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Abstract. Pattern Search is a family of optimisation algorithms that
improve upon an initial solution by performing moves along the direc-
tions of a basis of vectors. In its original definition Pattern Search moves
along the directions of each variable. Amongst its advantages, the algo-
rithm does not require any knowledge of derivatives or analytical expres-
sion of the function to optimise. However, the performance of Pattern
Search is heavily problem dependent since the search directions can be
very effective on some problems and lead to poor performance on others.
The present article proposes a novel enhancement of Pattern Search that
explores the space by using problem-dependent search directions. Some
points are sampled within the basin of attraction and the diagonalisa-
tion of the covariance matrix associated with the distribution of these
points is performed. The proposed Covariance Pattern Search improves
upon an initial point by varying it along the directions identified by the
eigenvectors of the covariance matrix.

Keywords: Hooke-Jeeves · Pattern Search · Covariance Matrix · Eigen-
vectors · Numerical Optimisation.

1 Introduction

In the context of optimisation, a basin of attraction of a search algorithm is
the set of points of the decision space that would converge to the same local
optimum, see [15]. For example, if we consider a multimodal problem in the
continuous domain, a gradient based algorithm would process some randomly
sampled solutions by converging to the nearest local optimum. If two points
converge to the same optimum, they belong to the same basin of attraction with
respect to the gradient based optimiser. Thus, for a given search algorithm (with
its variation operator) a decision space can be seen as mapped into several (and
possibly overlapping) subsets, with each of them being a basin of attraction.

This concept is fundamental in optimisation, especially when complex, mul-
tivariate, and multimodal fitness landscapes are taken into consideration, see
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[19, 31, 28, 1]. A popular strategy to address these issues is the use of multiple
search operators within the same framework. This idea has been extensively
applied over the past three decades in both continuous and combinatorial do-
mains. Some of the keywords associated with this idea are Metaheuristics [9,
25], Hyper-heuristics [2], Memetic Computing [19], Genetic Programming [11],
Agent Systems [24], and Algorithm’s Portfolio [33, 22].

In these frameworks a distinction between global and local search operators
has been traditionally presented as part of the nomenclature to describe algo-
rithmic operations. Whilst the distinction between global and local optima is
mathematically rigorous, the distinction between global and local search is more
subtle, especially in the context of heuristic optimisation where there is no the-
oretical guarantee of the detection of an optimum. More specifically, global and
local search algorithms differ in purpose: whilst global search algorithms search
for a candidate solution with the lowest (or highest) function value within the
entire decision space, local search algorithms search for a candidate solution with
the lowest (or highest) function value within a subset of the entire space, often
referred to as a neighbourhood, see [10].

In mathematical optimisation, and with reference to the continuous domain
that is the focus of this paper, the concepts of basins of attraction and local
search are well-defined. When considering a minimisation problem a basin of at-
traction is a set containing one or more infinite contiguous (saddle) points with
null gradient (unless the optimum is on the bounds), surrounded by points with
non-null gradient and higher function values. Local search algorithms that calcu-
late the gradient, e.g. descent methods, Newtonian methods, Quasi-Newtonian
methods, and conjugate gradient methods, would (approximately) detect the
local optimum in a given time-frame from any starting point in the basin of
attraction, see [21].

When the derivatives are not available and a heuristic method is applied, the
concepts of basins of attraction and local search become unclear. For example,
the Nelder-Mead algorithm [18], which is often considered a local search algo-
rithm [17], can search for the optimum in an area with only one local optimum,
a larger area, or potentially the entire decision space (depending on the initial
simplex).

In the absence of derivatives, one of the simplest ideas to optimise a function
is to vary one design variable at a time by steps of the same magnitude and
calculate the function value at each step. Then, when no increase or decrease
in any one design variable improves upon the performance of the current best
solution, the algorithm halves the step size and repeats the process until the
steps are sufficiently small. This simple algorithm was employed in the 1940s in
Los Alamos laboratories by Fermi and Metropolis, see [8]. This idea has been
refined and modified over the decades, and its most famous implementation is
the Pattern Search (PS) algorithm by Hooke and Jeeves [14] which proved to
be convergent in [34]. This idea has been conceptualised in [29] where Pattern
Search Algorithms are introduced as a family of optimisation algorithms, and
the term Generalised Pattern Search was coined as a Pattern Search using any
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generic basis of a vector. The search logic of PS is used as part of many modern
algorithms. One example is [30] where a greedy version of the Patter Search is
used within a three algorithm portfolio for large scale problems. Furthermore,
other recent examples of Pattern Search implementations have re-named the
algorithm as “S” and put it into the context of Memetic Algorithms [5, 7] and
in a restarting scheme in [6].

The present article exploits this idea to propose a novel enhancement of
Generalised Pattern Search. The proposed algorithm attempts to enhance the
original scheme by using an alternative and more convenient reference system to
move within the search space. This alternative system is provided by the eigen-
vectors of a covariance matrix of a set of points crowding a basin of attraction.

The remainder of this article is organised as follows. Section 2 introduces
the notation, presents the naive Pattern Search and highlights its limitations.
Section 3 presents the proposed algorithm including its theoretical justification,
as well as its limitations. Section 4 provides the numerical results of this study.
Finally, Section 5 gives the conclusions to this work.

2 Notation and background

In order to clarify the notation used, we refer to the minimisation of an objective
function f (x), where the candidate solution x is a vector of n design variables
in a decision space D ⊂ Rn:

x = (x1, x2, . . . , xn) .

The Pattern Search (PS) processes a single solution and, whilst moving along
the axes, improves upon its performance (objective function value). PS can be
viewed as a simple deterministic local search algorithm which can be part of a
more complex framework, see [3, 5].

In this paper we will refer to the naive implementation of this idea proposed
in one of the searchers in [30]. Starting from an elite solution x, this local search
generates a trial solution xt by performing steps along each of the variables. For
each design variable i,

xt = x− ρ · ei

is calculated, where ρ is the exploratory radius, · indicates the product of a scalar
and a vector, and ei is the ith versor that is a vector composed of zeros and one
1 in the ith position. Subsequently, if xt outperforms x, the trial solution xt is
updated (taking the value of x), otherwise a half-step in the opposite direction
is performed:

xt = x +
ρ

2
· ei.

This exploration is repeated for all the design variables and stopped when a
prefixed budget is exceeded. For the purpose of this paper we will refer to the
naive implementation used in [30, 5]. The pseudo-code displaying the working
principles of this PS implementation is given in Algorithm 1.
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Algorithm 1 Pattern Search according to the implementation in [30]
INPUT x
while local budget condition do

xt = x
for i = 1 : n do

xt = x − ρ · ei

if f
(
xt

)
≤ f (x) then

x = xt

else
xt = x + ρ

2 · ei

if f
(
xt

)
≤ f (x) then

x = xt

end if
end if

end for
if x has not been updated then
ρ = ρ

2
end if

end while
RETURN x

2.1 Limitation of Pattern Search

The naive PS algorithm, albeit easy to implement, is characterised by heavy
problem dependent performance due to its variation operators. Since the vari-
ables are perturbed/modified one by one, PS can lead to very good performance
if the function is separable. In practice, PS can be successfully applied to vari-
ous partly separable and non-separable problems (see [7]), but its performance
would generally be poor. In order to illustrate this statement let us consider
the ellipsoid function in two dimensions shown in Figures 1. The PS algorithm
would quickly solve the problem in Fig. 1a from any starting point, since one of
the directions of the search (one of the axes) coincide with the direction of max-
imum gradient. However, the PS algorithm would not be efficient in optimising
the problem in Fig. 1b, since the search directions are not along the maximum
gradient. The algorithm would halve the radius in the early stages of the search
and move slowly towards the optimum. In the case of optimisation in higher
dimensions the difference in performance between the two scenarios would be
significant.

3 The proposed Covariance Pattern Search

If we could move along the direction of maximum gradient for every problem, PS
would work efficiently regardless of the problem. Unfortunately, in real-world op-
timisation, problems are unknown and there is no prior knowledge of the most
convenient reference system. This consideration is not novel and is common
to several algorithms for numerical optimisation, such as the Rosenbrock Algo-
rithm, see [27], where the gradient is estimated adaptively and by a new reference
system determined by Gram-Schmidt orthogonalisation.

On the basis of this classical consideration, the present article proposes a
novel local search implementation of Pattern Search. This section outlines and
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(a) Ellipsoid. (b) Ellipsoid rotated by 45◦.

Fig. 1. Non-rotated and 45◦ rotated ellipsoid in two dimensions: PS would be efficient
at solving 1a and inefficient at solving 1b.

discusses the proposal. Subsection 3.1 provides a theoretical justification for the
method, Subsection 3.2 describes the implementation details of the methods,
and Subsection 3.4 highlights the limitations of our proposal.

3.1 Theoretical justification

Unlike the Rosenbrock Algorithm, the proposed method makes use of pre-processing
of the problem under investigation to determine the most convenient search
directions. In order to understand the theoretical foundation of the proposed
method let us consider a population of m vectors/candidate solutions in an n-
dimensional space

x1 =
(
x11, x

1
2, . . . , x

1
n

)
x2 =

(
x21, x

2
2, . . . , x

2
n

)
. . .
xm = (xm1 , x

m
2 , . . . , x

m
n ) .

These points can be interpreted as a statistical distribution characterised by
a mean vector

µ = (µ1, µ2, . . . , µn) =
1

m

(
m∑
i=1

xi1,

m∑
i=1

xi2, . . . ,

m∑
i=1

xin

)

and a covariance matrix

C =


c1,1 c1,2 . . . c1,n
c2,1 c2,2 . . . c2,n
. . . . . . . . . . . .
cn,1 cn,2 . . . cn,n
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where

cj,j =
1

m

m∑
i=1

((
xij − µj

) (
xij − µj

))
and

cj,k =
1

m

m∑
i=1

((
xij − µj

) (
xik − µk

))
.

Due to the commutative property of the product of numbers, it follows that
∀j, k : cj,k = ck,j , i.e. the covariance matrix is symmetric.

The vector µ represents the barycentre of the distribution. The covariance
matrix C describes the geometry of the distribution with respect to the reference
system. More specifically, the diagonal elements represent the deviation of the
design variable from the barycentre whilst the extradiagonal elements represent
a measurement of how two design variables vary together.

Let us consider an optimisation problem and let us imagine to sample m
points, with m arbitrarily large, within the decision space D. With reference
to Fig. 1a, let us imagine to crowd the elliptic inner contour with points and
calculate the mean vector and covariance matrix. It can be verified that µ would
be the optimum and the covariance matrix C would be diagonal. However, if we
crowded with points the elliptic inner contour in Fig. 1b we would observe that
the corresponding covariance matrix C would be full.

This observation could be extended to the general case: a basin of attraction
that has the highest gradient along one of the axes is characterised by a diagonal
covariance matrix of the points crowding it. Hence, we propose to use the ref-
erence system corresponding to a diagonal covariance matrix as move directions
for PS in order to find the highest gradient direction. That is, we propose to
run PS along the directions identified by the eigenvectors of C, see [20]. These
directions are the columns of a non-singular matrix P such that

D = P−1CP

where D is a diagonal matrix.

Observation 1 Since the covariance matrix C is symmetric, it follows that

1. C is always diagonalisable and hence there always exists a non-singular
transformation matrix P that diagonalises C.

2. each pair of the eigenvectors of C (column of matrix P) is orthogonal, the
proposed search directions compose an orthogonal system of coordinates.

The matrix P is the linear transformation that changes the variables of the
problem. For example, the directions of the eigenvectors associated with the
covariance matrix or the rotated ellipsoid in Fig. 1b are shown in Fig. 2.

Equivalently to what is stated above, the proposed algorithm is based on
the consideration that the nonseparability is not just a feature of the function to
optimise. Nonseparability is a feature of the function within its reference system.
Hence, a (local) change in the reference system can (locally) lead to a much easier
optimisation problem.
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Fig. 2. Ellipsoid in two dimensions rotated by 45◦: PS moving along the thick directions
would be efficient.

3.2 Algorithmic outline of the proposed method

Let us assume that we have a reliable matrix C available of the basin of attraction
under investigation. The matrix C would be diagonalised and the eigenvectors
would be the columns of a transformation matrix P:

P =
(
p1,p2, . . . ,pn

)
.

In this article the diagonalisation is performed by the numerical method
described and implemented in [20].

In order to better illustrate the relation between the change of coordinates
and the diagonalisation of the covariance matrix, let us consider the ellipsoid
function

f (x, y) = a (cos (α)x+ sin (α) y)
2

+ b (sin (α)x− cos (α) y)
2
.

Figures 3 illustrates this function (with a = 1 and b = 6), for α = 0◦ and α = 30◦

respectively, a sample of points, the eigenvectors, and the directions identified
by them. It can be observed that for α = 0◦ the directions of the eigenvectors
coincide with those of the reference axes whilst for α = 30◦ the axes appear
rotated.

The new version of PS operates on a starting point x and generates trial
solutions for the ith design variable by computing

xt = x− ρ ·Pei = x− ρ · pi

and
xt = x +

ρ

2
·Pei = x +

ρ

2
· pi

where the product of a matrix by a vector Pei is equal to pi.
The pseudocode of the proposed Covariance Pattern Search (CPS) Algorithm

is shown in Algorithm 2
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Algorithm 2 The proposed Covariance Pattern Search
INPUT x
INPUT the covariance matrix C
Process the covariance matrix C and calculate the transformation matrix P =

(
p1,p2, . . . ,pn

)
whose columns are the eigenvectors of C
while local budget condition do

xt = x
for i = 1 : n do

xt = x − ρ · pi

if f
(
xt

)
≤ f (x) then

x = xt

else
xt = x + ρ

2 · pi

if f
(
xt

)
≤ f (x) then

x = xt

end if
end if

end for
if x has not been updated then
ρ = ρ

2
end if

end while
RETURN x

3.3 Working example

In order to highlight the difference in functioning between Algorithm 1 and
Algorithm 2, and the benefits of the proposed CPS with respect to its standard
counterpart, we have run both of the algorithms on the ellipsoid function above
in this case with the arbitrary values a = 1 and b = 76. We arbitrarily chose an
angle α = π

3.5 ≈ 51.43◦ and a starting point (71.4,−49.1). The search directions
of CPS are the columns of the following matrix P:

P =

(
−0.7821 0.6231
0.6231 0.7821

)
.

(a) Ellipsoid for α = 0◦ (b) Ellipsoid for α = 30◦

Fig. 3. Sampling of points (blue circles) within the basin of attraction of the ellipsoid,
resulting eigenvectors (asterisks), and search directions of the proposed method (lines)
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We let both the algorithms run until ρ < 10−75, which was considered to
be when the problem to be solved. Whilst PS requires the calculation of 16169
objective function evaluations, CPS solves the problem after only 2040 evalu-
ations. Fig. 4 comparatively illustrates the functioning of the two algorithms.
The proposed CPS moves along more convenient directions than the variable
directions of PS, thus quickly reaching the optimum.

Fig. 4. Illustration of the functioning of the proposed Covariance Pattern Search and
advantages with respect to the standard Pattern Search (the proposed algorithm solves
the problem in 2040 whilst its standard counterpart requires 16169 steps)

3.4 Limitations of the proposed Covariance Pattern Search

The most evident limitation of the proposed CPS is that a reliable matrix C of
points of the basin of attraction must be estimated. In the present paper, when
a basin of attraction is identified, a set of points populating this basin is found
by treating the optimisation problem as a level set problem: random points are
generated and those whose objective function values fall below a threshold are
saved in a data structure, see Figures 3. These points are then used to calculate
the covariance matrix C.

The major issue associated with this approach is that a suitable threshold
is problem dependent and empirically determined in each case. Besides being
inelegant, this procedure can also be computationally expensive in the high di-
mensional domain. Although, the initial computational effort may be paid off by
a much faster solution to the optimisation problem, see Fig. 4.

The second limitation is that for multimodal optimisation problems promis-
ing basins of attraction must be identified before one basin is selected and CPS
is executed. This limitation would make CPS unsuitable as a stand-alone algo-
rithm and/or would require a preprocessing algorithm to estimate the locations
of potential basins of attraction. However, CPS just like other local search al-
gorithms can be embedded in a metaheuristic framework and can exploit the
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function calls performed by a global optimiser (or other local search algorithms)
as part of the preprocessing, see [19].

Alternatively, CPS can be applied to a multimodal problem at the end of
preprocessing for multimodal optimisation, see e.g. the method in [26] or the
intelligent sampling proposed in [23]. In the latter, an initial population of m
candidate solutions (n-dimensional vectors) is sampled within the decision space
D. Each candidate solution undergoes the application, with a limited budget, of
the two local searchers. The solutions returned by the two local search algorithms
are then processed by the K-means clustering algorithm enhanced by a control
on the Silhouette to decide the correct number of clusters, as explained in [23].
Each cluster represents a basin of attraction and its candidate solutions are the
sampled points on which the covariance matrix C is computed.

4 Numerical Results

In order to experimentally demonstrate the effectiveness of CPS, and the idea
inspiring it, we have tested CPS against PS in multiple scenarios. To simulate
the local search conditions we have considered and adapted a sample of the
functions from the CEC 2013 benchmark (focussing on unimodal problems), see
[16]. We have used two versions of the ellipsoid since the use of two versions was
relevant to demonstrate the performance of the local search. Each problem has
been scaled to 10, 30, and 50 dimensions and has been studied in [−100, 100]

n
.

Table 1 displays the functions and depicts the shape of the corresponding basins
of attraction. For each problem, a shift and a rotation has been applied: with
reference to Table 1 the variable

z = Qk (x− o)

where o is the shifting vector (the same used in [16]) and Qk is a rotation matrix
(a randomly generated orthogonal matrix) set for the kth problem, see [4].

The PS in Algorithm 1 has been executed with a budget of 10000× n func-
tion calls where n is the problem dimensionality. In order to guarantee a fair
comparison, the budget of the proposed CPS in Algorithm 2 has been split into
two parts: 5000×n function calls have been used to build the covariance matrix
C whilst 5000× n function calls have been spent to execute the algorithm. Due
to the nature of PS and CPS, i.e. deterministic local search, the bound handling
has been performed by saturating the design variable to the bound. We preferred
the saturation to the bound over the toroidal insertion or reflection [10] since
the latter two mechanisms would be equivalent to the sampling of a point. This
sampling would disrupt the gradient estimation logic of Pattern Search.

Although PS and CPS are deterministic algorithms, their performance can
depend on the initial point and, for CPS, on the sampled points used to estimate
the covariance matrix. Thus, for each scenario, we sampled 51 initial points
within the entire domain and used them to execute PS and CPS. The average
objective function values and standard deviations over the 51 runs have been
calculated. The statistical significance of the results has been enhanced by the
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Table 1. Basins of attraction functions

function name function formula basin of attraction in 2D

sphere f1 (x) =
∑n

i=1 z
2
i

ellipsoid f2 (x) =
∑n

i=1 50
(
i2zi

)2

ill-conditioned ellipsoid f3 (x) =
∑n

i=1

(
106
) i−1
n−1 z2i

bent cigar f4 (x) = z21 + 106∑n
i=2 z

2
i

discus f5 (x) = 106z21 +
∑n

i=2 z
2
i

sum of powers f6 (x) =

√∑n
i=1 |zi|

(2+4 i−1
n−1 )

application of the Wilcoxon rank sum test, see [32, 12]. In the Tables in this
section, a “+” indicates that CPS significantly outperforms PS, a “-” indicates
that PS significantly outperforms CPS, and a “=” indicates that there is no
significant difference in performance. Regarding CPS, the threshold values used
in this study are reported in Table 2.

Table 2. Thresholds thr in 10, 30, and 50 dimensions

n f1 f2 f3 f4 f5 f6
10 104 109 5 × 108 109 109 104

30 5 × 104 5 × 1011 2 × 109 2 × 109 108 105

50 105 5 × 1013 5 × 109 2 × 109 5 × 107 3 × 105

Numerical results show that, besides f1, the proposed CPS consistently out-
performs the standard PS across the three dimensions under consideration. The
problem f1 is characterised by a central symmetry. This means that the rotation
is ineffective and any reference system would broadly perform in the same way.
The use of the eigenvectors as search directions not only systematically improves
upon PS but appears to solve some problems such as f5 (discus).

In order to ensure that the results of proposed CPS are not biased by specific
rotation matrices, the experiments have been repeated on the problems in Table
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Table 3. Average error avg ± standard deviation σ over 51 runs for the problems
listed in Table 1

Pattern Search Covariance Pattern Search
avg σ avg σ W

10 dimensions
f1 0.0000e+00 0.0000e+00 2.7768e-29 1.4329e-29 -
f2 1.8198e+03 1.9132e+03 1.1062e-03 3.4915e-03 +
f3 7.0241e+04 9.5716e+04 4.1064e+03 6.6534e+03 +
f4 5.3135e+03 3.7177e+03 3.3017e-06 9.9933e-06 +
f5 9.3944e+03 1.2996e+04 3.0984e-25 5.3080e-25 +
f6 5.5475e+01 9.4900e+01 2.6276e-05 1.3087e-05 +

30 dimensions
f1 0.0000e+00 0.0000e+00 1.3562e-28 5.1167e-29 -
f2 1.1636e+08 2.3036e+08 6.9435e+05 6.4717e+05 +
f3 2.9155e+05 2.4771e+05 1.8116e+04 1.1143e+04 +
f4 5.2064e+03 5.3776e+03 4.6182e-13 3.2833e-12 +
f5 8.4596e+03 3.4177e+04 5.3340e-28 3.2325e-27 +
f6 1.2427e+02 1.7049e+02 6.4462e-05 1.7549e-05 +

50 dimensions
f1 0.0000e+00 0.0000e+00 4.1998e-28 9.9033e-29 -
f2 4.3878e+08 8.6339e+08 1.6151e+07 1.3937e+07 +
f3 3.7522e+05 2.7408e+05 5.1237e+04 3.4165e+04 +
f4 5.6398e+03 7.4905e+03 5.5627e-22 1.4649e-21 +
f5 2.8261e+01 1.3792e+02 7.8822e-27 1.2792e-26 +
f6 1.8153e+02 2.0042e+02 1.0584e-04 2.3244e-05 +

1 with a modified experimental condition. For each run a new rotation matrix
has been generated and both PS and CPS have been run on the rotated problem.
An additional 51 independent runs have been executed under this new condition.
Table 4 displays the results for this set of experiments with random matrices.

Numerical results in Table 4 show that CPS maintains the same performance
irrespective of the rotation matrix. These results allow us to conjecture that the
proposed mechanism of optimising along the direction of the eigenvectors is
effective and the generation of the covariance matrix is robust.

To further illustrate the functioning of CPS with respect to PS, Figures 5
show the performance trend of two specific runs.

The results in Figures 5 show that CPS achieves results orders of magnitude
better than PS. It must be noted that we represented the performance of CPS
as a constant for the first half of the trend. This is due to the objective function
evaluation budget used to calculate the covariance matrix and the corresponding
eigenvectors, with the optimisation only occurring in the second part of the
budget. At half of the budget CPS starts the optimisation by exploiting the
directions suggested by the preliminary phase. A dramatic decrease in the fitness
value is evident in the illustration. When the proposed logic is considered within
a local search/optimisation algorithm, this logic can be efficiently implemented
by using the samples produced by a global searcher, whilst the local search can
run with a short budget, just to exploit the abrupt improvement.

Finally, in order to highlight the potential and limitations of CPS, we have
compared it against the Covariance Matrix Adaptation Evolution Strategy (CMAES),
according to the implementation in [13] and the default parameters therein (ini-
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Table 4. Average error avg ± standard deviation σ over 51 runs for the problems
listed in Table 1 subject to random rotation at each run

Pattern Search Covariance Pattern Search
avg σ avg σ W

10 dimensions
f1 0.0000e+00 0.0000e+00 3.6603e-29 2.0133e-29 -
f2 1.2340e+03 1.2462e+03 3.7683e-04 1.1634e-03 +
f3 1.3739e+05 2.3991e+05 2.9764e+03 2.7313e+03 +
f4 3.5615e+03 6.8974e+03 3.8205e+01 1.0569e+02 +
f5 7.8684e+03 1.1461e+04 1.0087e-23 3.1002e-23 +
f6 1.3676e+02 4.3249e+02 2.6698e-05 1.0627e-05 +

30 dimensions
f1 0.0000e+00 0.0000e+00 1.3810e-28 5.9062e-29 -
f2 9.8109e+07 2.6281e+08 7.2563e+05 9.0521e+05 +
f3 1.7506e+05 1.8632e+05 1.7248e+04 1.0875e+04 +
f4 5.8954e+03 1.0909e+04 2.2632e-01 1.6163e+00 +
f5 1.1985e+03 5.2373e+03 7.9322e-26 4.2633e-25 +
f6 1.3485e+02 1.8275e+02 6.4239e-05 1.8127e-05 +

50 dimensions
f1 0.0000e+00 0.0000e+00 4.2394e-28 9.7414e-29 -
f2 8.2205e+08 1.7628e+09 1.5302e+07 1.2051e+07 +
f3 3.1913e+05 2.8232e+05 5.8034e+04 3.0679e+04 +
f4 9.3975e+03 1.0959e+04 3.8535e-21 1.4037e-20 +
f5 1.2639e+02 4.5309e+02 2.8811e-26 1.2290e-25 +
f6 1.8761e+02 1.8060e+02 9.1000e-05 1.8870e-05 +

(a) Ellipsoid f3 in 10D (b) Bent Cigar f4 in 30D

Fig. 5. Performance trend (logarithmic scale) of Pattern Search vs Covariance Pattern
Search for two runs: for half of the budget CPS analyses the problem to generate the
covariance matrix and then optimises the problem.
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tial σ set to one third of the domain). Table 5 displays the results of this com-
parison for the same problems in Table 3.

Table 5. Average error avg ± standard deviation σ over 51 runs for the problems
listed in Table 1

CMAES Covariance Pattern Search
avg σ avg σ W

10 dimensions
f1 2.1589e-15 2.9083e-15 2.7768e-29 1.4329e-29 +
f2 1.4746e-15 1.1443e-15 1.1062e-03 3.4915e-03 -
f3 1.0489e-15 8.2847e-16 4.1064e+03 6.6534e+03 -
f4 1.8441e-14 8.2847e-16 3.3017e-06 9.9933e-06 =
f5 1.5539e-14 2.8869e-14 3.0984e-25 5.3080e-25 +
f6 9.8517e-13 9.4715e-13 2.6276e-05 1.3087e-05 -

30 dimensions
f1 1.2862e-15 2.3923e-16 1.3562e-28 5.1167e-29 +
f2 1.2574e-15 3.6076e-16 6.9435e+05 6.4717e+05 -
f3 1.1737e-15 2.4995e-16 1.8116e+04 1.1143e+04 -
f4 1.2556e-14 2.0370e-14 4.6182e-13 3.2833e-12 =
f5 8.7935e-15 1.1728e-14 5.3340e-28 3.2325e-27 +
f6 1.1134e-11 9.1361e-12 6.4462e-05 1.7549e-05 -

50 dimensions
f1 1.1017e-15 4.7700e-16 4.1998e-28 9.9033e-29 +
f2 9.1890e-15 2.0913e-15 1.6151e+07 1.3937e+07 -
f3 1.2302e-15 7.1779e-16 5.1237e+04 3.4165e+04 -
f4 1.2606e+04 3.3045e+04 5.5627e-22 1.4649e-21 +
f5 9.0248e-03 4.4211e-02 7.8822e-27 1.2792e-26 +
f6 4.8125e-11 2.8066e-11 1.0584e-04 2.3244e-05 -

Table 5 shows that for about half of the problems CPS is competitive (f1
and f4) or outperforms CMAES (f5), whilst for some other problems CMAES
achieves results that are orders of magnitudes better in performance than CPS.
This fact happens especially in cases of steep gradients, such as the ellipsoid func-
tions f2 and f3. However, this paper proposes a principle about search directions
rather than a full algorithm. For example, unlike CMAES, CPS employs a naive
search operation based on the simple halving of a radius. Nonetheless, the pro-
posed logic can be exported to other schemes and more sophisticated operators,
e.g. an adaptive search radius, can enhance upon the current performance.

5 Conclusion

This article provides a proof of principle of a conjecture: the search directions
identified by the eigenvectors of the covariance matrix of a population of points
filling a basin of attraction are efficient to search for the local optimum. This
idea has been tested on a naive implementation of pattern search, which has
displayed a major systematic improvement over the standard version of pattern
search for the problems considered in this study.

The main limitation of the proposed approach is that in order to build the
covariance matrix a threshold value has to be set. This value is currently set



Local Search based on Covariance Diagonalisation 15

manually. Our future work will include a protocol for setting this threshold to
ensure that a sample of points representing the basin of attraction is detected.

Other future developments will include the extension of the proposed logic to
more complex algorithms such as Hooke-Jeeves Pattern search and population
based algorithms. Furthermore the proposed algorithm will also be tested within
frameworks composed of multiple algorithms, such as Memetic Algorithms and
Hyperheuristics.
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