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Peripheral brain-derived neurotrophic factor
contributes to chronic osteoarthritis joint pain
Peter R.W. Gowlera, Li Lia, Stephen G. Woodhamsa, Andrew J. Bennettb, Rie Suzukic, David A. Walshd,
Victoria Chapmana,*

Abstract
Brain-derived neurotrophic factor (BDNF) and the high-affinity receptor tropomyosin receptor kinase B (TrkB) have important roles in
neuronal survival and in spinal sensitization mechanisms associated with chronic pain. Recent clinical evidence also supports
a peripheral role of BDNF in osteoarthritis (OA), with synovial expression of TrkB associatedwith higher OA pain. The aim of this study
was to use clinical samples and animal models to explore the potential contribution of knee joint BDNF/TrkB signalling to chronic OA
pain. Brain-derived neurotrophic factor and TrkB mRNA and protein were present in knee synovia from OA patients (16 women, 14
men, median age 67 years [interquartile range: 61-73]). There was a significant positive correlation between mRNA expression of
NTRK2 (TrkB) and the proinflammatory chemokine fractalkine in the OA synovia. Using the surgical medial meniscal transection
(MNX) model and the chemical monosodium iodoacetate (MIA) model of OA pain in male rats, the effects of peripheral BDNF
injection, vs sequestering endogenous BDNF with TrkB-Fc chimera, on established pain behaviour were determined. Intra-articular
injection of BDNF augmented established OA pain behaviour in MIA rats, but had no effect in controls. Intra-articular injection of the
TrkB-Fc chimera acutely reversed pain behaviour to a similar extent in bothmodels of OA pain (weight-bearing asymmetry MIA:211
6 4%, MNX: 212 6 4%), compared to vehicle treatment. Our data suggesting a contribution of peripheral knee joint BDNF/TrkB
signalling in the maintenance of chronic OA joint pain support further investigation of the therapeutic potential of this target.
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1. Introduction

Osteoarthritis (OA) is an increasinglyprevalentmusculoskeletal disease
affecting synovial joints. The most significant symptom is debilitating
chronicpain.Existingpharmacological treatmentsoftendonotprovide
effective analgesia.13 Association between joint inflammation and pain
in people with OA37 supports investigation of inflammatory factors in
the knee joint that provide potential new therapeutic targets.37

Brain-derived neurotrophic factor (BDNF) is vital for neuronal growth
and survival,48 and is upregulated in the central nervous system in

chronicpain states.33,46Brain-derivedneurotrophic factor acts through
the tropomyosin receptor kinase B (TrkB) receptor, which is also
upregulated in some pain states.33,46 Mechanisms by which BDNF-

TrkB signalling facilitates spinal processing of noxious inputs include

phosphorylation of NMDA subunits and downregulation of the

potassium/chloride cotransporter, KCC2.50,60 TrkB-Fc is a chimeric

compound formed of the extracellular domain of TrkB and the Fc

region of IgG1, which sequesters endogenous BDNF.17,59 Hippo-

campal andspinal administrationofTrkB-Fcchimerablockedeffectsof

BDNFonsynaptic plasticity in vivo10 and spinal administration reversed

pain behaviour in neuropathic pain models in rats and mice.17,59

Recent evidence supports a peripheral role of BDNF in arthritis
pain. Brain-derived neurotrophic factor and TrkB are present in
nerve fascicles in synovial tissue from both human OA and
a murine model of inflammatory arthritis.19,20,35 Human OA
synovial fibroblasts and macrophages express BDNF, and
release it in response to stimulation of the pronociceptive stimulus
ATP-acting at P2X4 receptors.29 Analysis of differentially
expressed genes in the synovial tissue of patients with high or
low OA pain revealed a pain-associated increase in the mRNA for
TrkB.9 Positive correlation between plasma levels of BDNF and
reported OA pain49 further supports a role of BDNF in OA pain.

Animal models of OA are important research tools to study
mechanisms underlying chronic pain associated with cartilage

damage, synovitis, and subchondral bone changes.55 Two

widely used rodent models of OA use intra-articular injection of

monosodium iodoacetate (MIA)22 or surgical transection of the

medial meniscus (MNX).5 Although these models do not mimic

human OA aetiology, both exhibit key aspects of the joint

pathology evident in human OA, alongside weight-bearing

asymmetry and altered pain pressure thresholds.5,44
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We hypothesised that peripheral knee joint BDNF contributes
to OA pain. To test this, expression of BDNF and TrkBmRNA and
protein in human OA synovial tissues was quantified in relation to
expression of molecules present in synovial fluid and known to
have proinflammatory roles in knee OA: IL-6,16 TNFa,27 MMP3,11

and CX3CL1.25 Using validated rat models of OA pain, we then
confirmed the presence of TrkB and CX3CL1 in synovial tissue,
quantified synovial fluid levels of BDNF, and investigated the
contribution of peripheral BDNF to established OA joint pain. To
this end, this study evaluated the effects of intra-articular injection
of BDNF, or TrkB-Fc, on established pain behaviour and joint
pathology in the MIA and MNX models of OA pain in the rat.

2. Methods

2.1. Chemicals and reagents

A TrkB-Fc chimera compound (R&D Systems, Minneapolis, MN:
688-TK) was used in these studies.7 TrkB-Fc chimera is a divalent
homodimer compound that contains the ligand-binding domain of
TrkB and the Fc region of human IgG1. This chimera has been
shown to be highly potent and selective for BDNF induced TrkB
phosphorylation.7 Previously, intrathecal injection of TrKB-Fc
chimera was shown to attenuate neuropathic pain in mice42 and
rats.34 Human IgG1 control was from R&D Systems (110-HG-100).

2.2. Clinical samples

Informed consent was obtained from patients before total knee
replacement surgery, as per the Declaration of Helsinki, and the
study was approved by the United Kingdom National Research
Ethics Service (Nottingham Research Ethics Committee [05/
Q2403/24]).

Human OA synovium was obtained from 30 patients (16
women, 14 men, median age 67 years [interquartile range: 61-
73]) with knee OA (Table 1 for more details), collected during total
knee joint replacement surgery (arthroplasty). We did not have
access to any quantitative data on patient-reported pain for these
samples. Sections (4-mm thick) were taken from each of the
samples and then stained with haematoxylin and eosin (H&E).
Synovitis was measured according to the following scale: 0 5
normal (synovial lining, 4 cells thick, sparse, cellular distribution,
with few or no inflammatory cells), 15mild inflammation (synovial
lining 4 or 5 cells thick, increased cellularity with some
inflammatory cells), 2 5 moderate inflammation (synovial lining
6 or 7 cells thick, dense cellularity with inflammatory cells but not
lymphoid aggregates), and 3 5 severe inflammation (synovial
lining . 7 cells thick, dense cellularity and inflammatory cell
infiltration, may contain perivascular lymphoid aggregates).23 The
2 groups investigated were a low-inflammation group (a score of

0 or 1) and a high-inflammation group (a score of 3). Samples
were gender- and age-matched.

2.3. Quantification of brain-derived neurotrophic factor &
NTRK2 mRNA in human osteoarthritis synovia

Messenger RNA expression of BDNF and NTRK2 (which
encodes TrkB) was quantified in human OA synovia. To further
explore the inflammatory status of the human OA synovia
samples, we also quantified the expression of a range of other
inflammatory mediators that have previously been found in the
knee joints of OA patients, the adipokine IL-6,16 the cytokine
TNFa,27 the metalloprotease MMP3,11 and the chemokine
CX3CL1.25 A 50-mg sample of each human frozen synovium
was homogenised in 1 mL of ice-cold TRI reagent (T9424; Sigma
Aldrich, St. Louis, MO). RNA was extracted according to the
manufacturer’s instructions. For cDNA synthesis, 500 ng of total
RNAwas reverse-transcribed usingM-MLV reverse transcriptase
(28025013; ThermoFisher Scientific, Waltham, MA) in a total
reaction volume of 25 mL. Primers and probes for BDNF, NTRK2,
IL-6, TNF-a, CX3CL1, and MMP3 were designed using Primer

Table 1

Characteristics of the study population for each group.

Low inflammation High inflammation

Sex (% female) 53% 53%

Age (median [IQR]) 67 (59-73) 63 (61-73)

Joint-space narrowing (median [IQR]) 5 (5-5) 5 (5-5)

Osteophytes (median [IQR]) 8 (7-8) 8 (7-8)

Total radiographic score (median [IQR]) 13 (12-14) 13 (12-13.5)

Preoperative posteroanterior radiographs for participants were graded by a blinded observer. Joint-space narrowing (JSN) and presence of osteophytes (OST) were graded by comparison with a line drawing atlas, with ranges

from 0 to 6 (JSN) and 0 to 12 (OST) and higher scores indicating more severe pathology. The JSN scores and OST scores were combined for a total radiographic score.

IQR, interquartile range.

Table 2

Forward, reverse primer, and probe sequences used for RT-

PCR.

Gene of interest Sequence (59 -> 39)

Taqman

huB-actin Fwd: CCTGGCACCCAGCACAAT

Rev: GCCGATCCACACACGGAGTACT

Pro: ATCAAGATCATTGCTCCTCCTGAGCGC

huIL-6 Fwd: CGGGAACGAAAGAGAAGCTCTA

Rev: AGGCGCTTGTGGAGAAGGA

Pro: CTCCCCTCCAGGAGCCCAGCTATG

huTNF-a Fwd: CCCAGGGACCTCTCTCTATACA

Rev: GGTTTGCTACAACATGGGCTACA

Pro: CTCTGGCCCAGGCAGTCAGATCATCT

huBDNF Fwd: CGTGATAGAAGAGCTGTTGGATGA

Rev: GACGTGTACAAGTCTGCGTCCTT

Pro:

ACCAGAAAGTTCGGCCCAATGAATGAAGAAAAC

huNTRK2 Fwd: ACGATGGTGCAAACCCAAAT

Rev: CCGGTTTTATCAGTGACGTCTGT

Pro: CACCACGAACAGAAGTA

SYBR green

huCX3CL1 Fwd: AGATACCTGTAGCTTTGCTC

Rev: TCTCGTCTCCAAGATGATTG

huMMP3 Fwd: GCAGTTAGAGAACATGGAG

Rev: ACGAGAAATAAATTGGTCCC

BDNF, brain-derived neurotrophic factor; RT, room temperature.
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Express v.3 (Applied Biosystems, Foster City, CA) and were
synthesised by MWG Biotech (Table 2 for more details). TaqMan
PCR and SYBR Green PCR were performed using an Agilent
AriaMx PCR system, and B-actin was used as a house-keeping
gene.47

2.4. Protein isolation and Western blotting

Ten to 20 mg of human synovium was minced and homogenized
in 500-mL modified RIPA lysis buffer containing 50-mM Tris
hydrochloride pH 7.4, 150-mM sodium chloride, 1% TX-100,
0.5% sodium deoxycholate, 0.1% SDS, 1-mM EDTA, and
protease inhibitor cocktail (EDTA-free complete, Roche, Basel,
Switzerland), and then placed on ice for another 2 hours before
collection by centrifugation. A total of 50-mg protein per sample
was boiled for 5 minutes in a denaturing Laemmli buffer and then
separated on a 9% polyacrylamide SDS-PAGE gel and trans-
ferred to a nitrocellulose blotting membrane (GE Healthcare,
Chicago, IL) that was blocked in 5% milk blocking buffer.
Membranes were then incubated with primary antibodies over-
night at 4˚C (pro-BDNF sc-65514, 1:200, Santa Cruz Bio-
technology, Dallas, TX; TrkB J977.7, 1:500, ThermoFisher;
CX3CL1 ab85034, 1:500, Abcam; b-actin ab8227, 1:1000,
Abcam, Cambridge, United Kingdom). Antibody binding was
visualized using 800- or 680-nm infrared dye–conjugated donkey
anti-rabbit or goat anti-mouse secondary antibodies (1:5000;
LiCor, Lincoln, NE). Immunoreactive bands were detected using
LiCor Odyssey Imaging System (LiCor). Proteins levels were
quantified by densitometry using Image Studio Lit version 5.2
software and normalized to loading control b-actin.

2.5. Animal models of osteoarthritis pain

All experiments using rats were performed in accordance with the
United Kingdom Animals (Scientific Procedures) Act (1986), and
reported in line with the ARRIVE guidelines. Adult male Sprague-
Dawley rats (total n5 153, weight 175-199 g, Charles River, United
Kingdom) were housed in conventional cages in temperature-
controlled (20-23˚C) rooms under a 12-hour light–dark cycle (7 AM-7
PM). Rats had access to standard rodent diet and water ad libitum.

2.6. Behavioural studies

Experimenterswereblinded to themodel and treatments throughout
the study. Rats were randomly allocated to either model or control
treatment by a third party, and then treatment groupswerematched
to ensure balancing of groups. Weight-bearing asymmetry between
the left (ipsilateral) and right (contralateral) hind limbs was assessed
using an incapacitance tester (Linton Instrumentation, Norfolk,
United Kingdom) as previously described.44 Hind paw withdrawal
thresholds (PWT)were ascertained using von Freymonofilaments as
previously described.44

All intra-articular injections were conducted under inhalational
anaesthesia (isoflurane 2.5-3%, 100% O2) through the infrapa-
tellar ligament of the left (ipsilateral) or the right (contralateral) knee
in areflexic rats.44

2.7. Intra-articular injection of brain-derived
neurotrophic factor

Sprague-Dawley rats (n5 28) were anaesthetised with isoflurane
before undergoing intra-articular injection of either 100-ng/50-mL
BDNF (n5 6), 1-mg/50-mL BDNF (n5 7), 10-mg/50-mL BDNF (n
5 7), or 50-mL 0.9% saline (n 5 8). Weight-bearing asymmetry

and paw withdrawal threshold were measured 1, 3, and 6 hours
after injection, and then on day 1, 4, and 7 after injection.

A separate cohort of Sprague-Dawley rats (n 5 29) were
anaesthetised with isoflurane before receiving an intra-articular
injection of either 1-mg/50-mL MIA (Sigma, Dorset, United
Kingdom) (n 5 13) or 50-mL 0.9% saline (n 5 16). Weight-
bearing asymmetry and paw withdrawal thresholds were
measured for 21 days after injection. At 21 days after MIA model
induction, rats were anaesthetised again with isoflurane and
received intra-articular injection of either 1-mg/50-mL BDNF (n 5
15) or 50-mL 0.9% saline (n 5 14).

The final group sizeswere:MIA1 saline (n5 6),MIA1BDNF (n
5 7), saline1 saline (n5 8), and saline1 BDNF (n5 8). Weight-
bearing asymmetry and paw withdrawal thresholds were then
measured at 1, 5, 10, and 14 days after injection.

2.8. Intra-articular injection of TrkB-Fc chimera

Sprague-Dawley rats (n5 30) underwent injection of either 1-mg/
50-mL MIA (n 5 20) or 50-mL 0.9% saline (n 5 10) as described
above. Weight-bearing asymmetry and paw withdrawal thresh-
olds were measured for 21 days after injection. At 21 days, rats
were anaesthetised and received intra-articular injection of either
100-ng/50-mL TrkB-Fc chimera (n 5 15) or 100-ng/50-mL
human IgG (n 5 15). The final group sizes were: MIA 1 TrkB-Fc
(n5 10), MIA1 IgG (n5 10), saline1 TrkB-Fc (n5 5), and saline
1 IgG (n 5 5). Weight-bearing asymmetry and paw withdrawal
thresholds were measured 1 and 3 hours after injection. A
separate group of rats (n 5 30) underwent injection of either 1-
mg/50-mL MIA (n5 20) or 50-mL 0.9% saline (n5 10) at 21 days
after MIA or saline, rats were anaesthetised and received intra-
articular injection of either 100-ng/50-mL TrkB-Fc chimera (n 5
15) or 100-ng/50-mL human IgG (n 5 15). Therefore, the final
group sizes were: MIA 1 TrkB-Fc (n 5 10), MIA 1 IgG (n 5 10),
saline 1 TrkB-Fc (n 5 5), and saline 1 IgG (n 5 5). In these rats,
the duration of the effects of TrkB-Fc was quantified up to 2
weeks after TrkB-Fc. Weight-bearing asymmetry and paw
withdrawal thresholds were measured 24 hours, 1 week, and 2
weeks after injection.

To ensure that any effects of TrkB-Fc on joint pain were
generalizable to OA and not just to MIA-induced joint pathology,
the effects of TrkB-Fcwere also studied in a surgical model of OA.
Sprague-Dawley rats (n5 30) were anaesthetised with isoflurane
before undergoing either transection of the medial meniscal
(MNX) surgery (n 5 20) or sham surgery (n 5 10), as previously
described.5 Weight-bearing asymmetry and paw withdrawal
thresholds were measured for 21 days after injection. Rats were
then anaesthetised and received intra-articular injection of either
100-ng/50-mL TrkB-Fc chimera (n 5 15) or 100-ng/50-mL
human IgG (n 5 15). The final group sizes were: MNX 1 TrkB-
Fc (n 5 10), MNX 1 IgG (n 5 10), sham 1 TrkB-Fc (n 5 5), and
sham 1 IgG (n 5 5). Weight-bearing asymmetry and paw
withdrawal thresholds were then measured for 3 hours after
injection. Rats were then euthanised before tissues were
collected.

To investigate whether the site of action of the effects of TrkB-
Fc were peripheral, or mediated by sites other than the knee joint
(including the central nervous system), a group of rats with MIA-
induced pain were injected with TrkB-Fc into the contralateral
knee joint. Sprague-Dawley rats (n 5 6) were anaesthetised
with isoflurane before undergoing intra-articular injection of
1-mg/50-mL MIA into the ipsilateral knee. Twenty-one days
later, rats were anaesthetised with isoflurane before un-
dergoing intra-articular injection of 100-ng/50-mL TrkB-Fc
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into the contralateral knee joint. Weight-bearing asymmetry
was measured before MIA injection, 21 days after MIA
injection, and 3 hours after TrkB-Fc injection.

2.9. Macroscopic scoring of joint pathology

Knee joints were collected postmortem from rats 21 days after
either injection of 1-mgMIA (n5 20), injection of 50-mL saline (n5
10), meniscal transection surgery (n 5 20), or sham surgery (n 5
10), and the various BDNF/TrkB-Fc treatments. Knee joints were
disarticulated as previously described.38 The following compart-
ments were then scored for chondropathy: medial tibial plateau,
lateral tibial plateau, medial femoral condyle, lateral femoral
condyle, and the femoral groove using the scoring system
described by Guincamp et al.22 The sums of these individual
scores were taken to give a total chondropathy score for each
knee joint on a scale of 0 to 20.

2.10. TrkB expression in rat synovium

Rat synovia with patellae were dissected at 21 days after MIA or
saline injection and embedded in optimal cutting temperature
compound, and then snap-frozen in isopentane. Sagittal sections
(3 per rat) of synovia from MIA- and saline-treated rats were
prepared for immunohistochemistry for TrkB (MIA: n 5 3 rats,
saline: n 5 3 rats) and CX3CR1 (MIA: n 5 3 rats, saline: n 5 2
rats). Sections were incubated in room-temperature (RT) distilled
water to remove optimal cutting temperature, washed in 0.1-M
phosphate-buffered saline, and incubated for 1 hour at RT in
a blocking solution (5% serum and 0.5% Triton X-100). Sections
were then incubated in 1:250 rabbit anti-TrkB (ab18987; Abcam)
or 1:400 rabbit anti-CX3CR1 (ab8021; Abcam) primary anti-
bodies overnight at RT. After washing, sections were then
incubated with 1:400 Alexafluor 488 conjugated goat anti-rabbit
secondary antibody for 2 hours at RT followed by 1:1000 49,6-
diamino-2-phenylindole (DAPI) for 20 minutes at RT to counter-
stain nuclei.

Images were taken with a Zeiss LSM Exciter wide-field
microscope using a 20 3 0.5 NA objective lens. Resulting
images were autothresholded using the Huang method,26 and
the fractional area of suprathreshold areas of labelling in the
synovial section were quantified using ImageJ software.39

2.11. Enzyme-linked immunospecific assay measurement of
brain-derived neurotrophic factor

A commercial enzyme-linked immunospecific assay (ELISA) kit
was used to measure levels of BDNF in the rat synovial fluid
according to manufacturer’s instructions (Thermo Scientific:
ERBDNF). To confirm the specificity of TrkB-Fc for BDNF, we
determined the effects of adding TrkB-Fc to known quantities of
BDNF. Different concentrations of TrkB-Fc (0.013, 0.13, 03,
13, 103, and 1003 the concentration of BDNF) were added to
standard curves of BDNF (0, 12.79, 30.72, 76.8, 192, 480, 1200,
and 3000 pg/mL), and levels of BDNF were quantified. To
determine whether TrkB-Fc had off-target effects on nerve
growth factor (NGF), the effects of TrkB-Fc on known quantities
of NGF were determined. Standard curves of NGF (0, 20.58,
61.73, 185.2, 555.6, 1666, 5000, and 15,000 pg/mL) were made
up according to the ELISA’s manufacturer’s instructions (Thermo
Scientific: ERNGF). Different concentrations of TrkB-Fc (03, 13,
and 103 the concentration of NGF) were then added to these
known quantities of NGF before being quantified with the
ELISA kit.

Synovial fluid was collected postmortem from a cohort of MIA
rats 4 hours after injection of IgG using an established method.56

Synovial fluid was collected by joint wicking, which involved disks
of protein saver card being placed in the knee joint to absorb the
synovial fluid.56 Disks were dried overnight at RT and were then
frozen and stored at 280˚C until analysis. To elute out the
proteins, disks were placed in 100 mL of distilled water for 24
hours. The eluted fluid was then diluted 1:2 before BDNF
concentration was quantified with an ELISA kit according to the
manufacturer’s instructions.

2.12. Data analysis

Data were analysed and graphically presented using Prism 7
(Graphpad; San Diego, CA). Data were tested for normal
distribution using the D’Agostino and Pearson normality test. If
data were normally distributed, then parametric analyses were
used. If data significantly differed from normal distributions,
nonparametric analyses were used.

Differences in the expression levels of proteins in the human
synovia were analysed using unpaired t test or Wilcoxon test.
Correlation between mRNA and protein expression in the
human synovia samples was analysed using Spearman’s rho.
Weight-bearing data are presented as the weight borne on the
contralateral limb minus the weight borne on the ipsilateral limb
divided by the total weight borne andmultiplied by 100 (mean6
SEM). Log-transformed paw withdrawal thresholds are pre-
sented as the mean threshold 6 SEM. Differences in both
weight-bearing asymmetry and paw withdrawal threshold
between MIA/MNX and sham animals over time were assessed
by 2-way analysis of variance (ANOVA), with the model
induction condition as the between-subjects factor and time
after model induction as the within-subjects factor; multiple
comparisons between-subjects at individual time points un-
derwent Bonferroni correction. Differences between the area
under the curve for log-transformed paw withdrawal thresholds
at the time point after intra-articular injection of BDNF or TrkB-
Fc were analysed using a one-way ANOVA. Differences
between the macroscopic scores of cartilage damage between
MIA/MNX and sham rats were tested using unpaired t test. An
unpaired t test was also used to test differences in the levels of
BDNF in plasma and synovial fluid between MIA- and saline-
injected animals.

Analysis of the fractional area of TrkB and CX3CR1 was
performed with SPSS V.25. A multilevel model, with each rat
being the “top” level and each section nested within the
appropriate rat, was used to analyse the effects of the model of
OA on labelling of TrkB and CX3CR1. A random intercept was
included in the multilevel regression.

3. Results

3.1. Expression of brain-derived neurotrophic factor and
TrkB in human synovium

All human synovium samples were obtained during knee joint
arthroplasty for OA pain (n 5 30). These samples had varying
levels of histologically evident synovial inflammation based on
the quantification of cellular infiltration of the synovium, as
previously described.23 The OA samples were subdivided into
2 groups: those with OA pathology and high inflammation (a
score of 3) and those with OA pathology and low inflammation
(scores of 0-1) (Fig. 1A). Messenger RNA for both NTRK2 (the
gene that encodes TrkB) and BDNF were present in human OA
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synovium (Figs. 1B and C). Messenger RNA levels for IL-6,
TNFa, MMP3, and CX3CL1 were also quantified to further
explore the inflammatory status of the OA synovia samples
(Figs. 1D–G). There was no significant difference between the
expression of these mRNAs in synovia with macroscopic low-
or high-grade inflammation. However, protein levels of
CX3CL1 (also known as fractalkine), as measured by Western
blot, were significantly higher in the high-inflammation group,
compared with the low-inflammation group (Figs. 2A and B).
To further evaluate the extent to which expression of NTRK2
and BDNF relates to the level of inflammation in the joint, we
investigated the potential associations between BDNF and
NTRK2 mRNA and expression of CX3CL1 mRNA in human OA
synovia. There was a significant positive correlation between
the mRNA expression of NTRK2 and CX3CL1 in the human OA
synovia (Fig. 3A), but not between BDNF and CX3CL1
(Fig. 3B).

Using Western blotting, we were able to investigate the
expression of the 2 isoforms of TrkB: the full-length isoform
that is involved in intracellular signalling, and the truncated
isoform that does not contain the intracellular domains.57,58

Expression of the truncated isoform of TrkB was greater than
that of the full-length isoform in OA synovia (Figs. 4A and B).
There was a significant positive correlation between the
truncated isoform of TrkB and CX3CL1 (Fig. 4C), but not
between the full-length isoform of TrkB and CX3CL1 (Fig. 4D).
The expression of BDNF protein in clinical OA synovia was also
investigated. An antibody targeting the propeptide of BDNF
was selected due to its ability to detect the precursor form of
BDNF (pro-BDNF) and its propeptide that is present in
equimolar ratios with mature BDNF, and as such can be used
as a surrogate for BDNF.15 The presence of both pro-BDNF
and the propeptide was confirmed in OA synovia by Western
blotting (Figs. 5A–C). Levels of the propeptide and CX3CL1
were positively correlated in these samples (Fig. 5D),
supporting a potential relationship between BDNF and in-
flammation in the OA knee joint.

3.2. Synovial expression of TrkB and brain-derived
neurotrophic factor in a rodent model of osteoarthritis

To confirm the utility of our preclinical models of OA pain, we next
investigated whether TrkB and CX3CR1 were also present in the
synovia of rats at 21 days after MIA injection. As was the case in
the human OA synovia, TrkB was expressed in the synovia taken
from the MIA-treated rats (supplementary Fig. 1A, available at
http://links.lww.com/PAIN/A874), and there was a trend towards
increased expression of TrkB compared with saline-treated rats
(MIA: 5.73 [4.6-5.9], saline: 3.1 [1.3-3.3]) (supplementary Fig. 1B,
available at http://links.lww.com/PAIN/A874). Multilevel model
analysis of these data revealed a significant association between
the model of OA pain and the expression of TrkB in the synovium
(P 5 0.02). Taken together, these data suggest that there is
increased expression of TrkB in the joints of OA rats, compared
with saline-treated controls. Using an ELISA, we then demon-
strated that levels of BDNF in the synovial fluid of rats 21 days after
induction of the MIA model were also significantly elevated
compared with levels in the saline control group (supplementary
Fig. 2A, available at http://links.lww.com/PAIN/A874). CX3CR1
protein was also detected in rat synovia; however, levels were
comparable between MIA and saline control rats (supplementary
Figs. 1C and D, available at http://links.lww.com/PAIN/A874).

3.3. Intra-articular brain-derived neurotrophic factor
exacerbates pain behaviour in a model of osteoarthritis

The next series of experiments investigated the extent to which
activation of TrkB in the knee joint may alter pain behaviour in the
MIA rat model of OA pain. After intra-articular injection of MIA, rats
exhibited significant weight-bearing asymmetry at 17 days after
injection (supplementary Fig. 3A, available at http://links.lww.
com/PAIN/A874), a time point at which structural features of OA
are present in the injected joint.44 There was also a reduction in
ipsilateral PWTs after intra-articular injection of MIA (supplemen-
tary Fig. 3B, available at http://links.lww.com/PAIN/A874). Intra-
articular injection of 1-mgBDNF at 21 days in theMIAmodel led to

Figure 1. Representative images of human OA synovia with low-grade inflammation and human OA synovia with high-grade inflammation (A). Expression of
NTRK2 (B), BDNF (C), IL-6 (D), TNF-a (E) CX3CL1 (F), andMMP3 (G) mRNA in humanOA synovia with either low-grade inflammation (inflammation score of 0-1) or
high-grade inflammation (inflammation score of 3) taken post-arthroplasty. Data were analysed using theMann–WhitneyU test. BDNF, brain-derived neurotrophic
factor; OA, osteoarthritis.
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a further increase in weight-bearing asymmetry (Fig. 6A). At 5
days after BDNF treatment (Fig. 6A), there was a significantly
increased asymmetry in MIA-injected rats, compared with MIA-
injected rats that received intra-articular injection of saline. There
was no significant effect of intra-articular injection of BDNF on this
pain behaviour in saline-injected (non-OA) controls. Analysis of
the area under the curve for weight-bearing asymmetry after
injection (Fig. 6B) revealed a significant difference between
groups (F(3, 25) 5 10.37, P , 0.0001, one-way ANOVA).

Intra-articular injection of 1-mg BDNF at 21 days in the MIA
model led to a further decrease in PWTs (Fig. 6C). Analysis of
these data revealed a significant effect of intra-articular BDNF
on PWTs in the MIA model one day after injection (Fig. 6C).
Area-under-the-curve analysis over the 14 days after BDNF
injection showed that MIA-injected rats treated with BDNF had
significantly lower PWTs, compared to MIA-injected rats treated
with saline (Fig. 6D). The effects of intra-articular BDNF on
established MIA-induced pain behaviour were persistent, being
evident from 5 to 14 days after administration, when the study
ended. Osteoarthritis pathology 35 days after MIA injection was,
as expected, more severe than after saline injection (Fig. 6E).
Single intra-articular injection of BDNF did not alter the severity
of MIA-induced joint pathology as assessed at 35 days after MIA
injection (Fig. 6E). Consistent with the lack of effect on pain
behaviour in saline-treated control rats, intra-articular injection
of BDNF (100 ng-10 mg/50 mL) did not alter weight-bearing
asymmetry or ipsilateral hind pawwithdrawal thresholds in naive

rats (supplementary Fig. 4, available at http://links.lww.com/
PAIN/A874).

3.4. Sequestering knee joint brain-derived neurotrophic
factor attenuates pain behaviour in models of osteoarthritis

To explore whether endogenous BDNF in the knee joint
contributes to OA pain, the effects of sequestering BDNF using
TrkB-Fc chimera were studied. We first confirmed that TrkB-Fc
reduced the quantity of BDNF detected by ELISA (supplementary
Fig. 2B, available at http://links.lww.com/PAIN/A874) and that
TrkB-Fc did not alter the quantity of NGF detected by ELISA
(supplementary Fig. 2C, available at http://links.lww.com/PAIN/
A874), supporting the selectivity of TrkB-Fc for BDNF.

Intra-articular injection of TrkB-Fc chimera (100 ng/50 mL)
acutely reversed weight-bearing asymmetry in both the MIA
chemical model and the MNX surgical model of OA pain, when
compared with treatment with IgG control (Fig. 7). Inhibitory
effects of TrkB-Fc chimera on pain behaviour in the MIA model
were significant at 1 hour after treatment and still evident at 3
hours (Fig. 7A). In the MNX model, TrkB-Fc chimera treatment
was associated with slight decrease in weight-bearing asymme-
try at 1hour, which was significantly different to IgG controls by 3
hours (Fig. 7B). Area-under-the-curve analysis of weight-bearing
asymmetry after TrkB-Fc injection in the MIA (Fig. 7C) and the
MNX (Fig. 7D) models also identified a significant difference
between TrkB-Fc-injected rats and the IgG controls, supporting

Figure 2. Representative images of Western blot quantification of CX3CL1 protein in human OA synovia taken after arthroplasty (A). Quantification of CX3CL1
protein in low (n 5 12) and high (n 5 14) inflammation human OA synovia (B). Levels of CXCL1 protein was significantly greater in the high-inflammation group
compared with the low-inflammation group (*P , 0.05, unpaired t test). OA, osteoarthritis.

Figure 3.Correlations between expression of NTRK2 mRNA and CX3CL1mRNA (A) or BDNFmRNA and CX3CL1mRNA (B) in human OA synovia. (Spearman’s
rho analysis). BDNF, brain-derived neurotrophic factor; OA, osteoarthritis.
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these findings. Intra-articular injection of TrkB-Fc chimera also
partially reversed the lowering of ipsilateral paw withdrawal
thresholds in both the MIA and MNX models, compared with
intra-articular injection of IgG control. In MIA-injected rats,
lowered PWTs were partially, but not significantly, reversed at 1
and 3 hours after injection of TrkB-Fc chimera (Fig. 8A), as
evidenced by a slight increase in the area under the curve (Fig.
8B). In the MNXmodel, lowered PWTs were also partially, but not
significantly, reversed by the TrkB-Fc chimera comparedwith IgG
injected controls (Fig. 8C), further supported by area-under-the-
curve analysis (Fig. 8D).

To confirm that the site of action of the inhibitory effects of intra-
articular injection of TrkB-Fc were localised to the ipsilateral knee
joint, a control experiment was conducted inwhich a group ofMIA-
treated rats received injection of TrkB-Fc into the contralateral knee
joint. This treatment did not significantly alter increases in weight-
bearing asymmetry present at 21 days after MIA model induction
(supplementary Fig. 5, available at http://links.lww.com/PAIN/
A874), suggesting that effects of intra-articular administration are
restricted to the knee joint. Acute intra-articular injection of TrkB-Fc
chimera did not significantly alter MIA- or MNX-induced joint
pathology (supplementary Fig. 6, available at http://links.lww.com/
PAIN/A874). To determine the duration of the effects of TrkB-Fc on
pain behaviour, a separate group of MIA-injected rats received
a single intra-articular injection of TrkB-Fc and the effects on pain
behaviour were followed up to 14 days after injection. At 24 hours,
7 days, and 14 days after injection, there was no difference in
weight-bearing asymmetry or ipsilateral pawwithdrawal thresholds
in rats injected with TrkB-Fc and those injected with IgG control
(supplementary Figs. 7A and 7B, available at http://links.lww.com/
PAIN/A874). These data suggest that the effects of intra-articular
injection of TrkB-Fc into the knee joint onOApain behaviour are not
sustained longer than 1 day.

4. Discussion

The aim of this study was to investigate the potential contribution
of peripheral BDNF in mediating chronic OA joint pain. Herein, we
report the presence of BDNF and TrkB at the mRNA and protein
level in human OA synovia collected after knee joint arthroplasty.
These results corroborate earlier reports of BDNF protein in OA
synovial fluid.49 To support and advance our clinical data in the
setting of well-validated preclinical models of OA pain, we
demonstrated the presence of higher levels of BDNF in the
synovial fluid from the model of OA compared with the control
group, and increased expression of TrkB protein in the synovium
in the rat model of OA pain. The presence of BDNF in the OA knee
joint seemed to be of functional significance because intra-
articular injection of BDNF in a model of OA exacerbated
established pain responses, and local sequestration of BDNF in
the knee joint significantly reversed established OA pain
behaviour. It should be noted that these findings were demon-
strated in male rats, and therefore may not be generalizable to
females.

Wehave demonstrated the presence of BDNF and TrkBmRNA
and protein in human OA synovium. Future comparative studies
might compare expression levels between OA and healthy
synovium to determine whether BDNF/Trk pathways may be
active from the onset of disease, or are upregulated and therefore
play a greater role with disease progression. Our data support
earlier reports of BDNF in OA synovial fluid49 and ATP-induced
release of BDNF from fibroblasts taken from people with OA.29

Despite differences in the experimental design of these studies,
collectively, they support a role of BDNF in the knee joint of people
with OA. To further probe links between BDNF/TrkB andOA pain,
potential associations between this signalling pathway and pain
behaviour were studied in the MIA model. Although there was

Figure 4.Representative image ofWestern blots of TrkB protein in humanOA synovia after arthroplasty (A). Quantification of full-length and truncated TrkB protein
in human OA synovia after arthroplasty (B, Wilcoxon test, ****P, 0.0001). Correlation between expression of truncated TrkB and CX3CL1 (C) or full-length TrkB
and CX3CL1 protein (D) in human OA synovia. (Spearman’s rho analysis). OA, osteoarthritis.
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only a trend towards increased expression of TrkB in synovia from
MIA rats, comparedwith saline controls, generation of amultilevel
model identified a significant association between the MIA model
and synovial expression of TrkB. The cellular location of BDNF/
TrkB in the synovium remains to be determined, however.

In our study, we provide evidence for the presence of CX3CL1
(fractalkine) mRNA and protein in the synovium of OA patients,
and that the protein levels of CX3CL1 are significantly higher in
samples with higher inflammatory cellular infiltration. Protein
expression of soluble CX3CL1 has been reported in the synovial
fluid of OA patients43 and the cognate receptor (CX3CR1) is
expressed in synovial membrane from OA patients.36 CX3CL1/
CX3CR1 is a proinflammatory signalling pathway that has been
shown to promote MMP-3 production by human OA synovial
fibroblasts and induce cellular migration of these cells25,30;
nevertheless, whether CX3CL1 directly contributes to OA-
induced synovitis requires further study. It is of note that CX3CR1
is expressed by macrophages, dendritic cells, as well as
fibroblasts in inflammatory rheumatoid arthritis.8,36 In this study,
levels of TrkB mRNA were significantly correlated with mRNA
expression of CX3CL1, and expression of truncated TrkB protein
was correlated with CX3CL1 protein. Previous work suggests
that the BDNF-truncated TrkB complex is subject to endocytosis
by the cell to form an intracellular reservoir of BDNF for later
release, which could aid in maintaining extracellular levels of
BDNF.3 The correlation between the truncated TrkB andCX3CL1
may reflect a mechanism to potentiate BDNF signalling under
conditions of high inflammation.

The functional consequences of elevated knee joint BDNF
levels were confirmed by demonstrating that sequestration of
BDNF acutely reversedOApain behaviour, and that intra-articular

injection of BDNF further exacerbated pain responses in a rat
model of OA pain. To the best of our knowledge, this is the first
report of effects of peripheral administration of TrkB-Fc on
established pain. The inhibitory effects of TrkB-Fc were more
robust on weight-bearing asymmetry compared to lowered
ipsilateral paw withdrawal thresholds, which are at least partly
mediated by changes in spinal processing of sensory inputs. We
confirmed that the site of action of TrkB-Fc was predominantly
localised to the knee joint because contralateral injection of TrkB-
Fc did not significantly alter pain behaviour in the model of OA
pain. Our results suggest that peripheral BDNF contributes to
established knee joint–driven nociceptive output to the spinal
cord in the model of OA pain, which at least partly underpins
lowered paw withdrawal thresholds. Although roles of spinal
BDNF were not a focus of our study, it is important to note that
intrathecal injection of TrkB-Fc reversed pain behaviour in the
spared nerve injurymodels of neuropathic pain in rats andmice,51

and pretreatment with TrkB-Fc also attenuated the development
of neuropathic pain.34,42,59

Intra-articular injection of BDNF in naive rats did not alter
weight-bearing asymmetry or hind paw withdrawal thresholds,
suggesting little role of knee joint TrkB receptor under non-
pathological conditions. Thus, there seem to be differing roles for
BDNF in the periphery vs spinal cord, where intrathecal
administration of BDNF leads to acute increases in pain behaviour
in naive mice.21 Injection of BDNF into the knee joint in the
establishedmodel of OApain augmented existing pain responses
after injection for up to 14 days after administration. However, this
was the end point of the study and this augmented pain response
may have lasted past this time point. It seems likely that this novel
effect of knee joint BDNF in OA pain models is due to either

Figure 5. Representative image of Western blot of pro-BDNF and propeptide protein in human OA synovia after arthroplasty (A). Quantification of pro-BDNF (B)
and propeptide (C) protein expression in OA synovia with low (n 5 12) vs high (n 5 14) inflammation. Correlation between the expression of the propeptide and
CX3CL1 (D) in human synovia (Spearman’s rho analysis). BDNF, brain-derived neurotrophic factor; OA, osteoarthritis.
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Figure 6. Effects of intra-articular injection of BDNF (1ug) on MIA-induced weight-bearing (WB) asymmetry (A). Data were analysed using 2-way ANOVA with
Bonferroni-corrected multiple comparisons: *P, 0.05 MIA1 saline vs MIA1 BDNF. The difference between the area under the curve for post-BDNF or vehicle
injection weight-bearing asymmetry (B) were analysed using one-way ANOVA with Bonferroni-corrected multiple corrections: *P, 0.05 MIA1 Saline vs MIA 1
BDNF. Effects of intra-articular injection of BDNF (1ug) onMIA-induced ipsilateral hind pawwithdrawal threshold (C). Data were analysed using 2-way ANOVAwith
Bonferroni-corrected multiple comparisons: *P, 0.05 MIA1 Saline vs MIA1 BDNF. The difference between the area under the curve for post-BDNF or vehicle
injection ipsilateral hind paw withdrawal thresholds (D) were analysed using one-way ANOVA with Bonferroni-corrected multiple corrections: *P , 0.05 MIA 1
Saline vs MIA 1 BDNF. The effects of intra articular injection of BDNF on macroscopic cartilage damage (E). Data were analysed using one-way ANOVA with
Bonferroni-corrected multiple corrections: ***P, 0.001 when compared with Saline 1 Vehicle, ****P, 0.0001 when compared with Saline1 Vehicle. ANOVA,
analysis of variance; BDNF, brain-derived neurotrophic factor; MIA, monosodium iodoacetate.
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a change in the local cellular environment, or changes in the
expression of TrkB by the sensory nerves innervating theOA joint.
During OA, there is a substantial infiltration of CD681 macro-
phages into synovial tissue,6 and monocyte-derived macro-
phages are known to express BDNF and TrkB.45 In vitro, BDNF
significantly increases IL-1b secretion from macrophages, and
both BDNF and TrkB are required for macrophage phagocytic
activity.4 There is a significant increase in the numbers of
activated macrophages in the knee joint of rats from 2 weeks
after MIA injection,40 suggesting that changes in the immune cell
populations in theOA kneemay be a regulatory factor in knee joint
levels of BDNF. Recent studies of the neurotrophin NGF revealed
a neuroimmune interaction in the knee joint whereby NGF-
induced release of PGD2 from mast cells resulted in mechanical
hypersensitivity.52 Osteoarthritis knees have greater sensitivity to
NGFwhen compared to healthy knees,5 in line with the increased
sensitivity after injection of intra-articular BDNF reported here.
Collectively, these data support a role of BDNF in regulating
neuroimmune interactions within the OA knee joint.

Effects on other cell types may also contribute to proalgesic
actions of BDNF in knee OA. The role of the BDNF/TrkB axis in
regulating osteoclastogenesis in multiple myeloma1 is of partic-
ular relevance to OA because subchondral bone remodelling and
the activation of osteoclasts and formation of osteophytes are
associated with chronic joint pain.53 Antisense inhibition of BDNF
reduced osteoclastogenesis in multiple myeloma in vivo through

downregulation of RANKL.2 In this study, we did not observe any
acute effects of BDNF, nor TrkB-Fc, on OA structural damage.
Future studies could explore effects of more sustained blockade
of BDNF on osteoclastogenesis in models of OA.

Brain-derived neurotrophic factor also has a well-
characterised role in sensitizing NMDA receptors in the dorsal
horn of the spinal cord.12,28 Human articular chondrocytes
express functional NMDA receptors (NMDA-Rs),41 and blockade
of knee joint NMDA-R reduced collagenase induced joint pain
and pathology progression.32 Although BDNF may modulate
chondrocyte NMDA-R function, this is unlikely to account for the
rapid effects of BDNF reported herein.

Based on the expression patterns of TrkB by cutaneous
sensory afferents, BDNF is likely to directly activate sensory
afferents. TrkB is primarily expressed in low-threshold cutaneous
mechanoreceptors.54 Optogenetic activation of TrKB-expressing
sensory afferent fibres evoked pain behaviour in a model of
neuropathic pain, and inducible ablation of TrKB-expressing
sensory afferent fibres prevented neuropathic mechanical hyper-
sensitivity, but not inflammatory pain responses.14 Although the
expression of TrkB by sensory afferents innervating the knee joint
is unknown, approximately 50% of retrograde labelled knee joint
afferents express a marker for neuronal myelination (NF200),
indicating the presence of low-threshold mechanoreceptors
innervating the joint.18 Bearing in mind potential species differ-
ences, it is plausible that TrkB-positive mechanoreceptors

Figure 7. Effects of intra-articular injection of TrkB-Fc (100 ng) onMIA-induced weight-bearing (WB) asymmetry (A) andMNX-induced weight-bearing asymmetry
(B). Data were analysed using 2-way ANOVA with Bonferroni-corrected multiple corrections. *P , 0.05, **P , 0.01, ***P , 0.001, ****P , 0.0001 MIA/MNX vs
Saline/Sham. #P, 0.05, ##P, 0.01 MIA/MNX1 Human IgG vs MIA/MNX1 TrkB-Fc. Differences in the area under the curve for post TrkB-Fc injection weight-
bearing asymmetry in MIA animals (C) and MNX animals (D) were analysed using one-way ANOVA with Bonferroni-corrected multiple corrections: **P, 0.01 MIA
1 IgG vs MIA 1 TrkB-Fc, ***P , 0.001 MIA 1 IgG vs Saline 1 IgG, ****P , 0.0001 MNX 1 IgG vs Sham 1 IgG, ***P , 0.001 MNX 1 IgG vs MNX 1 TrkB-Fc.
ANOVA, analysis of variance; MIA, monosodium iodoacetate.

70 P.R.W. Gowler et al.·161 (2020) 61–73 PAIN®



innervating the knee joint are a target for the elevated levels of
BDNF in the models of OA andmay directly contribute to the pain
response.

In the search for novel therapeutics for chronic OA joint pain,
monoclonal antibodies targeting NGF have been shown to be
highly efficacious.31 However, there were reports of some
adverse effects in the joint, especially with concomitant dosing
with nonsteroidal anti-inflammatory drugs.24 Here, we show that
another neurotrophin, BDNF, has an important role in the
maintenance of OA pain at the level of the knee joint. Our data
suggest that inhibition of peripheral BDNF could represent an
exciting new therapeutic target for the treatment of OA pain.
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