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Abstract
In themachining process known as grinding, fluid is applied to regulate the temperature
of the workpiece and reduce the risk of expensive thermal damage. The factors that
influence the transport of this grinding fluid are not well understood; however, it is
important to gain understanding in order to try to avoid the unnecessary cost incurred
from its inefficient application. In this work, we use themethod of matched asymptotic
expansions to derive themultiscale systemof equations that governs theflow.Under the
lubrication approximation, we show that it is possible to calculate the flow rate through
the grinding zone without having to solve for the flow far from the grinding zone.
Additional empirically determined boundary conditions do not need to be imposed.
With this lubrication model, we quantify the effect of experimental parameters on the
flow field in the grinding zone and study how the flow regime responds to changes in
these parameters.

Keywords Grinding · Lubrication · Matched asymptotic expansions · Reynolds
equation

1 Introduction

Grinding is a machining process in which a material, referred to as the workpiece, is
fed into the path of a grinding wheel composed of hard abrasives. Grinding is used
for several different purposes, but primarily for cutting, where large amounts of the
workpiece are removed, and finishing, where the rough surface of the workpiece is
smoothed. The thickness of the surface layer removed during grinding is known as
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Fig. 1 A simulated grinding setup with a narrow gap between the clockwise-rotating grinding wheel and
flat perspex workpiece. Grinding fluid is ejected from the nozzle on the right-hand side towards the gap
underneath the grinding wheel

the depth of cut. During grinding, the region of contact between grinding wheel and
workpiece, referred to as the grinding zone, can experience temperatures of up to
1000 ◦C [1]. To reduce the risk of thermal damage to the workpiece, a grinding fluid is
commonly applied to the grinding zone to lubricate and cool the workpiece. However,
the mechanics of this flow are poorly understood, resulting in inefficient grinding fluid
application which is estimated to account for up to 17% of the cost of each grinding
operation [2]. Understanding the impact that grinding parameters have on the features
of the flow is key to reducing grinding fluid waste.

The space between abrasives plays an important role in transporting fluid to the
grinding zone [3]. Engineer et al. [4] experimentally investigated the effect of various
grinding parameters on the flow rate of grinding fluid through the grinding zone. They
observed that an increase in the grinding wheel’s porosity led to an increase in the
flow rate.

Existing mathematical descriptions of the transport of grinding fluid assume that
the spaces between the abrasives form an effective gap between the workpiece and the
grinding wheel. More precisely, they consider simulated grinding where the grinding
wheel is taken to spin at a non-zero distance above the flat workpiece such that no
contact ismadebetween the two surfaces, i.e. zero depth of cut.An imageof a simulated
grinding setup is shown in Fig. 1.

A common approach is to model the flow in this effective gap with the Reynolds
equation. Originally derived by Reynolds [5], the one-dimensional Reynolds equation
is

∂

∂x

(
h3

μ

∂ p

∂x

)
= 6 (u1 + u2)

∂h

∂x
+ 12

∂h

∂t
, (1)

whose dependent variable is the pressure distribution, p(x, t), in the gap between two
surfaces separated by an a-priori known distance, h(x, t). Here, u1 and u2 are the
speeds of the two surfaces and μ the dynamic viscosity of the fluid. The key assump-
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tions in the derivation of (1) are that the fluid is incompressible and Newtonian, the
gap between the surfaces is narrow enough that viscous forces dominate over inertial
forces and that the effect of gravity is negligible. This is known as the lubrication
approximation. An in-depth study of the lubrication approximation with applications
can be found in [6, pp. 294–346]. Extensions to the lubrication approximation exist
which widen its applicability in flows where one or more of the standard assumptions
are not valid. For example, allowing for steep boundary gradients by including higher-
order corrections terms [7] or inertial effects by applying boundary-layer theory along
the gap [8].

One shortcoming of current approaches is the need for empirically determined
measurements to close the model. Schumack et al. [9] considered the two dimen-
sional stream function form of the steady Navier–Stokes equations at small Reynolds
numbers. Instead of allowing the grinding wheel to spin at high speeds, it was held sta-
tionary and an infinitely long, planar workpiece translated at a typical grinding wheel
speed. They treated the grinding fluid as incompressible and remarked that "pressure is
small in grinding situations and hence does not influence the viscosity". By assuming
that the gap between the grinding wheel and the workpiece was narrow enough that
viscous forces dominate over inertial forces, they were able to derive an expression
for the pressure in the gap. In order to close their problem, empirically determined
flow rates had to be prescribed at artificial boundaries.

Hryniewicz et al. [10, 11] built upon the work of Schumack et al. by considering the
effect that surface roughness of the grinding wheel has on the pressure in the grinding
zone. To incorporate the effects of roughness, they used a volume averaging technique
on the leading order Reynolds equation at moderate Reynolds number, and equated the
distance between the bottom of the grinding wheel and the workpiece in their model
with the minimum distance between the grinding wheel abrasives and the workpiece
in their experiments. As the focus was only the hydrodynamic pressure in the grinding
zone, they encountered the same difficulties as Schumack et al. when attempting to
solve for the velocity field— the need for empirically determined boundary conditions.
Furthermore, their results exhibit a similar breakdown of accuracywhen inertial effects
become relevant at higher Reynolds numbers. There are many studies that use the idea
of modelling the flow in the grinding zone using the Reynolds equation, applying
empirically determined boundary conditions at artificial boundaries. In these works,
the workpiece is consistently assumed to be a planar surface; see, for example, [12]
and [13].

Simpler mathematical models exist for the transport of grinding fluid; however,
these models have a narrow output. Gviniashvili et al. [14] developed a model for
predicting the flow rate through the grinding zone. The model is based on the balance
of momentum by assuming that the grinding fluid exiting the nozzle adheres to the
grinding wheel’s velocity on impact. Empirical coefficients, which are thought to
depend on the structure of the grinding wheel and rheology of the grinding fluid, then
account for the difference observed between the theoretical and experimental flow
rates.

In the grinding zone, many physical and chemical processes can influence the
transport of grinding fluid. Two such examples are film boiling [15] and surface layer
formation [16, pp. 502–505], the effects of which are not well understood. We will try
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Fig. 2 Illustration of introduced quantities in our problem setup

to account for these effects to some extent by assuming (Navier) slip on both grinding
wheel and workpiece surfaces, [17]. Previous work by Wichmann et al. on the thin-
film wetting of grinding wheels has observed a dependency of the slip length on the
grinding wheel’s abrasive size [18].

In this paper,we consider the problemof simulated grindingwith a smooth, spinning
wheel situated a small distance above a workpiece. This gap characterises the mean
void space between the grinding wheel and the workpiece. The grinding zone is taken
to be a curved channel with the same shape as the grinding wheel. Due to the way
the cutting is performed in grinding, this is a simplification of physical grinding zone
geometries. See, e.g. [19] which presents detailed scans of workpiece and grinding
wheel surfaces after undergoing grinding, showing irregular surface profiles. However,
the grinding zone geometry we consider here represents a preliminary and necessary
step towards developing more comprehensive models for predicting the transport of
grinding fluid during grinding.

We assume an incompressible grinding fluid fills the domain. To model the flow
under the grinding wheel, we use the ratio of the separation of the gap between
the grinding wheel and the workpiece, ĥg , and the radius of the wheel, R̂, as the
small parameter in the method of matched asymptotic expansions (see Fig. 2). We
split the flow into two separate domains over these length scales and derive a sys-
tem of lubrication equations governing the flow under the grinding wheel. We find
that this flow is independent of the flow over the longer length scale, which gives
our approach two primary advantages over existing models. The first is the ability
to solve for the flow in the grinding zone without requiring empirically determined
boundary conditions to formulate a closed problem. The second is that the shape
of the grinding zone is more accurately treated as a channel with non-zero curva-
ture, representing the workpiece under grinding, rather than a planar workpiece.
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2 Problem formulation

We use hat notation to denote dimensional quantities and model a circular grinding
wheel of radius R̂ located above the workpiece with standoff distance ĥg > 0, as
shown in Fig. 2. The origin, Ô , of a Cartesian coordinate system, (x̂, ŷ), is the point
on the workpiece directly below the centre of the grinding wheel, Ĉω. The grinding
wheel rotates clockwise, with speed V̂ω at its surface, and we assume that the velocity
of the workpiece is negligible relative to that of the grinding wheel. The workpiece
has a smooth curved surface along the region of contact, i.e. the grinding zone, and
planar surfaces at ŷ = d̂c and ŷ = 0 to the left and right of the grinding zone,
respectively. The depth of cut is d̂c ≥ 0. We denote the surface of the workpiece by
ĥ1

(
x̂
)
. The surface of the grinding wheel is given implicitly by ĥω

(
x̂, ŷ

) = 0, where

ĥω

(
x̂, ŷ

) = x̂2 +
(
ŷ − 1 − ĥg

)2 − 1. The height of the bottom half of the grinding

wheel is denoted by ĥ2
(
x̂
)
. The flow domain, which surrounds the grinding wheel

and workpiece, is �̂ = �̂1 ∪ �̂2 ∪ �̂3. We consider the flow of an incompressible
Newtonian fluid in �̂. The fluid has constant density ρ̂ and viscosity μ̂, with fluid
velocity û = ûx ex + û yey and pressure p̂. On ĥ1 and ĥω, we assume that there is slip
of the grinding fluid with slip length β̂.

Some dimensionless parameters that we will use below are

ε = ĥg

R̂
, γ = d̂c

R̂
, δ = γ

ε
= d̂c

ĥg
, Re = ρ̂V̂ω R̂

μ̂
, β = β̂

R̂
. (2)

If γ = δ = 0, the workpiece is a planar surface. In a typical surface grinding regime
[20],

ε = 5 × 10−5, δ = 2, Re = 1 × 105, (3)

and in a typical creep-feed grinding regime [21],

ε = 2.5 × 10−3, δ = 4.8, Re = 1 × 105. (4)

For surfaces with low degrees of roughness, experiments have found that typically

0 < β̂ < 1 × 10−5 m, (5)

see [17] for an overview of experimentally measured slip lengths. In practice, with
the rough surfaces used in grinding, slip is likely to be present over the lengthscale
characterising the abrasive size, for which ĥg provides a first approximation of. Hence,
we suppose β̂ will be near or larger than the upper bound of (5) and consider the
asymptotic solution in the limit

δ = O (1) , Re = O
(
ε−1

)
, β = O (ε) as ε → 0, (6)
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which is broadly consistent with the parameter estimates (3) and (4).

2.1 Dimensionless problem

We introduce the dimensionless variables

x = x̂

R̂
, y = ŷ

R̂
, t = V̂ω

R̂
t̂, u = û

V̂ω

, p = ε3/2 R̂

μ̂V̂ω

p̂. (7)

The dimensionless flow domain is � = �1 ∪ �1 ∪ �3, where

�1 = {(x, y) : x ≥ 0, y ∈ (0, yb) ∪ (yt ,∞) , hω (x, y) > 0}
∪ {(x, y) : x ≥ 0, y ∈ [yb, yt ] , hω (x, y) > 0} ,

(8)

�2 = {
(x, y) : x ∈ (xL , 0) , y ∈ (

h1 (x) , h2 (x)
)}

, (9)

�3 = {(x, y) : x ≤ xL , y ∈ (γ, yb) ∪ (yt ,∞) , hω (x, y) > 0}
∪ {(x, y) : x ≤ xL , y ∈ [yb, yt ] , hω (x, y) > 0}
∪ {(x, y) : x ∈ (xL , 0) , y > yt , hω (x, y) > 0} ,

(10)

represents the flow domain to the right of the grinding zone, the grinding zone and left
of the grinding zone, respectively, with

yb = 1 + ε −
√
1 − x2L , yt = 1 + ε +

√
1 − x2L . (11)

The dimensionless form of the location of the boundaries is

h1 (x) =

⎧⎪⎨
⎪⎩
0

1 + ε −
√

(1 + ε)2 − x2

γ

for x ≥ 0,

for x ∈ (xL , 0) ,

for x ≤ xL ,

(12)

h2 (x) = 1 + ε −
√
1 − x2, (13)

hω (x, y) = x2 + (y − 1 − ε)2 − 1, (14)

xL = − (1 + ε)

√
1 −

(
1 − γ

1 + ε

)2

. (15)

The dimensionless Navier–Stokes equations are

∇ · u = 0, (16)

ε3/2Re

(
∂u
∂t

+ u · ∇u
)

= −∇ p + 2ε3/2∇ · E, (17)

to be solved subject to the slip conditions

u − t = 2βn · E · (I − nn) on hω (x, y) = 0, (18)
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u = 2βn · E · (I − nn) on y = h1 (x) , (19)

and far-field conditions

u → 0 as x → ± ∞, y → ∞, (20)

p → 0 as x → ± ∞, y → ∞. (21)

Here, E = 1
2

(∇u + (∇u)T
)
is the rate of strain tensor, I is the metric tensor,

t = tx ex + tyey is the unit tangent to hω (x, y) = 0 with

tx =
{√

1 − x2

−√
1 − x2

for y > 1 + ε,

for y ≤ 1 + ε,
(22)

ty = −x (23)

and n = nx ex + nyey is the inward unit normal to the surface, given by

nx = −x, (24)

ny =
{

−√
1 − x2√

1 − x2
for y > 1 + ε,

for y ≤ 1 + ε,
(25)

on hω (x, y) = 0 and

nx = 0 for x ≥ 0, (26)

ny = 1 for x ≥ 0, (27)

nx = − x

1 + ε
for x ∈ (xL , 0) , (28)

ny =
√

(1 + ε)2 − x2

1 + ε
for x ∈ (xL , 0) , (29)

nx = 0 for x ≤ xL , (30)

ny = 1 for x ≤ xL , (31)

on y = h1 (x).
Setting ε = 0 yields a contact problemwith incompatible boundary conditions (18)

and (19), which cannot both be satisfied. We therefore introduce variables that stretch
the small-scale grinding region. A variable rescaling argument leads us to introduce
the O(1) stretched variables, denoted by superscript 
, as

x
 = x√
ε
, y
 = y

ε
, u
 = u, v
 = v√

ε
, p
 = p, β
 = β

ε
. (32)

The grinding zone region, where these stretched variables are of O (1), is an inner
region. The rest of the domain of solution, where the variables given by (7) are of
O (1), is an outer region.
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2.2 Outer problem

The outer problem describes the flow in the outer region where we take ε = 0. In
order to balance leading order advection and pressure gradients terms in (17), we
must introduce

po = p

ε3/2Re
, (33)

where po = O (1). This means that the outer flow satisfies the full Navier–Stokes
equations with large Reynolds number. We will not consider the details of this flow
since we find that the leading order flow in the inner region is independent of the flow
in the outer region. This is due to the large-scale disparity between the inner and outer
pressure, highlighted by (7) and (33), respectively. This results in the outer region
pressure appearing as a low order perturbation to the inner region pressure. Therefore,
at leading order, the matching condition of the inner and outer region pressure reduces
to a homogeneous far-field inner region pressure condition.

2.3 Inner problem

The inner region, �
 = �∗
1 ∪ �∗

2 ∪ �∗
3, consists of the three disjoint regions

�

1 =

{(
x
, y


) : x
 > 0, y ∈
(
0,

1

2

(
x
2 + 2

))}
, (34)

�

2 =

{(
x
, y


) : x
 ∈ (
x

L , 0

)
, y ∈

(
x
2

2
,
1

2

(
x
2 + 2

))}
, (35)

�

3 =

{(
x
, y


) : x
 < x

L , y ∈

(
δ,

1

2

(
x
2 + 2

))}
, (36)

with boundaries given by

h

1

(
x


) =

⎧⎪⎨
⎪⎩
0
1
2 x


2

δ

for x
 ≥ 0,

for x
 ∈ (
x

L , 0

)
,

for x
 ≤ x

L ,

(37)

h

2

(
x


) = 1

2

(
x
2 + 2

)
, (38)

x

L = −√

2δ. (39)

We will denote the variables u
, v
 and p
 with subscript i to indicate that they belong
to�


i for i = 1, 2, 3. In addition, we denote the cross-sectional flow rate in�

i between

y
 = h

1 (x
) and y
 = h


2 (x
) by Q

i (x
, t) for i = 1, 2, 3.

At leading order, in �

i , we have the usual lubrication equations

∂u

i

∂x

+ ∂v


i

∂ y

= 0, (40)
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∂ p

i

∂x

= ∂2u


i

∂ y
2 , (41)

∂ p

i

∂ y

= 0, (42)

subject to the boundary conditions

u

i + 1 = −β
 ∂u


i

∂ y

on y
 = h


2

(
x


)
, (43)

v

i + x
 = −β
x
 ∂u


i

∂ y

on y
 = h


2

(
x


)
, (44)

for i = 1, 2, 3, and

u

1 = β
 ∂u


1

∂ y

on y
 = h


1

(
x


)
, x
 ≥ 0, (45)

v

1 = 0 on y
 = h


1

(
x


)
, x
 ≥ 0, (46)

u

2 = β
 ∂u


2

∂ y

on y
 = h


1

(
x


)
, x
 ∈ (

x

L , 0

)
, (47)

v

2 = β
x
 ∂u


2

∂ y

on y
 = h


1

(
x


)
, x
 ∈ (

x

L , 0

)
, (48)

u

3 = β
 ∂u


3

∂ y

on y
 = h


1

(
x


)
, x
 ≤ x


L , (49)

v

3 = 0 on y
 = h


1

(
x


)
, x
 ≤ x


L . (50)

We have introduced artificial boundaries in the flow domain, so we require additional
conditions to enforce continuity of flow rate and pressure

Q

1 = Q


2, p

1 = p


2 at x
 = 0, (51)

Q

2 = Q


3, p

2 = p


3 at x
 = x

L . (52)

To close the inner problem, we need a matching condition for the pressure, and (33)
shows that

lim
x
→∞ p


1 = 0, lim
x
→−∞ p


3 = 0. (53)

In other words, the pressure distribution created by the flow in the grinding zone is
an order of magnitude larger than that in the outer flow, which therefore has no effect
at leading order. In principle, once the flow in the inner region is known, the flow in
the outer region can be determined, subject to appropriate flow rate conditions at the
inlet and outlet to the grinding zone, which are point sources or sinks on the outer
lengthscale.
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We will see in the next section that (40)–(53) is a closed problem for the flow in
the inner region. As there are no time derivatives at leading order and the matching
conditions are independent of time, the flow in the inner region is steady, so we will
henceforth assume no dependence on t .

2.4 Leading order analytical solution

From (40)–(53), we have in �

i , for i = 1, 2, 3,

− x
2 + 2

4
−

[
x
2 + 2 (1 + 6β
)

] (
x
2 + 2

)2
96

dp

1

dx

= Q
, (54)

− 1

2
− 1 + 6β


12

dp

2

dx

= Q
, (55)

− x
2 + 2 (1 − δ)

4
−

[
x
2 + 2 (1 + 6β
 − δ)

] [
x
2 + 2 (1 − δ)

]2
96

dp

3

dx

= Q
, (56)

where Q
 denotes the constant cross-sectional flow rate. In addition, we denote the
flow rate contribution due to shear effects and pressure gradient in �


i by Q

s,i and

Q

p,i , respectively, with

Q
 = Q

s,i + Q


p,i (57)

for i = 1, 2, 3. Further information can be found in Appendix A.
Each of Eqs. (54) to (56) is separable, and can be integrated analytically. However,

the functional form of (56) leads to five different functional forms for the analytical
solution, p


3. These can be classified as: I: 0 < δ < 1; II: δ = 1; III: 1 < δ < 1+ 6β
;
IV: δ = 1 + 6β
; V: δ > 1 + 6β
. The pressure solution for each case can be found
in Appendix B. In Appendix C , we perform a validation on the lubrication model
derived here via comparison of the pressure solution in the inner region to the full-
scale problem given by (16)–(21).

We will study the solution of each case in order to understand how the parameters
affect the flow rate through the grinding zone.

3 Discussion

The expressions for the pressure given by (B.12), (B.14), (B.15), (B.19), (B.21), (B.23)
and (B.25) are amixture of rational polynomialswith inverse trigonometric and inverse
hyperbolic functions. The pressure in the grinding zone, p


2, is linear. In Fig. 3, we plot
the pressure in the inner region, p
, for various values of δ and β
. For each value of
δ shown, the solution converges to the no-slip solution, represented by the red dotted
line, in the limit β
 → 0. In contrast, the absolute value of the pressure decreases at
every point in the inner region and eventually in the limit β
 → ∞, p
 → 0.

We remark that a trough of negative (relative) pressure can be observed along the
grinding zone. This has been seen to occur in experimental data of simulated grinding,
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Fig. 3 Plot of the pressure distribution, p
, in the inner region for different values of δ, shown in the titles.
The legend corresponds to the value of β
, the dimensionless slip length

e.g. [10]. However, due to empirical boundary conditions applied to the Reynolds
equation in the same work, the flow model failed to capture this feature.

In Fig. 4, we plot dp
/dx
 for various values of δ and β
. We observe the same
behaviour for all values of δ, namely that as β
 increases, themagnitude of the pressure
derivative decreases everywhere. Similarly, we can show that in each regime

lim
β
→∞

dp


dx

= 0. (58)

We recall that there is no imposed pressure gradient across the inner region from the
outer region via (53). Hence, (58) states that in the limitβ
 → ∞, the pressure gradient
of the flow in the inner region disappears and the flow reduces to a boundary-driven
shear flow with constant velocity profile. Similar behaviour is seen in plane Couette
flow with full slip on both surfaces where the velocity solution is a constant profile
[22].

In Fig. 5, we plot the flow rate, Q
, as a function of δ for various values of β
.
We can see that as β
 increases, so does Q
, despite Fig. 4 showing a decrease in

the pressure derivative. We can show that the maximum flow rate across all regimes

123



   12 Page 12 of 23 Z. Crowson et al.

Fig. 4 Plot of the pressure derivative, dp


dx
 , in the inner region for different values of δ, shown in the title.
The legend corresponds to the value of β


Fig. 5 Plot of the flow rate, Q
, as a function of δ. The legend corresponds to the value of β


is given by

lim
δ→0

β
→∞
Q
 = −1, (59)
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Fig. 6 Plot of the flow rate fraction,
Q

p

Q

s
, along the inner region for different values of δ, shown in the title.

The legend corresponds to the value of β


which occurs when there is full slip at both surfaces with depth of cut much smaller
than the separation between the grinding wheel and the workpiece.

In Fig. 6, we plot the fractions of the flow rate due to pressure gradient, Q

p, and

shear effects, Q

s .

Focussing on the grinding zone, we see from the graphs that increasing β
 leads
to an increase in Q


p,2 relative to Q

s,2. This is surprising given the results shown in

Fig. 4. However, it can be understood from the expression of the grinding zone flow
rate given by (A.4). While the coefficient of the pressure derivative scales to infinity
as 1+6β
, using (B.14), we see the pressure derivative scales to zero as (1 + 6β
)−1.
These factors cancel and from these quantities with (A.8) and (A.9), we can calculate
the resulting expression

Q

p,2

Q

s,2

= − (
1 + 2Q


)
. (60)

Using the results for Q
 from Fig. 5, we see that an increase in β
 results in an increase
of Q


p,2 relative to Q

s,2.

Expression (60) highlights the constant flow rate component fraction in the grinding
zone. From this, we can calculate the fraction of the flow rate that is attributable to shear
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Table 1 Values of
Q

s,2
Q
 for various δ and β


δ β


0 1 × 10−1 1 1 × 101 ∞

0 7.5 × 10−1 7.21 × 10−1 6.37 × 10−1 5.57 × 10−1 5 × 10−1

1 × 10−1 7.73 × 10−1 7.43 × 10−1 6.57 × 10−1 5.75 × 10−1 5.17 × 10−1

1 8.44 × 10−1 8.17 × 10−1 7.34 × 10−1 6.52 × 10−1 5.93 × 10−1

1 × 101 9.36 × 10−1 9.21 × 10−1 8.72 × 10−1 8.14 × 10−1 7.66 × 10−1

∞ 1 1 1 1 1

Table 2 Values of
Q

p,2
Q
 for various δ and β


δ β


0 1 × 10−1 1 1 × 101 ∞

0 2.5 × 10−1 2.79 × 10−1 3.63 × 10−1 4.43 × 10−1 5 × 10−1

1 × 10−1 2.27 × 10−1 2.57 × 10−1 3.43 × 10−1 4.25 × 10−1 4.83 × 10−1

1 1.56 × 10−1 1.83 × 10−1 2.66 × 10−1 3.48 × 10−1 4.07 × 10−1

1 × 101 6.4 × 10−2 7.9 × 10−2 1.28 × 10−1 1.86 × 10−1 2.34 × 10−1

∞ 0 0 0 0 0

effects and pressure gradient, denoted by
Q

s,2
Q
 and

Q

p,2
Q
 , respectively. In Tables 1 and

2, the values of
Q

s,2
Q
 and

Q

p,2
Q
 , respectively, are given for various parameter regimes.

As we see from the tables, it is only in the small-δ, high-β
 regime that there is
an equal contribution to the flow rate from both pressure gradient and shear effects.
Outside of this regime, the flow is predominantly driven by the motion of the grinding
wheel. To illustrate this, consider a typical surface grinding regime with

δ = 2, β
 = 1 × 10−3, (61)

and creep-feed grinding regime with

δ = 4.8, β
 = 2 × 10−5, (62)

where we have used the values presented in Sect. 2. We find that

Q

p,2

Q

s,2

≈ 1.44 × 10−1 (63)

for the surface grinding regime characterised by (61), and
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Q

p,2

Q

s,2

≈ 1.04 × 10−1 (64)

for the creep-feed grinding regime characterised by (62). In the surface grinding
regime (61), the pressure gradient and shear effects contribute to 13% and 87% of the
flow rate, respectively. In the creep-feed grinding regime (62), the pressure gradient
and shear effects contribute to 9% and 91% of the flow rate, respectively.

4 Conclusion

We have studied the flow of lubricating fluid during grinding in a geometry where the
depth of cut is non-zero. We have seen that we can derive a solution for the flow in the
grinding zone without needing to solve for the flow outside this region. We calculated
the leading order analytical solution for the pressure around the grinding zone. This
was done without needing to prescribe artificial or empirically determined boundary
conditions, which is the current approach employed in the literature when applying
the lubrication approximation to the flow in the grinding zone.

We found that for a given δ and β
, the pressure derivative along the grinding zone
is constant. As a consequence, the components of the flow rate through the grinding
zone due to shear and pressure gradient are constant. We considered typical values of
δ in surface and creep-feed grinding regimes, specified by (3) and (4), and calculated
the contribution of each component to the flow rate through the grinding zone. We
found that in both grinding regimes, the transport of the grinding fluid is primarily
driven by the motion of the grinding wheel. This is shown in (63) and (64) for surface
and creep-feed grinding values, respectively.

We saw that the predicted flow rate through the grinding zone increases with β
.
This suggests that grinding fluids that exhibit larger degrees of slip in the grinding zone
are favourable from the perspective of maximising the advection of the grinding fluid
through the grinding zone. There are many studies of the mixing of additives such as
nanoparticles in the grinding fluid to reduce the friction experienced by the abrasives
and workpiece. For example, see [23], which shows that this results in reduced wear
of the abrasives. However, there is no study of which we are aware of that investigates
how such additives affect the slip length of the grinding fluid at the surfaces, and the
result this has on the flow rate through the grinding zone.

Appendix A: Inner solution derivation

We integrate Eq. (40) with respect to y
 in each �

i . After using Leibniz’s rule and

substituting in boundary conditions (43)–(50), the additional boundary terms cancel
out to leave

d

dx


∫ h

2(x


)

h

1(x


)

u

i dy


 = 0, (A.1)
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for i = 1, 2, 3. Equation (A.1) equivalently states that Q

i is constant across�


i . Using
the continuity conditions (51) and (52), we see that the flow rate is constant across the
inner region, i.e.

Q
 = Q

1 = Q


2 = Q

3, (A.2)

where Q
 denotes the value of the constant flow rate.
From Eqs. (41) and (42), we can derive the expression for Q


i , i = 1, 2, 3, as

Q

1 =

∫ h

2(x


)

h

1(x


)

u

1dy


 = − x
2 + 2

4
−

[
x
2 + 2 (1 + 6β
)

] (
x
2 + 2

)2
96

dp

1

dx

, (A.3)

Q

2 =

∫ h

2(x


)

h

1(x


)

u

2dy


 = −1

2
− 1 + 6β


12

dp

2

dx

, (A.4)

Q

3 =

∫ h

2(x


)

h

1(x


)

u

3dy


 = − x
2 + 2 (1 − δ)

4

−
[
x
2 + 2 (1 + 6β
 − δ)

] [
x
2 + 2 (1 − δ)

]2
96

dp

3

dx

, (A.5)

respectively. We can separate each Q

i into two terms which describe the flow rate

contribution due to shear effects, denoted Q

s,i and due to pressure gradient, denoted

Q

p,i . These can be expressed as

Q

s,1 = − x
2 + 2

4
, (A.6)

Q

p,1 = −

[
x
2 + 2 (1 + 6β
)

] (
x
2 + 2

)2
96

dp

1

dx

, (A.7)

Q

s,2 = −1

2
, (A.8)

Q

p,2 = −1 + 6β


12

dp

2

dx

, (A.9)

Q

s,3 = − x
2 + 2 (1 − δ)

4
, (A.10)

Q

p,3 = −

[
x
2 + 2 (1 + 6β
 − δ)

] [
x
2 + 2 (1 − δ)

]2
96

dp

3

dx

. (A.11)

Appendix B: Inner solution expressions

The solution for p

1 is given by

p

1 = −

{
2

(
Q
 − 3β


) (
x
2 + 2

)
tan−1

(
x


√
2 (1 + 6β
)

)
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+ √
2 (1 + β
)

(√
2

(
3β


(
1 + Q


) − Q

) (

x
2 + 2
)
tan−1

(
x


√
2

)

+ 6β
Q
x


)}/
3β
2

√
2 (1 + 6β
)

(
x
2 + 2

)

+ C

1, (B.12)

where

C

1 =

π
[
2 (Q
 − 3β
) + √

2
√
2 (1 + 6β
) (3β
 (1 + Q
) − Q
)

]
6β
2

√
2 (1 + 6β
)

. (B.13)

The solution for p

2 is given by

p

2 = − 6 (1 + 2Q
) x


1 + 6β

+ C


2, (B.14)

where C

2 = C


1. The solution for p

3 depends on the values of the parameters δ and

β
, the different cases are presented below. The algebraic manipulations to derive
the expression of Q
 in all cases were done using the software Maple [24]. As the
expressions are far too arduous to present, they will not be shown here but the Maple
worksheet containing the code to calculate their expressions can be found at [25].

Solution for 0 < ı < 1

In this case,

p

3 = − 2

{ (
Q
 − 3β


)
(1 − δ)

√
2 (1 − δ)

[
x
2 + 2 (1 − δ)

]

× tan−1
(

x


√
2 (1 + 6β
 − δ)

)
+ √

2 (1 + 6β
 − δ)

[

(
δ
(
Q
 − 3β


) + 3β

(
1 + Q


) − Q

) [

x
2 + 2 (1 − δ)
]
tan−1

(
x


√
2 (1 − δ)

)

+ 3β
Q

√
2 (1 − δ)x


]}
/

3β
2 (1 − δ)
√
2 (1 − δ)

√
2 (1 + 6β
 − δ)

[
x
2 + 2 (1 − δ)

]

+ C

3,

(B.15)

where

C

3 = − π

{√
2 (1 + 6β
 − δ)

(
δ
(
Q
 − 3β


) + 3β

(
1 + Q


) − Q

)

(B.16)
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+ (
Q
 − 3β


)
(1 − δ)

√
2 (1 − δ)

}
(B.17)

/
3β
2 (1 − δ)

√
2 (1 − δ)

√
2 (1 + 6β
 − δ). (B.18)

Solution for ı = 1

In this case,

p

3 = −

√
3 (Q
 − 3β) x
3 tan−1

(
x


2
√
3β


)
+ 6

√
β


[
Q
x
2 − β

(
3x
2 + 4Q


)]
9β
 5

2 x
3

+ C

3,

(B.19)

where

C

3 = −π

√
3 (Q
 − 3β
)

18β
 5
2

. (B.20)

Solution for 1 < ı < 1+ 6ˇ�

For 1 < δ < 1 + 6β
, we note that

∣∣∣∣ x


√
2 (δ − 1)

∣∣∣∣ > 1

for x
 < x

L . In this case,

p

3 = − 2

{ (
Q
 − 3β


)
(δ − 1)

√
2 (δ − 1)

[
x
2 − 2 (δ − 1)

]

× tan−1
(

x


√
2 (1 + 6β
 − δ)

)
+ √

2 (1 + 6β
 − δ)

[

(
δ
(
Q
 − 3β


) + 3β

(
1 + Q


) − Q

) [

x
2 − 2 (δ − 1)
]

× coth−1
(

x


√
2 (δ − 1)

)
− 3β
Q


√
2 (δ − 1)x


]}
/

3β
2 (δ − 1)
√
2 (δ − 1)

√
2 (1 + 6β
 − δ)

[
x
2 − 2 (δ − 1)

]

+ C

3,

(B.21)
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where

C

3 = − π (Q
 − 3β
)

3β
2
√
2 (1 + 6β
 − δ)

. (B.22)

Solution for ı = 1+ 6ˇ�

For δ = 1 + 6β
, we note that

∣∣∣∣ x


2
√
3β


∣∣∣∣ > 1

for x
 < x

L . In this case,

p

3 =

{
2Q


√
β
x
2 +

(
x
2 − 12β


) [√
3

(
2β
 − Q


)
x


× coth−1
(

x


2
√
3β


)
− 4

(
3β
 − Q


) √
β


]}
/

6β
 5
2 x


(
x
2 − 12β


)

+ C

3,

(B.23)

where

C

3 = 0. (B.24)

Solution for ı > 1+ 6ˇ�

For δ > 1 + 6β
, we note that

∣∣∣∣ x


√
2 (δ − 1)

∣∣∣∣ > 1,
∣∣∣∣ x


√
2 [δ − (1 + 6β
)]

∣∣∣∣ > 1

for x
 < x

L . In this case,

p

3 = 2

{ (
Q
 − 3β


)
(δ − 1)

√
2 (δ − 1)

[
x
2 − 2 (δ − 1)

]

× coth−1
(

x


√
2 [δ − (1 + 6β
)]

)
− √

2 [δ − (1 + 6β
)]

[

(
δ
(
Q
 − 3β


) + 3β

(
1 + Q


) − Q

) [

x
2 − 2 (δ − 1)
]
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× coth−1
(

x


√
2 (δ − 1)

)
− 3β
Q


√
2 (δ − 1)x


]}
/

3β
2 (δ − 1)
√
2 (δ − 1)

√
2 [δ − (1 + 6β
)]

[
x
2 − 2 (δ − 1)

]

+ C

3, (B.25)

where

C

3 = 0. (B.26)

Appendix C: Numerical validation

To validate the lubrication model that we derived in Sect. 2, we will compare the
inner region pressure solution given by (B.12), (B.14), (B.15), (B.19), (B.21), (B.23)
and (B.25) to the pressure solution of the full-scale problem given by (16)–(21) for
different parameter regimes. We will only consider the steady full-scale problem as
the time dependency is expected to be negligible in the grinding zone. We remark that,
due to the lubrication approximation, the pressure values of the full-scale problem that
we present will be the cross-sectional average of the pressure solution between the
workpiece and the grinding wheel.

In order to numerically solve the full-scale problem, we replace the far-field bound-
ary conditions by representative boundary conditions on an artificial boundary which
truncates the flow domain�. To this end, we impose the no-stress boundary condition

n ·
(
−pI + 2ε

3
2E

)
= 0 on �A, (C.27)

where

�A = {
(x, y) : x = −2.5, y ∈ [

γ, 3
]}

∪ {(x, y) : x ∈ [−2.5, 3.5] , y = 3}
∪ {(x, y) : x = 3.5, y ∈ [0, 3]} ,

(C.28)

with γ defined by (2). The artificial boundary �A is chosen sufficiently far from
the grinding zone to minimise its influence on the flow in the grinding zone. The
(modified) full-scale problem given by (16)–(19), (C.27) is then solved using the
continuous Galerkin finite element method [26].

The three parameter regimes we consider are

Regime 1: ε = 5 × 10−5, δ = 2, Re = 1 × 103, (C.29)

Regime 2: ε = 2.5 × 10−3, δ = 4.8, Re = 4 × 102, (C.30)

Regime 3: ε = 1 × 10−3, δ = 10, Re = 1 × 103. (C.31)
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Fig. 7 Plot of the velocity magnitude from the full-scale solution of the Navier–Stokes equations. Inside
the dashed region, the grinding zone has been magnified and stretched along the y-axis for visualisation

Fig. 8 Plot of the pressure solution, p
, from the lubrication model (solid lines) and the full-scale problem
(dashed lines) for different parameter regimes shown in the legend and plot titles

For parameter regimes 2 and 3, we have taken Re = ε−1 following (6). For parameter
regime 1, the flow becomes unsteady for larger Re hence we take Re = 1 × 103 to
be able to calculate a steady full-scale solution. In Fig. 7, we show an example of
the full-scale problem’s flow field via a plot of the velocity magnitude for parameter
regime 3 with β = 0.

In Fig. 8, we plot the pressure solution of the lubrication model and full-scale
problem for parameter regimes 1–3 and two slip lengths, β = 0, 1 × 10−3, where
(32) has been used for rescaling variables. We emphasise that the relevant slip length
around the grinding zone, i.e. the stretched slip length β
, depends on both β and ε.

123



   12 Page 22 of 23 Z. Crowson et al.

Table 3 Maximum difference
between the pressure solution,
p
, of the lubrication model and
full-scale problem for

x
 ∈
[
−1.2 × 101, 1.2 × 101

]

Regime β

0 1 × 10−3

1 4.86 × 10−4 1.22 × 10−3

2 4.38 × 10−2 5.29 × 10−2

3 3.15 × 10−2 3.15 × 10−2

Qualitatively, we see that the pressure solutions of the lubrication model and the
full-scale problem match well across the parameter regimes. Notably, linearity of the
pressure solution in the grinding zone is seen in the full-scale problem, as we noted
for the lubrication model in Sect. 3.

In Table 3, we present the maximum difference between the pressure solutions
shown inFig. 8 for eachparameter regime.As expected, the greatest differencebetween
the solutions occurs in the regime with the largest ε, i.e. regime 2. However, the
difference between solutions in all regimes is small.
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