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Liquid Haskell is an extension to the type system of Haskell that supports formal reasoning about program

correctness by encoding logical properties as refinement types. In this article, we show how Liquid Haskell can

also be used to reason about program efficiency in the same setting. We use the system’s existing verification

machinery to ensure that the results of our cost analysis are valid, together with custom invariants for

particular program contexts to ensure that the results of our analysis are precise. To illustrate our approach,

we analyse the efficiency of a wide range of popular data structures and algorithms, and in doing so, explore

various notions of resource usage. Our experience is that reasoning about efficiency in Liquid Haskell is often

just as simple as reasoning about correctness, and that the two can naturally be combined.
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1 INTRODUCTION

Estimating the amount of resources that are required to execute a program is a key aspect of
software development. Unfortunately, however, performance bugs are as difficult to detect as they
are common [Jin et al. 2012]. As a result, the problem of statically analysing the resource usage, or
execution cost, of programs has been subject to much research in which a broad range of techniques
have been studied, including resource-aware type systems [Çiçek et al. 2017; Hoffmann et al. 2012;
Hofmann and Jost 2003; Jost et al. 2017; Wang et al. 2017], program and separation logics [Aspinall
et al. 2007; Atkey 2010], and sized types [Vasconcelos 2008].

Another technique for statically analysing execution cost, inspired by the early work in [Moran
and Sands 1999] on improvement theory, is to reify resource usage into the definition of a program
by means of a datatype that accumulates abstract computation ‘steps’. This technique has two main
approaches: steps can either accumulate at the type level inside an index or at the value level inside
an integer field. Formal analysis at the type level has been successfully applied in Agda [Danielsson
2008] and more recently Coq [McCarthy et al. 2017], while recent work in [Radiček et al. 2018]
developed the theoretical foundations of the value-level approach.
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In this article, we take inspiration from [Radiček et al. 2018] and implement a monadic datatype to
measure the abstract resource usage of pure Haskell programs. We then use Liquid Haskell’s [Vazou
2016] refinement type system to statically prove bounds on resource usage. Our framework supports
the standard approach to cost analysis, which is known as unary cost analysis and aims to establish
upper and lower bounds on the execution cost of a single program, together with the more recent
relational approach [Çiçek 2018], which aims to calculate the difference between the execution
costs of two related programs or between one program on two different inputs.

Reasoning about execution cost using the Liquid Haskell system has two main advantages over
most other formal cost analysis frameworks [Radiček et al. 2018]. First of all, the system allows
correctness properties to be naturally integrated into cost analysis, which helps to ensure that cost
analyses are valid. And secondly, the wide range of sophisticated invariants that can be expressed
and automatically verified by the system can be exploited to analyse resource usage in particular
program contexts, which often leads to more precise and/or simpler analyses.

By way of example, Liquid Haskell can automatically verify that Haskell’s standard sort function
returns an ordered list (of type OList a) with the same length as its input, even when the result is
embedded in the Tick datatype that we use to measure resource usage:

sort :: Ord a => xs:[a] → Tick { zs:OList a | length zs == length xs }

Applying our cost analysis to this function then allows us to prove that the maximum number of
comparisons required to sort any list xs is O(n log n), where n = lenдth xs:

sortCost :: Ord a => xs:[a] →

{ tcost (sort xs) <= 4 * length xs * log2 (length xs) + length xs }

Moreover, we can also combine correctness and resource properties to show that the maximum
number of comparisons becomes linear when the input list is already sorted:

sortCostSorted :: Ord a => xs:OList a → { tcost (sort xs) <= length xs }

The aim of this article is to develop, prove correct, and evaluate a system that supports the above
form of reasoning. To this end, the article makes the following contributions:

ś We design and implement a system that allows Liquid Haskell to be used to formally reason
about the resource usage of pure Haskell programs. Moreover, it supports reasoning about
correctness and efficiency properties in a combined, uniform manner. Our system takes the
form of a library and requires no modifications or extensions to the compiler.

ś We prove that our library’s approach to cost analysis is correct with respect to an underlying
model of execution cost using the metatheory of Liquid Haskell.

ś We demonstrate the applicability of our library on a wide range of case studies, ranging
from standard sorting algorithms to sophisticated relational cost properties, and including
all examples from Aguirre et al. [2017]; Çiçek et al. [2017]; Radiček et al. [2018].

As our system builds upon Liquid Haskell, our cost analysis is based on the language’s core
calculus [Vazou et al. 2014], which models a subset of Haskell’s runtime semantics. In particular, our
analysis of time and space usage does not account for compiler optimisations or garbage collection.
How to interpret the results of our cost analysis in practice is discussed in section 2 and a formal
operational semantics of Liquid Haskell’s core calculus is given in section 5.

The article is aimed at readers who are familiar with the basic idea of using refinement types in
a language such as Liquid Haskell [Vazou 2016], but no specialist knowledge on reasoning about
efficiency is assumed. Section 2 introduces our approach with a number of examples; section 3
discusses how our library is implemented; section 4 evaluates its utility on a range of case studies;
section 5 develops the supporting theory; and sections 6 and 7 discuss related work and directions
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for further work. Our library is freely available on GitHub [Handley and Vazou 2019], along with
the source code for all of the examples presented throughout the article.

2 ANALYSING RESOURCE USAGE

In this section, we exemplify our library’s intrinsic and extrinsic approaches to analysing resource
usage, which support both unary and relational cost analysis. In addition, each example serves
to demonstrate how correctness properties can be naturally integrated into each method of cost
analysis. We conclude this section by discussing how to interpret such analyses in practice.

2.1 Intrinsic Cost Analysis

In the case of intrinsic cost analysis, the resources utilised by a function are declared inside the type
signature of the function and are automatically checked by Liquid Haskell.

Example 1: Time Complexity. We start by analysing the number of recursive calls made by Haskell’s
list append function (++). First, we define a new operator (++) that is similar to append, but lifted
into our Tick datatype using applicative methods provided by our library (introduced in section 3):

(++) :: [a] → [a] → Tick [a]

[] ++ ys = pure ys

(x : xs) ++ ys = pure (x :) </> (xs ++ ys)

That is, if the first argument list is empty, the second list ys is embedded into the Tick datatype
using pure, which records zero cost. In turn, if the first list is non-empty, the partially applied result
(x :) is embedded using pure and applied to the result of the recursive call. To record the cost of
the recursive call we use the operator (</>) , a variant of the applicative operator (<*>) that sums
the costs of the two arguments and then increases the total by one.

Remark. The example above includes the Haskell type signature for (++). For brevity, we omit
such types in the remainder of the article in favour of the corresponding LiquidHaskell specifications.
However, Haskell type signatures are typically required when defining functions and proofs, and
are included in the online source code of all of our examples [Handley and Vazou 2019].

Now that we have defined the new operator, we can use Liquid Haskell to encode properties
about append’s execution cost by means of a refinement type specification, such as the following:

{-@ (++) :: xs:[a] → ys:[a] →

{ t:Tick { zs:[a] | length zs == length xs + length ys } | tcost t == length xs } @-}

This type states that the length of the output list is given by the sum of the lengths of the two input
lists: a correctness property; and that the cost of appending two lists, in terms of the number of
required recursive calls, is given by the length of the first list: an efficiency property. Liquid Haskell
is able to automatically verify both properties without any assistance from the user.

In general, we note that resource bounds can be checked by the system but cannot be inferred.

Example 2: Memory Allocation. Next, we analyse a different resource: the number of thunks allocated
when folding lists. As before, we lift the standard foldl function into the Tick datatype. However,
this time we use step to manually increment foldl’s resource usage each time it allocates a thunk:

foldl f z [] = pure z

foldl f z (x : xs) = let w = f z x in 1 `step` foldl f w xs

Because foldl’s resource usage increases for each element in the input list, we can use Liquid
Haskell to automatically check that the overall cost of folding is equal to the length of this list:

{-@ foldl :: (b → a → b) → b → xs:[a] → { t:Tick b | tcost t == length xs } @-}
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In contrast, the strict variant of foldl , called foldl', uses Haskell’s seq primitive to force the
evaluation of its intermediate results during execution:

{-@ foldl' :: (b → a → b) → b → xs:[a] → { t:Tick b | tcost t == 0 } @-}

foldl' f z [] = pure z

foldl' f z (x : xs) = let w = f z x in w `seq` foldl' f w xs

As before, the Tick datatype is used to record the number of allocated thunks. As no thunks are
allocated by foldl', we do not increase the cost at each recursive step, and thus Liquid Haskell
correctly verifies that the function’s total execution cost is zero.

Both of these examples are simplified execution models, in the sense that they only account for
the number of thunks allocated by the higher-order folding functions and assume that the input
function f has no cost. In our subsequent case studies in section 4, we give a more accurate account
of resource usage that incorporates the number of additional thunks allocated by each f.

Example 3: Cost Analysis and Verification. In this example, we analyse the number of comparisons
made when merging two ordered lists. As before, we lift the standard merge function into the Tick

datatype and use the (</>) operator to increase the cost each time a comparison is made:

merge xs [] = pure xs

merge [] ys = pure ys

merge (x : xs) (y : ys)

| x <= y = pure (x :) </> merge xs (y : ys)

| otherwise = pure (y :) </> merge (x : xs) ys

The resource usage of the merge function depends on the values of the input lists, and so we cannot
easily establish a precise bound on its execution cost. We can, however, use Liquid Haskell to
automatically check upper and lower bounds on this cost:

{-@ merge :: Ord a => xs:OList a → ys:OList a →

{ t:Tick { zs:OList a | length zs == length xs + length ys }

| tcost t <= length xs + length ys

&& tcost t >= min (length xs) (length ys) }

/ [length xs + length ys] @-}

That is, in the worst case, merge performs length xs + length ys comparisons as both input lists
may need to be completely traversed to produce an ordered output. Conversely, in the best case,
we only require min (length xs) (length ys) comparisons, as merge terminates as soon as one
of the input lists becomes empty. Note that the above type uses the ordered list type constructor,
OList , which is defined using abstract refinements [Vazou et al. 2013] as follows:

{-@ type OList a = [a]<{ λ x y → x <= y }> @-}

Hence, the refinement type for merge also states that merging two ordered lists returns an ordered
list with length equal to the sum of the two input lengths. Once again, building cost analysis on
top of existing Liquid Haskell features allows us to naturally combine correctness and efficiency
properties. Finally, we note that merge’s specification includes the following termination metric

[length xs + length ys]

which enables Liquid Haskell to deduce that merge will terminate. All examples up to this point
are automatically proved terminating by the system’s structural termination checker. However,
merge’s definition does not satisfy the preconditions for structural termination, hence a semantic
termination metric must be provided. We omit such termination metrics in the remainder of the
article for brevity. However, they are included in our online source code [Handley and Vazou 2019].
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2.2 Extrinsic Cost Analysis

In the case of extrinsic cost analysis, we use refinement types to express theorems about resource
usage and then define Haskell terms that inhabit these types to prove the theorems. In contrast to
intrinsic cost analysis, this approach does not support fully automated verification, as proof terms
must be provided by users. Nonetheless, this method allows us to specify efficiency properties that
are not intrinsic to the definitions of functions. For example, we can relate the costs of multiple
functions and analyse the resource usage of functions applied to specific subsets of their domains.

Example 4: Unary Cost Analysis. Using the merge function from the previous example, we can
define a function that implements merge sort, with the following refinement type:

{-@ msort :: Ord a => xs:[a] → Tick { zs:OList a | length zs == length xs } @-}

This type captures two correctness properties of merge sort, namely that the output list is sorted
and has the same length as the input list. To analyse the cost of msort we can use the extrinsic
approach. That is, we specify appropriate theorems outside of the function’s definition and prove
them manually. The following two theorems capture upper and lower bounds on execution cost:

{-@ msortCostUB :: Ord a => { xs:[a] | pow2 (length xs) } →

{ tcost (msort xs) <= 2 * length xs * log2 (length xs) } @-}

{-@ msortCostLB :: Ord a => { xs:[a] | pow2 (length xs) } →

{ tcost (msort xs) >= (length xs / 2) * log2 (length xs) } @-}

Together, the theorems state that the number of comparisons required by msort is Θ(n log n), where
n is the length of the input list. In both cases, because merge sort proceeds by repeatedly splitting
the input list into two parts, we assume the input length to be a power of two, specified by pow2

(length xs). This highlights the flexibility of the extrinsic method: even though it is reasonable to
use this assumption for cost analysis, it would be unreasonable to impose this restriction on all of
the inputs to which msort is applied. Proofs of these theorems can be constructed using the proof
combinators introduced in section 3 and are available online [Handley and Vazou 2019].
Note that if we assume the cost of comparison outweighs the cost of all other operations

performed during merge sort’s execution, we can use the above theorems to infer asymptotic upper
and lower bounds on the algorithm’s runtime performance, respectively.

Example 5: Relational Cost Analysis. The extrinsic approach enables us to describe arbitrary program
properties, including those that compare the relative cost of two functions or the same function
applied to different inputs. This is known as relational cost analysis [Çiçek 2018]. Here, we adapt an
example from [Çiçek et al. 2017] to demonstrate how relational cost can be encoded in our setting.
In cryptography, a program adheres to the ‘constant-time discipline’ if its execution time is

independent of secret inputs. Adhering to this discipline is an effective countermeasure against
side-channel attacks, which can allow intruders to infer secret inputs by measuring variations in
execution time. Using relational cost analysis, we can prove that a program is constant-time without
having to show that it has equal upper and lower bounds on its execution cost (by performing two
separate unary analyses). To demonstrate this, we use our library to analyse the execution cost of a
function that compares two equal-length password hashes represented as lists of binary digits:

{-@ type EqLen xs = { ys:[Bit] | length ys == length xs } @-}

{-@ compare :: xs:[Bit] → ys:EqLen xs → t:Tick Bool @-}

compare [] [] = pure True

compare (x : xs) (y : ys) = pure (&& x == y) </> compare xs ys
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We assume that the equality (==) and conjunction (&&) functions are both constant-time, therefore,
we only measure the number of recursive calls made during compare ’s execution.

As we have assumed that the computations performed during each recursive step are constant-
time, we can prove that compare is constant-time by showing that it requires the same number of
recursive calls when comparing any stored password pwd against any two user inputs u1 and u2 :

{-@ constant :: pwd:[Bit] → u1:EqLen pwd → u2:EqLen pwd →

{ tcost (compare pwd u1) == tcost (compare pwd u2) } @-}

constant [] _ _ = ()

constant (_ : ps) (_ : us1) (_ : us2) = constant ps us1 us2

The proof of this theorem proceeds by induction on the length of the input lists. Consequently,
our proof has a trivial base case and an inductive case that recursively calls the inductive hypothesis.
In this instance, Liquid Haskell can deduce the relative cost of both executions from the definition
of compare . As such, all the details of the proof can be handled automatically by Liquid Haskell’s
proof by logical evaluation (PLE) tactic [Vazou et al. 2017].

Example 6: Cost Improvement. As a final example, we outline how extrinsic cost analysis can be used
to calculate the difference in the execution costs of two related programs. This is also a primary
application of relational cost analysis. Consider the familiar monoid laws of the append operator:

[] ++ ys == ys left identity

xs ++ [] == xs right identity

(xs ++ ys) ++ zs == xs ++ (ys ++ zs) associativity

These properties can be proved correct in Liquid Haskell via equational reasoning [Vazou et al.
2018]. However, although the two sides of each property give the same results, each side does not
necessarily require the same amount of resources. This observation can be made precise by proving
the following properties of the annotated append operator, (++):

[] ++ ys <=> pure ys

xs ++ [] >== length xs ==> pure xs

(xs ++ ys) >>= (++ zs) >== length xs ==> (xs ++) =<< (ys ++ zs)

Recall from example 1 that the (++) operator records the number of recursive calls made during
append’s execution. Using this notion of cost, the first property above states that the left identity
law is a cost equivalence. That is, [] ++ ys and ys evaluate to the same result, and moreover, both
require the same number of recursive calls to append.Wemake this precise by relating the annotated
version of each side using the cost equivalence relation <=>. Note that ys must be embedded in the
Tick datatype using pure in order for the property to be type-correct.
On the other hand, the right identity and associativity laws are cost improvements in the left-to-

right direction. That is, both sides of each property evaluate to the same result, but in each case the
right-hand side requires fewer recursive calls to append. Again, we make this precise by relating
the corresponding annotated definitions. Moreover, we make the cost difference explicit using
quantified improvement, written >== n ==> for a positive cost difference n, by showing that each
right-hand side requires length xs fewer recursive calls than its left-hand side.
We return to the notions of cost equivalence, cost improvement, and quantified improvement

in section 3, where we discuss our library’s implementation and prove the second property as an
example. Subsequently, in section 4, we use quantified improvement to construct a unified proof
that shows the well-known map fusion technique preserves correctness and improves performance.
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2.3 Interpreting Cost Analysis

Our library allows users to analyse a wide range of resources. Specifically, the Tick datatype can
measure any kind of resource whose usage is additive, in the sense that the basic operation on costs
is addition (and subtraction). Nonetheless, the correctness of a cost analysis relies on appropriate
cost annotations being added to a program by the user. As such, it is the user’s responsibility to
ensure that such annotations correctly model the intended usage of a resource. In section 5, we use
Liquid Haskell’s metatheory to prove the correctness of specifications with respect to annotations.
Assuming that an annotated program does correctly model the intended usage of a particular

resource, then the question is: how can a user relate its (intrinsic or extrinsic) cost analysis back to
the execution cost of its unannotated counterpart? In other words, what is the interpretation of an
annotated expression’s cost bound in practice?

Haskell’s Lazy Evaluation. As illustrated in the previous examples, any bound established on the
execution cost of an annotated function that manipulates standard Haskell datatypes is a worst-case
approximation of actual resource usage. For example, consider the annotated append function (++)

that measures the number of recursive calls made by (++). Then, tcost ([a,b,c] ++ ys) == 3

implies that the evaluation of [a,b,c] ++ ys makes three recursive calls to (++). Three recursive
calls to (++) corresponds to [a,b,c] ++ ys being fully evaluated.
An intuitive way to describe our library’s cost analysis in this instance is to use terminology

from Okasaki [1999]: the analysis assumes that functions applied to standard Haskell datatypes are
monolithic. That is, once run, such functions are assumed to run until completion. This is not true
in practice because Haskell’s lazy evaluation strategy proactively halts computations to prevent
functions from being unnecessarily fully applied.
Moreover, for efficiency, lazy evaluation allows computations to share intermediate results so

that expressions are not unnecessarily re-evaluated when needed on multiple occasions. By default,
however, annotated expressions do not model sharing, that is, memoisation. For example, the
square function below records the resource usage of its input n :: Tick Int twice, even though
its unannotated counterpart, square n = n * n, only evaluates n :: Int once:

{-@ square :: n:Tick Int → { t:Tick Int | tcost t == 2 * tcost n } @-}

square n = pure (*) <*> n <*> n

Thus, overall, our library’s default analysis assumes that computations are fully evaluated and
overlooks memoisation, leading to worst-case approximations of actual execution costs in practice.

Explicit Laziness. Our library can be used to precisely analyse the execution costs of computations
that are explicitly lazy. This is achieved by encoding non-strictness into the definitions of datatypes
and utilising a ‘manual’ memoisation function, similarly to the approach taken by Danielsson
[2008]. We return to these ideas in a case study on insertion sort in section 4.

3 IMPLEMENTATION

In this section, we present the implementation of our library and discuss two soundness assumptions
it makes. The library consists of two modules. The first, RTick , defines the Tick datatype and
functions for recording and modifying resource usage, for example, pure and (</>) from section 2.
The second module, ProofCombinators , defines combinators to encode steps of (in)equational
reasoning about the values and resource usage of annotated expressions.

3.1 Recording Resource Usage

Our principal datatype, Tick a, consists of an integer to track resource usage and a value of type a:

data Tick a = Tick { tcost :: Int, tval :: a }
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The Tick datatype is a monad, with the following applicative and monad methods:

{-@ pure :: x:a → { t:Tick a | tval t == x && tcost t == 0 } @-}

pure x = Tick 0 x

{-@ (<*>) :: t1:Tick (a → b) → t2:Tick a →

{ t:Tick b | tval t == (tval t1) (tval t2)

&& tcost t == tcost t1 + tcost t2 }

Tick m f <*> Tick n x = Tick (m + n) (f x)

{-@ return :: x:a → { t:Tick a | tval t == x && tcost t == 0 } @-}

return x = Tick 0 x

{-@ (>>=) :: t1:Tick a → f:(a → Tick b) →

{ t:Tick b | tval t == tval (f (tval t1))

&& tcost t == tcost t1 + tcost (f (tval t1)) } @-}

Tick m x >>= f = let Tick n y = f x in Tick (m + n) y

The functions pure and return embed expressions in the Tick datatype and record zero cost,
while the (<*>) and (>>=) operators sum up the costs of subexpressions. We have formalised the
applicative and monad laws for the above definitions in Liquid Haskell [Handley and Vazou 2019].

3.2 Modifying Resource Usage

The RTick module defines various functions to record and modify resource usage. Inspired by
Danielsson [2008], we refer to these (and the applicative and monad functions above) as annotations.
Next we present the main annotation functions used throughout the article.
The most basic way to record resource usage is by using step:

{-@ step :: m:Int → t1:Tick a →

{ t:Tick a | tval t == tval t1 && tcost t == m + tcost t1 } @-}

step m (Tick n x) = Tick (m + n) x

A positive integer argument to step indicates the consumption of a resource, while a negative
argument indicates production. We often wish to sum the costs of subexpressions and modify the
result. For this, we provide a number of resource combinators. One such combinator, (</>) , was
used in section 2 and is a variant of the apply operator, (<*>) . Specifically, (</>) behaves as (<*>)

at the value level, but increases the total resource usage of its subexpressions by one:

{-@ (</>) :: t1:Tick (a → b) → t2:Tick a →

{ t:Tick b | tval t == (tval t1) (tval t2)

&& tcost t == 1 + tcost t1 + tcost t2 } @-}

Tick m f </> Tick n x = Tick (1 + m + n) (f x)

A similar combinator is defined in relation to the bind operator:

{-@ (>/=) :: t1:Tick a → f:(a → Tick b) →

{ t:Tick b | tval t == tval (f (tval t1))

&& tcost t == 1 + tcost t1 + tcost (f (tval t1)) } @-}

Tick m x >/= f = let Tick n y = f x in Tick (1 + m + n) y

Finally, we provide functions to embed computations in the Tick datatype while simultaneously
consuming or producing resources. For example, wait and waitN [Danielsson 2008] act in the same
manner as pure and return at the value level, but consume one and n resources, respectively:

{-@ wait :: x:a → { t:Tick a | tval t == x && tcost t == 1 } @-}

wait x = Tick 1 x

{-@ waitN :: n:Nat → x:a → { t:Tick a | tval t == x && tcost t == n } @-}

waitN n x = Tick n x
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Equal {-@ (==.) :: x:a → { y:a | y == x }

→ { z:a | z == x && z == y } @-}

_ ==. y = y

Greater than {-@ (>=.) :: m:a → { n:a | m >= n }

or equal → { o:a | m >= o && o == n } @-}

_ >=. n = n

Theorem (?) :: a → Proof → a

invocation x ? _ = x

Proof (***) :: a → QED → Proof

finalisation _ *** QED = ()

QED definition data QED = QED

Figure 1. Proof Combinators from [Vazou et al. 2018].

Similarly, go and goN produce one and n resources, respectively:

{-@ go :: x:a → { t:Tick a | tval t == x && tcost t == (-1) } @-}

go x = Tick (-1) x

{-@ goN :: n:Nat → x:a → { t:Tick a | tval t == x && tcost t == (-n) } @-}

goN n x = Tick (-n) x

Note that (>/=) can be defined using step and (>>=) , specifically (t >/= f) == step 1 (t

>>= f). In fact, all of the functions provided by the RTick module, including (<*>) and (</>) , can
be defined using return , (>>=) , and step. We make use of this fact in section 5 to simplify the
proof of correctness of our cost analysis.
It is important to note that Tick’s cost parameter should not be modified by any means other

than through the use of the functions in the RTick module, for example, by case analysis. Doing
so breaks the encapsulation of Tick’s effects, potentially leading to invalid cost analyses. This is
discussed in detail at the end of this section as part of the library’s assumptions.

3.3 Proving Extrinsic Theorems

As exemplified in section 2, extrinsic cost analysis requires manually proving that bounds on
resource usage hold. In Liquid Haskell, this is formalised as (in)equational reasoning, that is, a proof
of an extrinsic theorem is a total and terminating Haskell function that appropriately relates the
left-hand side of the theorem’s proof statement to the right-hand side, for example, by unfolding and
folding definitions [Burstall and Darlington 1977] and through the use of mathematical induction.

Next, we introduce a number of proof combinators from our library’s ProofCombinators module
that aid the development of extrinsic proofs. As a running example, we show that append’s right
identity law, xs ++ [] == xs, is an optimisation in the left-to-right direction, by proving properties
about the annotated append function, (++), from section 2.

3.3.1 Proof Construction. We first review how to construct (in)equational proofs using Liquid
Haskell. To exemplify both the equational and inequational styles of proof, we reason about the
results and resource usage of append separately. Readers are referred to [Vazou et al. 2018] for a
more detailed discussion on the following concepts.

Specifying Theorems. The Proof type is simply the unit type, which is refined to express a theorem:
type Proof = (). For example, in order to show that append’s right identity law is a denotational
equivalence, we can express that the values of xs ++ [] and pure xs are equal:

{-@ rightIdVal :: xs:[a] → { p:Proof | tval (xs ++ []) == tval (pure xs) } @-}
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Here, the binder p:Proof is superfluous and so we can remove it:

{-@ rightIdVal :: xs:[a] → { tval (xs ++ []) == tval (pure xs) } @-}

Equational Proofs. The above theorem expresses a value equivalence between two annotated
expressions. In this case, Liquid Haskell cannot prove the theorem automatically. To prove it
ourselves, we can define one of its inhabitants using a number of proof combinators from figure 1:

rightIdVal []

= tval ([] ++ [])

==. tval (pure [])

*** QED

rightIdVal (x : xs)

= tval ((x : xs) ++ [])

==. tval (pure (x :) </> (xs ++ []))

? rightIdVal xs

==. tval (pure (x :) </> pure xs)

==. tval (Tick 0 (x :) </> Tick 0 xs)

==. tval (Tick 1 (x : xs))

==. tval (Tick 0 (x : xs))

==. tval (pure (x : xs))

*** QED

Recall that the aim of the proof is to equate the left-hand side of the theorem’s proof statement,
tval (xs ++ []), with the right-hand side, tval (pure xs). We split it into two cases. In the
base case, where xs is empty, the proof simply unfolds the definition of (++). In the inductive
case, where xs is non-empty, the proof unfolds (++) and (</>) , and unfolds and folds pure. It also
appeals to the inductive hypothesis using (?), which combines the refinements from its argument
theorem with those from the current theorem. In both cases, the (==.) combinator relates steps
of reasoning by ensuring that both of its arguments are equal and returns its second argument to
allow multiple uses to be chained together. The (*** QED) function signifies the end of each proof.

Inequational Proofs. Having proved that the values of xs ++ [] and pure xs are equal, the next
step is to compare their resource usage. From section 2, we know that the costs of both expressions
are not equal. In particular, xs ++ [] requires length xs more recursive calls to append than
pure xs. This can be formalised by proving that the execution cost of xs ++ [] is greater than or
equal to that of pure xs, using the (>=.) combinator presented in figure 1:

{-@ rightIdCost :: xs:[a] → { tcost (xs ++ []) >= tcost (pure xs) } @-}

rightIdCost xs

= tcost (xs ++ [])

>=. tcost (pure [])

*** QED

The resource usage of pure xs is zero as it requires no recursive calls to (++). Furthermore, Liquid
Haskell can automatically deduce that tcost (xs ++ []) == length xs and that length xs >= 0.
Hence the theorem follows from a single use of (>=.) .

The ProofCombinators module includes various other numerical operators for reasoning about
execution cost, including greater than (>.), less than (<.), and less than or equal (<=.) .

3.3.2 Proofs of Cost Equivalence, Improvement, and Diminishment.

Cost Equivalence. Often it is beneficial to reason about the values and resource usage of annotated
expressions simultaneously. For example, if we unfold the base case of the annotated append
function, (++), it is easy to show that both expressions are equal:

[] ++ ys == pure ys

Nonetheless, instead of relating the two expressions using equality, we prefer to use the notion
of cost equivalence, which better clarifies our topic of reasoning. The cost equivalence relation is
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Relations

Value equivalence t1 =!= t2 = tval t1 == tval t2

Cost equivalence t1 <=> t2 = t1 =!= t2 && tcost t1 == tcost t2

Cost improvement t1 >~> t2 = t1 =!= t2 && tcost t1 >= tcost t2

Cost diminishment t1 <~< t2 = t1 =!= t2 && tcost t1 <= tcost t2

Quantified improvement t1 >== n ==> t2 = t1 =!= t2 && tcost t1 == n + tcost t2

Quantified diminishment t1 <== n ==< t2 = t1 =!= t2 && n + tcost t1 == tcost t2

Combinators

Cost equivalence {-@ (<=>.) :: t1:Tick a → { t2:Tick a | t1 <=> t2 }

→ { t:Tick a | t1 <=> t && t2 <=> t } @-}

Cost improvement {-@ (>~>.) :: t1:Tick a → { t2:Tick a | t1 >~> t2 }

→ { t:Tick a | t1 >~> t && t2 <=> t } @-}

Cost diminishment {-@ (<~<.) :: t1:Tick a → { t2:Tick a | t1 <~< t2 }

→ { t:Tick a | t1 <~< t && t2 <=> t } @-}

Quantified improvement {-@ (.>==) :: t1:Tick a → n:Int

→ { t2:Tick a | t1 >== n ==> t2 }

→ { t:Tick a | t1 >== n ==> t && t2 <=> t } @-}

Quantified diminishment {-@ (.<==) :: t1:Tick a → n:Int

→ { t2:Tick a | t1 <== n ==< t2 }

→ { t:Tick a | t1 <== n ==< t && t2 <=> t } @-}

Combinators simply return their last arguments similarly to (==.) in figure 1.

Separators

Quantified improvement (==>.) :: (a → b) → a → b f ==>. x = f x

Quantified diminishment (==<.) :: (a → b) → a → b f ==<. x = f x

Figure 2. Cost Relations, Combinators, and Separators.

defined as a Liquid Haskell predicate in figure 2 and states that two annotated expressions are
cost-equivalent if they have the same values and resource usage. Clearly [] ++ ys and pure ys do:

[] ++ ys <=> pure ys

The above property is a ‘resource-aware’ version of append’s left identity law, which formalises
that both expressions, [] ++ ys and pure ys, evaluate to the same result and require the same
number of recursive calls to append during evaluation (as shown in example 6 of section 2).

Cost Improvement. Previously in this section, we proved that append’s right identity law is a
value equivalence: tval (xs ++ []) == tval (pure xs) and a cost inequivalence: tcost (xs ++

[]) >= tcost (pure xs). Both of these properties are captured by the cost improvement relation
defined in figure 2. Append’s right identity law is thus an improvementÐwith respect to number of
recursive callsÐin the left-to-right direction. Following the work of Moran and Sands [1999], we
say that łxs ++ [] is improved by pure xsž.
One way to prove that append’s right identity law is a left-to-right improvement is to simply

combine both sets of refinements from rightIdVal and rightIdCost using (?):

{-@ rightIdImp :: xs:[a] → { xs ++ [] >~> pure xs } @-}

rightIdImp xs = rightIdVal xs ? rightIdCost xs

However, in general, this approach overlooks a key opportunity afforded by relational cost analysis,
which is the ability to precisely relate intermediate execution steps [Çiçek 2018].
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Crucially, unfolding and folding the definitions of annotated expressions makes resource usage
explicit in steps of (in)equational reasoning. Not only does this allow savings in resource usage to
be quantified in proofs, but it allows such savings to be localised. This approach fundamentally
requires reasoning about the values and execution costs of annotated expressions simultaneously,
however, and thus proofs relating values and costs independently simply cannot exploit it.

Quantified Improvement. It is straightforward to show that xs ++ [] is improved by pure xs

by relating the expressions’ intermediate execution steps using cost combinators from figure 2.
However, we know the exact cost difference between xs ++ [] and pure xs, namely length xs.
This additional information allows us to relate the expressions more precisely using the quantified
improvement relation, also defined in figure 2. Quantified improvement extends cost improvement
by taking an additional argument, which is the cost difference between its first and last arguments.
Therefore, we can say łxs ++ [] is improved by pure xs, by a cost of length xsž and make it
precise by defining a corresponding theorem, as follows:

{-@ rightIdQImp :: xs:[a] → { xs ++ [] >== length xs ==> pure xs } @-}

To prove this theorem, we can simply extend the previous proof of value equivalence, rightIdVal ,
by replacing equality with cost equivalence and by making cost savings wherever possible. Readers
are encouraged to note the strong connection between rightIdVal and the following proof:

rightIdQImp []

= [] ++ []

<=>. pure []

*** QED

rightIdQImp (x : xs)

= (x : xs) ++ []

<=>. pure (x :) </> (xs ++ [])

? rightIdQImp xs

.>== length xs ==>. pure (x :) </> pure xs

<=>. Tick 0 (x :) </> Tick 0 xs

<=>. Tick 1 (x : xs)

.>== 1 ==>. Tick 0 (x : xs)

<=>. pure (x : xs)

*** QED

In the base case, where xs is empty, there is no cost saving. This is because length [] == 0 and
therefore tcost ([] ++ []) == tcost (pure []). Hence it suffices to show that [] ++ [] <=>

pure [], which follows immediately from the definition of (++).
In the inductive case, where xs is non-empty, we must save length (x : xs) cost. We start

by unfolding the definition of (++) and then replace xs ++ [] with pure xs by appealing to the
inductive hypothesis using (?), which saves length xs resources. This saving is made explicit
using the quantified improvement operator, (.>== length xs ==>.) , which is a combination
of two functions, (.>==) and (==>.) , whereby the latter is a syntactic sugar for Haskell’s ($)

operator, which allows (.>==) to be used infix. We save one further recursive call by unfolding the
definition of (</>) . Finally, our goal follows from the definition of pure. The total resource saving
is 1 + length xs, which is equal to length (x : xs) by the definition of length .
By starting at the left-hand side of a resource-aware version of append’s right identity law,

we have used simple steps of inequational reasoning to derive the right-hand side. Each step
of reasoning ensures denotational meaning is preserved while simultaneously maintaining or
improving resource usage. Resource usage is made explicit in steps of reasoning by cost annotations.
Furthermore, the location and quantity of each resource saving is made explicit through the use of
quantified improvement. We remind readers that Liquid Haskell verifies every proof step.
In this particular instance, quantified improvement shows that one recursive call is saved per

inductive step of the proof, and hence append’s right identity law is a left-to-right optimisationÐ
with respect to number of recursive callsÐprecisely because xs ++ [] evaluates to xs.
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Cost Diminishment and Quantified Diminishment. The notion of (quantified) cost diminishment,
also presented in figure 2, is dual to (quantified) cost improvement. Using this notion, we can prove
that pure xs is diminished by xs ++ [], by a cost of length xs: simply reverse the calculation
steps of rightIdQImp , replacing instances of improvement with diminishment.

Note that t1 >~> t2 if and only if t2 <~< t1 , and likewise that t1 >== n ==> t2 if and only if
t2 <== n ==< t1 . Similar relationships also exist between other cost relations. We have formalised
all such relationships as part of our implementation using Liquid Haskell.

3.4 Library Assumptions

To ensure its cost analysis is sound, the library makes two key assumptions: (1) expressions subject
to cost analysis are not defined in terms of tval or tcost , nor do they perform case analysis on the
Tick data constructor; and (2) Liquid Haskell’s totality and termination checkers are active at all
times. These assumptions are discussed in the remainder of this section.

3.4.1 Projections and Case Analysis. Expressions subject to resource analysis must not be defined
in terms of Tick’s projection functions tval and tcost . This is to preserve the encapsulation of
Tick’s accumulated cost. For example, tval can be used to (indirectly) show that two lists can be
appended using (++) without incurring any cost:

{-@ freeAppend :: xs:[a] → ys:[a] → { t:Tick [a] | tcost t == 0 } @-}

freeAppend xs ys = pure (tval (xs ++ ys))

From the type specification of (++), we know that tcost (xs ++ ys) == length xs. However,
the cost of freeAppend is zero as it uses tval to discard (++)’s incurred cost.

Similarly, user-defined functions can freely overwrite accumulated costs using the tcost projec-
tion or by performing case analysis on Tick’s data constructor. Consequently, these primitives are
not permitted in the definitions of expressions, as such expressions are not safe for cost analysis.
(We formally define a safety predicate in section 5). Instead, users should always record resource
usage implicitly using the functions provided by the RTick module.

Remark. Despite this assumption, the tval and tcost projection functions and the Tick data
constructor are exported from the RTick module. This is because, as we’ve seen previously, these
definitions are required in refinement specifications and extrinsic proof terms.

3.4.2 Totality and Termination. Partial definitions, which Haskell permits, are not valid inhabitants
of theorems expressed in refinement types [Vazou et al. 2018]. As such, the resource usage of partial
definitions should not be analysed using the library. Similarly, partial definitions should not be
used to prove theorems regarding the resource usage of other (total) annotated expressions.
Haskell can also be used to specify non-terminating computations. Divergence in refinement

typing (in combination with lazy evaluation) can, however, be used to prove false predicates [Vazou
et al. 2014]. Hence, our cost analysis is only sound for computations that require finite resources.
Liquid Haskell provides powerful totality and termination checkers that are active by default.

Partial and/or divergent definitions will thus be rejected so long as these systems are not deactivated.
The library, therefore, assumes that they remain active at all times.

4 EVALUATION

In this section, we present an evaluation of our library, encompassing three detailed case studies:
cost analyses of monolithic and non-strict implementations of insertion sort (sections 4.1 and 4.2)
and a proof that the well-known map fusion technique is a correctness-preserving optimisation
(section 4.3). The evaluation concludes with a summary of all of the examples we have studied
(section 4.4), the majority of which have been adapted from the literature for comparison purposes.
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4.1 Insertion Sort

This case study analyses the number of comparisons required by the insertion sort algorithm. First,
intrinsic cost analysis is used to prove a quadratic upper bound on the number of comparisons
needed to sort a list of any configuration. We then use extrinsic cost analysis to prove a linear
upper bound on the number of comparisons needed to sort a list that is already sorted.
To begin, we lift the standard insertion sort function into the Tick datatype:

isort [] = return []

isort (x : xs) = insert x =<< isort xs

insert x [] = pure [x]

insert x (y : ys)

| x <= y = wait (x : y : ys)

| otherwise = pure (y :) </> insert x ys

According to the definition of isort , an empty list is already sorted: the result is simply embedded
in the Tick datatype. To sort a non-empty list, its head is inserted into its recursively sorted tail. In
this case, the flipped bind operator, (=<<), sums up the costs of the insertion and the recursive sort.
In turn, inserting an element into a sorted list is standard, with each comparison being recorded
using the functions wait and (</>) introduced previously in section 3.

4.1.1 Intrinsic Cost Analysis. Refinement types can now be used to simultaneously specify prop-
erties about the correctness and resource usage of the above functions. In particular, abstract
refinement types [Vazou et al. 2013] can be used to define sorted Haskell lists, that is, a list whereby
the head of each sublist is less than or equal to every element in the tail:

{-@ type OList a = [a]<{ λ x y → x <= y }> @-}

The OList type constructor is used in the type of insert to ensure that its input xs is sorted:

{-@ insert :: Ord a => x:a → xs:OList a →

{ t:Tick { zs:OList a | length zs == 1 + length xs } | tcost t <= length xs } @-}

The result type of insert asserts that the function’s output list zs is sorted and contains one more
element than xs, and that an insertion requires at most length xs comparisons.

The specification for isort states that it returns a sorted list of the same length as its input, xs,
and furthermore, that sorting xs requires at most (lenдth xs)2 comparisons:

{-@ isort :: Ord a => xs:[a] →

{ t:Tick { zs:OList a | length zs == length xs } | tcost t <= (length xs)2 } @-}

Liquid Haskell automatically verifies insert’s specification. On the other hand, isort’s spec-
ification is rejected. This is because the resource usage of insert x =<< isort xs can only be
calculated by performing type-level computations that are not automated by the system. At this
point, we could switch to extrinsic cost analysis and perform the necessary calculations manually.
However, we can also take a different approach that allows us to continue with our intrinsic analysis.
The key to this approach is utilising the following function, which is a variant of (=<<):

{-@ ( =<<{·} ) :: n:Int → f:(a → { t1:Tick b | tcost t1 <= n }) → t2:Tick a →

{ t:Tick b | tcost t <= tcost t2 + n } @-}

f =<<{n} x = f =<< x

From an operational standpoint, the expression f =<<{n} x is equal to f =<< x. However, the
refinement type of this ‘bounded’ version of (=<<) restricts its domain to functions f :: a →

Tick b with execution costs no greater than n. Hence, the total resource usage of the expression
f =<<{n} x cannot exceed the resource usage of x plus n.

Using ( =<<{·} ) in the definition of isort allows Liquid Haskell to check the function’s execution
cost without performing any type-level computations. Thus, isort’s type can be automatically
verified by specifying length xs as an upper bound on the cost of each insertion:
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isort [] = return []

isort (x : xs) = insert x =<<{ length xs } isort xs

4.1.2 Extrinsic Cost Analysis. Next, we prove that the maximum number of comparisons made
by isort is linear when its input is already sorted. We capture this property with the following
extrinsic theorem that takes a sorted list as input. Therefore, isort does not need to be redefined.

{-@ isortCostSorted :: Ord a => xs:OList a → { tcost (isort xs) <= length xs } @-}

To prove this theorem, we consider three cases: when the input list is empty; when the list is a
singleton, which invokes the base case of insert ; and when the list has more than one element,
which invokes the recursive case of insert . The first two cases follow immediately from the
definitions of isort and insert , and thus can be automated by Liquid Haskell’s PLE feature:

isortCostSorted [] = ()

isortCostSorted [_] = ()

When the input list contains more than one element, the proof begins by unfolding the definitions
of isort and ( =<<{·} ), and then continues by appealing to the inductive hypothesis:

isortCostSorted (x : (xs@(y : ys)))

= tcost (isort (x : xs))

==. tcost (insert x =<<{ length xs } isort xs)

==. tcost (isort xs) + tcost (insert x (tval (isort xs)))

? isortCostSorted xs

<=. length xs + tcost (insert x (tval (isort xs)))

At this point, we invoke a lemma that proves tval (isort xs) is an identity on xs when the list is
sorted. ( isortSortedVal ’s proof is available online [Handley and Vazou 2019].)

? isortSortedVal xs

==. length xs + tcost (insert x xs)

==. length xs + tcost (insert x (y : ys))

As the input (x : y : ys) is sorted, we know that x <= y. Consequently, insert x (y : ys) will
not recurse and unfolding the definitions of insert and wait completes the proof:

==. length xs + tcost (wait (x : y : ys))

==. length xs + 1

==. length (x : xs)

*** QED

Overall, this case study exemplifies how our library can be used to establish precise bounds
on the resource usage of functions operating on subsets of their domains. In this instance, we
imposed a ‘sortedness’ constraint on isort’s input using an extrinsic theorem, without needing to
modify the function’s definition. Furthermore, the proof relies on the fact that isort’s result is a
sorted list in order to show that tval (isort xs) is an identity on xs. Hence, once more, we have
demonstrated how correctness properties can be utilised for the purposes of precise cost analysis.

4.1.3 Resource Propagation. The execution cost of any annotated function that utilises isort will
in general be at least quadratic. For example, a minimum function defined by taking the head of a
non-empty list that is sorted using isort also has a quadratic upper bound:

{-@ type NonEmpty a = { xs:[a] | 0 < length xs } @-}

{-@ minimum :: Ord a => xs:NonEmpty a → { t:Tick a | tcost t <= (length xs)2 } @-}

minimum xs = pure head <*> isort xs
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This is because, as discussed in section 2.3, isort is treated as a monolithic function given that it
operates on standard Haskell lists. The cost of pure head <*> isort xs, therefore, includes the
cost of fully evaluating isort xs. In practice, however, insertion sort does not need to be fully
applied in order to obtain the least element in the input list. In particular, Haskell’s lazy evaluation
strategy will halt the sorting computation as soon the head of the result is generated. Next, we see
how the Tick datatype can be used to explicitly encode this kind of non-strict behaviour.

4.2 Non-Strict Insertion Sort

Our cost analysis treats functions operating on standard Haskell datatypes as monolithic. To encode
non-strict evaluation, we include Tick in the definitions of datatypes to suspend computations.
Datatypes defined using Tick are called lazy and functions that operate on them are non-strict.
In this case study, which is adapted from [Danielsson 2008], we define a non-strict minimum

function to calculate the least element in a non-empty lazy list that has been sorted using insertion
sort. The execution cost of the new minimum function has a linear upper bound, which corresponds
to the resources required by Haskell’s on-demand evaluation.

4.2.1 Refined Lazy Lists. Following Danielsson [2008], we define lazy lists to be either empty (Nil)
or constructed (Cons) from a pair of a lhead :: a and a ltail :: Tick (LList a), which is an
annotated computation that returns a lazy list. Furthermore, to encode recursive properties into
lazy lists, we use an abstract refinement p to capture invariants that hold between the head of a
lazy list and each element of its tail, and moreover, that recursively hold inside its tail:

{-@ data LList a <p :: a → a → Bool> =

Nil | Cons { lhead :: a, ltail :: Tick (LList <p> (a<p lhead> )) } @-}

Sorted lazy lists are defined similarly to OList a, by instantiating the abstract refinement to
express that the head of each sublist is less than or equal to any element in the tail:

{-@ type OLList a = LList<{ λ x y → x <= y }> a @-}

4.2.2 Non-Strict Sorting. We can now define a non-strict version of the insertion function using
lazy lists. The key distinction between insert and linsert is that, in the definition below, the
recursive call to linsert is suspended and stored in the tail of the resulting list.

{-@ linsert :: Ord a => a → xs:OLList a → { t:Tick (OLList a) | tcost t <= 1 } @-}

linsert x Nil = return (Cons x (return Nil))

linsert x (Cons y ys)

| x <= y = wait (Cons x (return (Cons y ys)))

| otherwise = wait (Cons y (ys >>= linsert x))

When analysing functions that operate on standard Haskell datatypes, we have seen that ex-
ecution costs correspond to such functions being fully applied. Now we see that the execution
costs of non-strict functions correspond to such functions returning the first part of their results. In
this instance, linsert returns the first element of its resulting lazy list by making one comparison
when its input is non-empty, and zero comparisons otherwise: tcost t <= 1.

Non-strict insertion sort, lisort , is analogous to isort , however its result is a sorted lazy list:

{-@ lisort :: Ord a => xs:[a] → { t:Tick (OLList a) | tcost t <= length xs } @-}

lisort [] = return Nil

lisort (x : xs) = linsert x =<<{1} lisort xs

Given a standard Haskell list as input, lisort returns a sorted lazy list. Hence, it is a non-strict
function and its execution cost reflects the maximum number of comparisons required to produce
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the first element in its result. Notice that this execution cost has been intrinsically verified because
( =<<{·} ) accurately approximates the execution cost of linsert at each recursive call.

4.2.3 Non-Strict Minimum. The following non-strict minimum function, lminimum , returns the
first element in a non-empty list xs that is partially sorted using lisort . As lminimum only forces
the first element of lisort xs to be calculated, it requires at most length xs comparisons:

{-@ lminimum :: Ord a => xs:NonEmpty a → { t:Tick a | tcost t <= length xs } @-}

lminimum xs = pure lhead <*> lisort xs

4.2.4 Explicit Laziness. Lazy lists of type LList a are defined such that examining the head is
zero-cost, but examining the last element has a cost equal to the sum total of the costs of each
suspended computation in the tail. As discussed in section 2.3, if such a list is fully evaluated
on multiple occasions during a computation, the library’s default analysis records the cost of
each evaluation independently. However, in practice, once a list is fully evaluated by Haskell’s
operational semantics, its value is memoised and thus subsequent uses are ‘cost-free’.
To explicitly capture memoisation in our analysis, we use pay from [Danielsson 2008]:

{-@ pay :: m:Nat → { t1:Tick a | m <= tcost t1 } →

{ t:Tick (Tick a) | tcost (tval t) == tcost t1 - m } @-}

pay m (Tick n x) = Tick m (Tick (n - m) x)

Evaluating pay m x >>= f allows f to use x numerous times while only paying m cost for it once.
Therefore, if m == tcost x then this effectively models memoisation.

We repeated Danielsson [2008]’s analysis of Okasaki’s queues as part of the library’s evaluation
(section 4.4). In this example, non-strictness is captured by defining a lazy queue datatype and
sharing is modelled explicitly by defining lazy functions that are non-strict and use pay.

4.3 Map Fusion

In this case study, we use the proof combinators from section 3.3 to simultaneously reason about
the correctness and efficiency of map fusion. This well-known property states that mapping one
function f :: a → b followed by another function g :: b → c over a list xs :: [a] gives the
same result as mapping the composite function g . f :: a → c over the same list:

map g (map f xs) == map (g . f) xs

Although the two sides of this equation give the same result, they do not require the same amount
of resources. In particular, the left-hand side traverses the list xs twice, whereas the right-hand side
traverses xs only once. Thus, replacing the expression on the left-hand side with that on the right
preserves correctness while saving length xs resources. To prove this, we first define annotated
versions of the mapping and function composition operators, and then reason simultaneously about
the correctness and efficiency of these definitions.

4.3.1 Definitions. First, we define an annotated mapping function, mapM, which takes as input a
function f :: a → Tick b returning an annotated result and a list xs. The cost of mapM’s result,
given by applying f to each element x in the list xs, includes the number of recursive calls made
during mapM’s execution and the cost of each application f x:

mapM :: (a → Tick b) → [a] → Tick [b]

mapM _ [] = pure []

mapM f (x : xs) = step 1 (liftA2 (:) (f x) (mapM f xs))

In particular, when the input list is empty, no resources are consumed; and when the input list is
non-empty, step 1 is used to record the recursive call to mapM and liftA2 (defined subsequently)
reconstructs the list while recording the cost of the application f x.
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Remark. To the best of our knowledge, it is not possible to define a refinement type for mapM that
precisely describes its resource usage. This is because f is applied to arbitrary inputs x from the list
xs, and thus we cannot specify the cost of each f x in the general case. One way to approximate
this cost is to employ the technique described in section 4.1, which is to establish an upper bound n

on the cost of f x for any input x. The total execution cost of mapM would then be bounded above by
(n + 1) * length xs. Nonetheless, we can prove that map fusion is an optimisation (a relational
cost property) without needing to precisely compute the cost of each f x (a unary cost property).
This is a notable advantage of relational cost analysis [Çiçek 2018].

The liftA2 function is defined in the RTick library. Similarly to the applicative operator (<*>) ,
liftA2 takes as input a binary function f and two annotated arguments and returns an annotated
result whose cost is equal to the sum of the costs of its arguments:

{-@ liftA2 :: f:(a → b → c) → t1:Tick a → t2:Tick b →

{ t:Tick c | tval t == f (tval t1) (tval t2) && tcost t == tcost t1 + tcost t2 } @-}

liftA2 f (Tick m x) (Tick n y) = Tick (m + n) (f x y)

To compose two annotated functions f and g, we define a composition function (>=>) that, when
given an argument x, applies g to the value of f x and sums the costs of both applications:

(>=>) :: (a → Tick b) → (b → Tick c) → a → Tick c

(>=>) f g x = let Tick m y = f x in let Tick n z = g y in Tick (m + n) z

4.3.2 Specification. Using the above definitions and cost relations introduced in section 3.3, we
can now state that the map fusion technique is a cost improvement in the left-to-right direction.
Specifically, we can use quantified improvement to precisely capture the amount of resources saved
by the optimisation, which is given by the length of the list xs being traversed:

(mapM f xs >>= mapM g) >== length xs ==> (mapM (f >=> g) xs)

The following extrinsic theorem formalises the above property in Liquid Haskell:

{-@ mapFusion :: f:(a → Tick b) → g:(b → Tick c) → xs:[a] →

{ (mapM f xs >>= mapM g) >== length xs ==> (mapM (f >=> g) xs) } @-}

4.3.3 Proof. To prove the mapFusion theorem, we must define a Haskell term that inhabits its type
specification. In practice, we define such a term by performing (in)equational rewriting on the
left-hand side of the proof statement, mapM f xs >>= mapM g, ultimately deriving the right-hand
side, mapM (f >=> g) xs. By utilising the proof combinators from section 3.3, we ensure that each
rewrite step preserves correctness (value equivalence). Furthermore, such combinators capture the
total resource saving, which is calculated ‘on the fly’ as part of the derivation process. The proof
proceeds in the standard manner by induction on the list argument.

In the base case, we begin by unfolding the definitions of mapM and (>>=) . The right-hand side of
the proof statement then follows by folding the definition of mapM:

mapFusion f g []

= mapM f [] >>= mapM g

<=>. pure [] >>= mapM g

<=>. mapM g []

<=>. pure []

<=>. mapM (f >=> g) []

*** QED

In this case, we can see that the map fusion technique is a cost equivalence. That is, the costs of
both sides of the property are equal. This is to be expected as the length of the input list xs is zero,
and hence no resources are saved: (mapM f [] >>= mapM g) <=> (mapM (f >=> g) []).
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The inductive case also begins by unfolding the definition of mapM:

mapFusion f g (x : xs)

= mapM f (x : xs) >>= mapM g

<=>. (step 1 (liftA2 (:) (f x) (mapM f xs))) >>= mapM g

Next, we use quantified improvement to precisely capture the cost saved by eliminating step 1:

.>== 1 ==>. liftA2 (:) (f x) (mapM f xs) >>= mapM g

To continue on with the proof, we must unfold the definition of liftA2 . By deconstructing the
results of f x and mapM f xs using pattern matching on the Tick datatype in a where clause, we
can independently refer to the costs and values of liftA2 ’s arguments:

where Tick cf fx = f x

Tick cfs fxs = mapM f xs

Storing these parameters is particularly useful as the remaining cost savings and expenditures can
be expressed entirely in terms of cf, cfs, and constants. This makes subsequent cost manipulations
straightforward and allows us to focus primarily on correctness.

Using the bindings from the where clause, we can unfold the definition of liftA2 and continue
rewriting: saving the cost of liftA2 ’s result and unfolding the definitions of (>>=) and mapM.

<=>. Tick (cf + cfs) (fx : fxs) >>= mapM g

.>== cf + cfs ==>. pure (fx : fxs) >>= mapM g

<=>. mapM g (fx : fxs)

<=>. step 1 (liftA2 (:) (g fx) (mapM g fxs))

Eliminating step 1 saves an additional resource, however, we must then expend cfs resources in
order to map f over the tail of the input list, xs:

.>== 1 ==>. liftA2 (:) (g fx) (mapM g fxs)

.<== cfs ==<. liftA2 (:) (g fx) (mapM f xs >>= mapM g)

At this point, we can appeal to the inductive hypothesis in order to save length xs resources by
substituting mapM (f >=> g) xs for mapM f xs >>= mapM g:

? mapFusion f g xs

.>== length xs ==>. liftA2 (:) (g fx) (mapM (f >=> g) xs)

To finalise the proof, we apply f to the head of the input list x and fold the definition of mapM:

.<== cf ==<. liftA2 (:) ((f >=> g) x) (mapM (f >=> g) xs)

.<== 1 ==<. step 1 (liftA2 (:) ((f >=> g) x) (mapM (f >=> g) xs))

<=>. mapM (f >=> g) (x : xs)

*** QED

As we have seen throughout the proof, the quantified cost operators are used to explicitly
record resource saving, for example (.>== cf + cfs ==>.) , and expenditure, for example (.<==

cf ==<.) . Overall, the cost savings and expenditures involving cf and cfs cancel out, as do the
latter two costs involving step 1. The remaining costs are from the initial saving of 1 from step

1 and the saving of length xs from the inductive hypothesis. Hence, the resulting expression,
mapM (f >=> g) (x : xs), requires length (x : xs) fewer resources than the initial expression,
mapM f (x : xs) >>= mapM g, as expected. As Liquid Haskell has SMT support for arithmetic, this
overall cost saving is calculated automatically by the system.
In summary, this proof illustrates the power of relational cost analysis in our setting. In partic-

ular, the costs of f x and mapM f xs cannot be easily captured by a unary cost analysis of mapM.
Nevertheless, our extrinsic approach overcomes this restriction by allowing such ‘higher-order
costs’ to cancel out on both sides of the theorem’s proof statement. Furthermore, storing the costs
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Table 1. Cost Analysis Using the RTick Library. Code reports the lines of executable code, Spec reports the

lines of specifications, and Proof reports the lines of proof terms.

Lines of code

Property Code Spec Proof

Laziness [Danielsson 2008]

Insertion sort Cost(lisort xs) ≤ |xs | 11 9 0
Implicit queues Cost(lsnoc q x) = 5, Cost(view q) = 1 47 22 0

Relational [Aguirre et al. 2017; Çiçek et al. 2017; Radiček et al. 2018]

2D count Cost(2DCount find1) ≤ Cost(2DCount find2) 17 7 21
Binary counters Cost(decr k tt) = Cost(incr k ff) 23 18 16
Boolean expressions NoShort(e) ⇒ Cost(eval1 e) = Cost(eval2 e) 24 2 6
Constant-time comparison Cost(compare p u1) = Cost(compare p u2) 6 5 2
Insertion sort Sorted(xs) ⇒ Cost(isort xs) ≤ Cost(isort ys) 11 19 53
Memory allocation of length Cost(length2 xs) - Cost(length1 xs) = |xs | 13 6 5
Relational insertion sort Cost(isort xs) - Cost(isort ys) = unsortedDiff xs ys 21 25 16
Relational merge sort Cost(msort xs) - Cost(msort ys) ≤ |xs |(1 + log2(diff xs ys)) 34 21 52
Square and multiply Cost(sam t x l1) - Cost(sam t x l2) ≤ t * diff l1 l2 16 8 2

Datatypes [Vazou et al. 2018]

Append’s monoid laws see example 6 of section 2 13 18 75
Appending Cost(xs ++ ys) = |xs | 9 6 0

Flattening Perfect(t)⇒ Cost(fastFlatten t) = 2 |t| − 1 21 17 56
Optimised-by-construction reverse slowReverse xs >== |xs | ==> fastReverse xs 18 38 183

Reversing (naive) Cost(slowReverse xs) = |xs|2

2 +
|xs| + 1

2 14 16 52
Reversing (optimised) Cost(fastReverse xs) = |xs | 8 7 0

Higher-Order

fold Cost(foldl xs) = |xs |, Cost(foldl’ xs) = 0 9 3 0
foldM Cost(foldlM xs) = (1 + n) |xs |, Cost(foldlM’ xs) = n |xs | 7 3 0
foldM relational foldlM xs >== |xs | ==> foldlM’ xs 13 3 19
Map fusion (mapM f xs >>= mapM g) >== |xs | ==> (mapM (f >=> g) xs) 8 2 26

Sorting

Data.List.sort Cost(ssort xs) ≤ 4 |xs | log2 |xs | + |xs | 42 52 70
Insertion sort Cost(isort xs) ≤ |xs |2 11 8 0
Merge sort xs

2 log2 |xs | ≤ Cost(msort xs) ≤ |xs | + |xs | 27 53 144
Quicksort Cost(qsort xs) ≤ 1

2 (|xs | + 1) (|xs | + 2) 11 3 25

Total 434 371 823

of f x and mapM f xs in a where clause allowed us to primarily focus on the correctness aspect
of the proof. As such, we have not only shown how reasoning about resource usage can be as
straightforward as reasoning about correctness, we have shown that the two can in fact coincide.

4.4 Summary of Examples

To finalise the library’s evaluation, we provide a summary of all of the examples we have surveyed
during its development. Each example’s source files are available online [Handley and Vazou 2019].

Overview. Table 1 provides a quantitative summary of each example and is split into five cate-
gories. The first three categories include examples from the existing literature, the fourth category
consists of higher-order examples, and the final category includes the complexity analysis of
different sorting algorithms. An overview of the five categories is provided below.

ś Laziness includes functions that manipulate lazy lists and lazy queues from [Danielsson 2008].
For example, in section 4.2, we proved that non-strict insertion sort on lazy lists is linear. We
also encoded lazy queues and proved that viewing a lazy queue and appending at the end
are constant-time operations. Danielsson [2008] reifies cost using a type-level index, namely
Thunk n a where n is a type-level Nat, while we use a value-level integer field. Because of this
distinction, Danielsson [2008] does not require ghost cost parameters (as per our =<<{·} of
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section 4.1). On the other hand, type-level costs cannot be abstracted, which is a requirement
of our higher-order examples. Finally, as our analysis builds on top of Liquid Haskell’s existing
features, it incorporates additional (automated) correctness properties such as ‘sortedness’.

ś Relational comprises all the cost analysis examples from [Aguirre et al. 2017; Çiçek et al. 2017;
Radiček et al. 2018]. These examples compare the resource usage of the same function on different
inputs, for instance, constant-time comparison from section 2.2, or different functions on the
same input, for instance, the memory allocation case study compares the memory required by
the standard and tail recursive implementations of the length function.
This set of examples highlights a number of distinctions between our approach and relational
refinement type systems developed for resource analysis. First of all, our system is agnostic to
the resource being analysed, which means that the user has the flexibility to define arbitrary
resources but also the responsibility to manually annotate resource usage. In comparison, the
approach taken by [Çiçek et al. 2017] only analyses runtime complexity.
Secondly, unary cost analysis in our setting is automatically checked, but users must specify
appropriate cost bounds manually, which adds some complexity to the analysis. In relational sys-
tems, such annotations are not required when the analysis is performed using ‘synchronous’ rules.
However, when synchronous rules fail, relational systems essentially replicate the unary analysis
automatically performed by our system. Whether to use the synchronous or ‘asynchronous’
approach is dictated by heuristics [Çiçek et al. 2019].
And finally, in many of our examples, we must manually prove extrinsic theorems that can be
automatically inferred by relational type systems. This is to be expected, as such systems are
specialised for resource tracking. Nonetheless, these systems cannot encode the sophisticated
correctness invariants, such as sortedness, that we frequently use to simplify our analyses.

ś Datatypes includes properties concerning lists, trees, and function optimisations whose Liquid
Haskell correctness proofs initially appeared in [Vazou et al. 2018]. We used the proof combinators
of figure 2 to extend the correctness proofs with explicit resource tracking. Our experience, in
accordance with the case study of section 4.3, is that because Liquid Haskell has SMT-automated
integer arithmetic, reasoning about resource usage is as straightforward as reasoning about
correctness. In fact, most of our proofs are very similar to their correctness counterparts.

ś Higher-Order includes three higher-order examples. As per example 2 in section 2, we tracked
the number of thunks allocated by foldl and foldl'. We then extended the analysis, considering
foldM and foldM' whose functional arguments can also allocate thunks. For unary analysis, the
cost of the function being folded is bounded above by a ghost cost parameter n. The relational
comparison between foldM and foldM' does not require this bound and is greatly simplified
using our proof combinators, similarly to the map fusion case study of section 4.3.
This category illustrates two key features of our analysis. Firstly, tracked resources can have
arbitrary, user-defined meanings, such as number of allocated thunks. And secondly, our analysis
supports higher-order functions, whose resource analysis is straightforward in a relational setting.

ś Sorting includes the analysis of well-known sorting algorithms: Data.List’s smooth merge sort,
insertion sort, merge sort, and quicksort. Other than the known upper bounds of the algorithms,
we proved a lower bound for merge sort (section 2.2) and that both insertion sort (section 4.1)
and smooth merge sort require at most linear comparisons when applied to sorted lists.
Two of the functions listed above have logarithmic bounds.We axiomatised logarithmic properties
as Haskell functions using Liquid Haskell’s assume feature. To prove these complexity bounds
we used extrinsic reasoning, making explicit calls to the axioms when necessary. This showcases

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 24. Publication date: January 2020.



24:22 Martin A.T. Handley, Niki Vazou, and Graham Hutton

Constants c ::= 0, 1,−1, . . . | true, false

| +,−, . . . | =, <, . . . | crash

Values w ::= c | λx .e | D e

Expressions e ::= w | x | e e | let x = e in e

| case x = e of {D y → e}

Refinements r ::= e

Basic types B ::= Int, Bool, T

Types τ ::= {v :B | r } | x :τ → τ

Evaluation Contexts C ::= · | C e | c C | D e C e

| case x = C of {D y → e}

Reduction

C[e] ֒→ C[e ′] if e ֒→ e ′

c w ֒→ δ (c,w)

(λx .e) ex ֒→ e[ex /x]

let x = ex in e ֒→ e[ex /x]

case x = D j e of {Di yi → ei } ֒→ ej [D j e/x][e/yi ]

Figure 3. λU : Syntax and Operational Semantics as in [Vazou et al. 2014].

another feature of our analysis: despite Liquid Haskell only providing SMT automation for linear
arithmetic, our analysis is still able to check arbitrarily expressive resource bounds.

Overall, we chose these examples because they: required both unary and relational cost analysis;
imposed constraints on the inputs to functions; were reasonably challenging to encode using our
library; allowed us to draw comparisons against existing systems. Importantly, all of the examples
demonstrate how correctness properties can be naturally integrated into our cost analysis.

Breakdown. Each line in table 1 describes an indicative property we proved. In some cases, we
proved additional properties. In other cases, the desired property required proving a stronger
theorem. Due to space limitations, these additional properties are not included. However, the source
files for all of the examples are available on the library’s GitHub page [Handley and Vazou 2019].

Synopsis. In total, we wrote 434 lines of executable code, 371 lines of Liquid Haskell specifications,
and 823 lines of proof terms. The total lines of code dedicated to specifications and proofs is
approximately three times as much as executable code. Given the complexity of the properties
we have proved, we consider this reasonable. Moreover, the size of many proof terms has been
decreased by using Liquid Haskell’s PLE feature [Vazou et al. 2017].

5 CORRECTNESS OF STATIC COST ANALYSIS

In this section, we prove the correctness of our cost analysis using the metatheory of Liquid Haskell.

5.1 Metatheory of Liquid Haskell

Figure 3 summarises the syntax and operational semantics of λU , the core language used to model
Liquid Haskell [Vazou et al. 2014]. The language λU includes constants, abstractions, applications, let
and case statements, and datatypes. Its operational semantics is defined as a contextual, small-step,
call-by-name relation ֒→ whose reflective, transitive closure is denoted by ֒→⋆.
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Constants. Constants applied to values are reduced in one step using the primitive constant
operation c w ֒→ δ (c,w). For example, consider (=), the primitive equality operator on integers. In
this instance, δ (=,n) � =n , where δ (=n ,m) equals true iff m is the same as n.

Types. The basic types in λU are integers, booleans, and type constructors. Types are either
refinement types of the form {v :B | e} where the basic type B, captured by the variable v , is refined
by the boolean expression e ; or dependent function types of the form x :τx → τ , where the input x
has the type τx and the result type τ may refer to the binder x .

Denotations. Each type τ denotes a set of expressions [|τ |], defined by the dynamic semantics
in [Vazou et al. 2014]. Let ⌊τ ⌋ be the type obtained by erasing all refinements from τ and e:⌊τ ⌋ be
the standard typing relation for the λ-calculus. Then, we define the denotation of types as follows:

[|{x :B | er }|] � {e | e:B, if e ֒→⋆ w, then er [w/x] ֒→⋆ true}

[|x :τx → τ |] � {e | e:⌊x :τx → τ ⌋,∀ex ∈ [|τx |].e ex ∈ [|τ [ex/x]|]}

Syntactic Typing. The typing judgement Γ ⊢ e::τ decides syntactically if e is a member of τ ’s
denotation using the environment Γ that maps variables to their types: Γ � x1:τ1, . . . , xn :τn .
To analyse resource usage in λU we do not need to modify the typing rules [Vazou et al. 2014].

Instead, we can use λU constants to encode Tick’s annotation functions. This corresponds to our
implementation, as we define RTick as a library without changing the underlying behaviour of
Liquid Haskell. To type a λU constant c , we use the meta-function Ty(c) that returns the type of c:

Γ ⊢ c::Ty(c)
T-Con

To ensure soundness, Ty(c) should satisfy denotational inclusion: c ∈ [|Ty(c)|]. For example:

Ty(3) � {v :Int | v == 3}
Ty(+) � x :Int → y:Int → {v :Int | v == x + y}

Soundness of λU . The soundness of λU states that if each constant belongs to the denotation of
its assumed type, then syntactic typing implies denotational inclusion:

Theorem 5.1 (Soundness of λU ). If for all c , c ∈ [|Ty(c)|], then ∅ ⊢ e ::τ implies e ∈ [|τ |].

5.2 Correctness of Cost Analysis

As λU contains type constructors, data constructors, and constants but does not support type
polymorphism, we formalise our approach by defining the Tick datatype and a number of its
annotation functions as a type family, where each function is a λU constant. The correctness of our
cost analysis is then simply a corollary of the soundness of λU .

The Tick Datatype. For each type τ , we define a datatype Tickτ with a single data constructor:
Tickτ :: Int → τ → Tickτ . Tickτ data constructors should not be used directly. Instead, each
Tickτ datatype should be accessed implicitly using the constants defined below.

Resource Annotations. We define the following annotation functions from section 3.2 as λU

constants: returnτ , bindτ ,τ ′ , stepτ , tcostτ , tvalτ for each types τ , τ ′. We use λU to define the types
and (type-specific) bodies of each constant just as in section 3.2. Because Liquid Haskell type-checks
the previous definitions, we have that c ∈ [|Ty(c)|] for each constant returnτ , bindτ ,τ ′ , and so on.
Therefore, these constants can be used safely in λU while preserving soundness.
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Safe Expressions. Recall from section 3.4 that the library imposes the following restrictions on
annotated expressions to correctly analyse their resource usage: firstly, expressions should not be
defined using tval or tcost; secondly, expressions should not perform case analysis on the Tick

data constructor. We formalise these restrictions by defining a safety predicate on λU expressions:

Definition 5.2 (Safety). A λU expression e is safe iff :

ś e:τ , that is, e is typeable;
ś e’s body is not defined in terms of any tcostτ or tvalτ constants;
ś e does not perform case analysis on any Tickτ data constructors.

Execution Cost. Consider a safe, terminating function f that returns a value of type Tickτ for
some type τ , that is, f :: x :τx → Tickτ . We define the execution cost of f on an input ex :: τx to be
the index of the returned value. That is, the execution cost of f ex is i where f ex ֒→

⋆ Tickτ i v .
As f does not directly modify any Tickτ datatypes, all resource consumptions or productions via
applications of stepτ in f ’s definition accumulate in the cost i of the final value, Tickτ i v .

Static Cost Analysis. Finally, we use the soundness of λU to show that the library’s intrinsic and
extrinsic approaches are both correct with respect to the above definition of execution cost:

Theorem 5.3 (Correctness of Cost Analysis). Let p :: Int → Bool be a predicate over integers

and f :: x :τx → τ a safe and terminating function.

ś Intrinsic cost analysis If ∅ ⊢ ef ::x :τx →{t :Tickτ | p (tcostτ t)}, then for all ex ∈ [|τx |],

ef ex ֒→
⋆ Tickτ i e and p i ֒→

⋆ true.

ś Extrinsic cost analysis If ∅ ⊢ e ::x :τx →{v :τ | p (tcostτ (f x))}, then for all ex ∈ [|τx |],

f ex ֒→
⋆ Tickτ i e and p i ֒→

⋆ true.

The proof of this theorem follows immediately from the soundness of the core language λU , the
denotations of dependent function types, and the definition of tcostτ .

Other Annotations. Theorem 5.3 proves that the library’s cost analysis is consistent for annotated
expressions defined using return , (>>=) , and step. However, the RTick module provides manymore
annotation functions, for example, pure and (<*>) introduced in section 3.2. All such functions can
be defined using return , (>>=) , and step: a proof of this fact can be found on the library’s GitHub
page [Handley and Vazou 2019]. Thus, we implicitly extend theorem 5.3 to include expressions
defined using any of the helper functions provided by the RTick module.

6 RELATED WORK

Our work has been strongly influenced by Danielsson [2008]’s lightweight framework for cost
analysis in Agda. Danielsson’s library is based on the Thunk datatype (and shares the same name),
which is indexed with a dependent type used tomeasure the runtime complexity of purely functional
algorithms and data structures in the style of Okasaki. Our Tick datatype is comparable to Thunk ,
but captures abstract resource usage at the value-level. Much of Thunk’s analysis requires basic
equality proofs because Agda does not automatically prove arithmetic equalities. In contrast, our
use of Liquid Types allows us to delegate all (linear) arithmetic necessary for our cost analysis to an
SMT solver. Another notable distinction between the two approaches is that our library supports
unary and relational cost analysis, whereas the Thunk library only supports the unary variant.

Indexed types have been widely used for resource analysis. Crary and Weirich [2000] index the
type of functions to compute the number of recursive calls required by their executions. Sized
types [Hughes et al. 1996; Vasconcelos and Hammond 2003], which index types with natural
numbers that denote the size of their values, have also been used to analyse runtimes. However,
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none of these approaches can express correctness properties, which as we have seen, allow for a
more precise analysis. Recent work [McCarthy et al. 2017; Wang et al. 2017] combines indexed types
with functional correctness. McCarthy et al. [2017] develop a Coq library that uses a monad indexed
by a predicate to measure runtimes. The approach is comparable to Danielsson [2008]’s, however
the predicate is used to express invariants of data structures. This enables more complex case
studies (such as Okasaki’s Braun Trees) to be examined. Another distinction is that cost annotations
can be automatically inserted, and then erased when code is extracted. A method for automated
annotation is part of our future work. Similarly to Danielsson [2008], relational cost analysis is
not supported. TiML [Wang et al. 2017] indexes the types of functions with their time bounds.
A significant feature of this system is that it provides automated support for solving recurrence
relations, by heuristically matching against cases of the Master Theorem. In comparison, we use
extrinsic proofs to manually derive time complexity theorems. Similarly to our approach, TiML
supports sophisticated invariants, however, they are only exploited for the purposes of cost analysis.
Our library on the other hand uses invariants to simultaneously reason about correctness and
resource usage. More generally, existing cost analyses based on indexed types [Xi and Pfenning
1999], as well as those using dependent types in languages such as Coq [Bertot and Castéran 2013]
and Agda [Norell 2008] are also capable of encoding correctness properties to aid their analysis.

Automatic Amortized Resource Analysis (AARA) [Hofmann and Jost 2003] aims to automatically
derive amortised bounds on execution cost. This is achieved using a type system that generates
resource-specific inequalities to be solved by a linear programming solver. The initial system [2003]
supports linear bounds on monomorphic, first-order programs but this has since been generalised
to incorporate polynomial bounds [Hoffmann et al. 2011, 2012], higher-order functions [Jost et al.
2010], parallelism [Hoffmann and Shao 2015], and most recently, a Haskell-like lazy semantics [Jost
et al. 2017]. As AARA focuses on automatically inferring bounds, its analysis is often less precise
than ours. In particular, our library’s extrinsic resource analysis can notionally compute resource
bounds of any kind: examples of polynomial, logarithmic, and polylogarithmic bounds appear
throughout the article. In comparisons, AARA is (at best) restricted to polynomial bounds, though
such bounds can be automatically inferred. Correctness invariants are not supported by AARA.

RelCost [Çiçek et al. 2017; Çiçek 2018] is a refinement type and effect system for both relational
and unary cost analysis. The main idea is to reason about structurally related expressions as much
as possible to calculate precise resource bounds via relational cost analysis. When programs or
inputs are not structurally related, the system reverts back to performing unary cost analysis. This is
achieved using two ‘modes’ of typing: one for similar expressions and one for unrelated expressions.
Liquid Haskell only supports one mode of typing, nevertheless, our library fully supports relational
cost analysis by way of extrinsic theorems. The refinements used by Liquid Haskell are more
expressive than those used by RelCost, which allows us to consider additional examples.

BiRelCost [Çiçek et al. 2019] is a bidirectional type checker for RelCost, implemented in OCaml.
This system, which appears to be the first of its kind, is able to type check all of the examples
presented in [Çiçek et al. 2017], and does so automatically while only requiring minimal annotations
from the user. However, the implementation is incomplete and relies on example-driven heuristics
to avoid nondeterminism in its type checking process. Nondeterminism (and completeness) is not a
concern for our system, but we have seen throughout the article that users are often required to
provide manual proofs of resource usage, specifically for our extrinsic approach. Fundamentally,
we see this as a compromise between expressiveness and automation.

Radiček et al. [2018] develop theoretical frameworks for unary and relational cost analysis
implemented in RHOL. The underlying language includes a monad used to encapsulate expressions
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with cost, much like our Tick datatype, which shares the same monadic implementation. Similarly
to our approach, the frameworks can express correctness properties that allow for a more precise
analysis. In fact, Aguirre et al. [2017] show that relational logics are as expressive as HOL, which is
in turn as expressive as Liquid Haskell [Vazou et al. 2017]. Radiček et al. [2018] note that the use
of a cost monad łsyntactically separates reasoning about costs from reasoning about functional
properties, thus improving clarity in proofsž. From our experience, reasoning independently about
correctness and resource usage (using the tval or tcost project functions, respectively) can indeed
simplify steps of (in)equational reasoning, especially in the latter case. On the other hand, we have
also demonstrated that reasoning about both simultaneously can be very useful, for example, when
considering higher-order properties such as map fusion.

Madhavan et al. [2017] present a system that can verify resource bounds for higher-order
programs with lazy evaluation, written in Scala. Similarly to our system, users must specify
desired bounds. However, such bounds are templates, which may contain ‘numerical holes’ that are
automatically inferred. During this verification process, programs are transformed to make their
resource usage explicit. In particular, the forcing of thunks is made explicit as per our pay function.

Improvement theory [Moran and Sands 1999] inspired our notions of improvement and quan-
tified improvement. Previously, Sands [1995] introduced improvements as a semantic approach
to relational cost analysis, which can be used to prove equivalences between programs. Similarly,
improvements in this context only offer a qualitative guarantee that one program uses no more
resources than another. In this work, we have extended this notion to quantify such guarantees.

7 CONCLUSION AND FURTHER WORK

This article has demonstrated how refinement types can be used to reason in a precise manner
about execution cost. In particular, we have developed a Liquid Haskell library that can be used to
analyse the resource usage of pure Haskell programs. Furthermore, by surveying a wide range of
examples from the literature, we have shown how harnessing Liquid Haskell’s existing support for
correctness verification ensures that cost analysis is both valid and precise.

There are a number of potential avenues for further work. Firstly, we would like to use metapro-
gramming to automate code annotation prior to analysis, and furthermore, remove all such annota-
tions post analysis. Secondly, we wish to provide support for solving recurrence relations and Big-O
complexity analysis. For this, we look to the TiML language for guidance. Thirdly, it would be
beneficial to incorporate the cost analysis of monadic code, for example, the parallelised version of
quicksort. We suspect this requires reimplementing the Tick datatype as a monad transformer. And
finally, for more accurate predictions of actual hardware costs, our analysis should take account
of the issue of garbage collection. This would require a separate ‘points-to’ analysis for Haskell,
which does not currently exist. However, combining the results of such an analysis with our system
would be feasible because our approach supports reasoning about any notion of resource.
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