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Classification of osteoarthritic 
and healthy cartilage using deep 
learning with Raman spectra
Yong En Kok 1*, Anna Crisford 2, Andrew Parkes 1, Seshasailam Venkateswaran 3, 
Richard Oreffo 4, Sumeet Mahajan 2 & Michael Pound 1

Raman spectroscopy is a rapid method for analysing the molecular composition of biological 
material. However, noise contamination in the spectral data necessitates careful pre-processing 
prior to analysis. Here we propose an end-to-end Convolutional Neural Network to automatically 
learn an optimal combination of pre-processing strategies, for the classification of Raman spectra 
of superficial and deep layers of cartilage harvested from 45 Osteoarthritis and 19 Osteoporosis 
(Healthy controls) patients. Using 6-fold cross-validation, the Multi-Convolutional Neural Network 
achieves comparable or improved classification accuracy against the best-performing Convolutional 
Neural Network applied to either the raw or pre-processed spectra. We utilised Integrated Gradients 
to identify the contributing features (Raman signatures) in the network decision process, showing 
they are biologically relevant. Using these features, we compared Artificial Neural Networks, Decision 
Trees and Support Vector Machines for the feature selection task. Results show that training on fewer 
than 3 and 300 features, respectively, for the disease classification and layer assignment task provide 
performance comparable to the best-performing CNN-based network applied to the full dataset. Our 
approach, incorporating multi-channel input and Integrated Gradients, can potentially facilitate the 
clinical translation of Raman spectroscopy-based diagnosis without the need for laborious manual 
pre-processing and feature selection.
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Raman spectroscopy, a label-free and non-destructive technique, retrieves molecular vibrational information by 
utilising the inelastic scattering of photons from a sample upon monochromatic light radiation (typically with a 
laser). The 1-D Raman spectrum comprises characteristic peaks that correspond to the vibrational frequencies 
of molecular bonds, including functional groups and skeletal structures. This makes it possible to distinguish 
species of molecules1, thus providing a‘fingerprint’ of the chemical composition of the sample.

However, Raman signals can be severely affected by the analytical environment, as well as system and sample-
dependent interferences such as cosmic rays, baseline shifts and overlapping bands. Numerous correction meth-
ods have been proposed for pre-processing the data to remove background noise or unwanted signals prior to 
analysis, offering better interpretation of the spectral data. Such pre-processing methods have been reviewed in 
detail and include baseline subtraction, cosmic ray removal, normalisation techniques, outlier rejection and spec-
tral axis alignment2. Various studies have included a combination of these pre-processing steps as part of their 
standard pipeline for spectral analysis, and these generally outperform approaches based solely on raw data3–5.

Nonetheless, inappropriate selection of pre-processing strategies can remove or distort crucial spectral infor-
mation, thus affecting analysis and resulting in misleading conclusions6. Since each dataset is different and will 
hold different artefacts, there is no ‘one size fits all’ approach, and the selection of pre-processing strategies is 
typically experience-dependent and is often optimised through a series of laborious trials.

Once data has been appropriately pre-processed, researchers traditionally employ conventional machine 
learning methods such as Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), Partial 
Least Squares (PLS), Cluster Analysis, k-Nearest Neighbor, Random Forest, Artificial Neural Network (ANN) and 
Support Vector Machine (SVM) for spectral classification and regression tasks7,8. While conventional machine 
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learning methods utilise hand-engineered filters in pre-processing for better spectral distinction, a Convolu-
tional Neural Network (CNN) can automatically learn this optimisation without human intervention. Previous 
studies9–11 showed that CNNs enable powerful learning from raw spectral features and achieved comparable or 
improved performance when compared to conventional machine learning methods trained on processed spec-
tra. These approaches entirely avoid the pre-processing stage by designing an end-to-end deep learning method 
applied directly to raw data, whereas others12,13 implemented a CNN as a pre-processing approach prior to the 
subsequent quantitative or qualitative task.

To the best of our knowledge, the analysis of Raman spectra for the understanding and diagnosis of Muscu-
loskeletal (MSK) diseases has so far been limited to conventional machine learning techniques on pre-processed 
spectra. Kumar et al.14 reported the use of PCA on the Raman spectra of human knee cartilage samples to classify 
the different stages of Osteoarthritis 43 (OA). Richardson et al.15 applied PCA-LDA on three pairs of ‘training’ 
Raman spectra i.e., one pair consisting of healthy and osteoarthritic human cartilage and the other two pairs 
consisting of biomolecules involved in modelling cartilage disease. They converted the spectral differences of 
these three pairs into multiple diagnostic metrics, which were then combined together to classify normal and OA 
human cartilage. Another study by Shaikh et al.16 implemented Partial Least Squares Discriminant Analysis to 
distinguish the types of cartilage injuries captured using Raman spectroscopy. There is one study17 that demon-
strated the potential of deep neural network to study cartilage integrity in rabbits during OA using Near-infrared 
spectroscopy. However, no study has explored the application of deep learning techniques for the assessment of 
human MSK disorders based on Raman spectroscopy.

CNNs display complex structure and can learn complex non-linear functions. Though they are a power-
ful technique, analysis of the internal structure and learned weights is challenging, and, thus, CNNs are often 
regarded as a black box18. Recent studies19–21 have investigated approaches to interpret the representations of 
CNNs to help understand the regions of the spectra that have significant influence on the decision-making of 
the network. When applied to Raman spectra of diseased and healthy tissue, such approaches would enable the 
identification of important Raman bands/peaks that relate to specific biomarkers for disease diagnosis. Rec-
ognising these important Raman peaks is vital for spectral imaging applications, as the acquisition of spectral 
images using large number of wavenumbers can be costly and time-consuming. A practical approach to real-time 
acquisition of spectral imaging would be to capture a selected number of important wavenumbers that could be 
demonstrated to contribute the most information towards the disease characterisation.

In this work, we aim to provide a new method for Raman spectroscopy-based diagnostics by developing 
approaches that either avoid pre-processing entirely, or optimise pre-processing automatically via an end-to-end 
CNN with multi-channel input. The current studies demonstrate that such machine learning approaches offer 
strong performance, speed up analysis, can be done “blinded” and automated, reducing errors involved in com-
mon manual pre-processing steps. The approach also makes use of Integrated Gradients to identify key features 
used by the network, which correlate with the Raman signatures of biologically relevant molecules. By training 
on this restricted set of key features, we seek to demonstrate that the classification of OA and healthy cartilage 
is achievable, with performance comparable to models trained across all wavenumbers.

Materials and methods
Dataset
This retrospective study uses the dataset reported by Crisford et al.22 where the ethics approval, full research 
protocol, the dataset and its relevant details can be found. Femoral head specimens were collected from patients 
undergoing total hip arthroplasty at Southampton General Hospital (SGH) and Spire Southampton Hospital. 
All donors provided written informed consent prior to specimen collection. The study protocol received ethi-
cal approval from both the University of Southampton’s local Ethics and Research Governance Office (ERGO 
71875) and the National Health Authority—North West—Greater Manchester East Research Ethics Committee 
(18/NW/0231). The study adhered to the ethical guidelines of the Helsinki Declaration. All work in this study 
was conducted in accordance with the relevant guidelines and regulations approved by the University of South-
ampton and the National Health Authority. All femoral heads were clinically evaluated and classified as either 
osteoarthritic (Mankin score 3 to 4) or non-osteoarthritic.

Briefly, osteoarthritic donors (n = 45, 24 female and 21 male) had no signs of osteoporosis or any other 
degenerative disease and the non-osteoarthritic donors (n = 19, 10 female and 9 male) had osteoporosis but 
no obvious detectable osteoarthritis or other cartilage degenerative disease and, hence were treated as‘healthy’ 
controls. Raman spectra of the superficial and deep layers were acquired for osteoarthritic and healthy cartilage 
harvested from these 45 OA and 19 Healthy patients. Each patient had 15–20 spectra recorded in the range 
of 614–1722 cm−1 (fingerprint region or named as Region A) and 2495–3264 cm−1 (CH2 stretching frequency 
region or named as Region B) from each of the layers. The original study22 used traditional machine learning 
methods (PCA and LDA) to analyse the dataset, including the use of manual pre-processing steps of Raman 
spectral signatures for OA diagnosis. The work achieved high classification accuracy for Region A but failed to 
achieve the same for Region B. This new study focuses on using deep neural networks to either remove the need 
for pre-processing entirely, or automatically identify and use the best pre-processing algorithm from among a 
common selection of approaches.

Table 1 shows the distribution of male, female, age and condition among the samples in the dataset.
We defined two datasets, one utilising the raw Raman data, and another using the pre-processing strategy 

of Crisford et al.22 as: 
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1.	 Raw Raman spectra 
(a)	 The data consists of 1015 data points of Raman spectral intensities vs wavenumbers for Region A and 

Region B.
2.	 Pre-processed Raman spectra 

(a)	 The data consists of 1011 data points of Raman spectral intensities vs wavenumbers for Region A and 
1013 data points for Region B

(b)	 Each spectrum was processed using the following pipeline as described in Crisford et al. work22: 

	 (i)	 5th order polynomial to remove the fluorescent background
	 (ii)	 Rubberband-like background subtraction to flatten ends of the spectrum
	 (iii)	 Wavelet de-noising to smooth out spectra and eliminate high-frequency noise
	 (iv)	 Vector Normalisation

Prior to evaluation, input spectra of all experiments in this study were standardised by subtracting the mean and 
dividing by the standard deviation of each spectral feature (wavenumber). This ensures that all spectral features 
have a mean of zero and a standard deviation of one.

Proposed multichannel input
Prior works in OA diagnosis using Raman spectroscopy have often used a variety of pre-processing steps to 
improve the quality of the data before applying machine learning or other analysis. These steps are often neces-
sary to extract the best performance of the downstream classification task, such as the classification of OA and 
Healthy controls. CNNs learn a highly non-linear mapping from the input space to the output, with increasing 
levels of abstraction added to each of the later networks. In theory, CNNs will automatically learn complex hier-
archical features from the raw signal, transforming the input to improve separation between the different classes. 
However, common approaches to training, such as stochastic gradient descent, provide no guarantee that these 
complex functions will be learned, or provide optimal classification performance. We hypothesise that hand-
engineered spectra correction algorithms are indispensable in guiding the learning process for robust analytical 
performance, particularly in the presence of a limited number of samples within a small dataset. We propose the 
design of a multi-channel input that comprises a mix of raw and pre-processed spectra, to effectively exploit the 
rich, complimentary, and sometimes redundant features of the differently pre-processed spectra.

The Raman data comprises over 1000 data points (Raman spectral intensity vs wavenumber) in Regions A 
and B, which we refer to here as input features. Our baseline models was trained on either raw or pre-processed 
input features representing a single channel input, thus for our baseline experiments the dimensionality of the 
input will be 1× 1015.

Our multi-channel approach comprises eight channels representing variations of the same spectra, each 
comprising 1015 wavenumbers, but with different pre-processing applied on each of the seven spectrum and one 
remaining in its raw form. The raw spectra is included as the first channel to ensure all information is preserved 
for the use by the network. Channels two to eight represent the same spectra after pre-processing using the 
seven most recent and robust categories of data correction algorithms (Table 2) in Pybaselines library (https://​
github.​com/​derb12/​pybas​elines). The Whittaker-smoothing and Spline based methods are similar, and hence 
is treated as a single category. A sample of our multichannel input prior to standardisation is depicted in Fig. 1.

Network design
To account for the small sample size of our dataset (n = 406 to 2003 depending on the task), we implement 
a transfer learning strategy on all CNN-based networks used in this work. We employed a pretrained model 
from Ho et al.’s work23, which was originally trained on Raman spectra of pathogenic bacteria (n = 60,000). The 
1-dimensional pretrained Residual network24 of Ho et al.’s work23 was adapted to include the multi-channel input 
by (i) modifying the initial convolutional layer to accept an 8-channel input (ii) initialising weights by duplicating 
the pre-trained weights from the original single-channel input (iii) replacing the final classification layer with a 
2-class output. Figure 2 shows the Multi-CNN architecture used in this study.

For baseline comparison, we implement the same pretrained ResNet23, replacing only the final classification 
layer. The baseline network was trained on a single channel comprising either raw or handpicked pre-processed 
spectra.

Table 1.   Population sample data of Osteoarthritis and Healthy patients.

Male Female

Osteoarthritis

 Count, no. 21 24

 Age, mean±SD (range), years 69.62±10.33 (49-83) 68.92±13.21 (40-87)

Healthy

 Count, no. 9 10

 Age, mean±SD (range), years 72.00±14.33 (47-88) 71.30±17.82 (40-88)

https://github.com/derb12/pybaselines
https://github.com/derb12/pybaselines
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Feature selection
The input to our multi-channel CNN comprises 8 Raman spectra (one raw spectrum and seven with different 
pre-processing methods), each consisting of 1015 data points of wavenumbers vs intensity. Among these, some 
wavenumbers or (spectral features) will be unimportant to the eventual classification task, and others may 
be redundant or exhibit correlation between each of the eight inputs. Thus, Explainable Artificial Intelligence 
methods can aid understanding by visualising the input features that significantly influence the network’s predic-
tions. This can facilitate the removal of irrelevant features for feature reduction purposes. We utilised Integrated 
Gradients to measure each wavenumber’s (spectral feature) contribution to the output decisions. Integrated 
Gradients25 have been previously shown to offer better interpretation robustness and reliability compared to other 
Explainable Artificial Intelligence methods26. The feature importance score is approximated using the integral 
of gradients of the model’s output with respect to the inputs along the path. In essence, the approach produce 
scores for each feature indicating their contribution to the eventual classification decision. We then reduced the 
number of training features based on their measured importance score to examine the impact of classification 
accuracy using ANN, (DT) and SVM classifiers. For our simple 3-layer ANN model, we utilised two hidden 
layers each containing 22 neurons. These were chosen following a grid search for the number of neurons in the 
hidden layers from values [10,12,14,16,18,22]. We applied the Rectified Linear Unit activation function on each 
of the hidden and output layers. This was then followed by a 20% dropout rate on the hidden layers. The (DT) 
and SVM classifiers were trained using default parameters from the scikit-learn27 library. We did not observe 
performance improvement by altering these parameters.

Experimental design
We performed a stratified 6-fold cross-validation across all experiments, including the feature selection tasks. 
The dataset was split by patient subject to avoid samples from the same patient being used in both the training 
and testing sets. For each of the 6 splits, the training fold and the test fold comprised 80% and 20% of the data 
respectively. For the ANN and CNN models, we further split the “training” fold into 80/20 train and validation 
splits in order to better control the training process. Each model was trained for 100 epochs. The validation set 
was then used to determine the optimal number of epochs for training. Finally, we retrained the entire train-
ing set including the validation component and evaluated the model on the testing data, which was not used at 
any point during the training process. The training batch size for the CNN was set at 4, and the validation and 
test batch sizes were set at 1. Across all the experiments, we used cross entropy as the loss function and Adam 
optimizer with a learning rate of 0.0001 and betas (0.5, 0.999). To account for the imbalanced dataset of Healthy 
vs OA cartilage, the evaluation metric used is F1 score. The F1 score shown in all tables is the average F1 score 
of all test folds.

Results and discussion
We first present results comparing the baseline CNN trained on either the raw or pre-processed dataset to our 
proposed Multi-CNN. This is then followed by the use of Integrated Gradients to rank the input features accord-
ing to their contributions to the decision-making process summed over all 6 folds of the cross-validation process. 

Table 2.   Baseline correction algorithms selected for the construction of the multichannel input from the raw 
spectra.

Category Algorithm Description

Whittaker-smoothing and Spline Penalized Spline Adaptive Smoothness Penalized Least 
Squares(PSPLINE asPLS)38,39

Penalized spline version of asPLS to balance the fidelity and smooth-
ness of the fitted baseline with an adaptive smoothing parameter based 
on the peak and non-peak regions.

Morphological Joint Baseline Correction and Denoising (JBCD)40
Uses mathematical morphological operations along with regularised 
least-squares fitting for the removal of baseline distortion and the 
estimation of a smooth spectrum.

Smoothing Range Independent Algorithm (RIA)41

A range independent background-subtraction algorithm that iteratively 
applies a Savitzky-Golay smoothing method (moving point average) 
on the spectra. This gradually eliminates the high frequency peaks, 
allowing the broad underlying baseline to be subtracted from the raw 
spectrum, thus yielding the true signal.

Classification Fully Automatic Baseline Correction (FABC)42

It relies on the automatic recognition of signal-free regions to imple-
ment a Continuous Wavelet transform algorithm combined with 
the Whittaker smoothing algorithm for baseline modelling. It can 
automatically flatten the spectra with significant baseline distortion and 
is robust against spectra with low signal-to-noise ratios and varying 
widths.

Optimizer Adaptive MinMax43
It selects the subtraction technique based on the fluorescence-to-signal 
ratio, effectively reducing RMS error while dealing with different 
fluorescence-to-signal ratio.

Polynomial Goldindec44
An iterative algorithm that generates parameters automatically from 
raw data to fit the baseline without being affected by large peaks, peak 
number or wavenumber.

Miscellaneous Baseline Estimation And Denoising with Sparsity (BEADS)45,46
It performs baseline correction and noise reduction by modelling the 
baseline as low-pass signal and the noise as high-pass contribution, 
while the peaks are considered as sparse with sparse derivatives.
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Finally, using the ranked features, we produced subsets of the dataset comprising progressively smaller numbers 
of features from the full set of 1015 wavenumbers down to a single important feature. For each feature set, we 
evaluated the performance of ANN, DT, SVM on all classification tasks.

Comparison between baseline CNN with proposed method
In the first experimental study we compared the baseline CNN applied to either the raw or pre-processed dataset 
against our proposed multi-channel method. The results of the layer-wise OA or Healthy cartilage classification 

Figure 1.   Sample of multichannel input. (a) is the raw spectra while (b–h) are the spectra processed using the 
correction method as specified in their title.
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and disease-wise superficial or deep layers assignment are detailed in Table 3. Regardless of approach, we notice 
a higher performance rate in Region A compared to Region B, supporting existing evidence that Region A has 
strong biochemical fingerprinting information28. The baseline raw approach generally shows lower performance 
compared to the other two methods, suggesting that the raw data may contain unwanted noise that can reduce 
classification accuracy. In the disease diagnosis tasks, the manually chosen pre-processing strategy often achieves 
better results than other methods, particularly in Region A. Whereas in the layer assignment tasks, our proposed 
multi-channel approach consistently outperforms other methods as well as exhibiting lower standard deviations, 
particularly in Region A. Overall, the baseline pre-processed approach shows strong performance across most 
tasks, likely due to its optimised selection of pre-processing strategies. Nevertheless, our flexible multi-channel 
approach offers improved or competitive performance, and does not require the laborious steps required to 
determine an optimal pre-processing strategy.

We performed additional experiments in which the dataset was split by gender (see results in Appendix A). 
Results across the different experiments are broadly similar to the all-gender experiment. The baseline pre-
processed strategy demonstrates high F1-scores in most cases while our methodology provides improved or 
comparable results. However, we also note that some of the worse results by the baseline pre-processed approach 
in these smaller datasets may indicate that the manually chosen pre-processing method used here might not be 
the optimal strategy for all cases, as it may introduce bias.

We measure the computational cost of each approach to ensure a fair comparison. The Floating Point Opera-
tions Per Second (FLOPS) utilisation across all three methods exhibit negligible differences, with the baseline 
raw, pre-processed and our method having 0.401 GFLOPS, 0.399 GFLOPS and 0.403 GFLOPS respectively.

Feature importance
Integrated gradients were applied to the proposed multi-channel CNN across all classification tasks to rank the 
importance of input features, each representing a spectral feature corresponding to a wavenumber in the spec-
tra. The top 50 wavenumbers identified as important are concentrated on specific regions of the spectrum, and 
correlate well to those known to be biologically relevant to human cartilage. In Fig. 3, we present two example 
outputs for Superficial Healthy vs OA cartilage at both A and B regions.

In the disease classification task at the Region A, the network highlights similar peaks in Deep Healthy vs 
OA and Superficial Healthy vs OA cartilage layers (see Fig.  3a and Fig. B1 at Appendix B). These common 
peaks include 1325–1335 cm−1 (Collagen wagging and twisting), 830 cm−1 (Proline and Hyrdroxyproline), CH2 

Figure 2.   Our multi-channel CNN architecture takes in an 8-channel input, comprising of a mix of raw 
Raman spectra and those processed with different baseline correction methods. These are passed through a 
1-dimensional Residual network for the classification of OA vs Healthy.

Table 3.   F1 Comparison of baseline CNN on raw and pre-procesed dataset with the proposed method using a 
6-fold cross-validation in Region A and B on disease and layer classification tasks.

Region A B

Methodology Raw Pre-processed Ours Raw Pre-processed Ours

Disease diagnosis

 Superficial Healthy vs OA 83.43 ± 3.78 85.98 ± 5.02 84.05 ± 4.05 81.01 ± 3.42 81.64 ± 2.63 81.12 ± 3.08

 Deep Healthy vs OA 84.12 ± 3.37 89.34 ± 4.01 82.98 ± 3.17 83.45 ± 3.60 81.24 ± 5.06 80.38 ± 3.80

Layer assignments

 Superficial vs Deep Healthy 92.24 ± 6.04 93.49 ± 5.39 94.12 ± 5.36 88.10 ± 5.43 88.56 ± 5.17 88.95 ± 7.13

 Superficial vs Deep OA 89.25 ± 6.52 90.03 ± 6.42 90.59 ± 5.66 86.97 ± 5.85 89.39 ± 5.16 86.84  ± 5.71
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deformation (1437–1453 cm−1), and lipids and phospholipids (717–719 cm−1)29–31. The amino acids (Proline 
and Hyrdroxyproline) are the main components of type II collagen32, and all molecules mentioned have been 
identified as strong OA biomarkers in the literature 30,33,34. Our finding of the most prominent peak region (top 
10 wavenumbers) 1325–1335 cm−1 (Collagen wagging and twisting) also aligns with the results by Crisford et al.22 
who used a PCA-LDA method for classification on the same manually pre-processed dataset.

In Region B, most classification tasks commonly highlight several regions between 2885–3000 cm−1 that 
suggest CH, CH2 and CH3 stretch35 (see Fig. 3b and Fig. B12 to B22 at Appendix B) and likely refer to lipid and 
protein contents in the articular cartilage 29,36,37.

Additional plots showing the top 50 wavenumbers highlighted by the network for other experiments, includ-
ing layer assignment and disease diagnosis tasks with gender specificity, are provided in Appendix B. In general, 
these additional experiments reveal prominent peaks with high similarity to the results of Crisford et al.22 and 
strongly correlate with established biomarkers identified in the literature.

Feature selection
We compared ANN, DT and SVM for feature selection using a stratified 6-fold cross-validation. We discuss the 
results here, and present detailed results in Appendix C. Based on our analysis, we observe a higher performance 
rate by ANN in most classification tasks. Whereas DT and SVM demonstrate a more uniform performance across 
training runs and little to no performance drop even as we reduce the number of features.

Figure 3.   Sample cases of top 50 wavenumbers highlighted by the network in Superficial Healthy vs OA. (a) is 
recorded in the fingerprint Region A while (b) is in the CH2 stretching frequency Region B.
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In all disease classification tasks, we notice that reducing the number of features does not always affect the 
classification performance negatively and the overall performance is stable across the different algorithms. Using 
only 1–3 features, ANN and SVM achieve performance comparable to the best-performing CNN-based network 
applied to the full dataset in most classification tasks. Additionally, in some cases involving disease classification 
in Region B, ANN or SVM even outperform the best CNN-based network when using the reduced feature set.

In the layer assignment tasks, ANN often show notably better performance than SVM and DT, although its 
performance is slightly unstable. This instability can be attributed to the network’s sensitivity to outliers, which 
is exacerbated by its development on a small sample size. Experimental results show that the performance rate 
of these algorithms increases rapidly as we increase the number of features up to a certain point. The best-
performing algorithm, ANN, in this case, takes around 50 and 300 feature sets respectively for the all-gender 
and gender-specific classification tasks to achieve comparable accuracy to the CNN-based networks. This can 
be explained by the fact that ANN might need more features to learn the complex relationships necessary for 
accurate classification on the smaller dataset of the gender-specific tasks.

Figure 4 shows the two example outputs for the experiments using 1 to 100 feature sets in the disease classifi-
cation and layer assignment tasks using data in the fingerprint region (Region A). Detailed plots demonstrating 
the feature selection experiments for all classification tasks may be found in Appendix C.

In general, our experiments show that by using just a few features, basic machine learning algorithms such 
as ANN can attain accuracy comparable to the best-performing CNN-based network applied to the full dataset. 
This implies that the feature selection method (i.e. calculation of feature importance score by applying Integrated 
Gradients on proposed Multi-CNN) can be a useful to in eliminating redundant or noisy features, and potentially 
enhancing classification accuracy. Additionally, this further confirms that the features deemed to be important 
by our proposed method were relevant for the decision-making in these classification tasks. Notably, in a clini-
cal setting, this approach could translate to significant time and cost savings by enabling clinicians to utilise a 
reduced set of essential wavenumbers during measurement and analysis procedures.

Conclusion
The current studies demonstrate a fully automatic CNN solution applied to Raman spectroscopy that provides 
improved OA classification against healthy controls and assignment to superficial or deep layers based on disease 
or healthy controls. The approach speeds up analysis and reduces potential error involved in manual selection 
of pre-processing steps, which traditionally demand weeks of human labor and cannot be executed in a com-
pletely “blinded” manner. Results show that the proposed methodology achieved similar or better performance 
compared to a baseline CNN trained on either the raw or fixed pre-processed spectra. The proposed method 
removes the need to handpick “optimal” pre-processing strategies by enabling the network to automatically learn 
a good combination of pre-processed features, while also incorporating the raw spectra to avoid any loss of criti-
cal information. We next utilised Integrated gradients to show that our proposed Multi-CNN makes predictions 
based on biologically relevant spectral features corresponding to specific wavenumbers in the Raman spectra. 
By selecting on a small subset of those that were ranked as most important, we were able to train additional clas-
sifiers to a very similar accuracy to those trained on the full feature input. Maintaining high performance with 
only a small number of spectral features suggests that our approach may be suitable for Raman-based imaging, 
in which each additional spectral feature incurs a cost in terms of time required to capture imaging data. Future 
work will explore the wider application of the proposed Multi-CNN on spectroscopy data from other domains, 
where we anticipate that multi-channel input will improve accuracy and robustness. We will also explore alter-
native ways to combine multi-channel inputs, such as attention mechanisms, to work towards performance that 
never falls below either raw or static pre-processing. The improved and rapid classification using our approach 
could potentially enable the translation of Raman spectroscopic approaches to the clinic and help practitioners 
improve outcomes for patients.

Figure 4.   Sample cases of feature selection using SVM, Decision Tree or ANN at Region A: (a) Superficial 
Healthy vs OA, (b) Superficial vs Deep OA.
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Data availability
The code and dataset are available at https://​github.​com/​janet​kok/​Raman_​spect​ra_​class​ifica​tion_​of_​OP_​and_​OA.

Received: 23 March 2024; Accepted: 4 July 2024

References
	 1.	 Vašková, H. A powerful tool for material identification: Raman spectroscopy. Int. J. Math. Model. Methods Appl. Sci. 5, 1205–1212 

(2011).
	 2.	 Gautam, R., Vanga, S., Ariese, F. & Umapathy, S. Review of multidimensional data processing approaches for Raman and infrared 

spectroscopy. EPJ Tech. Instrum. 2, 1–38 (2015).
	 3.	 Mostafapour, S. et al. Investigating the effect of different pre-treatment methods on Raman spectra recorded with different excita-

tion wavelengths. Spectrochim. Acta Part A 302, 123100 (2023).
	 4.	 Afseth, N. K., Segtnan, V. H. & Wold, J. P. Raman spectra of biological samples: A study of preprocessing methods. Appl. Spectrosc. 

60, 1358–1367 (2006).
	 5.	 Heraud, P., Wood, B. R., Beardall, J. & McNaughton, D. Effects of pre-processing of Raman spectra on in vivo classification of 

nutrient status of microalgal cells. J. Chemom. 20, 193–197 (2006).
	 6.	 Engel, J. et al. Breaking with trends in pre-processing?. TrAC Trends Anal. Chem. 50, 96–106 (2013).
	 7.	 Pan, L., Zhang, P., Daengngam, C., Peng, S. & Chongcheawchamnan, M. A review of artificial intelligence methods combined with 

Raman spectroscopy to identify the composition of substances. J. Raman Spectrosc. 53, 6–19 (2022).
	 8.	 Krafft, C., Steiner, G., Beleites, C. & Salzer, R. Disease recognition by infrared and Raman spectroscopy. J. Biophoton. 2, 13–28 

(2009).
	 9.	 Liu, J. et al. Deep convolutional neural networks for Raman spectrum recognition: A unified solution. Analyst 142, 4067–4074 

(2017).
	10.	 Acquarelli, J. et al. Convolutional neural networks for vibrational spectroscopic data analysis. Anal. Chim. Acta 954, 22–31 (2017).
	11.	 Zhang, X., Lin, T., Xu, J., Luo, X. & Ying, Y. Deepspectra: An end-to-end deep learning approach for quantitative spectral analysis. 

Anal. Chim. Acta 1058, 48–57 (2019).
	12.	 Wahl, J., Sjödahl, M. & Ramser, K. Single-step preprocessing of Raman spectra using convolutional neural networks. Appl. Spectrosc. 

74, 427–438 (2020).
	13.	 Kazemzadeh, M. et al. Cascaded deep convolutional neural networks as improved methods of preprocessing Raman spectroscopy 

data. Anal. Chem. 94, 12907–12918 (2022).
	14.	 Kumar, R. et al. Optical investigation of osteoarthritic human cartilage (icrs grade) by confocal Raman spectroscopy: A pilot study. 

Anal. Bioanal. Chem. 407, 8067–8077 (2015).
	15.	 Richardson, W. et al. Ensemble multivariate analysis to improve identification of articular cartilage disease in noisy Raman spectra. 

J. Biophoton. 8, 555–566 (2015).
	16.	 Shaikh, R. et al. Raman spectroscopy is sensitive to biochemical changes related to various cartilage injuries. J. Raman Spectrosc. 

52, 796–804 (2021).
	17.	 Afara, I. O. et al. Machine learning classification of articular cartilage integrity using near infrared spectroscopy. Cell. Mol. Bioeng. 

13, 219–228 (2020).
	18.	 Liu, Y. et al. Convolutional neural network for hyperspectral data analysis and effective wavelengths selection. Anal. Chim. Acta 

1086, 46–54 (2019).
	19.	 Fukuhara, M., Fujiwara, K., Maruyama, Y. & Itoh, H. Feature visualization of Raman spectrum analysis with deep convolutional 

neural network. Anal. Chim. Acta 1087, 11–19 (2019).
	20.	 Zhang, X. et al. Understanding the learning mechanism of convolutional neural networks in spectral analysis. Anal. Chim. Acta 

1119, 41–51 (2020).
	21.	 Xia, J., Zhang, J., Xiong, Y. & Min, S. Feature selection of infrared spectra analysis with convolutional neural network. Spectrochim. 

Acta Part A 266, 120361 (2022).
	22.	 Crisford, A. et al. Harnessing Raman spectroscopy and multimodal imaging of cartilage for osteoarthritis diagnosis. medRxiv 

(2023).
	23.	 Ho, C.-S. et al. Rapid identification of pathogenic bacteria using Raman spectroscopy and deep learning. Nat. Commun. 10, 1–8 

(2019).
	24.	 He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer 

Vision and Pattern Recognition 770–778 (2016).
	25.	 Sundararajan, M., Taly, A. & Yan, Q. Axiomatic attribution for deep networks. In International Conference on Machine Learning 

3319–3328 (PMLR, 2017).
	26.	 Huang, W., Zhao, X., Jin, G. & Huang, X. Safari: Versatile and efficient evaluations for robustness of interpretability. arXiv preprint 

arXiv:​2208.​09418 (2022).
	27.	 Pedregosa, F. et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).
	28.	 Mandair, G. S. & Morris, M. D. Contributions of Raman spectroscopy to the understanding of bone strength. BoneKEy Rep. 4, 620 

(2015).
	29.	 Movasaghi, Z., Rehman, S. & Rehman, I. U. Raman spectroscopy of biological tissues. Appl. Spectrosc. Rev. 42, 493–541 (2007).
	30.	 Casal-Beiroa, P. et al. Optical biomarkers for the diagnosis of osteoarthritis through Raman spectroscopy: Radiological and bio-

chemical validation using ex vivo human cartilage samples. Diagnostics 11, 546 (2021).
	31.	 Mansfield, J. C. & Winlove, C. P. Lipid distribution, composition and uptake in bovine articular cartilage studied using Raman 

micro-spectrometry and confocal microscopy. J. Anat. 231, 156–166 (2017).
	32.	 de Souza, R. A. et al. Raman spectroscopy detection of molecular changes associated with two experimental models of osteoarthritis 

in rats. Lasers Med. Sci. 29, 797–804 (2014).
	33.	 Gao, T. et al. Non-destructive spatial mapping of glycosaminoglycan loss in native and degraded articular cartilage using confocal 

raman microspectroscopy. Front. Bioeng. Biotechnol. 9, 744197 (2021).
	34.	 Pezzotti, G. et al. Raman spectroscopic insight into osteoarthritic cartilage regeneration by mrna therapeutics encoding cartilage-

anabolic transcription factor runx1. Mater. Today Bio 13, 100210 (2022).
	35.	 Takahashi, Y. et al. Raman spectroscopy investigation of load-assisted microstructural alterations in human knee cartilage: Pre-

liminary study into diagnostic potential for osteoarthritis. J. Mech. Behav. Biomed. Mater. 31, 77–85 (2014).
	36.	 Martinez, M. G., Bullock, A. J., MacNeil, S. & Rehman, I. U. Characterisation of structural changes in collagen with Raman spec-

troscopy. Appl. Spectrosc. Rev. 54, 509–542 (2019).
	37.	 Chatzipanagis, K. et al. In situ mechanical and molecular investigations of collagen/apatite biomimetic composites combining 

Raman spectroscopy and stress-strain analysis. Acta Biomater. 46, 278–285 (2016).
	38.	 Zhang, F. et al. Baseline correction for infrared spectra using adaptive smoothness parameter penalized least squares method. 

Spectrosc. Lett. 53, 222–233 (2020).

https://github.com/janetkok/Raman_spectra_classification_of_OP_and_OA
http://arxiv.org/abs/2208.09418


10

Vol:.(1234567890)

Scientific Reports |        (2024) 14:15902  | https://doi.org/10.1038/s41598-024-66857-6

www.nature.com/scientificreports/

	39.	 Eilers, P. H. & Marx, B. D. Splines, knots, and penalties. Wiley Interdiscip. Rev. 2, 637–653 (2010).
	40.	 Liu, H. et al. Joint baseline-correction and denoising for Raman spectra. Appl. Spectrosc. 69, 1013–1022 (2015).
	41.	 Krishna, H., Majumder, S. K. & Gupta, P. K. Range-independent background subtraction algorithm for recovery of Raman spectra 

of biological tissue. J. Raman Spectrosc. 43, 1884–1894 (2012).
	42.	 Cobas, J. C., Bernstein, M. A., Martín-Pastor, M. & Tahoces, P. G. A new general-purpose fully automatic baseline-correction 

procedure for 1d and 2d nmr data. J. Magn. Reson. 183, 145–151 (2006).
	43.	 Cao, A. et al. A robust method for automated background subtraction of tissue fluorescence. J. Raman Spectrosc. 38, 1199–1205 

(2007).
	44.	 Liu, J., Sun, J., Huang, X., Li, G. & Liu, B. Goldindec: A novel algorithm for Raman spectrum baseline correction. Appl. Spectrosc. 

69, 834–842 (2015).
	45.	 Ning, X., Selesnick, I. W. & Duval, L. Chromatogram baseline estimation and denoising using sparsity (beads). Chemom. Intell. 

Lab. Syst. 139, 156–167 (2014).
	46.	 Navarro-Huerta, J., Torres-Lapasió, J., López-Ureña, S. & García-Alvarez-Coque, M. Assisted baseline subtraction in complex 

chromatograms using the beads algorithm. J. Chromatogr. A 1507, 1–10 (2017).

Author contributions
Y.E.K. conceived and conducted the experiments, analysed and interpret the results and prepared the manuscript. 
M.P. conceptualized the study, analysed the results and supervised the project. A.C., R.O., and S.M. provided the 
dataset and domain-expert clinical knowledge for the manuscript. A.P. supervised the project. S.V. coordinated 
the project and edited the manuscript. All authors reviewed the manuscript.

Funding
This study was supported by the Engineering and Physical Sciences Research Council (EPSRC) grant (EP/
T020997/1) and a University of Nottingham PhD studentship.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​024-​66857-6.

Correspondence and requests for materials should be addressed to Y.E.K.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2024

https://doi.org/10.1038/s41598-024-66857-6
https://doi.org/10.1038/s41598-024-66857-6
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Classification of osteoarthritic and healthy cartilage using deep learning with Raman spectra
	Materials and methods
	Dataset
	Proposed multichannel input
	Network design
	Feature selection
	Experimental design

	Results and discussion
	Comparison between baseline CNN with proposed method
	Feature importance
	Feature selection

	Conclusion
	References


