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1. Introduction

One of the key areas of modern number theory is that of modular forms. In the
classical setting these correspond to holomorphic functions on the complex upper
half-plane with certain transformation properties under subgroups of the modular
group, SL2(Z).

The theory of classical modular forms, associated geometry and representation
theory played an important role in Wiles, Taylor et al.’s proof of Fermat’s Last
Theorem, through the so-called modularity theorem (formerly conjecture) for el-
liptic curves over Q. To extend this conjecture to a totally real number field K it
is necessary to introduce Hilbert modular forms, which can be represented by holo-
morphic functions on products of upper half-planes and with certain transformation
properties under subgroups of the Hilbert modular group, SL2(OK).

In this paper we extend this even further and study non-holomorphic Hilbert
modular forms, also called Hilbert - Maass cusp forms.
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One of the most striking applications of non-holomorphic Hilbert modular forms
is towards the resolution of Hilbert’s 11-th problem about quadratic forms in many
variables. This, in turn, has far-reaching applications, for instance in quantum
computing, where the strong approximation properties of certain quadratic forms
can be used to design universal quantum gates [?].

Similar to the situation for classical Maass cusp forms, there are no explicit
examples of general Hilbert - Maass cusp forms, apart from some special cases,
including lifts from subgroups of SL2(Z) and one of the primary goals of the project
presented here was to develop algorithms to find explicit numerical examples to
obtain a better understanding of both individual Hilbert - Maass cusp forms as
well as the arithmetic and analytic tools required to study them.

The Hilbert - Maass cusp forms are eigenfunctions of an invariant Laplace -
Beltrami operator and their study is closely related to the spectral theory for the
associated Hilbert modular variety.

For the sake of clarity and to avoid technical arguments and heavy notation we
restrict the current paper to a discussion of the case of narrow class number one,
and leave the general case to a forthcoming paper, which is currently in preparation.
All algorithms used and discussed in this paper can be obtained from GitHub [?].

In the following sections we will first provide background and notations for Hil-
bert modular groups, followed by an overview of the most relevant definitions and
fundamental results about Hilbert - Maass forms. Subsequently we develop an ex-
plicit analogue of the classical Hecke theory for Hilbert - Maass forms in the case
of totally real number fields with narrow class number one.

2. Background and Notation

2.1. Number Fields and embeddings. Let K/Q be a totally real number field of
degree n > 1 and class number h(K) = 1 with ring of integers OK and embeddings
σi : K ↪→ R, i = 1, 2, . . . , n. The norm N(α) =

∏
σ(α) and trace Tr(α) =

∑
σ(α)

over Q are defined as usual and an element α ∈ K is said to be toally positive,
α ≫ 0, if σ(α) > 0 for all embeddings σ.

To simplify notation we introuce the ring CK = C ⊗Q K viewed as an algebra
over both K and C with the natural embeddings. It is then possible to define
multiplication in CK by considering pure tensors. For z, z′ ∈ CK with z = z ⊗ α
and z′ = z′ ⊗ α′ for some z, z′ ∈ C and α, α′ ∈ K we define

zz′ = zz′ ⊗ αα′, z′z = zz′ = (z′z)⊗ α, α′z = zα′ = z ⊗ (α′α),

and then extend these operations to the whole of CK by linearity. The embeddings
are extended to σi : CK ↪→ C by σi(z ⊗ α) = zσi(α) and norm, trace, real and
imaginary parts are defined on z ⊗ α ∈ CK by N(z ⊗ α) = znN(α), Tr(z ⊗ α) =
zTr(α), ℜ(z ⊗ α) = ℜ(z)⊗ α and ℑ(z ⊗ α) = ℑ(z)⊗ α and then extended linearly.
For any z ∈ CK we set zj = σj(z) and define the sign sign(z) = z

|z| where σj(|z|) =
|σj(z)|.

We also consider the subring RK = R ⊗Q K ⊂ CK and the generalized upper
half-plane HK = {z ∈ CK | ℑ(z) ≫ 0}.

For explicit numerical computations we often make use of the identifications
CK ≃ Cn, RK ≃ Rn and HK ≃ Hn, where H = {x+ iy | y > 0} is the usual upper
half-plane.
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We write by G = GL+
2 (R)n. We define the slash operator on any function on

Hn by

f | g = f

(
az+ b

cz+ d

)
, g ∈ G.

For x ∈ Rn, we define the signature sgn x ∈ {±1}n by

(sgn x)v =
xv

|xv|
.

2.2. Hilbert modular groups. It is possible to equip the generalised upper half-
plane with a hyperbolic metric ds(z) = y−1|dz| and volume measure dµ(z) =
y−2dxdy where z = x + iy ∈ HK . It is easy to verify that the corresponding
isometries of HK are given by elements or PGL+(K) ≃ GL+(K)/{±12} corres-
ponding to matrices in M2(K) with totally positive determinants, acting on HK

via fractional linear transformations

A =
(
a b
c d

)
: z 7→ (az+ b)(cz+ d)−1.

For the purpose of this paper we consider the Hilbert modular group to be ΓK =
PSL2(OK)/{±12} but stress that in other contexts, e.g. when studying Hilbert
modular forms of non-zero weight it is more common to study e.g. SL2(OK) or
GL+(OK). todo[inline]Mention companion groups and cusps / class number > 1

3. Hilbert Maass Forms

3.1. Introduction and definition. Recall that the Laplace–Beltrami operator
acting on the hyperbolic upper half-plane H is an essentially self-adjoint, positive
semi-definite, elliptic differential operator defined as

∆ = −y2
(

∂2

∂x2
+

∂2

∂y2

)
where z = x+ iy ∈ H. If we write ∆j = ∆◦σj and and let ∆ = (∆1, . . . ,∆n), then
for a twice-differentiable function f : HK → C we define

∆f = (∆1f, . . . ,∆nf)

and say that f is an eigenform of ∆ with eigenvalue λ ∈ CK if

∆f = λf,

i.e. if ∆jf = λjf for all j. Since ∆j is positive semi-definite we know that λj ≥ 0
and we write λ = 1

4 + R2 = s(1 − s) as usual with Rj ∈ i[0, 1/2] ∪ [0,∞) or
sj ∈ [0, 1] ∪ {1/2 + iR}.

Definition 1. A real-analytic function f : HK → C is said to be a Hilbert-Maass
form for the group ΓK if

(1) (f | A)(z) = f(z) for all A ∈ ΓK ,
(2) ∆f = λf ,
(3)

∫
ΓK\HK

|f |2dµ < 0

In addition, f is said to be a cusp form if
4. lim f(Aλz) → 0 as ℑz → ∞ for all cusps λ ∈ P1(K).

The space of Hilbert-Maass forms for ΓK is denoted by M(ΓK) and the subspace
of Maass cusp forms by S(ΓK).
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3.2. Fourier expansions. Since we assume that the class number of K is one it is
known that there is only one ΓK inequivalent cusp, denoted by ∞. The stabiliser
of this cusp in ΓK is given by

ΓK ∞ =
{
( ε α
0 ε−1 ) : ε ∈ O×

K , α ∈ OK

}
≃ (O×

K)2 ⋉OK .

The subgroup of translations is usually identified with the ring of integers OK ,
which we view as a lattice in Rn together with the trace form

B(α, β) = Tr(αβ).

The dual lattice of OK with respect to this bilinear form is the inverse different

d−1 = O#
K = {α ∈ Q⊗OK : B(α, β) ∈ Z ∀β ∈ OK}.

By the general theory of Fourier series in Rn and component-wise separation of
variables in (2) it follows that a Hilbert-Maass cusp form f with eigenvalue λ =
1
4 +R2 has a Fourier-Bessel expansion of the form

f(z) =
∑

0̸=v∈d−1

a(v)κiR(v,y)e (Tr(xv)) ,

where

κiR(v,y) =
√
NyNKiR(2π|v|y) =

n∏
j=1

√
yjKiRj (2π|vj |yj)

and KiR(2π|v|y) is a standard K-Bessel function. It follows that

f(z) =
∑

0̸=v∈d−1

a(v)κiR(v,y)e (Tr(xv)) .

For holomorphic Hilbert modular forms it is known that the Fourier series can be
restricted to totally positive indices. This was first proven for Q(

√
5) by Gï¿œtzky

and in general by Gundlach, although it is often referred to as the Gï¿œtzky -
Koecher principle. Unfortunately the same argument does not apply here and the
invariance under (O×

K)2 only implies that

a(ε2v) = a(v) for all ε ∈ O×
K .

This condition can either be used to aid in computations by reducing the number
of coefficients necessary, or as a way of estimating the accuracy of computed coef-
ficients. It is known the Fourier coefficients of Maass cusp forms for the modular
group PSL2(Z) satisfy a(n) = O(|n|1/2) as |n| → ∞. Estimates of this form were
already known to Maass [8] (see also e.g. [4, p.\{} 585-587] or [7, Thm.\{} 3.2]).

Theorem 2. Let f ∈ S(ΓK) and let a(v) be the vth Fourier coefficient of f . Then

|a(v)| ≤ C
√

N(|v|),
where C is a constant depending on f .

Proof. The proof is analogous to [7, Thm. 3.2] and follows from Parseval’s identity
in Rn ∑

v∈d−1

|c(v, y)|2 =
1

V

∫
OK\Rn

|f(z)|2dx1 · · · dxn
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together with the estimate
∞∫

|s|

K2
s−1/2(y)y

−1dy ≫ e−π|s|

|s|

applied to each variable separately. □

4. Hecke Theory for Hilbert - Maass forms

As an explicit description of the Hecke theory for non-holomorphic Hilbert mod-
ular forms does not appear in the literature we will provide a self-contained brief
exposition, focussing on the simplest case. For the remainder of this section we will
assume that the narrow class number of K, h+(K) = 1 as this is the case which
most closely resembles the theory for modular and Maass forms on SL2(Z).

Since factorisation of integers into prime numbers in Z generalises to factorisation
of integral ideals into prime ideals in OK it is clear that the theory of multiplicative
functions on OK becomes particularly simple when this is a unique factorisation
domain, i.e. if the class number h(K) = 1. The further restriction to h+(K) = 1
ensures that for every integral ideal N ⊆ OK there exists a totally positive element
n ∈ N such that N = nOK and we therefore obtain a theory resembling that of
SL2(Z) where Hecke operators are usually indexed by positive integers.

For an integral ideal N = nOK we define the set

∆(N ) = {g ∈ GL2(OK) | n−1det(g) ∈ O×,+
K },

where O×,+
K is the set of totally positive units. Let us write by

Z :=

{(
ε 0
0 ε

)
| ε ∈ O×

K

}
the center of GL+

2 (OK). The set ∆(N ) admits both a right and left action by
ZSL2(OK) and we have the following.

Lemma 3. The set ∆(N ) decomposes into a finite number of left cosets under the
action of ZSL2(OK)

∆(N ) =
⊔
i

ZSL2(OK)βi

and a complete set of representatives is given by

X(N ) =

{(
a b
0 d

)
| a,d ∈ OK/O×

K ,b ∈ OK , d ≫ 0,ad = n, b ∈ OK/dOK

}
.

Proof. Let β =

(
a b
c d

)
∈ ∆(N ) such that ad − bc = nε, for some ε ∈ O×,+

K . If

γ =

(
A B
C D

)
then we have

γβ =

(
Aa+Bc Ab+Bd
Ca+Dc Cb+Dd

)
=

(
a1, b1
c1 d1

)
.

We will show that there exist γ ∈ SL2(OK) such that Ca + Dc = 0. Let aOK +
cOK = tOK . The solution space of Ca + Dc = 0 is of the form C = −λc

t and
D = λa

t for some λ ∈ OK . To extend the pair (C,D) to be an element of SL2(OK),
we need that COK + DOK = OK . This implies λ ∈ O×

K . We take C = − c
t and
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D = a
t and hence there exist A,B ∈ OK such that γ =

(
A B
C D

)
∈ SL2(OK) and

γβ =

(
a1 b1
0 d1

)
, a1d1 = nε. We check that d1 = Cb+Dc = nε

t and a1 = t. Since

h+(K) = 1 there exist ε1 ∈ O×
K such that ε21 = ε. Let ξ =

(
ε−1
1 0
0 ε−1

1

)
∈ Z.

Now ξγβ =

(
a′1 b′1
0 d′1

)
, where a′1d

′
1 = n. Also we check that d′1 = nε

tε1
and a′1 = t

ε .

We choose the sign of t (sgn(t) = sgn(ε1)) in such a way that d′1 ≫ 0. Now

suppose β =

(
a b
0 d

)
and β′ =

(
a b′

0 d

)
are ZSL2(OK) equivalent. This implies

that β′β−1 =

(
1 (b− b′)/d
0 1

)
∈ ZSL2(OK). This holds if and only if b−b′ ∈ dOK .

Therefore we have proved that the representative of γ for the action of ZSL2(OK)
is uniquely determined. □

Definition 4. For an integral ideal N we define the Hecke operator of index N ,
TN : M(ΓK) → M(ΓK) by

TN (f) =
1√

N(N )

∑
β∈ZSL2(OK)\∆(N )

f | β,

for f ∈ M(ΓK), where the sum is taken over any complete set of left-coset repres-
entatives for ZSL2(OK)\∆(N ).

Using the representatives from Lemma 3 we obtain the explicit expression

(4.1) TN (f) :=
1√
N(N )

∑
ad=n
d≫0

∑
b (mod∗d)

f

(
az+ b

d

)
,

where the inner sum is over a set of residue classes modulo dOK and we recall that
b ≡ b′ (mod)∗ d if and only if b− b′ ∈ dOK .

Theorem 5. Suppose that f ∈ M(ΓK) has Fourier expansion

f(z) =
∑

v∈d−1

a(v)κiR(v,y)e (Tr(xv)) ,

and
TN (f)(z) =

∑
v∈d−1

b(v)κiR(v,y)e (Tr(xv)) .

Then
b(v) =

∑
d≫0

d|n, vd∈d−1

a
(vn
d2

)
.

Proof. A direct calculation shows that∑
b (modd)

f

(
az+ b

d

)
=

∑
v∈d−1

a(v)κiR

(
v,

ay

d

)
e
(
Tr

(axv
d

))
×

∑
b (modd)

e

(
Tr

(
bv

d

))
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and it is easy to see that the following orthogonality relation holds∑
b (modd)

e

(
Tr

(
bv

d

))
=

{
N(d) if v

d ∈ d−1

0 otherwise.

See also Lemma 14 below for a more general analogue. Using the explicit expression
in (4.1) we now find that

TN (f)(z) =
1√
N(n)

∑
ad=n
d≫0

N(d)
∑

v∈dd−1

a(v)κiR

(
v,

ay

d

)
e
(
Tr

(axv
d

))

=
1√
N(n)

∑
ad=n
d≫0

N(d)
∑

v∈d−1

a(dv)κiR

(
dv,

ay

d

)
e (Tr (axv))

=
∑
a|n
a≫0

∑
v∈d−1

a
(nv

a

)
κiR (av,y) e (Tr (axv)) .

The conclusion now follows from the uniqueness of Fourier expansions. □

It is easy to see from the above theorem that TN leaves the space of cusp forms
invariant and we can also deduce the following analogue of the classical multiplic-
ativity.

Corollary 6. If M = mOK , and N = nOK with n,m ≫ 0 then

(4.2) TMTN =
∑

d|gcd(m,n)
d≫0

Tmn
d2

OK

In particular, if M+N = OK then

TMTN = TMN .

Furthermore, if P is a prime ideal and v ≥ 1 then

TPv+1 = TPTPv − TPv−1 .

Proof. This result follows immediately from Theorem 5 by comparing the action
on the Fourier coefficients of left- and right-hand side. □

Another important property of the Hecke operators is that they commute with
all Laplace operators, in other words, for all ideals N and i = 1, . . . , n

TN∆i = ∆iTN

Let M(ΓK ,λ) be the finite-dimensional space of Hilbert Maass forms with eigen-
value λ for ∆ and S(ΓK ,λ) the subspace of cusp forms. It is clear that the Hecke
operators acts on both M(ΓK ,λ) and S(ΓK ,λ). The latter becomes a finite di-
mensional Hilbert space equipped with the Petersson inner product

⟨f, g⟩ =
∫
ΓK\HK

fgdµ

Theorem 7. If f, g ∈ Sk(ΓK ,λ) then

⟨TN (f), g⟩ = ⟨f, TN (g)⟩.

More precisely TN is Hermitian with respect to the Petersson inner product.
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We use above theorem to get an orthogonal basis for Sk(Γ,λ) consisting of
simultaneous eigenvectors (eigenform) for all the Hecke operators TN .

4.1. Reflection Operators. In this section we define the reflection operators
which will be used to characterize any eigenform f by the coefficients at totally
positive element in d−1. For any v, where 1 ≤ v ≤ n, and function f on Hn, we
define Kv(f) by

(Kvf)(z) = f(z′), where z′w = zw for w ̸= v and z′v = −zv.

For any g ∈ G, we check that

(Kvf) | g = Kv(f | evgev), where ev =

(
(−1)v 0

0 1

)
∈ G

Here (−1)v is just the notation which denotes that if w ̸= v then the entry is
1 and the vth component is -1. Let ϵ ∈ O×

K be such that sgn ϵ = (−1)v and let

β =

(
ϵ 0
0 1

)
∈ G. Now for each v we define the reflection operator Zv on Sk(ΓK ,λ)

by
Zv(f) = Kv(f | βev)

It is easy to verify that Z2
v = I. Therefore the eigenvalues of Zv will be ±1. We

also check that the Hecke operators TN commute with the reflection operators Zv.
Therefore it is sensible to break up Sk(ΓK , λ) into simultaneous eigenspaces of
Zv.for all v. Suppose f is an eigenform for Zv with eigenvalue tv ∈ {±1}. Then we
have Zv(f) = tvf . Comparing the Fourier coefficients we get

(4.3) a(v) = tva(ϵvv),

where ϵv ∈ O×
K such that sgn ϵv = (−1)v. We utilize the equation above to calculate

coefficients based on coefficients at totally positive elements.

Proposition 8. Let δ ≫ 0 be such that d−1 = δOK . Let f be a non-zero eigenform
in S(ΓK ,λ) with Fourier series expansion

f(z) =
∑

v∈d−1

a(v)κiR(v,y)e (Tr(xv)) ,

If TN (f) = γ(N )f with N = nO then

a(δn) = γ(N )a(δ)

and

a(δ) ̸= 0.

Proof. (a). We use Theorem 5 to compare the coefficient indexed by δ in TN (f) =
γ(N )f

a(δn) = γ(N )a(δ).

(b). We write any v ∈ d−1 by v = δv, where v ∈ OK . Now if v ≫ 0, we consider
the operator TV with V = vOK . So we will have a(δv) = γ(V)a(δ), where γ(V) is
the eigenvalue of f for TV . Thus, if a(δ) = 0 then a(v) = 0 for all v ≫ 0 and using
(4.3) we conclude that a(v) = 0 for all v. Hence f = 0. □

We say that f is a normalized eigenform if a(δ) = 1. Using Corollary 6 and
the above proposition, and properties of reflection operators we get the following
corollary.
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Corollary 9. Let f ∈ Sk(ΓK ,λ) be a normalized eigenform. Let m, n ∈ OK such
that mOK + nOK = OK . Then we have

a(δmn) = a(δm)a(δn).

Suppose p is a prime element of OK . Then

a(δpm+1) = a(δp)a(δpm)− a(δpm−1), m ≥ 1.

Remark 10. If we assume that h+(K) > 1 it is essential to use the adelic language
to formulate a complete Hecke theory.

Example 11. We use Corollary 9 to get some explicit relations between the coef-
ficients which will be used in the computations later. Suppose K = Q(

√
2). Let

f ∈ S(ΓK ,λ) is an eigenform with Fourier series expansion

f(z) =
∑

0̸=v∈d−1

a(v)κiR(v,y)e (Tr(xv)) .

Let δ = 1+
√
2

2
√
2

. We check that gcd (2−
√
2, 3−

√
2) = 1 and both are prime elements.

So by Corollary 9, we have

a((8− 5
√
2)δ)− a((2−

√
2)δ)a((3−

√
2)δ) = 0.

a((2−
√
2)2δ)− a((2−

√
2)δ)2 + 1 = 0.

If we index the coefficients by lattice points then the above two relations are written
as

a(3,−2)− a(1, 0)a(2, 1) = 0

a(2,−2)− a(1, 0)2 + 1 = 0

4.2. The automorphy method. The automorphy (or Hejhal’s) method was first
introduced in by Hejhal to compute Maass cusp forms for Hecke triangle groups
[5, 6] and was later extended by the second author to compute Maass cusp forms
for congrence and non-congruence subgroups and Maass waveforms with non-zero
weight [11].

The key idea is to approximate a Maass cusp form with a finite Fourier series and
use Fourier inversion and invariance under group transformations (automorphy) to
construct a linear system of equations that can be solved to obtain approximations
for Fourier coefficients.

Assume that f ∈ S(ΓK) has Fourier expansion as above

f(z) =
∑

0̸=v∈d−1

a(v)κiR(v,y)e (Tr(xv)) .

Lemma 12. Let ε = 10−D and Y > 0. Then there exists M0 = M0(Y,D) such
that

f(z) =
∑

0̸=v∈d−1,v∈B

a(v)κiR(v,y)e (Tr(xv)) + [[ε]]

for all z = x + iy with ∥y∥1 > Y for all j, [[ε]] denotes an error of magnitude at
most ε and B = [−M0,M0]

n ⊂ Rn.
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Proof. Using the integral representation

KiR(y) =

∫ ∞

0

e−y cosh t cosh(iRt)dt

and monotonicity it follows directly that for 0 ≤ R < y:

|KiR(y)| ≤ K0(y) < K1/2(y) =

√
π

2y
e−y.

Note that for the purpose of computing KiR it is useful to consider more refined
bounds taking into account the oscillatory behaviour (cf. e.g. [2]). It follows that

|κiR(v,y)| ≤ 2−nN(|v|)−1/2e−2πTr(|v|y)

for any v ∈ d−1 and y ∈ R+
K . Let C > 0 be as in Thm. (2) then

|a(v)κiR(v,y)| ≤ C · 2−ne−2πTr(|v|y) = C ′ · e−2πTr(|v|y)

and the tail can be estimated by

E(Y,M0) =

∣∣∣∣∣∣
∑

0 ̸=v∈d−1,v/∈B

a(v)κiR(v,y)e (Tr(xv))

∣∣∣∣∣∣ ≤ C ′
∑

v∈d−1,v/∈B

e−2πTr(|v|y)

= C ′
∑

v∈d−1,v/∈B

e−2π(|v1|y1+···+|vn|yn)

= C ′′
∏
j

∑
vj≥b

e−2πvjyj

= C ′′
∏
j

e−2πM0yj
1

1− e−2πyj

= C ′′
∏
j

e−2πM0yje2πyj
1

e2πyj − 1

≤ C ′′e−2πn(M0−1)Y 1

2πY n

It is clear that |E(Y,M0)| < ε·C/(2n+1π) if M0 is chosen such that −2πn(M0−1) <
log(Y nε) and 2πM0Y > R, in other words, if

M0 > 1− 1

2πnY
ln(Y nε) = 1− 1

2πnY
[n lnY −D ln 10] = 1+

D

2πnY
ln 10− 1

2πY
lnY.

and M0 > R
2πY . Thus, −2πn(M0 − 1) < log(Y nEε)

M0 > 1− 1

2πnY
ln(Y nε) = 1− 1

2πnY
[n lnY −D ln 10 + ln(C)− (n+ 1) ln 2− lnπ]

=
D

2πnY
ln 10 +

1

2πnY
[− lnC + (n+ 1) ln 2 + lnπ] + 1− 1

2πY
lnY.

□

Example 13. If n = 2, Y = 0.3 and we want D = 16 digits precision we can
choose M0 = 13.
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4.3. Fourier inversion in lattices. By an integral lattice L in Rn we will always
mean a finitely generated Z-module of full rank with a symmetric non-degenerate
bilinear form B : Rn × Rn → R such that B(L,L) ⊂ Z. The dual lattice of L is
defined as

L# = {x ∈ Rn : B(x,y) ∈ Z, ∀y ∈ L} .
It is clear that L ⊆ L# and it is easy to show that L#/L is a finite abelian group.
Furthermore, if M ⊇ L is a, not necessarily integral, superlattice of finite index
over L then M# ⊆ L# and for a fixed v ∈ L# the function B(v, ·) : M/L → Q/Z
is well-defined and non-degenerate unless v ∈ M#.

The following Lemma and Corollary are fundamental to the theory of finite
Fourier series on lattices and while well-known for Zn with the Euclidean inner
product we have not been able to find the following general formulation in the
literature.

Lemma 14. Let L be an integral lattice in Rn and M a superlattice. If v ∈ L#

then
1

[M : L]

∑
x∈M/L

e (B(v, x)) =

{
1, if v ∈ M#,

0, if v ̸∈ M#.

Proof. For any x0 ∈ M we have

e (B(v, x0))
∑

x∈M/L

e (B(v, x)) =
∑

x∈M/L

e (B(v, x+ x0)) =
∑

x∈M/L

e (B(v, x)) .

It follows that either
∑

x∈M/L e (B(v, x)) = 0 or e (B(v, x0)) = 1 for all x0 ∈ M , in
other words, v ∈ M#. □

Note that the above is simply a generalisation of the well-known orthogonality
relation for complex exponentials. As an illustration in the simplest possible setting
we consider the the following situation, which is used for the automorphy method
in e.g. [6, 10, 5].

Example 15. Consider the integral lattice L = Z together with the bilinear form
B(x, y) = xy. Then L# = L and if we fix v = a ∈ L#, choose an integer Q and set
M = 1

2QL then then M# = 2QL# = 2QZ and

1

[M : L]

∑
x∈M/L

e (B(v, x)) =
1

2Q

∑
x∈ 1

2QZ/Z

e (vx) =
1

2Q

∑
b mod Q

e

(
ab

2Q

)
=

{
1, 2Q | a,
0, else.

To be able to apply Lemma 14 to finite Fourier inversion we would like the right-
hand side to be 1 exactly when a = 0. To achieve this in the example above we
simply need to take 2Q > a. For a general lattice this is less straight-forward but
the immediate generalisation leads to the following

Corollary 16. Let L ⊂ Rn be an integral lattice. For any bounded subset V ⊆ L#

it is possible to find a superlattice M ⊃ L of finite index such that if v ∈ V then

1

[M : L]

∑
x∈M/L

e (B(v,x)) =

{
1, v = 0,

0, v ̸= 0.

Proof. Consider M = λ−1L for some λ > 1. Then M# = λL# and we can choose
λ sufficiently large such that M# ∩ V = {0}. □
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The subsets we will be concerned with here are of the form [−M0,M0]
n and it

is posible to choose the superlattice of the form M = 1
QL with

(4.4) Q > M0

∥∥BT
L

∥∥
∞ ,

where BL is the basis matrix for L, that is, L = BLZn. This can either be shown
by using the analog of [3, Cor. 2] with o replaced by L# and n by M#, or directly
in terms of lattices and basis matrices.

Let f ∈ S(ΓK) have Fourier series expansion as above and let ϵ > 0. For Y > 0
let M0 = M0(ε, Y ) be as in Lemma 12 and consider the finite Fourier series

f̂(z) =
∑

0̸=v∈d−1,∥v∥∞≤M0

a(v)κiR(v,y)e (Tr(xv)) .

Choose a Q such that M = Q−1L satisfy the conclusion of Corollary 16 for the
bounded set {v ∈ L# : ∥v∥∞ ≤ 2M0}. Then, for any w ∈ L# with ∥w∥∞ ≤ M0

we have
1

[M : L]

∑
x∈M/L

f̂(x+ iY )e(−B(w,x))

=
1

[M : L]

∑
0̸=v∈d−1,∥v∥∞≤M0

a(v)κiR(v,Y)
∑

x∈M/L

e (B(x,v −w))

= a(w)κiR(w,Y).

For z ∈ HK we let z∗ ∈ ΓK\HK be the pullback of z into the fundamental
domain of ΓK . Since f is invariant under ΓKwe know that f(z) = f(z∗) and if Y
is small enough that so that z = x+ iY has pullback z∗ = x∗ + iy∗

x with y∗
x ≫ Y

then
f̂(z∗) = f̂(z) + [[ϵ]]

and hence
1

[M : L]

∑
x∈M/L

f̂(x+ iY )e(−B(w,x)) + [[ϵ]] =
1

[M : L]

∑
x∈M/L

f̂(z∗)e(−B(w,x))

=
∑

0 ̸=v∈d−1,∥v∥∞≤M0

a(v)V (w,v),

where
V (w,v) =

1

[M : L]

∑
x∈M/L

κiR(v,y∗
x)e(B(v,x∗)−B(w,x)).

Due to the rapid decay of the K-Bessel functions the term with y = Y is dominating
and if we let

Ṽ (w,v) = V (w,v)− δv=wκiR(v,Y)

we obtain a well-conditioned homogeneous linear system of equations

(4.5)
∑

0̸=v∈d−1,∥v∥∞<M0

a(v)Ṽ (w,v) = [[ϵ]].

Now, if we are given a spectral parameter R corresponding to a Hilbert-Maass cusp
form f and choose a suitable Y > 0 we can solve (4.5) to obtain an approximation of
the Fourier coefficients a(v) := a(v;R, Y ) up to an error of magnitude ϵ×∥Ṽ −1∥∞ ,
where we observe that ∥Ṽ −1∥∞ is not too large provided that κiR(v,Y) is not
too small for ∥v∥∞ < M0. The main issue is of course that we don’t know the
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spectrum apriori so we need simultaneouly locate eigenvalues and compute Fourier
coefficients.

4.4. Normalization. We know from Proposition ?? that if the dimension of S(ΓK ,R)
is non-zero then there exist a forms with Fourier coefficient c(δ) ̸= 0, where
d−1 = δOK . We solve the system of equation 4.5 by putting c(δ) = 1. Observe
the the solution space of the system of of equation for a true eigenvalue R will be
unique Hecke eigenform if the dim(S(ΓK,R) = 1 and if the dimS(ΓK,R) > 1 then
the solution will be a linear combination of Hecke eigenforms.

4.5. Locating eigenvalues. It is worth noting that all methods mentioned here
are heuristic and in order to provably locate eigenvalues it is necessary to use
alternative methods similar to those of [1] or more recently [9].

To locate eigenvalues of Hilbert-Maass forms we use the fact that the Fourier
coefficients satisfy certain non-trivial relations, either implied by automorphy or
arithmeticity (i.e. Hecke operators) to construct a function h : Rn → R which is
continous in the spectral parameter R within a certain region and is approximately
zero when R corresponds to a true eigenvalue. We use the Broyden’s method to find
the minimas or zeros of this functions and treat these zeros as tentative eigenvalues
and use a range of other heuristic tests to determine if they are true eigenvalues or
not. We will outline some possible choices but there are many alternatives.

(1) The first observation is that as long as the value of Y is chosen such that
the pullback z∗ of x + iY has imaginary part y∗ ≫ Y then the solution
a(v;R;Y ) to (4.5) is independent of Y (up to an error of magnitude ϵ). In
the same way as in the one dimensional case, e.g. [6, 10, 5] we can choose
two suitable values of Y , say Y1 and Y2 and use these to compute two sets
of coefficients a1(v) = a(v;R, Y1) and a2(v) = a(v;R, Y2) and for a fixed
index v we write down a function h : Rn → R by

hY1,Y2,v(R) = a(v;R, Y1)− a(v;R, Y2).

(2) We observed earlier that a(ε2v) = a(v) for any unit ε and index v and the
corresponding function is

hε,v(R) = a(ε2v;R;Y )− a(v;R;Y ).

(3) We use Hecke relations from Corollary 9 to construct the following two
functions

hδ,m,n(R) = a(δmn,R)− a(δm,R)a(δn,R),

hδ,p(R) = a(δpm+1,R)− a(δp,R)a(δpm,R) + a(δpm−1,R),

where m, n, p ∈ OK , d−1 = δOK , mOK + nOK = OK and p is prime ideal
OK .

In this article we mainly focused on locating eigenvalues of real quadratic field with
narrow class number 1. In the above all h are functions from R2 → C but Broyden
method is applicable to a function from R2 → R2. We define h : R2 → R2 by
taking the real and imaginary part of h(R). We also note that Broyden’s method
converge to a zero of the function when the initial point is close to that zero.

Algorithm:
(1) We construct objects in the database for different R by putting c(δ) = 1 in

4.5 separated by a very small distance 0.01 with M0 = 6.
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(2) Run through the constructed objects and sort out the objects whose coef-
ficient satisfy

|a(ε2v,R)− a(v,R)| < ϵ

for a fixed v and ε ∈ O×
K .

(3) On a sorted objects we apply the Broyden’s method to get the zero of

hε,v(R) = a(ε2v,R)− a(v,R).

(4) The zero of hε,v(R) is a tentative eigenvalue. We test if it is a true eigen-
value by testing the accuracy of a(ϵ1v1)− a(v1) = 0, where the pair ϵ1,v1

is different than what we used in step (3).
(5) We check if the solution is a Hecke eigenform by testing the accuracy of

certain Hecke relations.
(6) We make the eigenvalues precise in this steps. We apply Broyden method

on Hecke relation function hδ,m,n(R) with initial point as eigenvalue and
M0 = 17.

5. Computational Results

The primary aim of this article has been to develop a robust and efficient al-
gorithm for computing Hilbert-Maass forms on the full modular group SL2(OK),
where the narrow class number of K is 1. Our main results include the following:

(1) Extensive list of eigenvalues for the field Q(
√
2),Q(

√
5).

(2) One Eigenvalue for K = Q(
√
3) whose class number is 1 and narrow class

number is 2.

5.1. Eigenvalues for Q(
√
2). In table 5.1 we give the eigenvalues for Hilbert

Maassform for Q(
√
2) with d(R) =

√
R2

1 +R2
2 < 10 and in Fig. 5.1 we give the

picture of their distribution in R1 −R2 plane. To obtain these eigenvalues we have
put a(δ) = a(1, 1) = 1 in our algorithm for finding the eigenvalues. Here δ = 1+

√
2

2
√
2

.
To make the eigenvalues precise we have applied Broyden method on the Hecke
relation

hδ,m,n(R) = a((2−
√
2)2δ,R)− a((2−

√
2)δ,R)2 + 1

= a((2,−2),R)− a((1, 0),R)2 + 1.

From (4.3) we know that a(ϵvv) = tva(v), where tv ∈ {1,−1} is the eigenvalue of
the reflection operator Zv. Therefore if we put v = δ then we get the following
relation

a(0,−1) = ±a(1, 1) = ±1, a(0, 1) = ±a(1, 1) = ±1.

We measure the accuracy of above two relations in table 5.1 denoted by

A1 = ||a(0,−1)| − 1| A2 = ||a(0, 1)| − 1|

Eigenvalues Zv1(f) Zv2(f) A1 A2

(2.94644197057517, 2.94644197057590) - - 8.8E-13 1.0E-12
(3.87932871354483, 3.87932871354844) - - 2.0E-11 1.0E-11
(4.27438019881703, 3.48836224262859) + - 1.0E-11 1.1E-11
(3.48836224263069, 4.27438019881912) - + 5.0E-12 4.3E-12
(5.12163961866447, 2.23423570738229) + - 1.4E-11 1.3E-11
(5.46508286150025, 3.39346897067854) - - 1.0E-11 9.9E-12
(4.59042962923236, 4.59042962923230) + + 6.0E-11 4.8E-11
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(5.46161670252051, 3.73542725949592) - + 4.4E-12 2.0E-12
(5.66104208632875, 3.47695155477744) + + 2.9E-11 2.9E-11
(5.06085806549068, 4.65976815171535) - + 5.0E-11 5.3E-11
(5.65780725055356, 4.35919904030488) + - 1.1E-11 1.1E-11
(5.12632439882674, 5.12632439882759) - - 2.1E-11 2.2E-11
(5.46201508044348, 5.46201508045897) + + 1.9E-10 1.8E-10
(6.21282006328438, 4.92772644054263) + + 1.4E-8 8.0E-8
(5.84122247681663, 5.39266054483805) - + 7.1E-11 4.9E-11
(6.46571992406758, 4.72046555875545) - - 1.6E-12 2.1E-12
(6.78429191271241, 4.25975922391160) - + 2.3E-11 6.5E-11
(7.31202098937811, 4.07336856494287) + - 1.6E-10 1.4E-10
(6.41541797236412, 5.61833900465313) - + 2.7E-11 2.6E-11
(7.00191462014148, 4.87474146214415) - + 1.6E-10 1.4E-11
(8.11405927120330, 3.04617456025092) - + 3.3E-10 4.9E-10
(7.73864329691478, 4.07907141835314) + + 4.1E-10 4.1E-10
(7.91986732150452, 3.76493165378960) - + 1.0E-10 3.9E-11
(8.14361808340775, 3.27891498664495) + - 3.7E-9 4.2E-9
(7.32256762533282, 5.26329241029498) - - 1.7E-10 2.1E-10
(6.39195860202002, 6.39195860202030) + + 2.7E-11 2.5E-11
(7.29516242878050, 5.35885878392577) + + 5.4E-12 5.5E-12
(8.33147125719617, 4.00372675101176) - - 2.5E-10 4.1E-9
(7.26070634689921, 6.00298919945343) - - 2.6E-9 4.6E-10
(8.10963385595443, 4.87293559898530) + - 8.3E-9 8.2E-9
(5.12486731338244, 7.96801591737712) + - 9.9E-9 5.7E-9
(7.40482588031344, 5.94791794712751) + + 3.2E-10 9.7E-11
(8.89573788860815, 3.56505186533443) + - 6.8E-9 2.6E-9
(7.91609668483091, 5.55547029432387) - - 1.3E-10 3.0E-10
(8.32992873691812, 5.04016720386581) + + 3.0E-9 7.6E-9
(7.89031373086060, 5.91824294473287) + - 6.2E-10 1.1E-10

Table 5.1
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In the above picture it is interesting to observe that the eiegenvalues are scattered
in the middle and there no eigenvalue when we move toward the R1 or R2 axis.

In the following table we compare the coefficient of Hilbert Maass form corres-
ponding to R = (2.94644197057517, 2.94644197057590) at two different y. In Table
5.3, we measure the accuracy of different Hecke relation on the Fourier coefficients of
the object for the eigenvalues (4.27438019881703, 3.48836224262859) with M = 17
and y = 0.31.

R = (2.94644197057517, 2.94644197057590)
Index coefficients at y1 = 0.31 Coefficients at y2 = 0.29 Difference
c(-2, -2) 0.450207392017623 0.450207392025016 8.7E-12
c(-2, -1) 0.347283781931002 0.347283781931164 1.1E-12
c(-2, 0) -0.662085312387992 -0.662085312418177 3.5E-11
c(-2, 1) 0.347283781932313 0.347283781972468 4.6E-11
c(-2, 2) 0.450207392016154 0.450207392049946 3.9E-11
c(-1, -2) -1.20424556964650 -1.20424556967296 3.1E-11
c(-1, -1) 1.00000000000036 1.00000000007000 8.0E-11
c(-1, 0) 1.20424556964772 1.20424556969050 4.9E-11
c(-1, 1) 0.999999999997163 1.00000000001836 2.5E-11
c(-1, 2) -1.20424556964851 -1.20424556971471 7.6E-11
c(0, -2) -0.450207392016980 -0.450207392045077 3.2E-11
c(0, -1) -0.999999999999121 -1.00000000005203 6.1E-11
c(0, 0) 0.000000000000000 0.000000000000000 0.0E-14
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c(0, 1) -0.999999999998984 -1.00000000003666 4.3E-11
c(0, 2) -0.450207392016765 -0.450207392018310 1.8E-12
c(1, -2) -1.20424556964837 -1.20424556969316 5.1E-11
c(1, -1) 0.999999999997649 1.00000000006775 8.1E-11
c(1, 0) 1.20424556964768 1.20424556972147 8.5E-11
c(1, 1) 1.00000000000000 1.00000000000000 0.0E-14
c(1, 2) -1.20424556964658 -1.20424556971723 8.2E-11
c(2, -2) 0.450207392015957 0.450207392028644 1.5E-11
c(2, -1) 0.347283781932022 0.347283781917048 1.7E-11
c(2, 0) -0.662085312387989 -0.662085312417507 3.4E-11
c(2, 1) 0.347283781931334 0.347283781970199 4.5E-11
c(2, 2) 0.450207392017814 0.450207392051174 3.9E-11

Table 5.2

R = (4.27438019881703, 3.48836224262859)
Hecke Coprime relations Value
c(-1, 4)-c(-1, 0)c(-1, -3) 3.0E-12
c(1, -4)-c(1, 0)c(-1, -3) 1.6E-12
c(1, -4)-c(1, 3)c(-1, 0) 2.5E-12
c(-1, 4)-c(1, 3)c(1, 0) 1.6E-12
c(1, 4)-c(-1, -2)c(-2, -1) 5.6E-12
c(3, -2)-c(-1, 0)c(-2, -1) 3.0E-12
c(-3, 2)-c(1, 0)c(-2, -1) 1.5E-12
c(-1, -4)-c(1, 2)c(-2, -1) 2.1E-12
c(-1, 4)-c(-1, -2)c(-2, 1) 1.7E-11
c(1, -4)-c(1, 2)c(-2, 1) 1.6E-11
c(3, 0)-c(0, -3)c(-1, -2) 2.3E-11
c(-3, 0)-c(0, 3)c(-1, -2) 2.2E-11
c(1, -4)-c(2, -1)c(-1, -2) 1.7E-11
c(-1, -4)-c(2, 1)c(-1, -2) 1.2E-12
c(-3, 2)-c(2, 1)c(-1, 0) 3.1E-12
c(-3, 0)-c(1, 2)c(0, -3) 2.2E-11
c(3, 0)-c(1, 2)c(0, 3) 2.3E-11
c(3, -2)-c(2, 1)c(1, 0) 1.7E-12
c(-1, 4)-c(2, -1)c(1, 2) 1.7E-11
c(1, 4)-c(2, 1)c(1, 2) 4.9E-12
c(3, 2)-c(-1, -2)c(-1, -3) 1.6E-12
c(-3, -2)-c(1, 2)c(-1, -3) 1.9E-12
c(-3, 2)-c(-1, 3)c(-1, -2) 1.4E-11
c(3, -2)-c(1, -3)c(-1, -2) 1.3E-11
c(-3, -2)-c(1, 3)c(-1, -2) 6.3E-13
c(3, -2)-c(1, 2)c(-1, 3) 1.3E-11
c(-3, 2)-c(1, 2)c(1, -3) 1.4E-11
c(3, 2)-c(1, 3)c(1, 2) 1.2E-12
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c(3, 0)-c(-1, 0)c(-3, -3) 8.6E-12
c(-3, 0)-c(1, 0)c(-3, -3) 8.2E-12
c(-3, 0)-c(3, 3)c(-1, 0) 4.6E-12
c(3, 0)-c(3, 3)c(1, 0) 2.1E-12
c(4, -2)-c(0, -2)c(-1, -3) 2.0E-11
c(-4, 2)-c(0, 2)c(-1, -3) 2.0E-11
c(-4, 2)-c(1, 3)c(0, -2) 2.1E-11
c(4, -2)-c(1, 3)c(0, 2) 2.1E-11
c(4, 2)-c(-2, -1)c(-2, -2) 8.4E-12
c(4, -2)-c(-2, 1)c(-2, -2) 2.7E-12
c(-4, 2)-c(2, -1)c(-2, -2) 2.7E-12
c(-4, -2)-c(2, 1)c(-2, -2) 8.9E-12
c(-4, -2)-c(2, 2)c(-2, -1) 6.9E-12
c(-4, 2)-c(2, 2)c(-2, 1) 3.0E-12
c(4, -2)-c(2, 2)c(2, -1) 3.5E-12
c(4, 2)-c(2, 2)c(2, 1) 8.3E-12
c(1, 4)-c(-1, 0)c(-3, -5) 1.6E-11
c(-1, -4)-c(1, 0)c(-3, -5) 1.9E-11
c(-1, -4)-c(-1, 3)c(-3, -4) 5.3E-11
c(1, 4)-c(1, -3)c(-3, -4) 4.8E-11
c(-1, -4)-c(3, 5)c(-1, 0) 1.9E-11
c(1, 4)-c(3, 4)c(-1, 3) 4.4E-11
c(-1, -4)-c(3, 4)c(1, -3) 4.9E-11
c(1, 4)-c(3, 5)c(1, 0) 1.3E-11
c(3, 2)-c(-2, 1)c(-3, -4) 2.8E-11
c(-3, -2)-c(2, -1)c(-3, -4) 2.8E-11
c(-3, -2)-c(3, 4)c(-2, 1) 2.5E-11
c(3, 2)-c(3, 4)c(2, -1) 2.5E-11
c(-3, 2)-c(-1, 2)c(-3, -5) 3.9E-12
c(3, -2)-c(1, -2)c(-3, -5) 6.2E-12
c(3, -2)-c(3, 5)c(-1, 2) 3.1E-12
c(-3, 2)-c(3, 5)c(1, -2) 3.0E-12
c(3, 0)-c(-3, 3)c(-3, -4) 3.8E-11
c(-3, 0)-c(3, -3)c(-3, -4) 3.8E-11
c(-3, 0)-c(3, 4)c(-3, 3) 3.5E-11
c(3, 0)-c(3, 4)c(3, -3) 3.3E-11

Table 5.3

5.2. Eigenvalues for Q(
√
5). In table 5.4 we give the eigenvalues for Hilbert

Maassform for Q(
√
5) with d(R) < 10. To obtain these eigenvalues we have put

a(δ) = a(1,−1) = 1 in our algorithm for finding the eigenvalues, where δ = −1+
√
5

2
√
5

.
We know that a(ϵvv) = tva(v), where tv ∈ {1,−1} is the eigenvalue of the reflection
operator Zv. We put v = δ then we get the following relation

a(1,−2) = ±a(1,−1) = ±1, a(−1, 2) = ±a(1,−1) = ±1.
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We measure the accuracy of above two relations in table 5.4 denoted by

A1 = ||a(1,−2)| − 1| A2 = ||a(−1, 2)| − 1|

Eigenvalues. Not precise Zv1(f) Zv2(f) A1 A2

(5.82272405351904, 2.23131291693068) + + 3.2E-3 3.0E-3
(4.97740834415463, 3.79543977278699) - + 1.9E-4 8.4E-4
(5.55700872827857, 3.70247210734705) + - 8.1E-5 5.5E-5
(4.89378533293492, 4.89377736229831) - - 1.3E-5 1.3E-5
(6.50233753972765, 3.43328482949946) - - 8.6E-3 8.7E-3
(6.60248584146319, 4.59809464666161) - + 1.0E-3 1.2E-3
(7.56251335652632, 2.94032983170630) + - 2.8E-2 1.1E-2
(5.88126826097356, 5.61420301691631) + - 7.9E-4 1.2E-3
(6.69005230712794, 5.06205137741998) - - 5.3E-3 7.8E-3
(7.87824237484104, 3.50706079669053) + + 3.1E-3 3.2E-3
(7.25170082398076, 4.74677588728822) + - 9.3E-3 4.3E-3
(6.96267505167020, 6.96503288419134) - - 1.3E-3 1.5E-3

Table 5.4

5.3. Eigenvalues for Q(
√
3). Note that in this case we do not have a totally

positive generator of d−1. We put a(δ) = a(0,−1) = 1 in our algorithm to find the
any eigenvalue, where δ = − 1

2
√
3
. We do not have Hecke relations to use in this

case. We have used the unit relations function hε,v(R) = a(ε2v,R) − a(v,R). in
our algorithm to find this eigenvalue. The eigenvalue we discovered is

R = ()

In the following table we measure the accuracy of certain unit relations

6. Further Work
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