Section 2.3). Each permuted
network makes predictions on a uniquely augmented image. The
aggregated posterior (over many forward passes T) is therefore
independent of e.g. orientation, enforcing our domain knowledge.

2.6 Experimental setup

For each question, we randomly select 2500 galaxies as a test subset
and train on the remaining galaxies (following the selection criteria
described in Section 2.4). Unlike Domı́nguez Sánchez et al. (2018)
and Khan et al. (2019), we do not select a ‘clean’ sample of galaxies
with extreme vote fractions on which to train. Instead, we take full
advantage of the responses collected for every galaxy by carefully
accounting for the vote uncertainty in galaxies with fewer responses
(equation 6).

For ‘Smooth or Featured’, we use a final training sample of
176 328 galaxies. For ‘Bar’, we train and test only on galaxies with
Nbar ≥ 10 (56 048 galaxies). Without applying this cut, we find that
models fail to learn; performance fails to improve from random
initialization. This may be because galaxies with Nbar < 10 must
have kfeatured < 10 and so are almost all smooth and unbarred, leading
to increasingly unbalanced typical vote fractions ρ.

Training was performed on an Amazon Web Services (AWS)
p2.xlarge EC2 instance with an NVIDIA K80 GPU. Training
each model from random initialization takes approximately 8 h.

Using the trained models, we make predictions ρ̂ for the typical
vote fraction ρ of each galaxy in the test subsets. We then evaluate
performance by comparing p(k|ρ̂, N ), our posterior for k positive
responses from N volunteers, with the observed k from the N Galaxy
Zoo volunteers asked.

2.7 Results

We find that our probabilistic CNNs produces posteriors which are
reliable and informative.

For each question, we first compare a random selection of
posteriors from either 1 or 30 MC Dropout forward passes (i.e.
1 or 30 MC-dropout-approximated ‘networks’). Figs 4 and 5 show
our posteriors for ‘Smooth or Featured’ and ‘Bar’, respectively.

Without MC Dropout, our posteriors are binomial. The spread
of each posterior reflects two effects. First, the spread reflects the
extremity of ρ̂ that previous authors have expressed as ‘volunteer
agreement’ or ‘confidence’ (Dieleman et al. 2015; Domı́nguez
Sánchez et al. 2018). Bin(k|ρ̂, N ) is narrower where ρ̂ is close
to 0 or 1. Secondly, the spread reflects N, the number of volunteers
asked. For ‘Smooth or Featured’, where N is approximately fixed,
this second effect is minor. For ‘Bar’, where N varies significantly
between 10 and ∼40, the posteriors are more spread (less precise)
where fewer volunteers have been asked.

With MC Dropout, our posteriors are a superposition of Bino-
mials from each forward pass, each centred on a different ρ̂t . In
consequence, the MC Dropout posteriors are more uncertain. This
matches our intuition – by marginalizing over the different weights
and augmentations we might have used, we expect our predictions
to broaden.
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Galaxy classification with active learning 1559

Figure 4. Posteriors for k of N volunteers answering ‘Smooth’ to the question ‘Smooth or Featured?’). Each row is a randomly selected galaxy. Overplotted
in red is the actual k measured from N ∼ 40 volunteers. The left-hand column shows the galaxy in question, as presented to the network (following the
augmentations described in Section 2.5.3). The central column shows the posterior predicted by a single network (black), while the right-hand column shows
the posterior marginalized (averaged) over 30 MC-dropout-approximated ‘networks’ (green) as well as from each ‘network’ (grey). While the posterior from
a single network is fixed to a binomial form, the marginalized posteriors from many ‘networks’ can take any form. The posterior from a single network is
generally more confident (narrower); we later show that a single network is overconfident, and many ‘networks’ are better calibrated.

Given that each single network is relatively confident and the MC-
dropout-marginalized model is relatively uncertain, which should
be used? We prefer posteriors which are well-calibrated i.e. which
reflect the true uncertainty in our predictions.

To quantify calibration, we introduce a novel method; we
compare the predicted and observed vote fractions k

N
within

increasing ranges of acceptable error. We outline this procedure
below.

Choose some maximum acceptable error ε in predicting each vote
fraction v = k

N
. Over all galaxies, sum the total probability (from

our predicted posteriors) that vi = v̂i ± ε for each galaxy i. We call
this the expected count: how many galaxies the posterior suggests
should have v within ε of the model prediction v̂. For example, our
‘Bar’ model expects 2320 of 2500 galaxies in the ‘Bar’ test set to

have an observed v within ±0.20 of v̂.

Cexpected =
Ngalaxies∑

i

j<k̂+Nε∑
j>k̂−Nε

p(j |ρ̂i , Ni). (11)

Next, over all galaxies, count how often vi is within that maximum
error vi = v̂i ± ε. We call this the ‘actual’ count: how many galaxies
are actually observed to have vi within ε of the model prediction v̂i .
For example, we observe 2075 of 2500 galaxies in the ‘Bar’ test set
to have vi within ±0.20 of v̂.

Cactual =
Ngalaxies∑

i

j<k̂i+Nε∑
j>k̂i−Nε

δ(ki − j ). (12)
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1560 M. Walmsley et al.

Figure 5. As for Fig. 4, but showing posteriors for k of N volunteers answering ‘Bar (Yes)’ to the question ‘Bar?’. Unlike ‘Smooth or Featured’, N varies
significantly between galaxies, and hence so does the spread (uncertainty in k) and absolute width (highest possible k) of the posterior.

For a perfectly calibrated posterior, the actual and expected
counts would be identical: the model would be correct (within some
given maximum error) as often as it expects to be correct. For an
overconfident posterior, the expected count will be higher, and for
an underconfident posterior, the actual count will be higher.

We find that our predicted posteriors of volunteer votes are fairly
well-calibrated; our model is correct approximately as often as it
expects to be correct. Fig. 6 compares the expected and actual
counts for our model, choosing ε between 0 and 0.5. Tables 1 and
2 show calibration results for our ‘Smooth’ and ‘Bar’ models, with
and without MC Dropout, evaluated on their respective test sets.
Coverage error is calculated as:

Coverage error = Cexpected − Cactual

Cactual
. (13)

For both questions, the single network (without using MC
Dropout) is visibly overconfident. The MC-dropout-marginalized

network shows a significant improvement in calibration over the
single network. We interpret this as evidence for the importance of
marginalizing over both networks and augmentations in accurately
estimating uncertainty (Section 2.3).

When making precise predictions, the MC-dropout-marginalized
network remains somewhat overconfident. However, as the accept-
able error ε is allowed to increase, the network is increasingly well-
calibrated. For example, the predicted probability that v ± 0.02
(i.e. ε = 0.02) k of N volunteers respond ‘Bar’ is overestimated
by ∼45 per cent. In contrast, the predicted probability that k ± 0.2
(i.e. ε = 0.2) of N volunteers respond ‘Bar’ is ∼ 10 per cent of the
true probability. We discuss future approaches to further improve
calibration in Section 4.

A key method for galaxy evolution research is to compare the
distribution of some morphology parameter across different samples
(e.g. are spirals more common in dense environments, Wang et al.
2018; do bars fuel AGN, Galloway et al. 2015; do mergers inhibit
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Figure 6. Calibration of CNN-predicted posteriors, showing the expected
versus actual count of galaxies within each acceptable maximum vote
fraction error range (ε). Our probabilistic model is fairly well-calibrated
(similar expected and actual counts), with a significant improvement from
applying MC Dropout.

LERGs, Gordon et al. 2019, etc.) We would therefore like the
distribution of predicted ρ̂ and k̂, over all galaxies, to approximate
the observed distribution of ρ9 and k. In short, we would like our
predictions to be globally unbiased. Fig. 7 compares our predicted
and actual distributions of ρ and k. We find that our predicted
distributions for ρ and k match well with the observed distributions
for most values of ρ and k. Our model appears somewhat reticent to
predict extreme ρ (and therefore extreme k) for both questions. This
may be a consequence of the difficulty in predicting the behaviour
of single volunteers. We discuss this further in Section 4.

Reliable research conclusions also require that model perfor-
mance should not depend strongly on non-morphological galaxy
parameters (mass, colour, etc). For example, if a researcher would
like to investigate correlations between galaxy mass and bars, it is
important that our model is equally able to recognize bars in high-
mass and low-mass galaxies. To check if our model is sensitive
to non-morphological parameters, we use an Explainable Boosting
Machine (EBM) model (Lou, Caruana & Gehrke 2012; Caruana

9The ‘observed’ ρ is approximated as ρproxy = k
N

, which has a similar
distribution to the true (latent, unobserved) ρ over a large sample.

Figure 7. Comparison between the distribution of predicted or observed ρ

and k over all galaxies, for each question. Upper: comparison for ‘Smooth
or Featured’. Lower: comparison for ‘Bar’. The observed ρ is approximated
as ρproxy = k

N
The distributions of predicted ρ and k closely match the

observed distributions, indicating our models are globally unbiased. The
only significant deviation is near extreme ρ and k, which our models are
‘reluctant’ to predict.

Table 1. Calibration results for predicting the probability that v ± ε fraction
of volunteers respond ‘Smooth’, with and without applying MC Dropout.

Max error ε

Coverage error without MC
(percent)

Coverage error with MC
(percent)

0.02 49.6 16.5
0.05 38.5 13.4
0.10 26.1 9.4
0.20 7.9 5.4

et al. 2015). EBM aims to predict a target variable based on
tabular features by separating the impact of those features into
single (or, optionally, pairwise) effects on the target variable. They
are a specific10 implementation of Generalized Additive Models
(GAM; Hastie & Tibshirani 1990). GAM are of the form:

g(y) = f1(x) + ... + fn(xn), (14)

10https://github.com/microsoft/interpret
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Table 2. Calibration results for predicting the probability that v ± ε fraction
of volunteers respond ‘Bar’, with and without applying MC Dropout.

Max error ε

Coverage error without MC
(percent)

Coverage error with MC
(percent)

0.02 92.2 45.5
0.05 85.5 42.4
0.10 57.8 29.2
0.20 22.6 11.8

Figure 8. Relative importance of morphological (Features or Disc, Bar,
Spiral) and non-morphological (Petro B/A, Mag, etc.) features for BCNN
performance. Morphology fractions are the (human-reported) k

N
values from

Galaxy Zoo 2. Petro B/A 50 and Petro B/A 90 measure the axial ratios at
50 per cent and 90 per cent of the half-light radius. Mag is the estimated B
magnitude. Sersic mass is the approximate stellar mass, estimated from the
single-component Sersic fit flux. Petro θ is the (r-band) Petrosian radius.
Redshift is measured spectroscopically. The effect of each component is
additive and independent; for example, the measured effect of spiral features
does not include the effect of being featured in general. BCNN performance
varies much less from the effect of non-morphological features than from
morphological features.

where g is identity for regression problems and fi is any learnable
function. For EBM, each fi is learned using gradient boosting with
bagging of shallow regression trees. They aim to answer the question
‘What is the effect on the target variable of this particular feature
alone?’ We train an EBM to predict the surprise11 of our ‘Bar’ model
when making test set predictions (Section 2.6), using the human-
reported morphologies and key non-morphological parameters
reported in the NASA Sloan Atlas (v1.01; Albareti et al. 2017).

The interested reader can find our full investigation at http:
//www.walmsley.dev/2019/bias, recorded as a Jupyter Notebook.
Fig. 8 shows the key result; the relative importance of each feature
on BCNN model surprise. We find that performance variation
with respect to non-morphological parameters is much smaller
than variation with respect to morphology. Our network performs
better on smooth galaxies and unbarred galaxies (plausibly because
there are more training examples of such galaxies to learn from).
Inclination is the non-morphological parameter with the strongest
effect on performance, and this effect is approximately 3.5–4×
weaker than the effect of either smoothness or barredness above.
We are therefore confident that our model introduces no new major
biases with respect to key non-morphological parameters.

11Recall that we quantify surprise as the likelihood of our prediction given
the observed votes k

N
(equation 3).

Figure 9. ROC curves for the ‘Smooth or Featured’ (above) and ‘Bar’
(below) questions, as predicted by our probabilistic model. To generate
scalar class predictions on which to threshold, we reduce our posteriors to
mean vote fractions. For comparison to DS + 18, we also include ROC
curves of the subsample they describe as ‘high confidence’ – galaxies where
the class probability (for us, ρ̂) is extreme (1420 galaxies for ‘Smooth’,
1174 for ‘Bar’).

2.7.1 Comparison to previous work

The key goals of this paper are to introduce probabilistic predictions
for votes and (in the following section) to apply this to perform
active learning. However, by reducing our probabilistic predictions
to point estimates, we can also provide conventional predictions and
performance metrics.

Previous work has focused on deterministic predictions of ei-
ther the votes (Dieleman et al. 2015) or the majority response
(Domı́nguez Sánchez et al. 2018; Khan et al. 2019). While dif-
ferences in sample selection and training data prevent a precise
comparison, our model performs well at both tasks.

When reducing our posteriors to the most likely vote count k̂, we
achieve a root-mean-square error of 0.10 (approximately ±3 votes)
for ‘Smooth or Featured’ and 0.15 for ‘Bar’. We can also reduce
the same posteriors to the most likely majority responses. Below,
we present our results in the style of the ROC curves in Domı́nguez
Sánchez et al. (2018) (hereafter DS + 18; Fig. 9) and the confusion
matrices in Khan et al. (2019) (hereafter K + 18; Fig. 10) using
our reduced posteriors. We find that our model likely outperforms
Domı́nguez Sánchez et al. (2018) and is likely comparable with
Khan et al. (2019).
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Figure 10. Confusion matrices for ‘Smooth or Featured’ (upper row) and
‘Bar’ (lower row) questions. For comparison to K + 18, we also include
confusion matrices for the most confident predictions (right-hand column)
Following K + 18, we include the most confident ∼ 7.7 per cent of spirals
and ∼ 9.3 per cent of ellipticals (upper right). Of the two galaxies where
humans select ‘Smooth’ ( k

N
> 0.5) and the model selects ‘Featured’ (ρ̂ <

0.5), one is an ongoing smooth/featured major merger and one is smooth
with an imaging artefact. Generalizing (K + 18 do not consider bars), we
also show the most confident ∼ 8 per cent of barred and unbarred galaxies.
We achieve perfect classification for ‘Bar’.

Overall, these conventional metrics demonstrate that our models
are sufficiently accurate for practical use in galaxy evolution
research even when reduced to point estimates.

3 AC T I V E L E A R N I N G

In the first half of this paper, we presented Bayesian CNNs that
predict posteriors for the morphology of each galaxy. In the second,
we show how we can use these posteriors to select the most
informative galaxies for labelling by volunteers, helping humans
and algorithms work together to do better science than either alone.

CNNs, and other deep learning methods, rely on vast training
sets of labelled examples (He et al. 2015; Russakovsky et al. 2015;
Simonyan & Zisserman 2015; Szegedy et al. 2015; Huang et al.
2017). As we argued in Section 1, we urgently need methods to
reduce this demand for labelled data in order to fully exploit current
and next-generation surveys.

Previous approaches in morphology classification have largely
used fixed data sets of labelled galaxies acquired prior to model
training. This is true both for authors applying direct training
(Huertas-Company et al. 2015, 2018; Domı́nguez Sánchez et al.
2018; Fischer, Dom & Bernardi 2018; Walmsley et al. 2018) and
those applying transfer learning (Ackermann et al. 2018; Pérez-
Carrasco et al. 2019; Domı́nguez Sánchez et al. 2019). Instead, we
ask: to train the best model, which galaxies should volunteers label?

Selecting the most informative data to label is known as ac-
tive learning. Active learning is useful when acquiring labels is
difficult (expensive, time-consuming, requiring experts, private,

etc). This scenario is common for many, if not most, real-world
problems. Terrestrial examples include detecting cardiac arrhythmia
(Rahhal et al. 2016), sentiment analysis of online reviews (Zhou,
Chen & Wang 2013), and Earth observation (Tuia et al. 2011;
Liu, Zhang & Eom 2017). Astrophysical examples include stellar
spectral analysis (Solorio et al. 2005), variable star classification
(Richards et al. 2012), telescope design and time allocation (Xia,
Protopapas & Doshi-Velez 2016), redshift estimation (Hoyle et al.
2016), and spectroscopic follow-up of supernovae (Ishida et al.
2019).

3.1 Active learning approach for Galaxy Zoo

Given that only a small subset of galaxies can be labelled by humans,
we should intelligently select which galaxies to label. The aim is to
make CNNs which are just as accurate without having to label as
many galaxies.

Our approach is as follows. First, we train our CNN on a small
randomly chosen initial training set. Then, we repeat the following
active learning loop:

(i) Measure the CNN prediction uncertainty on all currently
unlabelled galaxies (excluding a fixed test set)

(ii) Apply an acquisition function (Section 3.2) to select the most
uncertain galaxies for labelling

(iii) Upload these galaxies to Galaxy Zoo and collect volunteer
classifications (in this work, simulated with historical classifica-
tions)

(iv) Re-train the CNN and repeat

Other astrophysics research has combined crowdsourcing with
machine learning models. Wright et al. (2017) classified supernovae
in PanSTARRS (Kaiser et al. 2010) by aggregating crowdsourced
classifications with the predictions of expert-trained CNN and
show that the combined human–machine ensemble outperforms
either alone. However, this approach is not directly feasible for
Galaxy Zoo, where scale prevents us from recording crowdsourced
classifications for every image.

A previous effort to consider optimizing task assignment was
made by Beck et al. (2018), who developed a ‘decision engine’ to
allocate galaxies for classification by either human or machine (via
a random forest). Their system assigns each galaxy to the categories
‘Smooth’ or ‘Featured’12 , using SWAP (Marshall et al. 2016) to
decide how may responses to collect. This is in contrast to the system
presented here which only requests responses for informative
galaxies, but (for simplicity) requests the same number of responses
for each informative galaxy. Another important difference is that
Beck et al. (2018) train their model exclusively on galaxies which
can be confidently assigned to a class, while the use of uncer-
tainty in our model allows learning to occur from every classified
galaxy.

This work is the first time active learning has been used for
morphological classification, and the first time in astrophysics that
active learning has been combined with CNNs or crowdsourcing.

In the following Sections (3.2, 3.3, 3.4), we derive an acquisition
function that selects the most informative galaxies for labelling
by volunteers. We do this by combining the general acquisition
strategy BALD (MacKay 1992; Houlsby et al. 2011) with our

12The actual categories used were ‘Featured’ or ‘Not Featured’ (Smooth
+ Artefact), but they argue that Artefact is sufficiently rare to not affect the
results.
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probabilistic model and Monte Carlo Dropout (Gal 2016). We then
use historical data to simulate applying active learning strategy to
Galaxy Zoo (Section 3.5) and compare the performance of models
trained on galaxies selected using the mutual information versus
galaxies selected randomly (Section 3.6).

3.2 BALD and mutual information

Bayesian Active Learning by Disagreement, BALD (MacKay 1992;
Houlsby et al. 2011), is a general information-theoretic acquisition
strategy. BALD selects subjects to label by maximizing the mutual
information between the model parameters θ and the probabilistic
label prediction y. We begin deriving our acquisition function by
describing BALD and the mutual information.

We have observed data D = (xi, yi)
n
i=1. Here, xi is the ith subject

and yi is the label of interest. We assume there are (unknown)
parameters θ that model the relationship between input subjects x
and output labels y, p(y|x, θ ). We would like to infer the posterior
of θ , p(θ |D). Once we know p(y|x, θ ), we can make predictions on
new galaxy images.

The mutual information measures how much information some
random variable A carries about another random variable B, defined
as:

I[A, B] = H [p(A)] − Ep(B)H [p(A|B)], (15)

where H is the entropy operator and Ep(B)H[p(A|B)] is the expected
entropy of p(A|B), marginalized over p(B) (Murphy 2012)

We would like to know how much information each label y
provides about the model parameters θ . We can then pick subjects
x to maximize the mutual information I[y, θ ], helping us to learn θ

efficiently. Substituting A and B for x and y:

I[y, θ ] = H [p(y|x,D)] − Ep(θ |D)[H [p(y|x, θ )]]. (16)

The first term is the entropy of our prediction for x given the
training data, implicitly marginalizing over the possible model
parameters θ . We refer to this as the predictive entropy. The
predictive entropy reflects our overall uncertainty in y given the
training data available.

The second term is the expected entropy of our prediction made
with a given θ , sampling over each θ we might have inferred from
D. The expected entropy reflects the typical uncertainty of each
particular model on x. Expected entropy has a lower bound set
by the inherent difficulty in predicting y from x, regardless of the
available labelled data.

Confident disagreement between possible models leads to high
mutual information. For high mutual information, we should be
highly uncertain about y after marginalizing over all the models
we might infer (high H [p(y|x,D)]), but have each particular
model be confident (low expected H[p(y|x, θ )]). If we are uncertain
overall, but each particular model is certain, then the models must
confidently disagree.

Throughout this work, when we refer to galaxies as informative,
we mean specifically that they have a high mutual information;
they are informative for the model. These are not necessarily the
galaxies which are the most informative for science; any overlap will
depend upon the research question at hand. The scientific benefit of
our approach is that we improve our morphological predictions for
all galaxies using minimal newly labelled examples.

3.3 Estimating mutual information

Rewriting the mutual information explicitly, replacing y with our
labels k and θ with the network weights w:

I[k,w] = H[
∫

p(k|x,w)p(w|D)dw]

−
∫

p(w|D)H[p(k|x,w)]dw. (17)

Gal et al. (2017a) showed that we can use equation (8) to replace
p(w|D) in the mutual information (equation 17):

I[k,w] = H[
∫

p(k|x,w)q∗dw] −
∫

q∗H[p(k|x,w)]dw (18)

and again sample from q∗ with T forward passes using dropout at
test time (i.e. Monte Carlo integration):

I[k,w] = H[
1

T

∑
t

p(k|x,w)] − 1

T

∑
t

H[p(k|x,w)]. (19)

Next, we need a probabilistic prediction for k, p(k|x, w). Here,
we diverge from previous work.

Recall that we trained our network to make probabilistic pre-
dictions for k by estimating the latent parameter ρ from which
k is Binomially drawn (equation 3). Substituting the probabilistic
predictions of equation (3) into the mutual information:

I[k,w] = H[
1

T

∑
t

Bin(k|f w(x), N )]

− 1

T

∑
t

H[Bin(k|f w(x), N )] (20)

Or concisely:

I[k,w] = H[〈Bin(k|f w(x), N )〉] − 〈H[Bin(k|f w(x), N )]〉. (21)

A novel complication is that we do not know N, the total number
of responses, prior to labelling. In GZ2, each subject is shown to
a fixed number of volunteers, but (due to the decision tree) N for
each question will depend on responses to the previous question.
Further, technical limitations mean that even for the first question
(‘Smooth or Featured’), N can vary (Fig. 2). We (implicitly, for
clarity) approximate N with the expected 〈N〉 for that question. In
effect, we calculate our acquisition function with N set to the value
that, were we to ask volunteers to label this galaxy, we would expect
N responses.

To summarize, equation (21) asks: how much additional infor-
mation would be gained about network parameters that we use to
predict ρ and k, were we to ask 〈N〉 people about subject x?

3.4 Entropy evaluation

Having approximated p(w|D) with dropout and calculated p(k|x,
w) with our probabilistic model, all that remains is to calculate the
entropies H of each term.

k is discrete and hence we can directly calculate the entropy over
each possible state:

H[Bin(k|f w(x), N )]

= −
N∑

k=0

Bin(k|f w(x), N ) log[Bin(k|f w(x), N )]. (22)

For H[〈Bin(k|f w(x), N )〉], we can also enumerate over each
possible k, where the probability of each k is the mean of the
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posterior predictions (sampled with dropout) for that k:

H[〈Bin(k|fw(x), N)〉]

= −
N∑

k=0

〈Bin(k|f w(x), N )〉 log[〈Bin(k|fw(x), N)〉] (23)

and hence our final expression for the mutual information is:

I[k, w] =−
N∑

k=0

〈Bin(k|f w(x), N )〉 log[〈Bin(k|f w(x), N )〉]

+
N∑

k=0

Bin(k|f w(x), N ) log[Bin(k|f w(x), N )]. (24)

3.5 Application

To evaluate our active learning approach, we simulate applying
active learning during GZ2. We compare the performance of
our models when trained on galaxies selected using the mutual
information versus galaxies selected randomly. For simplicity, each
simulation trains a model to predict either ‘Smooth or Featured’
responses or ‘Bar’ responses.

For the ‘Smooth or Featured’ simulation, we begin with a small
initial training set of 256 random galaxies. We train a model and
predict p(k|ρ, N) (where N is the expected number of volunteers
to answer the question, calculated as the mean total number of
responses for that question over all previous galaxies; see Fig. 2).
We then use our BALD acquisition function (equation 21) to identify
the 128 most informative galaxies to label. To simulate uploading
the informative galaxies to GZ and receiving classifications, we
retrieve previously collected GZ2 classifications. Finally, we add
the newly labelled informative galaxies to our training set. We refer
to each execution of this process (training our model, selecting new
galaxies to label, and adding them to the training set) as an iteration.
We repeat for 20 iterations, recording the performance of our model
throughout.

We selected 256 initial galaxies and 128 further galaxies per
iteration, to match the training data size over which our ‘Smooth or
Featured’ model performance varies. Our relatively shallow model
reaches peak performance on around 3000 random galaxies; more
galaxies do not significantly improve performance.

For the ‘Bar’ simulation, we observe that performance saturates
after more galaxies (approximately 6000) and so we double the
scale; we start with 512 galaxies and acquire 256 further galaxies
per iteration. This matches previous results (and intuition) that
‘Smooth or Featured’ is an easier question to answer than ‘Bar’.
Identifying bars, particularly weak bars, is challenging for both
humans (Masters et al. 2012; Kruk et al. 2018), and machines
(including CNNs; Domı́nguez Sánchez et al. 2018).

To measure the effect of our active learning strategy, we also
train a baseline classifier by providing batches of randomly selected
galaxies. We aim to compare two acquisition strategies for deciding
which galaxies to label: selecting galaxies with maximal mutual
information (active learning via BALD and MC Dropout) or
selecting randomly (baseline). We evaluate performance on a fixed
test set of 2500 random galaxies. We repeat each simulation four
times to reduce the risk of spurious results from random variations
in performance.

3.6 Results

For both ‘Smooth’ and ‘Bar’ simulations, our probabilistic models
achieve equal performance on fewer galaxies using active learning

Figure 11. Training loss (upper), evaluation loss (middle), and RMSE
(lower) of model performance on ‘Smooth or Featured’ during active
learning simulations, by iteration (set of new galaxies). The vertical bars
denote new iterations, where new galaxies are acquired and added to the
training set. Prior to 2000 training iterations, both the random selection
(baseline) models and active learning models train on only the initial random
training set of 256 galaxies, and hence show similar performance. Around
2000 to 3500 iterations, after acquiring 128–256 additional galaxies, the
active learning model shows a clear improvement in evaluation performance
over the baseline model. We annotate in red where each model achieves the
maximal relative RMSE improvement, highlighting the reduction in newly
labelled galaxies required (vertical bars = 128 new galaxies). Note that
active learning leads to a dramatically higher training loss, indicating that
more challenging galaxies are being identified as informative and added to
the training set.

versus random galaxy selection. We show model performance by
iteration for the ‘Smooth’ (Fig. 11) and ‘Bar’ (Fig. 12) simulations.
We display three metrics: training loss (model surprise on previously
seen images, measured by equation 6), evaluation loss (model
surprise on unseen images), and root-mean-square error (RMSE).
We measure the RMSE between our maximum-likelihood-estimates
ρ̂ and ρproxy = k

N
as ρ itself is never observed and hence cannot be

used for evaluation. Due to the high variance in metrics between
batches, we smooth our metrics via LOWESS (Cleveland 1979) and
average across four simulation runs.

For ‘Smooth’, we achieve equal RMSE scores with, at best,
∼60 per cent fewer newly labelled galaxies (RMSE of 0.117 with
256 versus 640 new galaxies; Fig. 11). Similarly for ‘Bar’, we
achieve equal RMSE scores with, at best, ∼35 per cent fewer
newly labelled galaxies (RMSE of 0.17 with 1280 versus 2048 new
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Figure 12. As with 11, but for the ‘Bar’ active learning simulations. Again,
active learning leads to a clear improvement in evaluation performance
and a dramatically higher training loss (indicating challenging galaxies are
being selected). We annotate in red where each model achieves the maximal
relative RMSE improvement, highlighting the reduction in newly labelled
galaxies required (vertical bars = 256 new galaxies).

galaxies; Fig. 12). Active learning outperforms random selection in
every run.

Given sufficient (∼3000 for ‘Smooth’, ∼6000 for ‘Bar’) galaxies,
our models eventually converge to similar performance levels –
regardless of galaxy selection. We speculate that this is because
our relatively shallow model architecture places an upper limit on
performance. In general, model complexity should be large enough
to exploit the information in the training set yet small enough to
avoid fitting to spurious patterns. Model complexity increases with
the number of free parameters, and decreases with regularization
(Friedman, Hastie & Tibshirani 2001). Our model is both shallow
and well-regularized (recall that dropout was originally used as a
regularization technique, Section 2.3). A more complex (deeper)
model may be able to perform better by learning from additional
galaxies.

3.6.1 Selected galaxies

Which galaxies do the models identify as informative? To investi-
gate, we randomly select one ‘Smooth or Featured’ and one ‘Bar’
simulation.

For the ‘Smooth or Featured’ simulation, Fig. 13 shows the
observed ‘Smooth’ vote fraction distribution, per iteration (set of
new galaxies) and in total (summed over all new galaxies). Highly

Figure 13. Distribution of observed ‘Smooth’ vote fraction p in galaxies
acquired during Galaxy Zoo ‘Smooth or Featured’ active learning simula-
tion. Above: Distribution of acquired p over all iterations, compared against
random selection. While randomly selected galaxies are highly smooth,
our acquisition function selects galaxies from across the p range, with a
moderate preference towards featured. Below: Distribution of p by iteration,
compared against random selection (upper inset). Our acquisition function
strongly prefers featured galaxies in early (n < ∼7) iterations, and then
selects a more balanced sample. This likely compensates for the initial
training sample being highly smooth.

smooth galaxies are common in the general GZ2 catalogue. Random
selection therefore leads to a training sample skewed towards highly
smooth galaxies. In contrast, our acquisition function is far more
likely to select galaxies which are featured, leading to a more
balanced sample. This is especially true for the first few iterations;
we speculate that this counteracts the skew towards smooth in
the randomly selected initial training sample. By the final training
sample, featured galaxies become moderately more common than
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smooth (mean ksmooth
N

= 0.38). This suggests that featured galaxies
are (on average) more informative for the model – over and above
correcting for the skewed initial training sample. We speculate that
featured galaxies may be more visually diverse, leading to a greater
challenge in fitting volunteer responses, more disagreement be-
tween dropout-approximated-models, and ultimately higher mutual
information.

For the ‘Bar’ simulation, Fig. 14 shows the ‘Bar’ vote fraction
distribution, per iteration and in total, as well as the total redshift
distribution. Again, our acquisition function selects a more balanced
sample by prioritizing (rarer) barred galaxies. This selection remains
approximately constant (within statistical noise) as more galaxies
are acquired. With respect to redshift, our acquisition function
prefers to select galaxies at lower redshifts. Based on inspection
of the selected images (Fig. 15), we suggest that these galaxies are
more informative to our model because such galaxies are better
resolved (i.e. less ambiguous) and more likely to be barred.

We present the most and least informative galaxies from the
(fixed and never labelled) test subset for ‘Smooth’ (Fig. 16) and Bar
(Fig. 15), as identified by our novel acquisition function and the
final models from each simulation.

4 D ISCUSSION

Learning from fewer examples is an expected benefit of both
probabilistic predictions and active learning. Our models approach
peak performance on remarkably few examples: 2816 galaxies for
‘Smooth’ and 5632 for ‘Bar’. With our system, volunteers could
complete Galaxy Zoo 2 in weeks13 rather than years if the peak
performance of our models would be sufficient for their research.
Further, reaching peak performance on relatively few examples
indicates that an expanded model with additional free parameters is
likely to perform better (Murphy 2012).

For this work, we rely on GZ2 data where N (the number of
responses to a galaxy) is unknown before making a (historical)
classification request. Therefore, when deriving our acquisition
function, we approximated N as 〈N〉 (the expected number of
responses). However, during live application of our system, we
can control the Galaxy Zoo classification logic to collect exactly N
responses per image, for any desired N. This would allow our model
to request (for example) one more classification for this galaxy, and
three more for that galaxy, before retraining. Precise classification
requests from our model will enable us to ask volunteers exactly the
right questions, helping them make an even greater contribution to
scientific research.

We also hope that this human–machine collaboration will provide
a better experience for volunteers. Inspection of informative galax-
ies (Figs 13, 14) suggests that more informative galaxies are more
diverse than less informative galaxies. We hope that volunteers will
find these (now more frequent) informative galaxies interesting and
engaging.

Our results motivate various improvements to the probabilistic
morphology models we introduce. In Section 2.7, we showed that
our models were approximately well-calibrated, particularly after
applying MC Dropout. However, the calibration was imperfect;
even after applying MC Dropout, our models remain slightly
overconfident (Fig. 6). We suggest two reasons for this remaining

13For example, classifying ∼10 000 galaxies (sufficient to train our models
to peak performance) at the mean GZ2 classification rate of ∼ 800 galaxies
per day would take ∼ 13 d.

Figure 14. Upper: Distribution of observed ‘Bar’ vote fraction p in
galaxies acquired during Galaxy Zoo ‘Bar’ active learning simulation.
While randomly selected galaxies are highly non-barred, the ‘Bar’ model
selects a more balanced sample. Middle: Distribution of ‘Bar’ p by iteration,
compared against random selection (upper inset). Our acquisition function
selects a similar rho distribution at each iteration. Lower: Redshift distri-
bution of acquired galaxies over all iterations, compared against random
selection. The ‘Bar’ model selects lower redshift galaxies, which are both
more featured and better resolved (i.e. less visually ambiguous).
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Figure 15. As with Fig. 16 above, but showing galaxies identified by the final model from a ‘Bar’ simulation.
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Figure 16. Informative and uninformative galaxies from the (hidden) test subset, as identified by our novel acquisition function and the final model from
a ‘Smooth or Featured’ simulation. When active learning is applied to Galaxy Zoo, volunteers will be more frequently presented with the most informative
images (left-hand panel) than the least (right-hand panel).
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overconfidence. First, within the MC Dropout approximation, the
dropout rate is known to affect the calibration of the final model
(Gal, Hron & Kendall 2017b). We choose our dropout rate arbitrarily
(0.5); however, this rate may not sufficiently vary the model to
approximate training many models. One solution is to ‘tune’ the
dropout rate until the calibration is correct (Gal et al. 2017b).
Secondly, the MC Dropout approximation is itself imperfect;
removing random neurons with dropout is not identical to training
many networks. As an alternative, one could simply train several
models and ensemble the predictions (Lakshminarayanan, Pritzel &
Blundell 2016). Both of these approaches are straightforward given
a sufficient computational budget.

We also showed the distribution of model predictions over all
galaxies generally agrees well with the distribution of predictions
from volunteers (i.e. we are globally unbiased, Section 2.7). How-
ever, we noted that the models are ‘reluctant’ to predict extreme ρ

(the typical response probability, Section 2.1). We suggest that this
is a limitation of our generative model for volunteer responses. The
binomial likelihood becomes narrow when p (here, ρ) is extreme,
and hence the model is heavily penalized for incorrect extreme
p estimates. If volunteer responses were precisely binomially dis-
tributed (i.e. N independent identically distributed trials per galaxy,
each with a fixed p of a positive response), this heavy penalty would
correctly reflect the significance of the error. However, our binomial
model of volunteers is only approximate; one volunteer may give
consistently different responses to another. In consequence, the
true likelihood of non-extreme k responses given ρ is wider than
the binomial likelihood from the ‘typical’ response probability ρ

suggests, and the network is penalized ‘unfairly’. The network
therefore learns to avoid making risky extreme predictions.

If this suggestion is correct, the risk-averse prediction shift will
be monotonic (i.e. extreme galaxies will have slightly different
ρ but still be ranked in the same order) and hence researchers
selecting galaxies near extreme ρ may simply choose a slightly
higher or lower ρ̂ threshold. To resolve this issue, one could apply
a monotonic rescaling to the network predictions (as we do in
Appendix A), introduce a more sophisticated model of volunteer
behaviour (Marshall et al. 2016; Beck et al. 2018; Dickinson et al.
2019), or calibrate the loss to reflect the scientific utility of extreme
predictions (Cobb, Roberts & Gal 2018). As predictions are globally
unbiased for all non-extreme ρ, and extreme ρ predictions can be
corrected post hoc (above), our network is ready for use.

Throughout this work, our goal has been to predict volunteer
responses at scale. These responses are known to vary systematically
with e.g. redshift (Willett et al. 2013; Hart et al. 2016) and colour
(Cabrera-Vives, Miller & Schneider 2018), and hence require
calibration prior to scientific analysis. Unlike Domı́nguez Sánchez
et al. (2018) and Khan et al. (2019), who train on redshift-calibrated
‘debiased’ responses, we expect and intend to reproduce these sys-
tematics. We prefer to apply calibration methods to our predictions.
A calibrated CNN-predicted catalogue will be presented as part of
a future Galaxy Zoo data release.

Finally, we highlight that our approach is highly general. We
hope that Bayesian CNNs and active learning can contribute to the
wide range of astrophysical problems where CNNs are applicable
(e.g. images, time-series), uncertainty is important, and the data is
expensive to label, noisy, imbalanced, or includes rare objects of
interest. In particular, imbalanced data sets (where some labels are
far more common than others) are common throughout astrophysics.
Topics include transient classification (Wright et al. 2017), fast
radio burst searches (Zhang et al. 2018), and exoplanet detection
(Osborn et al. 2019). Active learning is known to be effective

at correcting such imbalances (Ishida et al. 2019). Our results
suggest that this remains true when active learning is combined
with CNNs (this work is the first astrophysics application of such
a combination). Recall that smooth galaxies are far more common
in GZ2 but featured galaxies are strongly preferentially selected by
active learning – automatically, without our instruction – apparently
to compensate for the imbalanced data (Fig. 13). If this observation
proves to be general, we suggest that Bayesian CNNs and active
learning can drive intelligent data collection to overcome research
challenges throughout astrophysics.

5 C O N C L U S I O N

Previous work on predicting visual galaxy morphology with deep
learning has either taken no account of uncertainty or trained
only on confidently labelled galaxies. Our Bayesian CNNs model
exploit the uncertainty in Galaxy Zoo volunteer responses using
a novel generative model of volunteers. This enables us to accu-
rately answer detailed morphology questions using only sparse
labels (∼10 responses per galaxy). Our CNNs can also express
uncertainty by predicting probability distribution parameters and
using Monte Carlo Dropout (Gal et al. 2017a). This allows us
to predict posteriors for the expected volunteer responses to each
galaxy. These posteriors are reliable (i.e. well-calibrated), show
minimal systematic bias, and match or outperform previous work
when reduced to point estimates (for comparison). Using our
posteriors, researchers will be able to draw statistically powerful
conclusions about the relationships between morphology and AGN,
mass assembly, quenching, and other topics.

Previous work has also treated labelled galaxies as a fixed data
set from which to learn. Instead, we ask: which galaxies should we
label to train the best model? We apply active learning (Houlsby
et al. 2011) – our model iteratively requests new galaxies for
human labelling and then retrains. To select the most informative
galaxies for labelling, we derive a custom acquisition function for
Galaxy Zoo based on BALD (MacKay 1992). This derivation is
only possible using our posteriors. We find that active learning
provides a clear improvement in performance over random selection
of galaxies. The galaxies identified as informative are generally
more featured (for the ‘Smooth or Featured’ question) and better
resolved (for the ‘Bar’ question), matching our intuition.

As modern surveys continue to outpace traditional citizen sci-
ence, probabilistic predictions and active learning become partic-
ularly crucial. The methods we introduce here will allow Galaxy
Zoo to produce visual morphology measurements for surveys of
any conceivable scale on a time-scale of weeks. We aim to launch
our active learning strategy on Galaxy Zoo in 2019.
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APP ENDIX A :

CNN predictions are not (in general) well-calibrated probabilities
(Lakshminarayanan et al. 2016; Guo et al. 2017). Interpreting them
as such may cause systematic errors in later analysis. To illustrate
this problem, we show how the CNN probabilities published in
DS + 18 (Domı́nguez Sánchez et al. 2018) significantly overesti-
mate the prevalence of expert-classified barred galaxies. We chose
DS + 18 as the most recent deep learning morphology catalogue
made publicly available, and thank the authors for their openness.
We do not believe this issue is unique to DS + 18. We highlight this
issue not as a criticism of DS + 18 specifically, but to emphasize
the advantages of using probabilistic methods.

DS + 18 trained a CNN to predict the probability that a
galaxy is barred (DS + 18 Section 5.3). Barred galaxies were
defined as those galaxies labelled as having any kind of bar
(weak/intermediate/strong) in expert catalogue (Nair & Abraham
2010, N10). We refer to such galaxies as Nair Bars. We chose to
investigate this particular DS + 18 model because it explicitly aims
to reproduce the (expert) N10 classifications, allowing for direct
comparison of the predicted probabilities against the true labels.

We first show that these CNN probabilities are not well-
calibrated. We then demonstrate a simple technique to infer prob-
abilities for Nair Bars from GZ2 vote fractions. Finally, we show
that, as our Bayesian CNN estimates of GZ2 vote fractions are well-
calibrated, these vote fractions can be used to estimate probabilities
for Nair Bars. The practical application is to predict what Nair &
Abraham (2010) would have recorded, had the expert authors
visually classified every SDSS galaxy.

We select a random subset of 1211 galaxies classified by N10
(this subset is motivated below). How many barred galaxies are in
this subset? The DS + 18 Nair Bar ‘probabilities’ pi (for each galaxy
i) predict

∑
ipi = 559 Nair Bars. However, only 379 are actually

Nair Bars (Fig. A1). This error is caused by the DS + 18 Nair

Figure A1. Predictions for the total number of galaxies labelled as ‘Bar’
by human expert N10 in test galaxy subset (correct answer: 379). DS + 18
overestimates the number of Nair Bars (559). We find that GZ2 vote fractions
from volunteers can be used to make an improved estimate (396) with a
rescaling correction calculated via logistic regression (GZ2 Humans + LR).
Applying the same correction to the vote fractions predicted by the Bayesian
CNN in this work (MW + 19) also produces an improved estimate (372).
By accurately predicting the vote fractions, and then applying a correction
to map from vote fractions to expert responses, we can predict what N10
would have said for the full SDSS sample.

Bar ‘probabilities’ being, on average, skewed towards predicting
‘Bar’, as shown by the calibration curve of the DS + 18 Nair Bar
probabilities (Fig. A2).

How can we better predict the total number of Nair Bars? GZ2
collected volunteer responses for many galaxies classified by N10
(6051 of 14 034 match within 5 arcsec, after filtering for total ‘Bar?’
votes Nbar > 10 as in Section 2.6). The fraction of volunteers who
responded ‘Bar’ to the question ‘Bar?’ is predictive of Nair Bars, but
is not a probability (Lintott et al. 2008). For example, volunteers are
less able to recognize weak bars than experts (Masters et al. 2012),
and hence the ‘Bar’ vote fraction only slightly increases for galaxies
with weak Nair Bars versus galaxies without. We need to rescale
the GZ2 vote fractions. To do this, we divide the N10 catalogue
into 80 per cent train and 20 per cent test subsets and use the train
subset to fit (via logistic regression) a rescaling function (Fig.
A3) mapping GZ2 vote fractions to p(NairBar|GZ2Fraction). We
then evaluate the calibration of these probabilities on the test subset,
which is the subset of 1211 galaxies used above. We predict 396 Nair
Bars, which compares well with the correct answer of 379 versus
the DS + 18 answer of 559 (Fig. A1). This directly demonstrates
that our rescaled GZ2 predictions are correctly calibrated over the
full test subset. The calibration curve shows no systematic skew,
unlike DS + 18 (Fig. A2).

Since the GZ2 vote fractions can be rescaled to Nair Bar
probabilities, and the Bayesian CNN makes predictions of the GZ2
vote fractions, we can also rescale the Bayesian CNN predictions
into Nair Bar probabilities using the same rescaling function. The
rescaled Bayesian CNN GZ2 vote predictions correctly estimate the
count of Nair Bars (372 bars predicted versus 379 observed bars;
Fig. A1).

Finally, we note that if the research goal is simply to identify
samples of e.g. Nair Bars, one can do so by interpreting each
prediction as a score (i.e. an arbitrary scalar, as opposed to a
probability). When interpreted as scores, the rescaled GZ2 votes –
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Figure A2. Above: Comparison of calibration curves for each predictive
model. The calibration curve is calculated by binning the predicted proba-
bilities and counting the fraction of Nair Bars in each bin. The fraction of
Nair Bars in a given bin approximates the true (frequentist) probability
of each binned galaxy being a Nair Bar. Points compare the predicted
fraction of Nair Bars (x axis) with the actual fraction (y axis) for five
equally spaced bins. For well-calibrated probabilities, the predicted and
actual fractions are equal (black dashed line). Below: the distribution
of Nair Bar predictions from each model. DS + 18 typically predicts
p ∼ 0.4 (below) and has a relatively poor calibration near p ∼ 0.4
(above), leading to a significant overestimate of the total number of Nair
Bars.

Figure A3. The rescaling function used to map GZ2 vote fractions to
p(NairBar|GZ2Fraction), estimated via logistic regression. This rescaling
function is also used (without modification) to map Bayesian CNN GZ2
vote fraction predictions to p(NairBar|BCNN-predictedGZ2Fraction).

both observed from volunteers and predicted by the Bayesian CNN
– outperform DS + 18 in identifying Nair Bars at all thresholds
(Fig. A4). This may be because our BCNN can learn to detect
bars from the extensive GZ2 sample (56 048 galaxies with Nbar ≥
10) before those predictions are rescaled to correspond to Nair Bars,
rather than DS + 18’s approach of training only on the much smaller
set of galaxies (7000) directly labelled in Nair & Abraham (2010).

Figure A4. Comparison of ROC curves for predicting Nair Bars using each
model.

Nair Bars are initially defined through repeated expert classifica-
tion (as close to ‘gold standard’ ground truth as exists for imaging
data) and hence accurate automated identification of Nair Bars is
directly useful for morphology research.

A P P E N D I X B: TH E O R E T I C A L BAC K G RO U N D
O N VA R I AT I O NA L IN F E R E N C E

The general problem of Bayesian inference can be framed in terms
of a probabilistic model where we have some observed random
variables Z and some latent variables θ and we wish to infer P(θ |Z)
after observing some data. Our probabilistic model P(Z, θ ) allows
us to use Bayes rule to do so; P (θ | Z) = P (θ,Z)

P (Z) = P (Z|θ )p(θ )
P (Z) . In

the setting of discriminative learning, the observed variables are the
inputs and outputs of our classification task X and Y, and we directly
parametrize the distribution P(y|x, θ ) in order to make predictions
by marginalizing over the unknown weights, that is, the prediction
for an unseen point x given training data X is

p(y | x, X, Y ) =
∫

p(y | x, θ)p(θ | X, Y )dθ. (B1)

While this is a simple framework, in practice the integrals
required to normalize Bayes’ rule and to take this marginal are
often not analytically tractable, and we must resort to numerical
approaches.

While there are many possible ways to perform approximate
Bayesian inference, here we will focus on the framework of
variational inference. The essential idea of variational inference
is to approximate the posterior P(θ |Z) with a simpler distribution
q(θ ) which is ‘as close as possible’ to P(θ |Z), and then use q in
place of the posterior. This can take the form of analytically finding
the optimal q subject only to some factorization assumptions using
the tools of the calculus of variations, but the case that is relevant
to our treatment is when we fix q to be some family of distributions
qξ (θ ) parametrized by ξ and fit ξ , changing an integration problem
to an optimization one.

The measure of ‘as close as possible’ used in variational inference
in the Kullback–Leibler (KL) divergence, or the relative entropy, a
measure of distance between two probability distributions defined
as

DKL(p : q) =
∫

p(x)(log p(x) − log q(x))dx. (B2)

The objective of variational inference is to choose the q such
that DKL(q(θ ): p(θ |X)) is minimized. Minimizing this objective can
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be shown to be equivalent to maximizing the ‘log Evidence Lower
BOund’, or ELBO,

L(q) = Eq(θ ) − [log p(Y | X, θ )p(θ ) − log q(θ )]. (B3)

The reason for the name is the relationship

log P (X) = DKL(q(θ ) : p(θ | X)) + L(q), (B4)

which implies, since the KL divergence is strictly positive, that
L provides a lower bound on the log of the evidence P(X), the
denominator in Bayes rule above. By optimizing the parameters of
q xi, with respect to L, one can find the best approximation to the
posterior in the family of parametrized distributions chosen in terms
of the ELBO.

The key advantage of this formalism is that the ELBO only
involves the tractable terms of the model, P(X|θ ) and P(θ ). The
expectation is over the approximating distribution, but since we
are able to choose q we can make a choice that is easy to sample
from, and therefore it is straightforward to obtain a Monte Carlo
approximation of L via sampling, which is sufficient to obtain
stochastic gradients of L which can be used for optimization. The
integral over the posterior on θ in the marginalization step can
likewise be approximated via sampling from q if necessary.

For neural networks, a common approximating distribution is
dropout (Srivastava et al. 2014). The dropout distribution over the

weights of a single neural network layer is parametrized by a weight
matrix M and a dropout probability p. Draws from this distribution
are described by

Wij = Mijzj , (B5)

where zj ∼ Bernoulli(p). Gal (2016) introduced approximating
p(w|D), with a dropout distributions over the weights of a network,

and showed that in this case optimizing the standard likelihood
based loss is equivalent to the variational objective that would
be obtained for the dropout distribution, so we may interpret the
dropout distribution over the weights of a trained model as an
approximation to the posterior distribution p(w | D).

We can use this approximating distribution as a proxy for the true
posterior when we marginalize over models to make predictions;∫

p(k|x, w)p(w|D)dw ≈
∫

p(k|x,w)q∗dw. (B6)

A more detailed mathematical exposition of dropout as varia-
tional inference can be found in Gal (2016).

This paper has been typeset from a TEX/LATEX file prepared by the author.
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