
 

Alternative flow equation for the functional renormalization group
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We derive an alternative to the Wetterich-Morris-Ellwanger equation by means of the two-particle
irreducible (2PI) effective action, exploiting the method of external sources due to Garbrecht and
Millington. The latter allows the two-point source of the 2PI effective action to be associated consistently
with the regulator of the renormalization group flow. We show that this procedure leads to a flow equation
that differs from that obtained in the standard approach based on the average one-particle irreducible
effective action.
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I. INTRODUCTION

The effective action [1,2] provides a powerful framework
for describing the nonperturbative behavior of quantum
mechanical systems, having been employed extensively in
both the relativistic and nonrelativistic regimes. Once
extended by the introduction of a regulator, which allows
us to integrate in only a continuous subset of momentum
modes above a given energy scale k, the so-called average
one-particle irreducible (1PI) effective action [3] yields a
self-consistent equation, due toWetterich [4],Morris [5] and
Ellwanger [6] (see also Ref. [7] by Reuter in the context of
gravity), for the renormalization group (RG) flow of the
effective action (for reviews, see Refs. [8–11]). This flow
equation has been used to study critical phenomena [12–14]
(cf. Ref. [15]), to illustrate the emergence of the Maxwell
construction in theories with spontaneous symmetry break-
ing [16] (cf. Ref. [17]), and to derive the beta functions and
identify the fixed points of various interacting quantum field
theories, notably in the context of the ongoing asymptotic
safety program of quantum gravity [18–22] (for reviews, see
Refs. [23–26]), as initiated by Weinberg [27].
In this article, we derive an alternative flow equation

from the two-particle irreducible (2PI) effective action by
means of the method of external sources due to Garbrecht
and Millington [28]. We show that the resulting flow
equation differs to that derived from the average 1PI
effective action, suggesting there exists an ambiguity in
the “correct” choice of exact flow equation. The procedure

presented here does not amount to a 2PI generalization of
the average 1PI effective action, cf., e.g., Refs. [9,29].

II. 2PI EFFECTIVE ACTION

The 2PI effective action [2]

Γ2PI½ϕ;Δ� ¼W½J ;K�þJ xϕxþ
1

2
KxyðϕxϕyþℏΔxyÞ ð1Þ

is the Legendre transform of the Schwinger functional

W½J ;K� ¼ −ℏ lnZ½J ;K� ð2Þ

with respect to the sources J and K, where

Z½J ;K� ¼
Z

DΦexp

�
−
1

ℏ

�
S½Φ�−J zΦz −

1

2
KzwΦzΦw

��

ð3Þ

is the source-dependent Euclidean path integral for the
theory with classical action S½Φ�. We employ the DeWitt
notation throughout, wherein repeated continuous indices
are integrated over, i.e., J xϕx ≡ R

d4xJ ðxÞϕðxÞ.
The sources J and K are functionals of the conjugate

variables ϕ and Δ, i.e., J x≡J x½ϕ;Δ� and Kxy≡Kxy½ϕ;Δ�,
defined via the partial functional variations

δΓ2PI½ϕ;Δ�
δϕx

¼ J x þKxyϕy; ð4aÞ

δΓ2PI½ϕ;Δ�
δΔxy

¼ ℏ
2
Kxy: ð4bÞ

The conjugate variables are respectively the connected
one- and two-point functions
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ϕx ¼ −
δW½J ;K�

δJ x
; ð5aÞ

ℏΔxy ¼ −2
δW½J ;K�
δKxy

− ϕxϕy; ð5bÞ

which are, in corollary, functionals of the sources J and K,
i.e., ϕx ≡ ϕx½J ;K� and Δxy ≡ Δxy½J ;K�.
We can proceed perturbatively by performing a saddle-

point evaluation of the path integral in Eq. (3). The saddle
points fφg satisfy the stationarity condition

δS½Φ�
δΦx

����
Φ¼φ

− J x½ϕ;Δ� −Kxy½ϕ;Δ�φy ¼ 0; ð6Þ

indicating that φ is itself a functional of ϕ and Δ, and
thereby also J and K, i.e., fφg≡ fφg½ϕ;Δ�. The place-
ment of the functional arguments reflects the fact that both
the number and nature of the saddle points depend on the
configuration (ϕ;Δ); see Ref. [30].
In the approach of Ref. [28], and in the case of a single

saddle point, the stationarity condition in Eq. (6), combined
with the variation in Eq. (4a), can be used to constrain the
linear combination J x þKxyϕy of the sources. This,
however, provides only one constraint, and we are free
to choose the other, fixing, for instance, the form of the
two-point source Kxy. If we choose this constraint to be the
Schwinger-Dyson equation then we recover the standard
Cornwall-Jackiw-Tomboulis 2PI effective action [2], with
the exception that the saddle-point configuration is driven
towards the quantum-corrected trajectory of the system.
The latter feature is particularly relevant in the case of false
vacuum decay in theories with radiatively generated spon-
taneous symmetry breaking (see Refs. [28,31,32]), for
instance via the Coleman-Weinberg mechanism [33].
Alternatively, we can constrain the two-point source to
be local, i.e., taking Kxy ¼ Kxδ

4ðx − yÞ, giving the two-
particle point-irreducible effective action of Verschelde and
Coppens [34]. If, in the case of global symmetries, we
instead use the Ward identities to constrain the two-point
source in perturbative truncations of the effective action, we
obtain results in the spirit of the symmetry-improved 2PI
effective action of Pilaftsis and Teresi [35].
In this article, we choose the two-point source to be the

regulator of the RG evolution and find that this procedure
does not reproduce the well-known flow equation due to
Wetterich [4], Morris [5] and Ellwanger [6].

III. EXACT FLOW EQUATIONS

A. Average-1PI approach

The standard derivation of the exact flow equation
follows from the average 1PI effective action

Γ1PI
av ½ϕ;RðkÞ� ¼ W½J ;RðkÞ� þ J xϕx þ

1

2
ϕxR

ðkÞ
xy ϕy; ð7Þ

where J x ≡ J x½ϕ� and

ϕx ¼ −
δW½J ;RðkÞ�

δJ x
: ð8Þ

The regulator1 RðkÞ
xy appears in the path integral Z½J ;RðkÞ�,

as defined in Eq. (3), leading to the scale-dependent
Schwinger functional W½J ;RðkÞ�≡ −ℏ lnZ½J ;RðkÞ�,
whose variation with respect to the scale k yields the
Polchinski equation [36]. Notice that no extremization is
taken with respect to the regulator.
If ϕ is to remain a free variable, independent of the scale

k, it follows from Eq. (8) that

∂kϕx ¼ −∂k
δW½J ;RðkÞ�

δJ x
¼! 0; ð9Þ

and J x ≡ J ðkÞ
x ½ϕ� must therefore be a function of k.

Varying Eq. (7) with respect to the scale k then gives

∂kΓ1PI
av ½ϕ;RðkÞ� ¼ ∂kW½J ðkÞ;RðkÞ� þ ϕx∂kJ

ðkÞ
x

þ 1

2
ϕx∂kR

ðkÞ
xy ϕy; ð10Þ

and the derivative of the Schwinger functional is

∂kW½J ðkÞ;RðkÞ� ¼ −ϕx∂kJ
ðkÞ
x

−
1

2
ðℏΔðkÞ

xy þ ϕxϕyÞ∂kR
ðkÞ
xy ; ð11Þ

where we have defined the connected two-point function

ΔðkÞ
xy ¼ −

δ2W½J ðkÞ;RðkÞ�
δJ ðkÞ

x δJ ðkÞ
y

: ð12Þ

Substituting Eq. (11) back into Eq. (10), we obtain

∂kΓ1PI
av ½ϕ;RðkÞ� ¼ −

ℏ
2
TrðΔðkÞ � ∂kRðkÞÞ; ð13Þ

where the asterisk indicates a spacetime convolution, i.e.,

ΔðkÞ �RðkÞ ≡ ΔðkÞ
xy R

ðkÞ
yz . Equation (13) is the well-known

flow equation of the functional RG.

B. 2PI approach

All of the information about the dynamics of an
interacting system is encoded in the infinite set of its
n-point functions, and the coupled system of equations that
these functions satisfy can be derived from the nPI effective

1Note that we use an unusual sign convention for the definition
of the regulator in order to make a clearer comparison with our
2PI approach.
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action. In the case of the RG flow, we are interested in
knowing how this set of n-point functions changes with
scale. Since the flow equation of the functional RG is
concerned with the change in the two-point function with
scale, it seems reasonable therefore that the starting point
should be the 2PI effective action.
Before proceeding, it is important to consider the

convexity of the 2PI and average 1PI effective actions. It
is well known that the nPI effective actions are convex with
respect to the variables that are convex conjugate to the
sources. In the case of the 2PI effective action, the convex-
conjugate variables are ϕx and Δ0

xy ¼ ℏΔxy þ ϕxϕy; see
Ref. [30]. Specifically, we have

−HessðΓ2PIÞðϕ;Δ0Þ · HessðWÞðJ ;K0Þ ¼ I; ð14Þ
where HessðΓ2PIÞðϕ;Δ0Þ is the functional Hessian matrix of
Γ2PI½ϕ;Δ� with respect to ϕ and Δ0, and HessðWÞðJ ;K0Þ is
the functional Hessian matrix ofW½J ;K� with respect to J
and K0 ≡K=2. From Eq. (5), we see that HessðWÞðJ ;K0Þ
is the negative of a covariance matrix and therefore negative
semidefinite. Excepting the singular case, it follows from
Eq. (14) that HessðΓ2PIÞðϕ;Δ0Þ is positive definite, imply-
ing that Γ2PI½ϕ;Δ� is convex with respect to ϕx and Δ0

xy.
However, for a given Δxy ≠ Δ0

xy, the 2PI effective action
need not be convex in the ϕ direction. This is shown
explicitly in the case of a zero-dimensional quantum field
theory with spontaneous symmetry breaking in Ref. [30]
[see Fig. 3(a) therein]. Hence, as is true of the average 1PI
effective action, the 2PI effective action for a given Δxy is
not, in general, convex in the ϕ direction, as required for it
to yield consistent RG evolution.
Returning to the 2PI effective action, its variation with

respect to the scale k is given by

∂kΓ2PI½ϕ;Δ� ¼ δΓ2PI½ϕ;Δ�
δϕx

∂kϕxþ
δΓ2PI½ϕ;Δ�

δΔxy
∂kΔxy: ð15Þ

Again imposing that

∂kϕx ¼ −∂k
δW½J ;K�

δJ x
¼ 0; ð16Þ

and making use of Eq. (4a), we have that

∂kΓ2PI½ϕ;Δ� ¼ ℏ
2
Kxy½ϕ;Δ�∂kΔxy: ð17Þ

Choosing Kxy½ϕ;Δ�≡KðkÞ
xy ½ϕ;Δ� ¼ RðkÞ

xy to be the regula-

tor, Eq. (16) fixes J x ≡ J ðkÞ
x ½ϕ;Δ�, and we obtain

∂kΓ2PI½ϕ;Δ� ¼ ℏ
2
TrðRðkÞ � ∂kΔÞ: ð18Þ

We emphasize that the above restriction of the sources J x

and Kxy fixes the two-point function Δxy ≡ ΔðkÞ
xy ½ϕ� to be

a functional of ϕ. However, the flow remains closed as in the
average 1PI approach. This follows directly from the con-
vexity of the 2PI effective action [cf. Eq. (14)], which yields

−
δ2Γ2PI½ϕ;ΔðkÞ�

δϕxδϕy

δ2W½J ðkÞ;KðkÞ�
δJ ðkÞ

x δJ ðkÞ
y

−
δ2Γ2PI½ϕ;ΔðkÞ�
δϕxδΔ

ðkÞ0
yz

δ2W½J ðkÞ;KðkÞ�
δJ ðkÞ

x δKðkÞ0
yz

¼ 1: ð19Þ

By virtue of Eq. (5), Eq. (19) can be rewritten as

δ2Γ2PI½ϕ;ΔðkÞ�
δϕxδϕy

ΔðkÞ
xy þ δ2Γ2PI½ϕ;ΔðkÞ�

δϕxδΔ
ðkÞ0
yz

δϕx

δKðkÞ0
yz

¼ 1; ð20Þ

where we reiterate that the variations are understood to be
partial functional derivatives. Since we have ensured that ϕ
remains a free variable by appropriately constraining the

sources [cf. Eq. (9)], we have δϕx=δK
ðkÞ0
yz ¼ 0 and we can

immediately confirm that

ΔðkÞ;−1
xy ¼ δ2Γ2PI½ϕ;ΔðkÞ�

δϕxδϕy
¼ Sð2Þxy ½ϕ� −RðkÞ

xy þOðℏÞ; ð21Þ

where

Sð2Þxy ½ϕ�≡ δ2S½Φ�
δΦxδΦy

����
Φ¼ϕ

: ð22Þ

We have included the perturbative expression of ΔðkÞ;−1
in Eq. (21) to highlight the leading dependence on the
regulator RðkÞ.
The above approach differs from that of Ref. [37], which

wasmotivated by problems of on-shell gauge dependence in
the average effective action. In particular, following
Ref. [37] would amount here to the introduction of a source

conjugate to the composite operator ϕxR
ðkÞ
xy ϕy. We remark,

however, that the method of external sources [28], upon
which our approach is based, was introduced as a way of
ensuring that symmetry properties can be preserved in
truncations of the 2PI effective action. We anticipate that
our alternative derivation of the flow equation can readily be
extended to include the additional contributions to the
sources needed to preserve symmetry properties and we
leave it for further work to show whether this methodology
can also be used to alleviate problems of gauge dependence.

IV. DISCUSSION

The average-1PI and 2PI procedures that we have
described lead to two distinct flow equations,

∂kΓ1PI
av ½ϕ;RðkÞ� ¼ −

ℏ
2
STrðΔðkÞ � ∂kRðkÞÞ; ð23aÞ

ALTERNATIVE FLOW EQUATION FOR THE FUNCTIONAL … PHYS. REV. D 100, 101702 (2019)

101702-3



∂kΓ2PI½ϕ;ΔðkÞ� ¼ þℏ
2
STrðRðkÞ � ∂kΔðkÞÞ; ð23bÞ

wherein we have promoted the trace to a supertrace over the
spacetime indices and any additional internal indices for
generality. In Eq. (23a), the flow of the effective action
depends directly on the scale dependence of the regulator.
In Eq. (23b), the flow of the effective action instead
depends only indirectly on the scale dependence of the
regulator, through the scale dependence of the two-point
function. In other words, the introduction of the regulator
always causes a flow of the average 1PI effective action, but
the 2PI effective action flows only if the two-point function
responds to the regulator.
In order to go from the average 1PI effective action to the

2PI effective action,wemust perform an additional Legendre

transform, adding to the former a term ℏRðkÞ
xy ΔðkÞ

yx =2. The
variation of this term with the scale k accounts for the
difference between the right-hand sides of Eqs. (23a) and
(23b).A comparison of the twoprocedures is given inTable I.
The two results coincide if

∂kSTrðΔðkÞ �RðkÞÞ ¼ 0; ð24Þ

and this is not, in general, the case.
Returning to Eq. (24), and making use of Eqs. (21) and

(22), we can write

ΔðkÞ
xy ∂kR

ðkÞ
yx ¼ −ΔðkÞ

xy ∂kΔ
ðkÞ;−1
yx þOðℏÞ: ð25Þ

Since ∂kΔ
ðkÞ;−1
yx ¼ −ΔðkÞ;−1

yz ð∂kΔ
ðkÞ
zw ÞΔðkÞ;−1

wx , we find

∂kðΔðkÞ
xy R

ðkÞ
yx Þ ¼ Sð2Þxy ½ϕ�∂kΔ

ðkÞ
yx þOðℏÞ; ð26Þ

which is, in general, nonzero, such that there is a material
difference between the flow equations in Eq. (23). The first
term on the right-hand side of Eq. (26) can be seen as a
correction to the Wetterich-Morris-Ellwanger equation.
Lastly, we consider the boundary conditions on the 2PI

and average 1PI effective actions. In the limit k → 0, the
regulator vanishes (RðkÞ → 0). In this case, both the 2PI
and average 1PI effective actions coincide with the 1PI
effective action Γ1PI½ϕ� ¼ W½J � þ J xϕx. (The 2PI effec-
tive action for a vanishing two-point source is precisely the
1PI effective action.) Instead, for k → ∞, and if the
regulator diverges (i.e., RðkÞ → −∞) in the same limit,
we do not integrate in any fluctuations, and both the 2PI
and average 1PI effective actions coincide with the classical
action S (see Ref. [8]). Thus, both approaches share the
same boundary conditions, and the only difference is in the
form of the corresponding flow equations [Eq. (23)].

V. CONCLUDING REMARKS

In summary, we have derived an alternative flow
equation for the functional RG evolution, which differs
from the Wetterich-Morris-Ellwanger equation. While the
former is derived from the average 1PI effective action, we
have instead employed a self-consistent procedure based on
the 2PI effective action. An extended discussion of the
differences in the resulting RG evolution for the λϕ4 theory
is presented in a follow-up work [38].
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TABLE I. Comparison of the average 1PI and 2PI effective actions, and their variations. Notice that ΔðkÞ;−1 is obtained from the

functional variation of the shifted average 1PI effective action Γ1PI½ϕ;RðkÞ�≡ Γ1PI
av ½ϕ;RðkÞ� − 1

2
ϕxR

ðkÞ
xy ϕy in the standard approach,

whereas it is obtained directly from the functional variation of Γ2PI½ϕ;ΔðkÞ� in the 2PI procedure presented here. The functional
dependencies of the sources have been included explicitly for clarity. We draw attention to the interchange of the roles played by

RðkÞ
xy ≡ KðkÞ

xy ½ϕ;Δ� and ΔðkÞ
xy in the sixth and eighth rows due to the additional Legendre transform between the left and right columns.

Average 1PI 2PI

Γ1PI
av ½ϕ;RðkÞ� ¼ W½J ðkÞ½ϕ�;RðkÞ� þ J ðkÞ

x ½ϕ�ϕx þ 1
2
RðkÞ

xy ϕxϕy Γ2PI½ϕ;ΔðkÞ� ¼ W½J ðkÞ½ϕ;ΔðkÞ�;KðkÞ½ϕ;ΔðkÞ�� þ J x½ϕ;ΔðkÞ�ϕx

þ 1
2
KðkÞ

xy ½ϕ;ΔðkÞ�ðϕxϕy þ ℏΔðkÞ
xy Þ

ϕx ¼ − δW½J ðkÞ½ϕ�;RðkÞ�
δJ ðkÞ

x ½ϕ� ϕx ¼ − δW½J ðkÞ½ϕ;ΔðkÞ�;KðkÞ ½ϕ;ΔðkÞ ��
δJ ðkÞ

x ½ϕ;ΔðkÞ�

ℏΔðkÞ
xy ¼ −2 δW½J ðkÞ½ϕ�;RðkÞ�

δRðkÞ
xy

− ϕxϕy ¼ −ℏ δ2W½J ðkÞ½ϕ�;RðkÞ�
δJ ðkÞ

x ½ϕ�δJ ðkÞ
y ½ϕ� ℏΔðkÞ

xy ¼ −2 δW½J ðkÞ½ϕ;ΔðkÞ�;KðkÞ½ϕ;ΔðkÞ��
δKðkÞ

xy ½ϕ;ΔðkÞ� − ϕxϕy ¼ −ℏ δ2W½J ðkÞ½ϕ;ΔðkÞ�;KðkÞ½ϕ;ΔðkÞ��
δJ ðkÞ

x ½ϕ;ΔðkÞ�δJ ðkÞ
y ½ϕ;ΔðkÞ�

δΓ1PI
av ½ϕ;RðkÞ�
δϕx

¼ J ðkÞ
x ½ϕ� þRðkÞ

xy ϕy
δΓ2PI½ϕ;ΔðkÞ�

δϕx
¼ J ðkÞ

x ½ϕ;ΔðkÞ� þKðkÞ
xy ½ϕ;ΔðkÞ�ϕy

δΓ1PI
av ½ϕ;RðkÞ�
δRðkÞ

xy
¼ − ℏ

2
ΔðkÞ

xy
δΓ2PI ½ϕ;ΔðkÞ �

δΔðkÞ
xy

¼ þ ℏ
2
KðkÞ

xy ½ϕ;ΔðkÞ�

ΔðkÞ;−1
xy ¼ δ2Γ1PI½ϕ;RðkÞ�

δϕxδϕy
¼ Sð2Þxy ½ϕ� −RðkÞ

xy þOðℏÞ ΔðkÞ;−1
xy ¼ δ2Γ2PI ½ϕ;ΔðkÞ�

δϕxδϕy
¼ Sð2Þxy ½ϕ� −KðkÞ

xy ½ϕ;ΔðkÞ� þOðℏÞ
∂kΓ1PI

av ½ϕ;RðkÞ� ¼ δΓ1PI
av ½ϕ;RðkÞ �
δϕx

∂kϕx þ δΓ1PI
av ½ϕ;RðkÞ�
δRðkÞ

xy
∂kR

ðkÞ
xy ∂kΓ2PI½ϕ;ΔðkÞ� ¼ δΓ2PI½ϕ;ΔðkÞ�

δϕx
∂kϕx þ δΓ2PI½ϕ;ΔðkÞ�

δΔðkÞ
xy

∂kΔ
ðkÞ
xy
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