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Abstract 1 

Background: Hepatokines such as fibroblast growth factor 21 (FGF21), leukocyte cell-derived 2 

chemotaxin 2 (LECT2), fetuin-A, fetuin-B and selenoprotein P (SeP) are liver-derived proteins 3 

which are modulated by chronic energy status and metabolic disease. Emerging data from 4 

rodent and cell models indicate that hepatokines may be sensitive to acute nutritional 5 

manipulation; however, data in humans are lacking. 6 

Objective: To investigate the influence of hyper-energetic, high-fat feeding on circulating 7 

hepatokine concentrations, including the time-course of responses.  8 

Methods: In a randomised, crossover design, 12 healthy men (mean ± SD: age, 24 ± 4 years; 9 

BMI, 24.1 ± 1.5 kg∙m-2) consumed a seven-day hyper-energetic, high-fat diet (HE-HFD; +50% 10 

energy, 65% total energy as fat [32% saturated, 26% monounsaturated, 8% polyunsaturated]) 11 

and control diet (36% total energy as fat), separated by three weeks. Whole-body insulin 12 

sensitivity was assessed before and after each diet using oral glucose tolerance tests. Fasting 13 

plasma concentrations of FGF21 (primary outcome), LECT2, fetuin-A, fetuin-B, SeP, and 14 

related metabolites were measured after 1, 3 and 7 d of each diet. Hepatokine responses were 15 

analysed using two-way repeated-measures ANOVA and subsequent pairwise comparisons. 16 

Results: Compared with control, the HE-HFD increased circulating FGF21 at 1 (105%) and 3 17 

d (121%; P  0.040); LECT2 at 3 (17%) and 7 d (32%; P  0.004); and fetuin-A at 7 d (7%, P 18 

= 0.028). Plasma fetuin-B and SeP did not respond to the HE-HFD. Whole-body insulin 19 

sensitivity was reduced after the HE-HFD by 31% (P = 0.021). 20 

Conclusions: Acute high-fat overfeeding augments circulating levels of FGF21, LECT2 and 21 

fetuin-A in healthy men. Notably, the time-course of response varies between proteins and is 22 

transient for FGF21. These findings provide further insight into the nutritional regulation of 23 
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hepatokines in humans and their interaction with metabolic homeostasis. This study was 24 

registered at clinicaltrials.gov as NCT03369145.  25 

Key words: hepatokines, high-fat diet, overfeeding, insulin resistance, FGF21, LECT2, fetuin-26 

A, fetuin-B, selenoprotein P  27 
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Introduction 28 

The strong observational link that exists between hepatic steatosis and altered peripheral 29 

metabolism has stimulated interest regarding metabolic cross-talk between the liver and 30 

peripheral tissues (1,2). Analogous to ‘adipokines’ and ‘myokines’, ‘hepatokines’ have 31 

recently been identified as liver-secreted proteins (predominantly or exclusively) with the 32 

capacity to exert systemic metabolic effects in an endocrine-like manner (3,4). Prominent 33 

within this novel area is a connection identified between hepatokines, insulin sensitivity and 34 

glucose metabolism (4–8). This link has highlighted hepatokines as novel targets within the 35 

management of obesity-related chronic disease (7,9,10).   36 

The regulation of hepatokines appears to be related to long-term energy balance, as 37 

demonstrated by associations between hepatokines, adiposity and obesity-related metabolic 38 

dysfunction (4,6,7). Pre-clinical, mechanistic studies support this notion, showing that chronic 39 

high-fat overfeeding modulates hepatocyte gene expression (4,11–13). The importance of this 40 

regulatory process for systemic metabolism has been highlighted recently; where secreted 41 

factors from steatotic hepatocytes induced pro-inflammatory signalling and insulin resistance 42 

in cultured cells (4). 43 

In addition to chronic regulatory influences, recent pre-clinical research indicates that 44 

hepatokines may also be sensitive to acute perturbations in energy balance and nutrition. For 45 

instance, leukocyte cell-derived chemotaxin 2 (LECT2) is a novel hepatokine which promotes 46 

insulin resistance in peripheral tissues (7,14) and is suppressed by acute exercise and fasting; 47 

but increases in response to chronic overfeeding (7). In a rodent weight cycling model, LECT2 48 

was recently shown to respond dynamically to alternating periods of hypercaloric and eucaloric 49 

feeding (15). Hepatic activation of the energy-sensing kinase AMP-activated protein kinase 50 

(AMPK) has been demonstrated to modulate the responsiveness of LECT2 to energetic and/or 51 
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nutritional status (7). Interestingly, this mechanism has also been shown to modulate other 52 

important gluco-regulatory hepatokines such as fetuin-A (16) and selenoprotein P (SeP; 17); 53 

and may link positive energy balance to peripheral metabolic dysfunction (18).  54 

Fibroblast growth factor 21 (FGF21) is another hepatokine which is responsive to acute 55 

nutritional challenges, including fasting, protein restriction and chronic overfeeding (19–21). 56 

Notably, FGF21 has been shown to modulate glucose and lipid metabolism; by increasing 57 

glucose uptake into adipose tissue and enhancing hepatic fatty acid oxidation (22,23). More 58 

recently, FGF21 has been identified to play a key role in the integrated stress response to 59 

nutritional and cellular stresses (24); potentially serving as a compensatory mechanism to 60 

combat hepatic lipotoxicity and preserve metabolic homeostasis (21,25,26). Within two pilot 61 

experiments, we have recently shown that FGF21 is augmented after one, but not seven days 62 

of overfeeding (27). Additional research is needed to clarify these findings within an 63 

appropriately designed trial. 64 

To date, nearly all evidence relating to hepatokines and short-term nutritional status has been 65 

conducted in pre-clinical models. Further research is therefore required to determine whether 66 

findings translate into humans; and to explore how acute perturbations in nutritional status 67 

influence other relevant hepatokines yet to receive attention. Therefore, using a population of 68 

healthy men, the present study examined the acute (one to seven days) influence of hyper-69 

energetic, high-fat feeding on the circulating concentrations of five candidate hepatokines 70 

(FGF21, LECT2, fetuin-A, fetuin-B and SeP) which have been shown to modulate glucose and 71 

lipid metabolism and/or insulin sensitivity. We hypothesised that high-fat overfeeding would 72 

increase circulating levels of each hepatokine which may form part of an adaptive metabolic 73 

response to overnutrition.  74 
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Methods  75 

Ethical approval and participant recruitment 76 

After receiving approval from the Institutional Research Ethics Committee (R17-P144), 12 77 

healthy males were recruited into the study following the provision of written informed consent. 78 

Participants were young (18 – 40 years), had a BMI between 18.5 and 27.9 kg∙m-2, and did not 79 

smoke or possess diagnosed metabolic conditions. Participants were habitually active (no more 80 

than five structured exercise sessions per week) and reported being weight stable (< 2 kg body 81 

mass change) in the six months before the study. The study was registered as a clinical trial 82 

(NCT03369145) at clinicaltrials.gov before data collection commenced.   83 

Participant pre-assessment 84 

During a pre-assessment visit, participants were screened to determine study eligibility. 85 

Participants provided a medical history and completed a questionnaire determining 86 

acceptability of food items to be provided during the study. Normal fasting capillary blood 87 

glucose levels (< 5.5 mmol∙L-1) were confirmed using a point-of-care bioanalyser 88 

(CardioChek®, Polymer Technology Systems Inc, Indianapolis, USA). Participants’ BMI, 89 

waist circumference and blood pressure were determined using standardised procedures (28).  90 

At the end of the visit, participants were provided with two accelerometers; an ActiGraph GTX 91 

(ActiGraph Corp, Pensacola, USA) and an ActivPAL3 TM (PAL Technologies Ltd, Glasgow, 92 

UK) which were subsequently worn for seven consecutive days to assess habitual physical 93 

activity and sedentary behaviour, respectively. A three-day weighed food record (two-week 94 

days and one weekend day) was also completed during this time to estimate baseline habitual 95 

energy and macronutrient intake. Food records were analysed for energy content and 96 

macronutrient composition as described previously (29). 97 
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Study design and procedures 98 

The present study employed a randomised-counterbalanced crossover design, whereby each 99 

participant completed two, seven-day dietary interventions (hyper-energetic, high-fat diet [HE-100 

HFD] and control diet) separated by a three-week washout period. Figure 1 provides a 101 

schematic illustration of the study design and procedures. 102 

 103 

Insert figure 1 104 

 105 

Within each dietary intervention, participants attended four laboratory visits which occurred 106 

on the morning of the first day of each diet (pre-diet), and subsequently on the morning after 107 

one, three and seven-days (post-diet) of each diet. Participants attended each visit following an 108 

overnight fast (≥ 10 h) and having abstained from caffeine, alcohol and exercise in the prior 24 109 

h. During each visit, a fasting venous blood sample was obtained. At the pre- and post-diet 110 

visits, body mass and blood pressure were assessed; whilst resting metabolic rate (RMR) and 111 

substrate oxidation (30) were also measured using indirect calorimetry. Furthermore, whole-112 

body insulin sensitivity was assessed using an oral glucose tolerance test (OGTT; 29). During 113 

the OGTT, venous blood samples were drawn from a cannula inserted into an antecubital vein 114 

(21 g; Venflon, Becton Dickinson, Helsingborg, Sweden) at the following time points: 0, 30, 115 

60, 90 and 120 min. Within each dietary intervention, participants were strictly instructed not 116 

to alter their habitual physical activity levels. Habitual physical activity and sedentary 117 

behaviour were measured continuously throughout each intervention period using an 118 

accelerometer and inclinometer to assess compliance. 119 

Dietary interventions 120 
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The HE-HFD and control diet were consumed across seven consecutive days within the study.  121 

In the HE-HFD, participants consumed 150% of their estimated daily energy requirement. Of 122 

the total energy content, approximately 65% was derived from fat (32% saturated fatty acids 123 

(SFA), 26% monounsaturated fatty acids (MUFA) and 8% polyunsaturated fatty acids (PUFA)), 124 

21% was derived from carbohydrate and 14% was derived from protein (Table 1). An example 125 

of the two-day rotating menu provided to participants during the HE-HFD can be seen in 126 

Supplemental Table 3. Individuals’ dietary energy requirements were calculated using 127 

published equations (31) and subsequently multiplied by a physical activity correction factor 128 

of 1.7 to account for moderate levels of habitual physical activity in males (32). This value was 129 

additionally multiplied by 1.1 to account for the thermic effect of feeding and then by 1.5 to 130 

identify 150% of participants’ estimated daily energy requirement. Please note that this method 131 

of calculating energy requirements during our HE-HFD intervention produced a higher energy 132 

intake requirement than what would have been necessary if requirements were based on 133 

participants’ food diaries (see Table 1).  134 

Within the HE-HFD, all foods and energy-containing drinks were prepared by the research 135 

team and distributed to the participants. Participants were instructed to consume all foods 136 

provided to them and no additional energy-containing food or drinks. In the event of any 137 

leftovers, participants were told to return the food item so that the research team could account 138 

for the discrepancy. Dietary compliance was facilitated by the provision of daily menus, 139 

detailed cooking guidance and verbal confirmation. Other than one ham and cheese croissant 140 

which one participant did not eat; participants reported being fully compliant with the HE-HFD. 141 

Within the control diet, participants were told to consume their habitual diet throughout the 142 

intervention. To assess compliance, participants completed a second three-day weighed food 143 

record (two-week days and one weekend day) during the control diet, which was subsequently 144 
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contrasted with the food record completed during the baseline (pre-intervention) assessment 145 

(Table 1).  146 

Biochemical analyses 147 

Blood samples were collected into ice-cooled potassium EDTA and lithium heparin 148 

monovettes (Sarstedt, Leicester, UK) and were spun immediately in a refrigerated centrifuge 149 

(Heraeus Labofuge 400R, Thermo Fisher Scientific, Massachusetts, USA) at 4°C for 10 min 150 

(2383 x g). Plasma was then removed and aliquoted for storage at -80°C. Commercially 151 

available enzyme-linked immunosorbent assays were used to measure plasma concentrations 152 

of FGF21 (R & D Systems, Oxford, UK), LECT2 (BioVendor, Brno, Czech Republic) , fetuin-153 

A (R & D Systems, Oxford, UK), fetuin-B (BioVendor, Brno, Czech Republic) and insulin 154 

(Mercodia AB, Uppsala, Sweden). Plasma concentrations of full-length SeP were measured 155 

using a sol particle homogenous immunoassay, as previously reported (33,34). The mean 156 

within-batch coefficients of variation (CV) for these assays were as follows: FGF21 8.2%, 157 

LECT2 3.7%, fetuin-A 4.5%, fetuin-B 2.8%, SeP 4.0% and insulin 6.5%. Circulating 158 

concentrations of non-esterified fatty acids (NEFA), triacylglycerol (TAG), glucose, alanine 159 

aminotransferase (ALT), aspartate aminotransferase (AST) and gamma-glutamyltransferase 160 

(GGT) were analysed by enzymatic, colorimetric methods using a bench-top analyser (Pentra 161 

400, Horiba Medical, Montpellier, France; all within-batch CV ≤ 5.0%). Insulin resistance was 162 

assessed by the homeostatic model assessment of insulin resistance (HOMA-IR; 35), adipose 163 

tissue insulin resistance index (Adipo-IR; 36) and the Matsuda Insulin Sensitivity Index (ISI; 164 

37), as previously described.  165 

Sample size calculation 166 

FGF21 was a priori the primary hepatokine of interest, given that our previous pilot 167 

experiments suggested that FGF21 is acutely responsive to overnutrition (27). Based on these 168 
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data, we observed a 55% increase in FGF21 after just one day of high-fat overfeeding (27). 169 

Therefore, assuming a 55% increase in FGF21 during the course of the HE-HFD compared to 170 

control, a standardised difference of 1, an intra-individual correlation of 0.5, power of 80% and 171 

significance level of 0.05, we required at least 10 people to finish the present study. Twelve 172 

participants were therefore recruited to allow for possible drop-out. 173 

Statistical analyses 174 

All accelerometer and inclinometer data were analysed using ActiLife (version 6.13.3, 175 

ActiGraph Corp, Pensacola, USA) and activPAL3TM software (version 7.2.32, PAL 176 

Technologies Ltd, Glasgow, UK), respectively. These data are presented as absolute minutes 177 

per day for sedentary behaviour, light and moderate-vigorous physical activity (MVPA), as 178 

well as percentages of wear time (Supplemental Table 1). The primary outcome of the study 179 

was FGF21, with the other assessed hepatokines (LECT2, fetuin-A, fetuin-B and SeP) assigned 180 

as key secondary outcomes of interest. Additional secondary outcomes were changes in 181 

anthropometry, metabolic rate, plasma metabolites (glucose, insulin, NEFA, TAG, ALT, AST 182 

and GGT) and indices of insulin resistance (HOMA-IR, Adipo-IR and the Matsuda ISI). 183 

Statistical analyses were performed using commercially available software (SPSS version 24.0, 184 

SPSS Inc., Illinois, USA). Total area under the curve (AUC) values for glucose and insulin 185 

during OGTTs were calculated using the trapezoidal method. Normality of distribution for all 186 

data were assessed using the Shapiro-Wilk test. Resting metabolic rate, AST, GGT, Adipo-IR 187 

and the Matsuda ISI were not normally distributed and were subsequently log transformed prior 188 

to analysis. Normality of distribution for these data were then re-assessed and confirmed. 189 

Paired t-tests were used to compare pre-diet differences in study variables between the two 190 

dietary interventions. Differences in dietary intake, composition and physical activity levels at 191 

baseline and during the control diet and HE-HFD were assessed using a one-way repeated-192 

measures analysis of variance (ANOVA) with subsequent pairwise comparisons. Two-way 193 
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repeated-measures ANOVA (within-participant factors: diet [control, HE-HFD] and time [pre-194 

diet, 1 d, 3 d and 7 d]) was used to examine differences in circulating proteins, metabolites, 195 

HOMA-IR and Adipo-IR between the two diets across the seven-day interventions. Two-way 196 

repeated-measures ANOVA (within-participant factors: diet [control, HE-HFD] and time [pre-197 

diet, 7 d]) were also used to analyse the variables that were only assessed during the pre-diet 198 

and 7 d time periods (glucose AUC, insulin AUC, Matsuda ISI and anthropometric variables). 199 

In the event of statistically significant diet and interaction effects, post-hoc analyses were 200 

performed using paired t-tests to locate any differences for descriptive purposes. The 201 

magnitude of statistically significant effects was determined by calculating effect sizes (ES) 202 

using Cohen’s d (38). Statistical significance was set at P < 0.05; adjustment for multiple 203 

comparisons of secondary outcomes was not undertaken, therefore these findings should be 204 

viewed with caution and in relation to the overall pattern of results. Data are described as means 205 

± SD, unless stated otherwise.  206 
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Results 207 

Participant characteristics, dietary intake and physical activity 208 

Participant characteristics were ascertained during the pre-assessment visit. Participants were 209 

aged 24.3 ± 4.2 years, had a BMI of 24.1 ± 1.5 kg∙m-2 and a waist circumference of 79.1 ± 3.3 210 

cm. The participants’ estimated energy requirement was calculated as 13.8 ± 0.5 MJ∙d-1, 211 

therefore the target energy intake for participants during the HE-HFD was 20.7 ± 0.8 MJ∙d-1. 212 

Table 1 shows participants’ dietary intake and composition during the baseline assessment and 213 

study interventions. No differences were apparent in participants’ dietary intake at baseline 214 

versus the control diet (all P ≥ 0.49). Conversely, as intended, energy intake was greater during 215 

the HE-HFD compared with baseline and control (both P < 0.001). Furthermore, both the 216 

absolute fat intake and relative fat percentage were higher during the HE-HFD compared with 217 

baseline and control (all P < 0.001). In contrast, the percentage of energy derived from 218 

carbohydrate and protein was reduced during the HE-HFD (all P ≤ 0.001); however, the 219 

absolute amount of protein was elevated (both P ≤ 0.003). 220 

As intended, no differences were apparent in any aspect of sedentary time or physical activity 221 

when measured at baseline or during the dietary interventions (all P ≥ 0.64; Supplemental Table 222 

1). 223 

 224 

Insert table 1 225 

 226 

Anthropometry, metabolic rate and substrate oxidation 227 
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Changes in anthropometry, RMR and substrate oxidation in response to the control and HE-228 

HFD can be seen in Table 2. No pre-diet differences were observed for any variable prior to 229 

the control diet and HE-HFD (all P  0.52). A diet by time interaction was observed for body 230 

mass and BMI (both P  0.009), with a tendency for body mass and BMI to be higher after the 231 

HE-HFD compared to control (ES = 0.22, P = 0.053 and ES = 0.19, P = 0.057, respectively). 232 

No effects of diet or time were found for blood pressure (systolic and diastolic), RMR and 233 

substrate oxidation (fat and carbohydrate) (all P  0.19).    234 

 235 

Insert table 2 236 

 237 

Hepatokine responses to high-fat overfeeding 238 

Pre-diet fasting plasma concentrations of FGF21, LECT2, fetuin-A, fetuin-B and SeP were 239 

similar prior to the control diet and HE-HFD (all P  0.30). A main effect of diet was found 240 

for FGF21 and LECT2 (both P  0.024), and a diet by time interaction was found for FGF21, 241 

LECT2 and fetuin-A (all P  0.011; Figure 2A-C). Subsequently, fasting plasma FGF21 242 

concentrations were higher at 1 d and 3 d within the HE-HFD compared with control (both ES 243 

≥ 1.67, P ≤ 0.040). Furthermore, in comparison to the control diet, fasting plasma LECT2 244 

concentrations were elevated at 3 d and 7 d within the HE-HFD (both ES ≥ 0.69, P  0.004; 245 

Figure 2B). Plasma fetuin-A concentrations were also higher at 7 d of the HE-HFD when 246 

compared to the control diet (ES = 0.50, P = 0.028; Figure 2C). Fasting plasma fetuin-B and 247 

SeP concentrations were not different between trials or across time (P ≥ 0.52; Figure 2D/E). 248 

The raw data for the fasting plasma hepatokine responses to the two dietary interventions can 249 

be found in Supplemental Table 2.  250 
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 251 

Insert figure 2 252 

 253 

Metabolic responses to high-fat overfeeding 254 

Fasting plasma metabolite responses during the control diet and HE-HFD are presented in 255 

Table 3. Pre-diet concentrations of all fasting metabolites and indices of insulin resistance were 256 

similar prior to the two dietary interventions (all P  0.18). A main effect of diet was observed 257 

for fasting plasma glucose, TAG and HOMA-IR (all P  0.049) and a diet by time interaction 258 

was observed for fasting plasma glucose and TAG (both P  0.001). When compared to the 259 

control diet, fasting plasma glucose concentrations were higher at 1, 3 and 7 d of the HE-HFD 260 

(all ES ≥ 0.38, P  0.033); whilst fasting plasma TAG concentrations were reduced at 3 d and 261 

7 d of the HE-HFD (both ES ≥ 0.85, P  0.005). Furthermore, HOMA-IR was greater at 3 d 262 

and 7 d of the HE-HFD compared with control (both ES ≥ 0.99, P  0.028). No differences 263 

were observed in the fasting plasma insulin, NEFA, ALT, AST, GGT and Adipo-IR responses 264 

to the two dietary interventions (all P  0.09).  265 

 266 

Insert table 3 267 

 268 

The postprandial metabolic responses to the 2 h OGTTs before and after the control diet and 269 

HE-HFD are shown in Figure 3. Glucose AUC, insulin AUC and the Matsuda ISI were not 270 

different at baseline (all P  0.30). There were no main effects of diet, or diet by time, for the 271 

glucose and insulin AUC. However, significant main effects of diet, and diet by time, were 272 
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observed for the Matsuda ISI (both P  0.036), which was lower after the HE-HFD when 273 

compared to control (ES = 0.62, P = 0.021), indicating a reduction in whole-body insulin 274 

sensitivity. 275 

 276 

Insert figure 3 277 

278 
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Discussion 279 

The aim of this study was to determine the sensitivity of hepatokines to short-term 280 

perturbations in energy balance induced by a controlled period of high-fat overfeeding; and to 281 

examine the time-course of responses over seven days. The primary findings identified within 282 

this study are that both circulating FGF21 and LECT2 respond dynamically (within 1-3 days) 283 

to hyper-energetic, high-fat feeding in healthy humans; whilst small elevations in fetuin-A 284 

begin to occur after seven days. Conversely, fetuin-B and SeP are unresponsive to this 285 

nutritional challenge.  286 

Despite a constant level of increased energy and fat intake during the seven-day HE-HFD, we 287 

observed a striking increase in circulating FGF21 concentrations after one day of the HE-HFD; 288 

which was marginally increased further after three days; before declining to pre-diet levels 289 

after seven days. In agreement, we previously observed within two separate pilot experiments 290 

that circulating FGF21 levels were increased after a one-day-, but not a seven-day, high-fat 291 

overfeeding model (27); whilst other authors have also reported elevated circulating FGF21 in 292 

response to both three (39) and five days (40) of high-fat overfeeding. Our data extend these 293 

findings by reporting a novel time-course for FGF21 in which circulating concentrations are 294 

rapidly increased in response to a HE-HFD which is transient and returns to pre-diet levels 295 

after seven days. Conversely, Lundsgaard and colleagues (41) reported only a tendency (P = 296 

0.073) for circulating FGF21 to be increased after a three-day HE-HFD, with high-297 

carbohydrate overfeeding inducing a substantially greater response (2 vs 8-fold increase). 298 

Despite the authors overfeeding their participants to a greater degree (+75% vs +50% estimated 299 

energy requirements), the greater increase in FGF21 seen in the present study after three days 300 

of high-fat overfeeding may be related to the higher saturated fatty acid composition of the diet 301 

(32% vs 10% energy), which has been found to be more metabolically harmful than a 302 

predominantly unsaturated fat diet (42). 303 
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FGF21 modulates whole-body lipid metabolism through inhibiting adipose tissue lipolysis and 304 

enhancing hepatic fat oxidation (43–46) via the fatty-acid induced activation of peroxisome 305 

proliferator-activated receptor-α. Consequently, the augmented circulating FGF21 levels in the 306 

present study could represent a compensatory mechanism to counteract the excessive fatty acid 307 

influx during the HE-HFD (39,40). Alternatively, this response could be attributed to FGF21’s 308 

role in the integrated stress response (24). FGF21 production is elevated in response to hepatic 309 

lipotoxicity and endoplasmic reticulum stress through the PERK-eIF2α-ATF4 pathway (25,26). 310 

Notably, this pathway is activated by the consumption of a high-fat diet (47,48); particularly 311 

diets high in saturated fatty acids (49). Therefore, the rapid induction of FGF21 may be an 312 

adaptive response to maintain metabolic function in a state of nutritional and energetic stress; 313 

however, the exact physiological role in humans needs to be explored further.  314 

It is unclear why the elevation in circulating FGF21 did not persist after seven days. A 315 

speculative hypothesis could be related to the sample of healthy and ‘metabolically flexible’ 316 

participants being able to increase their sensitivity to FGF21, thereby normalising circulating 317 

concentrations. Recently, it was shown that adipose tissue expression of FGF21 receptors is 318 

altered after 60 hours of fasting in humans (50); therefore, this time-frame could be feasible. 319 

Further mechanistic studies are required to understand the novel time-course observed in the 320 

current study.   321 

In response to the HE-HFD, we also observed a progressive and sustained increase in 322 

circulating LECT2 concentrations across seven days. Specifically, circulating LECT2 tended 323 

to be higher than control after one day of high-fat overfeeding but was substantially elevated 324 

after three and seven days. This finding has extended knowledge about LECT2 by 325 

demonstrating that it is responsive to short-term changes in energy balance in humans; in 326 

addition to chronic energetic status (51–54).  327 
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This novel finding is consistent with recent data obtained from rodent models (7,15). 328 

Specifically, Chikamoto et al (15) showed that LECT2 responds dynamically to alternating 329 

periods of hypercaloric and eucaloric feeding in a rodent weight cycling model. Furthermore, 330 

in C57BL/6J mice, Lan et al (7) reported an approximate doubling of circulating LECT2 in the 331 

fed vs fasted state; and in response to one week of a high-fat diet. When contrasting data 332 

obtained from rodents and humans, it is interesting to note that individual meals (augment) and 333 

single bouts of exercise (suppress) modulate circulating LECT2 in animals (7) but not in 334 

humans (28,55). This difference may reflect the relatively greater metabolic stimulus provoked 335 

by these interventions in rodents. 336 

Pre-clinical experiments demonstrate that LECT2 directly promotes insulin resistance in 337 

skeletal muscle and adipose tissue (7,14); and our findings raise the possibility that LECT2 338 

may contribute to changes in insulin sensitivity in response to short-term adjustments in 339 

nutrient intake and energy balance. In our study, seven days of the HE-HFD decreased whole-340 

body insulin sensitivity by 31%, however we did not observe any correlations between LECT2 341 

and this outcome (data not shown). An alternative suggestion is that LECT2 may respond to 342 

protect the liver from metabolic challenge (18); however, new mechanistic studies are needed 343 

to investigate these hypotheses. 344 

The present study does not allow us to unpick the mechanisms mediating the LECT2 response 345 

to the HE-HFD; however, it is likely that hepatic AMPK activation is relevant. AMPK is an 346 

energy-sensing kinase thought to be a ‘master regulator’ of metabolic homeostasis (56); and 347 

hepatic AMPK activation has been shown to negatively regulate hepatic LECT2 expression in 348 

two separate models (7,56). 349 

The present study identified an interaction between diet and time for circulating fetuin-A; with 350 

higher levels apparent after seven days of the HE-HFD compared with control. However, this 351 
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elevation was subtle (6.5%) and a marginal decline in fetuin-A during the control intervention 352 

contributed to this effect. This finding is consistent with our pilot data where circulating fetuin-353 

A tended to be higher (7.3%, P = 0.087) than baseline after seven days of high-fat overfeeding; 354 

but was unchanged after a single day (27). Samocha-Bonet et al (57) previously demonstrated 355 

that 28 days of high-fat overfeeding increased circulating fetuin-A by approximately 16%. It 356 

therefore appears that high-fat overfeeding induces a gradual increase in circulating fetuin-A 357 

which may occur secondary to the development of hepatic steatosis (4) and gluco-lipotoxicity 358 

(58–61).  359 

The present study investigated the influence of high-fat overfeeding on fetuin-B and SeP given 360 

their negative regulatory influences on insulin sensitivity (62) and glucose metabolism (4). In 361 

contrast to the other hepatokines measured, circulating concentrations of fetuin-B and SeP were 362 

not influenced by the HE-HFD intervention. This extends knowledge by showing that, in 363 

humans, SeP and fetuin-B are not sensitive to acute energetic challenges induced by high-fat 364 

overfeeding. Prior to this study, only one investigation had examined the short-term influence 365 

of nutritional excess on circulating levels of SeP (63); whilst no previous data was available 366 

relating to fetuin-B. Specifically, Chen et al (63) measured circulating levels of SeP before and 367 

after three days of high-fat overfeeding (+5.23 MJ∙d-1, 45% fat). Consistent with the findings 368 

reported in the present study, high-fat overfeeding had no impact on circulating SeP 369 

concentrations. 370 

Observational data show that SeP and fetuin-B are associated with various markers of adiposity 371 

and impaired metabolic health (62,64–67). It therefore appears that these hepatokines are 372 

primarily regulated by long-term changes in energy balance and metabolism. Notably, rodent 373 

studies have shown that circulating levels of SeP were elevated after several weeks of 374 

consuming a high-fat diet (10,68). The development of hepatic steatosis appears to be central 375 

to the augmentation of both SeP and fetuin-B, as recent data identified a 1.5-fold increase in 376 
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the expression of these proteins, in steatotic vs non-steatotic hepatocytes (4). Although liver 377 

fat was not measured in the present investigation, previous data suggest that the diet used in 378 

the present study is likely to have increased liver fat by approximately one-third, from a low 379 

starting point of 2-3% in healthy individuals (69). Such an increase is still below what is 380 

considered as clinically elevated liver fat; and a more prolonged and sustained period of 381 

positive energy balance may be required to elicit changes in fetuin-B and SeP. 382 

Key strengths of this study include the crossover design and detailed scrutiny of time-course. 383 

A consideration that must be recognised was the use of estimated energy requirements as the 384 

basis for planning the HE-HFD, as underreporting of energy intake when using food diaries is 385 

extremely common (70,71). In our study, the reported control diet was approximately 2.60 386 

MJ∙d-1 less than estimated; which is in line with our previous findings (72). As the primary 387 

purpose of the present study was to assess hepatokine responses to short-term positive energy 388 

balance, we needed to ensure that a sufficient overfeed was achieved.  Other considerations 389 

within this study include the lack of diet standardisation during the control period, which may 390 

have particularly influenced the fetuin-A data, as well as the potential for carryover effects in 391 

participants who undertook the HE-HFD intervention before the control intervention. Our 392 

washout period of three weeks was based on previous studies employing an identical washout 393 

(41), and retrospective analysis of the six participants who completed the HE-HFD first showed 394 

pre-diet concentrations of all plasma analytes were similar prior to the two interventions (all 395 

P > 0.152). The extreme nature of the HE-HFD, which was deliberately employed to perturb 396 

metabolic homeostasis, must also be recognised. Furthermore, the participant group only 397 

included healthy men and findings may therefore not generalise to women or individuals with 398 

metabolic conditions. Moreover, additional studies are needed to explore how nutritional 399 

composition (e.g. carbohydrate vs fat; saturated vs unsaturated fat) mediates hepatokine 400 

responses to overnutrition.  401 
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In conclusion, the present study demonstrates that circulating FGF21, LECT2 and fetuin-A are 402 

elevated in response to acute hyper-energetic, high-fat feeding in healthy males, whereas 403 

fetuin-B and SeP are not responsive to short-term overnutrition. Furthermore, these responses 404 

in circulating FGF21 and LECT2 occur within 1-3 days of high-fat overfeeding; however, the 405 

FGF21 response is transient. Elevated FGF21 production could be an adaptive mechanism to 406 

limit diet-induced lipotoxicity and cellular stress; whilst increased LECT2 production may 407 

contribute to the early reduction of whole-body insulin sensitivity following overnutrition. 408 

These findings broaden understanding about the regulation of hepatokines in humans and their 409 

association with metabolic homeostasis.  410 
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Table 1. Dietary intake and composition at baseline and during the seven-day control and 

hyper-energetic, high-fat diets. 

 

 

Baseline 

(Pre-intervention) 

Control diet HE-HFD P-value 

(Diet effect) 

Energy (MJ∙d-1) 11.5 ± 1.4 10.9 ± 2.0 20.9 ± 0.8ab <0.001 

Fat 

Grams per day 111 ± 25 102 ± 27 356 ± 15ab <0.001 

% energy 36.9 ± 8.0 35.7 ± 6.7 65.0 ± 0.6ab <0.001 

      SFA (% energy) 13.7 ± 2.9 13.2 ± 2.6 31.5 ± 0.5ab <0.001 

      MUFA (% energy) 15.9 ± 5.2 15.7 ± 4.4 25.7 ± 0.5ab <0.001 

      PUFA (% energy) 7.3 ± 2.0 6.9 ± 2.0 7.8 ± 0.5 0.44 

Carbohydrate 

Grams per day 301 ± 75 288 ± 70 256 ± 10 0.07 

% energy 44.1 ± 9.3 45.3 ± 8.1 20.7 ± 0.4ab <0.001 

Protein 

Grams per day 126 ± 29 117 ± 44 176 ± 5ab <0.001 

% energy 19.0 ± 2.7 18.9 ± 3.3 14.2 ± 0.4ab <0.001 

Data are presented as means ± SD, n = 12 healthy men. HE-HFD, hyper-energetic, high-fat 

diet; MUFA, monounsaturated fatty acids; PUFA, polyunsaturated fatty acids; SFA, saturated 

fatty acids. 

aSignificantly different from baseline assessment, P < 0.05. 

bSignificantly different from control diet, P < 0.05
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Table 2. Anthropometric variables, metabolic rate and substrate oxidation before and after seven days of the control and hyper-energetic, high-

fat diets. 

 

 

 

 

 

 

 

 

Data are means ± SD or medians (IQR), n = 12 healthy men. CHO, carbohydrate; DBP, diastolic blood pressure; HE-HFD, hyper-energetic, 

high-fat diet; RMR, resting metabolic rate; SBP, systolic blood pressure. 

aIndicates data log transformed prior to analysis and therefore presented as medians (IQR). 

#Tended to differ from control diet at the same time point, P < 0.06.

 Control diet HE-HFD P-value 

(Diet effect) 

P-value 

(Interaction effect) 
 Pre-diet 7 d Pre-diet 7 d 

Body mass (kg) 77.1 ± 4.3 77.1 ± 4.3 76.8 ± 3.7 78.0 ± 4.1# 0.20 0.009 

BMI (kg∙m-2) 24.2 ± 1.6 24.2 ± 1.6 24.1 ± 1.5 24.5 ± 1.5# 0.42 0.001 

SBP (mmHg) 127 ± 8 128 ± 8 128 ± 8 128 ± 5 0.33 0.33 

DBP (mmHg) 71 ± 8 71 ± 7 72 ± 5 74 ± 4 0.31 0.66 

RMR (MJ∙d-1)a 4.71 (2.09) 5.05 (1.66) 4.81 (1.61) 4.64 (1.25) 0.22 0.98 

Fat oxidation (%) 12.5 ± 10.3 13.1 ± 9.3 10.7 ± 8.4 16.7 ± 9.8 0.60 0.19 

CHO oxidation (%) 87.5 ± 10.3 86.9 ± 9.3 89.3 ± 8.4 83.3 ± 9.8 0.60 0.19 
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Table 3. Fasting plasma metabolite and liver enzyme concentrations, and indices of insulin 

resistance during the seven-day control and hyper-energetic, high-fat diets. 
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 Intervention Pre-diet 1 d 3 d 7 d P-value     

(Diet effect) 

P-value 

(Interaction effect) 

Glucose 

(mmol∙L-1) 

Control diet 4.9 ± 0.4 4.8 ± 0.4 4.6 ± 0.4 4.8 ± 0.4 0.003 <0.001 

HE-HFD 4.8 ± 0.4 5.0 ± 0.3** 5.0 ± 0.5** 5.0 ± 0.3*   

Insulin 

(pmol∙L-1) 

Control diet 25 ± 12 28 ± 13 22 ± 9 23 ± 7 0.06 0.21 

HE-HFD 27 ± 11 30 ± 8 30 ± 8 31 ± 11   

NEFA 

(mmol∙L-1) 

Control diet 0.37 ± 0.13 0.30 ± 0.12 0.33 ± 0.16 0.32 ± 0.13 0.12 0.94 

HE-HFD 0.31 ± 0.12 0.26 ± 0.14 0.30 ± 0.09 0.25 ± 0.09   

TAG 

(mmol∙L-1) 

Control diet 0.75 ± 0.19 0.76 ± 0.19 0.74 ± 0.20 0.86 ± 0.29 0.031 0.001 

HE-HFD 0.82 ± 0.16 0.63 ± 0.20 0.57 ± 0.16** 0.57 ± 0.16**   

HOMA-IR 

(AU) 

Control diet 0.8 ± 0.4 0.9 ± 0.5 0.7 ± 0.3 0.7 ± 0.3 0.049 0.09 

HE-HFD 0.8 ± 0.4 1.0 ± 0.3 1.0 ± 0.3* 1.0 ± 0.4*   

Adipo-IRa 

(AU) 

Control diet 8.8 (8.5) 6.7 (5.6) 5.2 (3.7) 6.5 (5.9) 0.82 0.36 

HE-HFD 8.6 (4.7) 6.2 (8.4) 8.9 (5.2) 6.8 (6.4)   

ALT  

(U∙L-1) 

Control diet 21.5 ± 7.9 21.7 ± 7.3 22.2 ± 6.8 21.9 ± 9.3 0.11 0.11 

HE-HFD 20.1 ± 6.4 24.5 ± 9.6 31.2 ± 16.9 53.7 ± 63.6   

AST  

(U∙L-1)a 

Control diet 28.7 (11.8) 27.8 (7.2) 27.9 (12.4) 27.3 (6.7) 0.14 0.18 

HE-HFD 28.2 (9.7) 27.6 (12.3) 30.3 (14.6) 36.8 (32.5)   

GGT  

(U∙L-1)a 

Control diet 20.1 (7.3) 21.5 (7.8) 22.0 (12.2) 21.3 (12.3) 0.23 0.22 

HE-HFD 20.0 (12.8) 19.2 (9.6) 19.9 (14.5) 22.2 (12.3)   
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Data are means ± SD or medians (IQR), n = 12 healthy men. Adipo-IR, adipose tissue insulin 

resistance index; ALT, alanine aminotransferase; AST, aspartate aminotransferase; AU, 

arbitrary units; GGT, gamma-glutamyl transferase; HE-HFD, hyper-energetic, high-fat diet; 

HOMA-IR, homeostatic model assessment of insulin resistance; NEFA, non-esterified fatty 

acids; TAG, triacylglycerol. 

aIndicates data log transformed prior to analysis and therefore presented as medians (IQR). 

*Significantly different from control diet at the same time point, P < 0.05. 

**Significantly different from control diet at the same time point, P < 0.01.  
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Figure legends 

Figure 1. Schematic illustration of the study design and trial procedures. HE-HFD = 7-day 

hyper-energetic, high-fat diet; control intervention = 7-day habitual diet. Food intake was 

measured during the control intervention by a 3-day food diary, whilst all food was provided 

during the HE-HFD intervention. Participant trial order was randomised. OGTT, oral glucose 

tolerance test. 

 

Figure 2. Fasting plasma concentrations of (A) fibroblast growth factor 21 (FGF21), (B) 

leukocyte cell-derived chemotaxin 2 (LECT2), (C) fetuin-A, (D) fetuin-B and (E) 

selenoprotein P (SeP) during the seven-day control diet and hyper-energetic, high-fat diet 

(HE-HFD). Data are presented as means ± SEM, n = 12 healthy men. 

*Significantly different from control diet at the same time point, P < 0.05. 

**Significantly different from control diet at the same time point, P < 0.01. 

***Significantly different from control diet at the same time point, P < 0.001. 

 

Figure 3. Plasma (A) glucose and (B) insulin area under the curve; and (C) the Matsuda 

Insulin Sensitivity Index calculated during an oral glucose tolerance test before (pre-diet) and 

after (post-diet) seven days of the control diet and hyper-energetic, high-fat diet (HE-HFD). 

Data are presented as means ± SEM or medians (IQR), n = 12 healthy men.  

aMatsuda Insulin Sensitivity Index data were log transformed prior to analysis and therefore 

presented as medians (IQR). 
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*Significantly different from control diet at the same time point, P < 0.05. 


