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Abstract: Tumour-promoting inflammation is involved in colorectal cancer (CRC) development and 

therapeutic resistance. However, the antibiotics and antibacterial drugs and signalling that regulate 

the potency of anticancer treatment upon forced differentiation of cancer stem-like cell (CSC) are 

not fully defined yet. We screened an NIH-clinical collection of the small-molecule compound 

library of antibacterial/anti-inflammatory agents that identified potential candidate drugs targeting 

CRC-SC for differentiation. Selected compounds were validated in both in vitro organoids and ex 

vivo colon explant models for their differentiation induction, impediment on neoplastic cell growth, 

and to elucidate the mechanism of their anticancer activity. We initially focused on AM404, an 

anandamide uptake inhibitor. AM404 is a metabolite of acetaminophen with antibacterial activity, 

which showed high potential in preventing CRC-SC features, such as stemness/de-differentiation, 

migration and drug-resistance. Furthermore, AM404 suppressed the expression of FBXL5 E3-ligase, 

where AM404 sensitivity was mimicked by FBXL5-knockout. This study uncovers a new molecular 

mechanism for AM404-altering FBXL5 oncogene which mediates chemo-resistance and CRC 

invasion, thereby proposes to repurpose antibacterial AM404 as an anticancer agent. 

Keywords: AM404; cancer stem cells; colonosphere; CRC; differentiation; drug screening; FBXL5 

E3-ligase; patient derived organoids; resistance and metastasis; tissue explants 

 

1. Introduction 

Colorectal cancer (CRC) is the fourth most common cancer and leads to approximately 500,000 

deaths a year worldwide [1]. For patients with CRC, chemotherapy remains the most common 

treatment but often followed by tumour regrowth due to acquired chemotherapy-resistance. 

Experimental evidence supports the role of small fraction of cancer stem-like cells (CSCs) in the 

tumour, including colorectal cancer [2–4]. CSCs exhibit several distinctive features such as enhanced 

self-renewal and limited differentiation capacity that allow them to be resistant to anti-cancer 
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therapies and tumour-targeted drugs, which in turn, helps them to survive treatment and initiate 

tumour recurrence [5]. However, selective targeting of CSC is a huge challenge from the therapeutic 

point of view as strategies not being sufficiently selective for CSCs also increase risks of recurrence 

among the patients [6]. Therefore, there is an ever-growing need for novel compounds and drugs that 

target CSCs, preferably in combination with other cytotoxic drugs and tumour-targeted agents to 

prevent the regrowth of neoplastic cell populations. 

Several multidimensional approaches have been utilized to target specific markers or pathways 

to eliminate CSCs, alter tumour microenvironment, induce differentiation, re-sensitization to 

chemotherapy, apoptosis, and reversal of epithelial-mesenchymal transition (EMT) [7,8]. 

Nevertheless, the association of stem cell signatures with disease outcome in several types of cancer 

is widely established. Due to the characteristic features of cancer and their association with other 

diseases, it is also important to investigate these cancer traits in order to target them. For example, 

inflammation is one of the major hallmarks of cancer [9], as evident at the earliest stages of cancer 

progression and is capable of fostering growth of small tumors into metastatic cancers [10]. In 

addition, some FDA approved commercially available antibacterial and anti-inflammatory drugs are 

currently being studied for their potential in targeting CSCs. Such examples include salinomycin, 

curcumin, metformin, vismodegib, EGCG, imetelstat, heparin, resveratrol, tranilast, amongst others 

[11–14]. Therefore, investigating the parameters and drugs greatly benefits the study of cancer 

therapeutics. Based on this hypothesis, we carried out drug screening on a library of 707 FDA (the 

Food and Drug Administration) approved small molecule compounds with anti-inflammatory, 

antibacterial activities using 3D colonosphere as a model representing CRC-SC [15,16]. We have 

validated and used stem cell fluorescent probe (i.e., CDy1) as a reporter for the rapid screening of 

compounds in their differentiation-inducing potential [17,18]. Our further analysis of patient-derived 

tumour explant and organoid models and the molecular mechanisms data has identified antibacterial 

AM404 as a potential candidate for targeting CRC stem-like cells. 

AM404 is a metabolite of acetaminophen with antibacterial activity, also known as N-

arachidonoylphenolamine with a chemical formula of C26H37NO2 [19]. Acetaminophen (N-acetyl-

para-aminophenol or paracetamol) is one of the most commonly used over-the-counter drugs for its 

analgesic and antipyretic properties [20]. Following its administration, AM404 has been reported in 

human cerebrospinal fluid [21]. Acetaminophen undergoes de-acetylation to p-aminophenol in both 

liver and nervous system and p-aminophenol is conjugated with arachidonic acid to produce AM404 

in the nervous system. It has been suggested that AM404 may be responsible for the analgesic 

mechanism of paracetamol [19]. Some studies have demonstrated AM404s antibacterial and anti-

inflammatory effects in reducing oxidative stress are associated with the presence of the phenolic 

group in its structure (Figure 1A) [19,22,23]. Currently, there is no established data available for 

AM404 in colorectal cancer. Our data suggest that ubiquitin-ligase FBXL5 [24–27], might be a key 

target through which AM404 utilizes its pharmacological effects on CRC cells. 

2. Results 

2.1. A Screen of the NIH Clinical Collection Small Molecule Library Identifies Potential Anti-Cancer Drug 

AM404 

The 3D colonospheres were obtained from HCT116, DLD-1 and SW480 human CRC cell lines 

according to their colonosphere forming efficiencies and were employed into a fluorescence-based 

screening of US National Institute of Health (NIH) clinical library consisting of 707 small molecule 

inhibitors (Figure S1). One particular advantage of this screening was that it has been carried out on 

live colonospheres without any fixation step involved. Prior to the compound library screening, we 

initially carried out a pre-screening study with stem cell dye CDy1 using a HDAC inhibitor and 

FBXW7 deleted CRC cells (Figure S1 and Table S1). Vorinostat (SAHA) is a potent HDAC inhibitor 

that has previously been reported to induce differentiation and has undergone Phase I and II clinical 

trials [28–30]. On the other hand, our lab and others have reported FBXW7 as one of the most 

frequently mutated genes in CRC, and have associated its loss with chromosomal instability, cellular 
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proliferation, EMT, and overall tumorigenesis [31–34]. In order to carry out the pilot-screening, we 

incorporated both vorinostat treatment (to induce differentiation) and HCT116FBXW7(−/−) derived 

colonospheres (to represent high tumorigenesis), within the CDy1 based screening system.  

 

Figure 1. Screening of NIH library containing 707 small-molecule inhibitors, can induce 3D 

colonosphere differentiation. (A) Structural formula of AM404 and acetaminophen. (B) 

Representative images of the fluorescence intensity conferred by CDy1 on compounds and control-

treated colonospheres obtained from HCT116 cells. Top row represents untreated colonospheres 

intensity, whereas middle and bottom row represent induced and reduced intensity as measure of 

induce and reduced stem-like characteristics upon treatments. Scale bar: 25 µM. (C) Summary of 
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screening. (D) Primary screening based on fluorescence intensity influenced by small molecules on 

colonospheres derived from HCT116 cells. Each dot represents one compound (n = 2). All compound 

treated colonosphere intensities were expressed as percentage of the control-treated intensities as an 

indication of induced or reduced stemness. Compounds outside the square-zone were selected for a 

rescreening. At the end of rescreening (n = 3), 11 common compounds from 3 cell lines were selected 

based on their potential on CDy1 intensity induction and/or reduction. (E) IC50 of AM404 in HCT116, 

DLD-1 and SW480 cell lines. IC50 was measured at 15.2, 15.3 and 12.3 µM respectively. (F) Growth 

curve of AM404-treated DLD-1 cells. Student’s t-test was performed for the statistical analysis. Error 

bars represent mean ± S.D. (n = 3). 0.05 > p > 0.001. (G,H) AM404 showing morphological alteration 

and significant reduction in colony formation assay in DLD-1 cell line. ** p ≤ 0.01. Scale bar: 75 µm.  

Our results showed CDy1 intensities were significantly reduced in vorinostat-treated 

colonospheres, whereas, it was induced in HCT116FBXW7(−/−) derived colonospheres, further 

demonstrating successful use of CDy1 as an indicator of stemness/differentiation induction. Based 

on the pre-screening, well defined colonospheres derived from HCT116 cells were collected carefully 

with mild agitation and ensured of uniform transfer (~60 colonospheres/well) in 96 well plates. 

Colonospheres were then treated with 707 compounds (at final concentration of 20 µM) for 72 h 

before selectively stain the live stem cells, as magnitude of drug-induced stemness and/or 

differentiation level represented by high and low CDy1 fluorescence intensity respectively. HCT116 

cells were primarily chosen for the initial screening based on their highly aggressive, resistant and 

non-differentiating nature [35]. The concentration of compounds was selected based on previous 

studies being carried out at 10 µM in monolayer cells, in line with results from our lab showing 

significantly higher resistance with 3D colonospheres than 2D cells [5,33]. Initial screening identified 

50 compounds based on distinct morphology changes, colonosphere sizes and CDy1 intensity (Figure 

1B–D and Table S2). Next, we carried out a re-screening using other CRC cell lines (SW480 and DLD-

1), in addition to HCT116 cells (Figure 1D) that identified 11 compounds for their ability in inducing 

and/or reducing stem-like prowess (Table S2). Amongst the compounds that reduced the stem-like 

characteristics, more recent work showed that the antifungal drug itraconazole targets cell cycle 

heterogeneity, and epirubicin targets metastasis and DNA-damage induced-drugs resistance in CRC 

[36,37]. However, the SRB assay was used for over a wide range of doses (1 to 100 µM) to calculate 

the half-maximal inhibitory concentration (IC50) which defined AM404 as a better candidate with an 

IC50 that is lower than the target threshold (20 µM) for further in-depth evaluations [5]. This result 

was backed by the previous studies reporting AM404 to be well tolerated on animal models and 

being less toxic on mammalian cells including human HEK-293, HepG2, and, Panc-1 cells for up to 

the 4X of the MIC, indicating its relatively safe profile [22,23]. Our results were highly comparable 

between the DLD-1 and HCT116 cell lines, with IC50 of 15.3 and 15.2 µM respectively, whereas, 

AM404 shows slightly more sensitivity towards SW480 with an IC50 of 12.3 µM (Figure 1E). Next, 

cells were treated with the IC50 of AM404 (Figure 1E) on day 1 and were counted every day for a 

period of 8 days. AM404-treated DLD-1 cells showed a shift in the population doubling time (PDT) 

from 21 h to 29 h as shown in control-treated cells. This lag in the doubling time indicates significant 

impedance on cell growth (Figure 1F). Our results showed a significant reduction in the number of 

colonies during the treatment along with their morphological alteration upon AM404 treatment 

(Figure 1G). Reduction in colony size was strongly evident within the first three days of treatment, 

which was also seen in the growth curve (Figure 1G,H). Phalloidin staining significantly 

distinguishes the morphological differences conferred by AM404 in DLD-1-treated colonies (Figure 

1H). Next, we examined the effect of AM404 on the sensitivity to the drugs 5-fluorouracil (5-FUra) 

and oxaliplatin (Oxa) that are widely used for cancer treatment, particularly for CRC [38]. Also, we 

have previously investigated the sensitivity to 5-FUra and Oxa drugs and showed that FBXW7-

deficiency-induced chemoresistance [33,39].  

Our results indicated that HCT116FBXW7(−/−) cells treated with AM404 were more sensitive to 

treatment with these drugs, following synergistic effects with CI < 1 (Figure 2A,B, Figure S2) [40,41]. 

These results further confirmed AM404 as a potential anticancer drug candidate in CRC cells. 
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Figure 2. AM404 association with stem-like characterizes and differentiation. (A,B) Survival of 

synchronized/ serum-starved FBXW7-deficient HCT116 cell lines (HCT116FBXW7(−/−)). Black colour 

indicates treatment with 10 increasing concentrations of 5-FU (A) and Oxaliplatin (B), whereas red 

indicates co-treatment with AM404. SRB colorimetric assay was performed in triplicate for each cell 

line on three independent occasions. IC50 values, calculated by using GraphPad Prism software 7.02, 

represent the mean of three different experiments ± SEM with p ≤ 0.005. Cells co-treated with AM404 

are found to be more sensitive to 5-FU (A) with an IC50 of 7.35 vs. 14.8 µM and to Oxaliplatin (B) with 

an IC50 of 1.3 vs. 2.4 µM. (C) AM404 showing morphological alteration in colonosphere with no 

change in colonosphere formation efficiency. Scale bar: 25 µM. (D–F) qRT-PCR analysis of CRC-SC 
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(D), stemness (E), transcription factor for recurrence, poor survival, metastasis and tumour 

suppressor, and (F) differentiation in DLD-1 derived colonospheres treated with AM404. Student’s t-

test was performed for the statistical analysis. *, p ≤ 0.05; **, p ≤ 0.01; ***, p ≤ 0.001. (G) 

Immunofluorescence assay of AM404 treated colonospheres using stemness and differentiation 

markers, Scale bars: 25 µm. (H) AM404 treatment shows increased MUC2 expression and reduced 

level of CD44 expression suggesting induction of differentiation upon drug treatment (right panel, n  

=  15, p ≤ 0.05).  

2.2. AM404 Inhibits De-Differentiation and Acquisition of Stem-Like Properties 

The relative changes in colonospheres size/shape were assessed by treating the fully grown 

colonospheres on day 14. AM404 treatment showed distinct morphological alteration in 

colonospheres, which could be related to cell polarity, cell-cell attachment, EMT, resulted by 

differentiation induction; however, the number of colonospheres remained the same after the 

treatment (Figure 2C). Characterization of the inhibition pathway involved in the mechanism of 

action of AM404 on CSC-like properties and the sensitivity to chemotherapeutics, as evidenced in the 

colonospheres, was initially performed by gene expression analysis from mRNA isolated from 

colonospheres of roughly the same size using qRT-PCR analysis. Notably, a significant reduction in 

expression level was observed for CD44, NANOG, LGR5, OCT4 and BMI-1 stem cell markers, CXCR4 

and c-JUN oncogenes, whereas, KRT20 and CDX2 differentiation markers and FBXW7 tumour 

suppressor genes were significantly increased upon AM404 treatment in the colonospheres (Figure 

2D–F). Furthermore, immunofluorescence assay on AM404 treated colonospheres with well-

established differentiation marker MUC2 and stemness CD44 also revealed high expression pattern 

with MUC2 (Figure 2G,H). Thus, several established stem cell markers, CRC prognostic factors, and 

differentiation markers have also revealed the potential of AM404 in targeting stem-like cells. 

As a first step towards mimicking the patient tumour tissues, we used CRC patients’ derived 

organoids [42,43], to study specific cell-type response to drugs [44]. Organoids were cultured and 

allowed to start budding for 5–6 days prior to treating them with AM404. The 2 weeks treatment 

period was chosen based on the majority of control-treated organoids grew >700 µm and covered the 

limited space within the wells after a total period of 3 weeks. When compared to control-treated 

tumour organoids, AM404 appeared to induce distinct morphological changes such as branching 

formation (Figure S3), which may indicate of AM404-induced differentiation (Figure 3A, arrowheads, 

and Figure S3). The volume of organoids was significantly smaller in the AM404-treated group (197 

µm3 vs. 86 µm3; 0.05 > p > 0.001). (Figure 3B). At the end of the treatment, only 10% of organoids were 

measured to be as more than 700 µM, as compared to the 30% of total organoids in control group. 

Similarly, in reference to all the organoids being larger than 300 µM in control group, 20% organoids 

were still within the range of 100–300 µM in AM404 treated group, on day 14 of the treatment (Figure 

3C). This result shows a high population of AM404-treated organoids being in smaller diameter 

range, suggesting its inhibitory effect on organoid growth. However, cell dead/alive status identified 

by PI/Hoechst staining. AM404 treatment showed slight/no reduction in PI staining followed by 6 

days treatment period in tumour organoids (Figure 3D), while differentiation markers CDX2 

expression were significantly increased (Figure 3E). In addition, after AM404 withdraw on day 14 of 

the treatment, signs and symptoms of the differentiation, only some of the treated organoids were 

reversed. This result suggests minimal/no changes in cell death caused by AM404 on tumour 

organoids. Our results are consistent with previously reported evidence that AM404 is well tolerated 

on mammalian cells and in animal models [22,23]. Taken together, these results may indicate that 

AM404 induces differentiation and thereby affects CRC-SCs. 

2.3. Ex Vivo treatment of CRC Patient Biopsies Evaluates AM404 Response As an Anticancer Drug 

Our results from monolayer cells, colonospheres, and patient-derived organoids have shown 

that AM404 impedes the growth and can induce morphology change while reducing the stem-like 

properties. Further studies towards mimicking the clinical response of the tumour environment, an 

ex vivo platform capturing tumour heterogeneity was developed. Ex vivo explants have previously 
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been reported to be more viable in the short-term culture method [45,46]. Fresh tumour tissues were 

obtained from CRC patients following their surgery and processed immediately for culturing 

explants. To validate AM404’s response on stemness, differentiation and proliferation deliberated in 

tumour tissues, we have selected 15–17 h for the explants to recover after initial generation, based on 

published data [45,46]. Following analyses of AM404 responses were also performed for 24 h, at its 

IC50 (Figure 1E). 

 

Figure 3. AM404 treatment altered CRC patients-derived organoids growth and morphology 

patterns. (A) Representative images of tumour organoids treated with AM404 for a period of 2 weeks. 

Tumour organoids were cultured and allowed to grow for 5-6 days prior to the treatment. AM404 

was added to its IC50. Both AM404 and control-treated groups were maintained with changing of 

medium every other day. Morphological alteration and variation in growth were observed 



Cancers 2020, 12, 106 8 of 21 

 

throughout the treatment period. Images were taken using Leica microscope. Scale bar: 75 µm. (B) 

AM404 treatment causes growth impairment in tumour organoid. Volumes of organoids were 

measured every 2 days. AM404 treatment shows significant inhibition to the tumour growth as 

compared to control-treated group. Error bars represent mean ± SEM. (n = 15; control, n = 10, AM404). 

0.05 > p > 0.001. (C) Number of organoids in different size groups at the end of the treatment. Numbers 

in each size group are expressed as percentage of the total. In treated group, only 10% of organoids 

were measured as more than 700 µM, as compared to the 30% of total organoids in control group. (D) 

Hoechst/PI staining on AM404 treated organoids. The similar pattern in PI staining in both AM404 

and control-treated group indicates no changes in cell death upon AM404 treatment. Scale bar: 25 µM. 

(E) qRT-PCR analysis of AM404 treated compared with control untreated patients derived organoids 

for CD44, cyclin-D1 and CDX2. Student’s t-test was performed for the statistical analysis. *, p ≤ 0.05; 

**, p ≤ 0.01; ***, p ≤ 0.001. 

IHC analysis of AM404 treated explants showed a trend of decreasing cell proliferation and 

stemness with increasing differentiation marker (Figure 4). This was found to be consistent for 

tumour explants generated from all the CRC patients, with 5–6 images analysed per tumour sample. 

Overall, 24-h treatment with AM404 significantly reduced Ki-67 staining and the proliferation level 

in tumour explants by 20% (Figure 4A, right panel). However, Caspase-3 staining showed, not a 

significant number of cells will necessarily die in response to AM404 (Figure 4B). Therefore, to 

associate AM404 with cellular differentiation and stem-like activity, we utilized CDX2 and CD44v6 

as markers for differentiation and ‘stemness’ in tumour explants (Figure 4C,D).  

Overexpression of CDX2 has been shown previously to induce differentiation as well as to 

inhibit proliferation and is therefore, frequently downregulated during tumorigenesis [47]. We used 

the H-score system to quantify CDX2 expression in both control-treated and AM404 treated groups 

(Figure 4C, left panel). Our result showed a significant increase in CDX2 expression in tumour 

explants treated with AM404 (Figure 4C, right panel). CD44v6 is a multifunctional transmembrane 

glycoprotein and it has long been used as a marker of colorectal cancer stem cells, and is associated 

with cell adhesion, growth, differentiation, migration and tumour progression. CD44v6 positive cells 

have been reported to have the characteristics of stem cells and have a higher level of proliferation 

and invasion than CD44v6 negative cells [48,49].  
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Figure 4. AM404 treatment impacts on cancer cell proliferation, stemness and differentiation in the 

patients-derived CRC tissues explants (7 patients). (A–D) Proliferation was assessed by quantitating 

Ki-67 (A) IHC staining, cell survival by caspase-3 (B), whereas differentiation and stemness levels 

were assessed by CDX2 (C) and CD44 (D) staining quantification respectively. IHC stains were 

counterstained with hematoxylin and eosin. Representative images (top panel) shows the images at 

20× magnification with a scale bar of 100 µm. Bottom panel shows the selected parts in higher 40× 

magnification with scale bar 50 µm in control (DMSO) and AM404-treated groups. Each dot (Right 

panels) represents an image used for quantification. Student’s t-test was performed for the statistical 

analysis. Control treated groups represents the level of intrinsic proliferation, stemness and 

differentiation level in tumours. For the Ki-67 staining, Ki-67 + ve cells were counted and expressed 
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as a percentage of the total cells. In case of CD44 and CDX2 and Caspase-3, H-scores were counted as 

a measure for the quantification. AM404 treatment showed significant reduction in proliferation and 

stemness levels, and significant increase in the differentiation level in tumour explants.  

In line with the proliferation pattern, CD44v6 expression was also reduced by AM404 treatment 

on the tissue explants (Figure 4D, right panel). Thus, treating these tumour explants with AM404 

showed a reduction in proliferation and stemness while also increasing the level of differentiation 

characteristics. 

2.4. FBXL5 Attenuates AM404-Induced Anticancer Activity 

To identify the targets associated with AM404′s mechanism on CRC, the transcriptome of DLD-

1-colonospheres treated with AM404 and controls was compared. Microarray analysis emphasizing 

on 2 or more-fold changes (p < 0.001) revealed 323 differentially expressed genes (Figure 5A, Figure 

S4 and Table S3). As predicted by the status of colonospheres, the gene ontology (GO) pathways for 

75 genes with 2.5 or more-fold changed were mainly associated with cell cycle, DNA damage, and 

protein ubiquitination/ degradation signalling (Figure S5A,B). Among these top biological processes, 

and 16 genes with changes of 3-fold or greater (Figure 5B,C), protein ubiquitination was one of the 

major gene expression regulatory groups. In general, the specificity of proteolysis for any particular 

substrate is determined by its association with a specific E3-receptor subunit. F-box proteins are the 

substrate-recognition components of the Skp1-Cul1-F-box-protein (SCF) E3-ubiquitin ligases. 

Accordingly, F-box proteins can function as oncoproteins when overexpressed (if their substrates are 

tumour suppressors) or as tumour suppressors (if their substrates are oncoproteins). For example, 

we have extensively studied FBXW7, a commonly mutated tumour suppressor gene in human 

tumours including 10–15% of CRC, which, we found to be significantly increased upon AM404 

treatment (Figure 2D) [34,39,50]. However, characterization of many other F-box proteins is required 

for their roles in cancer, which could be a key breakthrough for cancer therapy and offer a potential 

new biomarker(s) for early detection of epithelial tumour progression including CRC. Therefore, we 

have selected FBXL5 gene, which showed over three folds decrease upon AM404 treatment (Figure 

5B–F), functioned as an oncogene in the progression of colon cancer through regulating 

PTEN/PI3K/AKT signalling [24] and HIF-1 transcriptional activity [26]. 

FBXL5 (F-box and leucine-rich repeat protein 5), also known as FBL4 and FBL5, is a member of 

the F-box protein family, characterized by an F-box motif consisting of 40 amino acids [24,26,51]. It is 

predominantly an iron and oxygen-regulated SCF-type E3 ubiquitin ligase containing an N-terminal 

hemerythrin-like domain, α-helix-rich structure [51,52]. Therefore, we initially sought to examine 

whether the expression of FBXL5 was altered in patients’ colorectal cancers. 
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Figure 5. AM404 treatment altered genes expression profile of DLD-1 colonospheres. (A) 

Differentially expressed genes on colonospheres treated with AM404. Each bar represents one gene 

that has a p-value of 0.001 or less and is 2 or higher fold increased or decreased on colonospheres 

following the drug treatments. (B) Heat-map representation of unsupervised clustering of the 16 

differentially expressed genes (mean ≥3-fold change) by AM404 in colonospheres. Each row 

represents a gene. Each column represents a sample: yellow, control (DMSO treated) and blue, AM404 

treated colonospheres. Colour code within the graph represents log2 of the fold change of expression: 

green, downregulated; red, upregulated. Horizontal and vertical clusters were created based in 
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Euclidean distance. (C) Gene ontology biological processes revealing the top biological processes 

affected by the sixteen genes represented in B. Functional annotation clustering with default settings 

was used; medium stringency and Benjamini–Hochberg correction was applied. Only the enriched 

GO terms with FDR < 0.05 were selected and displayed in the bar chart. The full list of differentially 

expressed genes can be found in Tables S2 and S3 and their GO biological processes enrichment in 

Figures S3 and S4. (D–F) mRNA expression levels of seven genes with differential expression 

including FBXL5 by AM404 obtained from the microarray analysis were confirmed by RT-qPCR 

analysis in colonospheres derived from HCT116 (D), DLD-1 (E) and SW480 (F) cells. Student’s t-test 

was performed for the statistical analysis. Error bars represent SEM.  

These results indicated a lower expression of FBXL5 mRNA in normal/healthy tissues adjacent 

to the tumours (Figure 6A). Notably, Yao et al., showed post-surgical patients with high expression 

of FBXL5 had shorter overall survival than patients with low FBXL5 expression [24]. Based on our 

data suggesting AM404’s effect in CSC-like activity (Figure 2), and recent studies indicating FBXL5 

regulating CRC metastasis [23,25,26], we then wanted to elucidate whether AM404 exerted its noted 

effects via FBXL5 in CRC cells [24,26,27]. We have therefore generated CRISPR-Cas9 mediated 

FBXL5-knockout in DLD-1 cell line (Figures 6B and S6). The cytotoxicity assay of the FBXL5-knockout 

cell line further confirmed that loss of FBXL5 induced sensitivity of cells (11.5 µM vs. 15.3 µM; 0.05 > 

p > 0.001) to AM404 than that of the control-treated cells (Figure 6C). In addition, knockout of FBXL5 

caused an inhibition of colony formation efficiency in DLD-1 cells (KO1 & KO2) (Figure S6A). Our 

microscopic study for Phalloidin stained DLD cells showed that FBXL5-knockout cells (KO) 

displayed branched, flat, and elongated shape with prominent actin fibers (Figure 6D). Furthermore, 

we synchronised cells by serum starvation, and performed scratch wound healing assays [53]. The 

result showed that AM404 significantly reduces the migration of DLD-1 cells (Figures S6B and 6E, 

Black vs. Red columns). Consistent with the cell morphology observation, the wound-closure of 

FBXL5-knockout cells versus control cells expressing Cas9 is significantly reduced (Figures S6B and 

6E, Black vs. Gray columns). AM404, being sensitive to FBXL5-knockout cells, showed to mimic this 

effect and caused further additive effect in inhibiting cell migration (Figures S6B and 6E, Red vs. Blue 

columns). Furthermore, in between two treatment groups, AM404 treatment caused significant 

reduction in cell migration in FBXL5-knockout cells than that of WT DLD-1 cells (Figure 6E). This 

finding postulates FBXL5 as a potential target via which AM404 exerts its effects on CRC cells 

migration. 
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Figure 6. AM404 association with FBXL5 in CRC. (A) qRT-PCR analysis of FBXL5 mRNA expression 

in a cohort of twenty-two; normal adjacent and tumour tissues from patients with CRC in 

Nottingham, UK, normalized to Hypoxanthine-guanine phosphoribosyltransferase (HPRT). 

Student’s t-test was performed for the statistical analysis. Data are mean ± SEM (n = 3; **, p ≤ 0.01). 

Experiments were performed in triplicate for each sample and repeated on two independent 

occasions. (B) Western blot analysis of FBXL5 expression in DLD-Cas9 (control) and DLD-

Cas9:FBXL5-gRNAs (CRISPR-knockout) cell lines (KO1 and KO2). β-actin was used as loading control 

(Figure S7). (C) IC50 of AM404 on FBXL5-KO cell lines. FBXL5-KO cells are found to be more sensitive 

to AM404 with an IC50 of 11.5 µM. (D) FBXL5 modulates cell adhesion and morphology. These cells 

were stained with Phalloidin and visualized under fluorescent microscope. Scale bars, 50 µm. (E) 

AM404 significantly inhibited migration in DLD-1 and FBOXL5-KO-DLD-1 cells in vitro. Migration 

of DLD-1 and FBOXL5-KO-DLD-1 cells was performed with scratch wound healing assay. Starved 

cells were scratch-wounded and wound width was measured to determine the healed distance (please 

see Figure S6B). Significant reduction in cell migration was observed for both cell lines. Bars are 

expressed as mean ± SEM. (n = 3). *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001. 

3. Discussion 

In summary, the 3D models used throughout the study provides means of reproducible, rapid, 

low cost and patient relevant platform not only for drug screening, but also for the preclinical 

evaluation of novel anticancer agents. Based on this platform, we have identified the anti-bacterial 

AM404 as a potential candidate to target CRC cells via supressing the oncogenic E3 ligase FBXL5. We 
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speculate that AM404 modulated FBXL5 expression might reduce polarized epithelial cells to inhibit 

migration to distant sites. 

Infection and chronic inflammation are major causes of cancer. Our understanding of the 

molecular pathways and links between inflammation and cancer is continuously improving. AM404 

is currently being studied for its antibacterial and anti-inflammatory effects notably for reducing the 

production of IL-1β, IL-6 as well as decreasing oxidative stress and for their association with 

circulating tumour necrosis factor (TNF)-α [19]. Previously, AM0404 has been reported to inhibit NF-

κB and NFAT activation on neuroblastoma and glioma cells. NF-κB is one of the key transcription 

factors in cancer associated inflammation transition process, regulated via TNF and various cytokines 

including IL-6 [54,55]. In neuroblastoma cells, AM404 inhibited the NF-κB activation by targeting 

IKKβ phosphorylation and activation 57 In addition, AM404 also impaired COX-2 expression, PGE2 

release, migration and invasion in a cell specific manner [56,57]. Inhibition of COX-2 has an anti-

tumorigenic effect in cancers that occurs due to prolonged chronic inflammation. Several pathways 

including Wnt–β catenin, PIK3CA/AKT/PTEN, and NF-κB, have been postulated as targets for 

NSAIDs [54]. FBXL5 has previously been interpreted as oncogene whilst its association in iron 

regulation is required for HSC self-renewal [52]. In CRC progression, FBXL5 has shown to induce cell 

proliferation, growth, tumorigenesis and inhibit cell apoptosis by modulating PTEN/PI3K/AKT 

signalling and its overexpression resulted in high tumour formation ability [24,27]. Furthermore, they 

have also been reported to negatively regulate several EMT inducers, such as Notch, c-Myc and 

mTOR, particularly in gastric and cervical cancer [24,51]. We showed that AM404 associated cell 

homeostasis caused reduction of CRC ‘stemness’ features, including cell proliferation, migration, 

tumour growth, morphology, and induction of CRC differentiation. It has been markedly reported 

that, silencing FBXL5 showed decrease in metastasis with significant increase in expression of E-

cadherin at posttranscriptional level [27]. In line with this, we showed that AM404 significantly 

reduced the expression level of N-cadherin and Vimentin (Figure 2E), and by mimicking the effect of 

FBXL5 deletion, it also significantly prevented the invasion in CRC cells (Figures S5B and 6E). When 

used in FBXL5-KO-cells, AM404 showed sensitivity and further additive effect in preventing cells 

invasion suggesting AM404 as a new compound to target FBXL5 in blocking CRC cell migration. We 

currently do not have an in vivo intestinal/colon model that implicit FBXL5 as a potential therapeutic 

target for cancer stem cells, although an essential role of FBXL5-mediated cellular iron homeostasis 

in the maintenance of hematopoietic stem cells has already been reported [52]. 

This study demonstrates the application of colonospheres, organoids and explant models to 

screen new compounds and helps improving our understanding of the inflammatory mediators 

involved in CRC. This study thereby also helps reducing, and potentially replacing animal models 

and may provide novel preventive, diagnostic and therapeutic strategies. 

One of the major hallmarks of cancer highly focuses on inflammation specifically for cancer 

progression, development and proliferation. Due to this correlation, preclinical focuses highlighted 

several antibacterial, anti-inflammatory drugs for repurposing in cancer treatment. In the study of 

Sharma et al., [19] AM404 was detectable in plasma of only eight of the 26 plasma samples, with three 

being above 5 nmol/L, which warranted an unidentified mechanism in some individuals through 

which AM404 leaks out of the brain and into the blood. In most cases, otherwise, the plasma 

concentration was below the detectable range. However, when we used the measured IC50 in 

colonospheres, organoids or tissue explants systems that recapitulate patient response, this 

concentration showed induction of differentiation rather than cell toxicity or cell death as evident in 

Figures 3 and 4. The heterogeneous cell population could explain why the cells may respond 

differently to treatment in these systems [58]. In addition, the concentration at which different drugs 

exert their pharmacological effects varies largely on the dynamics of the drugs and different cell 

types. Many drugs are used at concentrations of nM–mM range, with concentrations >10 µM. For 

example, BBI608 with 30 µM, 20 µM ECGC, 10 mM metformin, or vismodegib 10 µM [59–62]. 

Therefore, we presume this concentration may not be too toxic for future clinical use. 
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Based on our results, we conclude that AM404 as a new compound and FBXL5 as an associated 

key target gene with high therapeutic pharmacological potential could be used against human 

colorectal cancer and other infectious diseases. 

4. Materials and Methods 

4.1. Human Tissues 

Tumour and adjacent healthy tissue samples of 17 CRC patients were collected [43] from 

Nottingham Health Sciences Biobank (NHSB), Queens Medical Centre, University of Nottingham. 

Ethical approval and research and development approval including written informed consent were 

obtained by Nottingham Health Science Biobank (NHSB), Histopathology Department, School of 

Medicine, University of Nottingham, Nottingham NG7 2UH. We collected samples from Biobank via 

access committee of NHSB approval number: ACP000098 A Nateri CRC. Tissue samples were used 

for culturing patient-relevant 3D organoid and ex vivo tissue explant models [45,46]. All procedures 

were conducted following the Declaration of Helsinki and local ethics committee approval. Tissue 

samples were collected only from patients who provided written informed consent. 

4.2. Ex Vivo Explant Culture of CRC Tissues 

Explant tumour models [45,46] were cultured from patients’ tissues obtained as outlined above. 

Primary tumour tissue samples were cut in 2–4 mm segments and were maintained in complete 

organoid medium supplemented with Noggin 12–15 h or overnight. Explant samples were treated 

with the drug for 24 h. Tissues were fixed overnight in 10% neutral-buffered formalin (NBF), paraffin 

embedded, and sectioned at 4-mm thickness for hemotoxylin and eosin (H&E) staining or 

immunohistochemistry (IHC). 

4.3. Organoid Culture 

CRC patient-derived organoids were cultured as previously established and characterized in 

our lab [42,43]. Colonic crypts were made to release from intestinal epithelium and were re-

suspended in Matrigel in the presence of complete organoid medium [43]. Once the organoids started 

to grow (usually day 4–5), they were treated with drug and/or complete organoid medium as vehicle 

control for their morphology, growth evaluation and live/dead staining. Considering the 3D enteroid 

structures with crypt like projections, volume of organoids was measured by taking 3–4 separate 

diameters for each organoid. Half of the average of this diameter was considered as radius (r), 

organoid volume was measured using the following formula: � = 4/3��3. Re-treatment and/or 

organoid medium replacement was carried out every two days, for the whole experimental period. 

Microscopy was performed using a DMI3000 B fluorescence microscope (Leica Biosystem, Milton 

Keynes, UK) at ×10 and ×40 magnification for recording organoid growth and/or live/dead staining. 

4.4. Organoids Live/Dead Staining 

Live organoids were stained with Hoechst 33342, a blue-fluorescence dye to stain all cells and 

propidium iodide (PI, Sigma Aldrich, Dorset, UK), a red-fluorescence dye to stain dead cells, 

according to double Hoechst 33342/PI stain apoptosis detection kit (GenScript, Leiden, Netherlands). 

Stained organoids were carefully collected and fixed, in order to distinguish live/dead staining with 

the Leica DMI3000 B fluorescence microscope. 

4.5. Immunohistochemistry (IHC) 

Fixed tissues were processed by a Leica TP1020 semi-enclosed benchtop tissue processor via 

automatic passages from ethanol (70%, 90% and 100%) to methanol, xylene and, lastly, paraffin. 

Samples were embedded in paraffin blocks to be cut in 4 µm-thick sections with a microtome and 

placed onto the glass slides for IHC analysis. Immunohistochemical analysis was carried out with 

and without (antibody control) Ki-67 (Dako, Stockport, UK), active caspase-3, CDX2, CD44 (Cell 
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Signaling, London, UK), and FBXL5 (Abcam, Cambridge, UK) antibodies followed by incubation 

with secondary antibodies and detection reagents. A section from a CRC tissue known to express the 

protein of interest was also used as positive control [33]. Slides were scanned at 20× magnification. 

Images were analysed using NanoZoomer Digital Pathology software (Hamamatsu Ltd., Welwyn 

Garden City, UK). Immunostaining was evaluated by H-score method to calculate the sum and 

intensity of positively stained tumour cells. The H-score is ranged from 0 to 300, using the formula: 

(1 × % weakly stained nuclei) + (2 × % moderately stained nuclei)  +  (3 × % strongly stained nuclei) 

[63]. 

4.6. Cell Culture and Colonosphere Formation Assay 

Human colorectal carcinoma HCT116, DLD-1, and SW480 cell lines were used throughout the 

study. These were purchased from ATCC and were further characterised in our laboratory [33,34,64]. 

Cells were routinely tested and approved mycoplasma-free. All cells were propagated in complete 

medium and used for experiments within 5 passages from thawing. 3D colonospheres were cultured 

for 13–14 days as previously established [15,16]. Well-defined colonospheres were then treated with 

drug compound for 72 h for further employment into NIH clinical collection screening, colonosphere 

formation and morphology evaluation, immunofluorescence assay, RNA extraction for qRT-PCR and 

gene array. 

4.7. Screening of NIH Clinical Collection Using 3D Colonosphere 

As a representation of CRC-SC [16], colonospheres obtained from the above CRC cell lines were 

employed into a fluorescence-based screening of US National Institute of Health (NIH, Evotec, South 

San Francisco, CA, US) clinical library consisting of 707 small molecule inhibitors. The fluorescent 

Rosamine dye CDy1- (Active Motif, La Hulpe, Belgium) based screening in 96 well-plates was used 

to examine the effect drugs in the differentiation/stemness activities of colonospheres [17,18]. 

Fluorescence intensities were measured using a CLARIOstar microplate reader (BMG LABTECH, 

Aylesbury, UK) with optic setting for excitation and emission as 544–10 and 577–10 nm respectively. 

Based on this platform, throughout the screening, fluorescence intensity of vehicle (DMSO) treated 

colonospheres was used as control. All treated colonosphere intensities were expressed as a 

percentage of the control as an indication of induced or reduced stem-like activity. 

4.8. Cytotoxicity Assay 

Same passage number of HCT116, DLD-1 and SW480 cells were seeded in 96-well plate and 

were allowed to grow. Subsequently, cells were serum-starved for 18  h and then were treated with 

a drug by itself or with 5-FU and Oxaliplatin (Tocris, Abingdon, UK) for 72 h. Sulforhodamine-B 

colorimetric assay (230162, Sigma Aldrich, Gillingham, UK) was performed as previously described 

[33]. 

4.9. Clonogenic Assay 

DLD-1 cells were seeded in 6-well plates (200 cells per well). Cells were allowed to form into 

colonies and were treated with AM404 on day 7. Colonies were re-treated or replaced with fresh 

medium every three days throughout day 14. They were then fixed with 4% paraformaldehyde and 

stained with 0.01% crystal violet (Sigma Aldrich, Gillingham, UK), before the manual counting and 

colony size measurement. 

4.10. Cell Migration and Wound Healing Assays 

Wound healing assay was conducted on DLD-1 cells to investigate AM404’s effect on migration 

[53]. Cells were cultured in a monolayer confluent manner. In order to suppress cell proliferation and 

avoid interference with the migration measurement, they were serum starved for 18 h. A wound was 

stimulated using pipette tip, creating gap in the confluent monolayer cells and removed of any 

mechanical debris by subsequent washes. Images were taken for the time point of 0 h, using a phase-
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contrast microscope. Cells were treated with the drug and/or medium immediately and returned to 

the incubator. Image acquisition integrity was assured by several reference points close to scratch. 

Images were taken periodically at time points of 12 h, 24 h, 48 h and 72 h following the 

abovementioned approach. The distances between the scratch sides (µm) were measured and 

compared between 0 h and 72 h. 

4.11. Immunofluorescence and Western Blotting 

Immunofluorescence and Western blotting analyses were conducted to study the expression 

pattern and distribution of a protein within cells as previously described [15]. 

4.12. Knockout of FBXL5 Using the CRISPR/Cas9 System 

Two copies of 19- and 20-bp guide sequence targeting DNA within the first and eleventh exon 

of FBXL5, with high-specificity protospacer adjacent motif (PAM, Sanger, Cambridge, UK) target 

sites was cloned in LV04 Sanger Lentiviral CRISPR vector (Sigma) respectively. DLD-1 and SW480 

stably expressing Cas9 cells were transduced with LV40-FBXL5 gRNAs. Single transduced cells were 

isolated by puromycin selection and individual clones extended and screened by immunoblotting 

with anti-FBXL5 antibody (Abcam). Genomic DNA was isolated from individual edited clones, and 

PCR amplified exons products were sequenced to confirm homogeneous representation in the edited 

cells. 

4.13. RNA, Transcriptomic, qRT-PCR Assay 

Total RNA was isolated from CRC cells, colonospheres and tissues with TRIzol reagent (Sigma 

Aldrich) and RNeasy Mini Kit (QIAGEN) following the manufacturer’s protocol. The quality and 

integrity of the total RNA were evaluated on the Agilent-2100 Bioanalyzer system (Agilent, Stockport, 

UK). Only samples surpassing the minimal quality threshold (RIN > 8.0) were used in the subsequent 

transcriptomic assessment. cDNA was prepared from 200 ng of RNA as per the GeneChipTM WT-

PLUS Reagents (Thermo Fisher Scientific/Affymetrix, Winsford, UK), and followed by in vitro 

transcription to produce cRNA, end-labelled and hybridized for 16 h at 45 C to GeneChip™ Human 

Gene 2.1 ST Arrays (Thermo Fisher Scientific/ Affymetrix, Winsford, UK). All steps were performed 

by a GeneAtlas™ Personal Microarray system (Thermo Fisher Scientific/ Affymetrix, Winsford, UK) 

according to manufacturer’s instructions at the Nottingham Arabidopsis Stock Centre (NASC, School 

of Biosciences, and University of Nottingham). Differentially expressed genes were considered 

significant if p-value with FDR ≤ 0.05 and fold-change of >2 or <−2. 

Transcriptomic data were then processed by a standardized sequence of analyses (gene ontology 

(GO) enrichment) using Ingenuity Pathway Analysis. For qPCR assays, cDNAs were generated by 

using PrimeScript RT Reagent Kit (Perfect Real Time) (Takara-Clontech Laboratories, Saint-Germain-

en-Laye, France) and cDNA samples were then amplified using LightCycler 480 SYBR Green I Master 

Mix (Roche, Welwyn Garden City, UK) and LightCycler 480 II instrument (Roche). Results were 

normalized to those obtained with β-actin, and all assays were performed in triplicate. Details of 

primers used are shown in Table S1. 

4.14. Data Analysis and Statistics 

GraphPad Prism 7 (GraphPad Software, San Diego, CA, USA) and Microsoft Office Excel 

(Microsoft, Redmond, WA, USA) were used to generate graphs and carry out statistical analysis. Fiji 

(ImageJ) software (ImageJ 1.51j8, NIH, Bethesda, MD, USA) was used to analyse images. Gene 

expression data were analysed using Partek Genomics Suite 7.0 (Partek Incorporated, St. Louis, MO, 

USA). Data are reported as means ± SEM using the Student t test and the Mann–Whitney U test, as 

appropriate and for all analyses, p < 0.05 was considered statistically significant. * p < 0.05; ** p < 0.01; 

*** p < 0.001 values are shown. 

5. Conclusions 
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Our data demonstrate a new molecular mechanism, by which an uncharacterised antibacterial 

AM404 drug altering the oncogenic activity of FBXL5 receptor subunit of E3-ligase, to alter 

differentiation, migration and drug-resistant of CRC cells. Needless to say, that, the connection 

between inflammation and tumorigenesis involved at different stages during pathogenesis in all 

malignancies, and therefore these cancer-related cellular processes alterations through AM404 may 

offer possibilities for the anticancer potential of AM404 targeting the FBXL5-E3 ligase signalling in 

different types of cancers. 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1. Table S1: List of 

primers and their sequences used for qRT-PCR assay, Table S2: List of drugs selected during different stages of 

the screening, Table S3: List of differentially expressed genes upon AM404 treatment, Figure S1: Optimisation 

of screening methodology using CDy1, Figure S2: Isobologram analysis shows the combined effect, Figure S3: 

AM404 treatment presents enteroid-like structures and induces differentiation in organoids. Percentage of 

enterosphere, cyst, enteroids and dead cells at day 3, 7 and 15 days of treatment, Figure S4: Principal components 

analysis (PCA) of microarray data between DMSO (control, red) and AM404 treated (blue) cells transcriptomes, 

Figure S5: Gene ontology (GO) pathway for 75 differentially expressed genes (2.5 or more-fold change), Figure 

S6: Clonogenic assay of AM404 on FBXL5 KO DLD-1 cells, Figure S7: Whole Western Blot image and intensity 

ratio. 
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