
Parameterised Resource-Bounded ATL

Natasha Alechina
Utrecht University

Utrecht, The Netherlands
n.a.alechina@uu.nl

Stéphane Demri
LSV, CNRS, ENS Paris-Saclay,

University Paris-Saclay
Cachan, France
demri@lsv.fr

Brian Logan
University of Nottingham

Nottingham, UK
brian.logan@nottingham.ac.uk

Abstract

It is often advantageous to be able to extract resource require-
ments in resource logics of strategic ability, rather than to
verify whether a fixed resource requirement is sufficient for
achieving a goal. We study Parameterised Resource-Bounded
Alternating Time Temporal Logic where parameter extrac-
tion is possible. We give a parameter extraction algorithm
and prove that the model-checking problem is 2EXPTIME-
complete.

Introduction
There has been a considerable amount of work on logics of
strategic ability interpreted over structures where agents’ ac-
tions consume resources, or both produce and consume re-
sources. Examples include an extension of Coalition Logic
where actions consume resources and coalitional modali-
ties are annotated with resource bounds (‘agents in coali-
tion A have a strategy of cost at most b to achieve φ’)
(RBCL) (Alechina et al. 2009; 2011), a similar extension for
Alternating Time Temporal Logic ATL, Resource-Bounded
ATL (RB-ATL) (Alechina et al. 2010), extensions of Com-
putation Tree Logic and Alternating Time Temporal Logic
with both consumption and production of resources (RTL,
RAL) (Bulling and Farwer 2010a; 2010b), a variant of
Resource-Bounded ATL where all resources are convertible
to money and the amount of money is bounded (PRB-ATL)
(Della Monica, Napoli, and Parente 2011; 2013), an exten-
sion of PRB-ATL to µ-calculus (Della Monica and Lenzi
2012), a version of ATL with more general numerical con-
straints (QATL∗) (Bulling and Goranko 2013), and a version
of RB-ATL where unbounded production of resources is al-
lowed (RB±ATL) (Alechina et al. 2017b). These logics can
express properties such as: ‘a coalition of agents with n units
of resource 1 and m units of resource 2 can reach a state
where they can maintain property φ forever without spend-
ing any resources’. Essentially, such logics enable formulat-
ing and solving multi-agent conditional planning problems
with resources, where the planning problems may be nested
and involve invariant properties.

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

However, with one exception, these logics assume that
the amount of resources available to the agents is fixed
and known in advance. Using these logics, it is possible to
ask whether a strategy to achieve some goal exists if the
agents start with e.g., 100 units of energy. It is not possi-
ble to ask what is the minimal amount of energy that makes
some goal achievable (unless it is already known that the
goal is achievable for some fixed cost). In other words, it
is not possible to extract the values of resource parame-
ters using model-checking procedures for these logics. The
only exception is the logic ParRB±ATL∗ (Parameterised
RB±ATL∗, Resource Bounded Alternating Time Temporal
Logic) introduced in (Alechina et al. 2018) that allows con-
crete values for resource parameters to be synthesised. Using
ParRB±ATL∗, we can ask what is the minimal amount of
energy needed for achieving some goal, or for which values
of x and y does it hold that coalition A has a strategy re-
quiring at most x units of resource to enforce some temporal
goal, and coalition A′ does not have a strategy to enforce
another temporal goal with y units of resource. The function
form of the model-checking problem for ParRB±ATL∗ (re-
turn a set of constraints on the resource variables for which
the formula is true) was shown to be decidable in (Alechina
et al. 2018), but the upper bound on the complexity of the
problem was left open.

In this paper we study the model-checking problem for the
logic ParRB±ATL (Parameterised RB±ATL). ParRB±ATL
is a fragment of ParRB±ATL∗ with the same syntax as
RB±ATL (Resource Bounded ATL), but with variables in-
stead of concrete values for resource amounts. We show
that the complexity of the model-checking problem for
ParRB±ATL is 2EXPTIME-complete, and give an explicit
algorithm to compute the set of assignments satisfying the
formula. For positive formulas, this algorithm computes the
set of Pareto optimal (non-dominated) resource bounds sat-
isfying the formula.

Our results build on results and techniques developed in
games on vector addition systems with states (Courtois and
Schmitz 2014) and energy games (Jurdzinski, Lazić, and
Schmitz 2015). In particular, we use techniques for solving
reachability problems with unknown initial credit for vector
addition systems with states for model checking formulas

with the Until temporal operator, and techniques for solv-
ing non-termination problems with unknown initial credit
for energy games for model checking invariant properties.
The crux of establishing a 2EXPTIME upper bound for the
ParRB±ATL model-checking problem is showing that there
is a maximal value of the amount of resource needed to reach
a particular state or to enter and execute a non-resource-
consuming loop, and this bound depends only on the model
and not on the property to be checked.

In the remainder of this section, we briefly recall other re-
search in multi-weighted games related to our work. Juhl,
Larsen and Raskin (2013) consider the problem of comput-
ing minimal winning vectors in multi-weighted games. They
state three decision problems, but focus on the second and
third (computing minimal upper bounds b such that on all
infinite computations starting from 0, values stay below b),
which are less relevant for us. Their first problem, comput-
ing minimal winning vectors for multiweighted games when
all the vectors in the infinite runs have non-negative values,
is the most related to model checking ParRB±ATL. At the
time of (Juhl, Larsen, and Raskin 2013), the best known
approach to this problem was that of Brázdil, Jančar and
Kucera (2010), which has upper bound (k-1)-EXPTIME,
where k is the number of resource types. Jurdzinski, Lazić
and Schmitz (2015) significantly improved on the results
in (Brázdil, Jančar, and Kucera 2010), which is why we use
the results from (Jurdzinski, Lazić, and Schmitz 2015) in our
paper.

The main contribution of our paper is to show that the
maximal value given in (Jurdzinski, Lazić, and Schmitz
2015) transfers to ParRB±ATL, and to show how it can be
used for nested temporal goals that include negations and a
mixture of reachability and non-termination goals.

Syntax and Semantics of ParRB±ATL
In this section, we introduce the syntax and semantics of
ParRB±ATL.

Let Agt = {a1, . . . , an} be a set of n ≥ 1 agents and
Res = {res1, . . . , resr} be a set of r ≥ 1 resource types,
Π denote a set of propositions, and V ar a countably infinite
set of variables.

We write ParRB±ATL(n,r) for the logic ParRB±ATL
with n agents and r resources, interpreted over models with
the same numbers of agents and resources. When talking
about all possible n and r, we write ParRB±ATL.

Formulas of ParRB±ATL(n,r) are defined by the follow-
ing syntax

ϕ ::= p | ¬ϕ | ϕ∨ψ | 〈〈Ax〉〉©ϕ | 〈〈Ax〉〉�ϕ | 〈〈Ax〉〉ϕU ψ

where p ∈ Π is a proposition, A ⊆ Agt, and x is a se-
quence of variables x1, . . . , xr from V ar of length r, intu-
itively placeholders for amounts of resource 1 to resource
r.

Since formulas contain variables, formulas are evaluated
relative to a model, a state and an assignment of values
to variables. Informally, a state s and assignment x1 7→
b1, . . . , xr 7→ br where the bi’s are in N (which we will write
as a mapping between vectors, x 7→ b) satisfies 〈〈Ax〉〉©ϕ

if A has a joint action with cost at most b such that all out-
comes of this action satisfy ϕ. Similarly, 〈〈Ax〉〉�ϕ is satis-
fied if A has a strategy to ensure that ϕ is always true, and
the cost of any computation generated by this strategy is at
most b; 〈〈Ax〉〉ϕU ψ is satisfied if A has a strategy to en-
force ψ while maintaining the truth of ϕ, and the cost of this
strategy is at most b.

The models of the logic ParRB±ATL are resource-
bounded concurrent game structures (RB-CGS) introduced
in (Alechina et al. 2010), which are also the models of
RB±ATL.

Definition 1. A resource-bounded concurrent game struc-
ture is a tuple M = (Agt,Res, S,Π, π, Act, d, c, δ) where:

• Agt is a non-empty set of n agents, Res is a non-empty
set of r resources and S is a finite non-empty set of states.

• Π is a finite set of propositional variables and π : Π →
℘(S) is a truth assignment which associates each propo-
sition in Π with a subset of states where it is true.

• Act is a non-empty set of actions which includes idle, and
d : S×Agt→ ℘(Act) is a function which assigns to each
s ∈ S a non-empty set of actions available to each agent
a ∈ Agt. For every s ∈ S and a ∈ Agt, idle ∈ d(s, a).
We denote joint actions by all agents in Agt available at
s by D(s) = d(s, a1)× · · · × d(s, an).

• c : S × Agt × Act → Zr is a partial function which
maps a state s, and agent a and an action α ∈ d(s, a) to
a vector of integers where the integer in position i indi-
cates consumption or production of resource resi by the
action (positive value for consumption and negative value
for production). We stipulate that c(s, a, idle) = 0 for all
s ∈ S and a ∈ Agt where 0 = (0, . . . , 0) ∈ Nr.

• δ : (s, σ) 7→ S is a function that for every s ∈ S and joint
action σ ∈ D(s) gives the state resulting from executing
σ in s.

Given an RB-CGS M , we denote the set of all infinite
sequences of states (computations) by Sω and the set of non-
empty finite sequences of states by S+. For a computation
λ = s0s1 . . . ∈ Sω , we use the notation λ[i] = si and
λ[i, j] = si . . . sj where j ≥ i ≥ 0.

Given an RB-CGS M and a state s ∈ S, a joint action
by a coalition A ⊆ Agt is a tuple σ = (σa)a∈A such that
σa ∈ d(s, a). The set of all joint actions for A at state s is
denoted by DA(s). Given a joint action by the grand coali-
tion σ ∈ D(s), σA denotes the joint action executed by A:
σA = (σa)a∈A. The set of all possible outcomes of a joint
action σ ∈ DA(s) at state s is:

out(s, σ) = {δ(s, σ′) | σ′ ∈ D(s) ∧ σ = σ′A}

The cost of a joint action σ ∈ DA(s) is defined as:

cost(s, σ) =
∑
a∈A

c(s, a, σa)

Given an RB-CGS M , a strategy for a coalition A ⊆ Agt
is a mapping FA : S+ → Act|A| such that, for every
λs ∈ S+, FA(λs) ∈ DA(s). A computation λ ∈ Sω is
consistent with a strategy FA iff, for all i ≥ 0, λ[i + 1] ∈

out(λ[i], FA(λ[0, i])). We denote by out(s, FA) the set of
all computations λ consistent with FA that start from s.

We use the usual point-wise notation for vector compari-
son and addition. In particular, (b1, . . . , br) ≤ (d1, . . . , dr)
iff bi ≤ di for all i ∈ {1, . . . , r}, and (b1, . . . , br) +
(d1, . . . , dr) = (b1 + d1, . . . , br + dr).

For convenience, let us denote the set of possible resource
bounds by B = Nr. Given a bound b ∈ B, a computation
λ ∈ out(s, FA) is b-consistent with FA iff, for every i ≥ 0,

i∑
j=0

cost(λ[j], FA(λ[0, j])) ≤ b

Note that this definition implies that if agents start with re-
source allocation b, then on every prefix of the computation
the amount of resources they have is never below 0. Further-
more, the constraint on b-consistent computations involves
only action costs for agents from the coalition A (and not on
the agents outside A).

The set of all b-consistent computations of FA starting
from state s is denoted by out(s, FA,b). FA is a b-strategy
iff out(s, FA) = out(s, FA,b) for any state s.

Given an RB-CGS M , a state s of M , the truth of a
ParRB±ATL formula ϕ with respect to M , s and assign-
ment v from the set of variables to N is defined inductively
on the structure of ϕ as follows:
• M, s, v |= p iff s ∈ π(p);
• M, s, v |= ¬φ iff M, s, v 6|= φ;
• M, s, v |= φ ∨ ψ iff M, s, v |= φ or M, s, v |= ψ;
• M, s, v |= 〈〈Ax〉〉©φ iff there exists a v(x)-strategy FA

such that for all λ ∈ out(s, FA): M,λ[1], v |= φ;
• M, s, v |= 〈〈Ax〉〉�φ iff there exists a v(x)-strategy FA

such that for all λ ∈ out(s, FA) and i ≥ 0: M,λ[i], v |=
φ;

• M, s, v |= 〈〈Ax〉〉φU ψ iff there exists a v(x)-strategy
FA such that for all λ ∈ out(s, FA), there exists i ≥ 0
such that M,λ[i], v |= ψ and M,λ[j], v |= φ for all
j ∈ {0, . . . , i− 1}.

Note that along the evaluation of formula, the assignment v
does not vary, and the formulae are evaluated on states and
not on pairs of the form (s,b).

The two decision forms of the model-checking problem
for ParRB±ATL are as follows.
Definition 2. The following problem is the unknown initial
assignment model-checking problem for ParRB±ATL.
Input: n, r ≥ 1 (in unary), a ParRB±ATL(n,r) formula ϕ,

a finite model M , and a state s.
Question: Is there an assignment v such that M, s, v |= ϕ?
Definition 3. The following problem is the known initial as-
signment model-checking problem for ParRB±ATL.
Input: n, r ≥ 1 (in unary), a ParRB±ATL(n,r) formula ϕ,

a finite model M , a state s, and an assignment v.
Question: Is it true that M, s, v |= ϕ?

The function form of the model-checking problem is to
compute the set of all satisfying assignments.

Definition 4. The following problem is the function form of
the model-checking problem for ParRB±ATL(n,r).

Input: n, r ≥ 1 (in unary), a ParRB±ATL(n,r) formula ϕ,
a finite model M , and a state s.

Output: Compute a formula γ describing the set of assign-
ments v such thatM, s, v |= ϕ, where γ is of the following
form (for b ∈ N):

γ := x ≥ b | > | ⊥ | ¬γ | γ ∧ γ | γ ∨ γ

Clearly, if the function form of the problem is solvable,
then both model-checking problems for ParRB±ATL are de-
cidable.

The following is an immediate consequence1 of Theorem
8 in (Alechina et al. 2018):
Theorem 1. The function form of the model-checking prob-
lem for ParRB±ATL is decidable.

However, the upper bound on complexity for this prob-
lem is not known. The method for proving decidability
of the function form of the model-checking problem for
ParRB±ATL∗ is by reduction to parity games on single-
sided VASS (Abdulla et al. 2013). While this can be used
for ParRB±ATL model checking, it leads to a huge com-
plexity bound (probably non primitive recursive, as struc-
tures close to Karp-Miller trees need to be constructed). In
the next section, we give a direct algorithm for model check-
ing ParRB±ATL.
Theorem 2. The lower bound on the complexity of
the known initial assignment model-checking problem for
ParRB±ATL is 2EXPTIME.

Proof. From the result that the model-checking problem for
RB±ATL is 2EXPTIME-hard (Theorem 3, (Alechina et al.
2018)) when r is an input parameter.2 Note that the proof
of Theorem 3 in (Alechina et al. 2018) does not require in-
finite bounds, so the result also holds for RB±ATL without
infinite bounds. It is straightforward to reduce the model-
checking problem for RB±ATL to the known initial assign-
ment model-checking problem for ParRB±ATL.

Upper Bound on the Complexity of the
Function Form of the ParRB±ATL

Model-Checking Problem
In this section, we first introduce the key concepts used in
the model-checking algorithm for ParRB±ATL, and in the
process show that Until and Box formulas of ParRB±ATL
that do not contain nested modalities can be model-checked

1The set of assignments considered in (Alechina et al. 2018) is
not of the form V ar → N but of the form V ar → N ∪ {∞},
and the constraint formula may include x = ∞. This is motivated
by the connection between ParRB±ATL∗ and RB±ATL where
modalities have bounds which may contain ∞. That in turn was
motivated by the desire to make RB±ATL a conservative exten-
sion of ATL. However, the proof of Theorem 8 in (Alechina et al.
2018) goes through for the case when assignments are of the form
V ar → N, which is what we are interested in this paper.

2It is EXPTIME-hard for fixed r ≥ 4, see Corollary 1 in
(Alechina et al. 2018).

in 2EXPTIME. We then state the model-checking algorithm
and the general result on the upper bound on complexity
of the function form of the model-checking problem for
ParRB±ATL.

Preliminaries and Definitions
The proof of a 2EXPTIME upper bound for the function
form of the ParRB±ATL model-checking problem builds on
results for reachability games with unknown initial credit for
alternating vector addition systems with states (Courtois and
Schmitz 2014) and non-termination energy games with un-
known initial credit (Jurdzinski, Lazić, and Schmitz 2015).
These results roughly correspond to model checking for-
mulas of the form 〈〈Ax〉〉φU ψ and 〈〈Ax〉〉�φ, respectively,
where φ and ψ do not in turn contain variables, i.e. these are
propositional formulae.

First we introduce a notion of a witness for a successful
A-strategy in enforcing a formula of the form 〈〈Ax〉〉φU ψ.
Informally, a witness is a finite tree with the root labelled
(s,b), representing the result of executing a successful A-
strategy from s under assignment x 7→ b until ψ states are
reached on all branches.

Definition 5. Given a formula of the form 〈〈Ax〉〉φU ψ, a
state s in an RB-CGS M , and a vector b ∈ Nr, a finite tree
with root (s,b) is a witness forM, s,x 7→ b |= 〈〈Ax〉〉φU ψ
if

• all nodes of the tree are of the form (s′,b′) where s′ is a
state (resulting from executing the joint action in the state
of the parent node) and b′ the vector of resource amounts
A have in s′ as a result, and b′ ≥ 0,

• in all leaf nodes (s′,b′) of the tree, s′ satisfies ψ (since
ψ is propositional, this can be determined using only the
truth assignment π),

• in all non-leaf nodes (s′,b′) of the tree, s′ satisfies φ
(again, only the truth assignment π is needed here).

In the first point of the definition, an edge (s,b) 7→
(s′,b′) is present in the tree because of some joint action
σ ∈ D(s), such that δ(s, σ) = s′, and for all i ∈ [1, r],
we have b′[i] = b[i] − (Σa∈A c(s, a, σ(a))[i]). Note that in
the expression above, the value c(s, a, σ(a))[i] occurs nega-
tively.

Observe that a witness corresponds to a perfect recall b-
strategy for A, because after reaching the leaf nodes satisfy-
ing ψ, the coalition can forever execute the idle action that
consumes no resources.

A witness for M, s,x 7→ b |= 〈〈Ax〉〉�φ is defined simi-
larly.

Definition 6. A witness for M, s,x 7→ b |= 〈〈Ax〉〉�φ is
a finite tree with root (s,b) where in every node the state
satisfies φ, all resource allocations in the nodes are non-
negative, and for each leaf node (s′,b′) there is exactly one
other node (s′,b′′) on the same branch with the same state
s′ and b′′ ≤ b′.

In other words, a witness for 〈〈Ax〉〉�φ describes the ini-
tial prefix of a successful strategy for satisfying 〈〈Ax〉〉�φ.
It can be extended to a perfect recall b-strategy for A since

it describes how to enforce a non-consuming loop on any
computation.

Clearly, if there is a witness for M, s,x 7→ b |= φ, then
there is also a witness for M, s,x 7→ b′ |= φ, where b ≤ b′

(the same strategy will work for a greater initial resource
allocation). We will also talk about w being a witness for φ
being true inM and s if there is some assignment v such that
w is a witness for M, s, v |= φ, and about w being a witness
for φ being true inM if there is some state s and assignment
v such that w is a witness for M, s, v |= φ.

A norm of a vector b is the largest component of the vec-
tor (by absolute value), max(|b[i]|). This notion can be ex-
tended to the norm of a finite set of vectors. The largest value
occurring in a description of an RB-CGS M is the norm of
the set of costs of actions. We will denote this number by
maxM . Similarly, we can talk about the norm of a witness
w, ‖w‖. Let us call a witness w norm-minimal for some
model-checking instance if there is no witness w′ for the
same model-checking instance with ‖w′‖ < ‖w‖.
Proposition 1. If a witness for 〈〈Ax〉〉�φ being true in M, s
exists, then there exists a witness w with ‖w‖ ≤ (4|S| ·
maxM)2(r+2)3 .

Proof. The proof uses two results from (Jurdzinski, Lazić,
and Schmitz 2015). The first result (Lemma 3.1) is that if
Player 1 has a winning strategy in a bounded energy game
(ensuring non-termination, with counters remaining non-
negative and below a certain bound), then Player 1 has a
strategy where the norm of any computation is bounded by
(4|S| · maxM)2(r+2)3 . The second result (Proposition 2.4)
is that Player 1 has a winning strategy in a non-termination
energy game if and only if Player 1 has a winning strat-
egy in a bounded energy game on the same graph with
resource-decrementing loops added to every state. To con-
struct the winning strategy for the bounded game, resource-
decrementing loops can be used to keep the resource
amounts below the upper bound, while the transitions in the
non-termination energy game simply ignore decrementing
loops (in particular, they may involve incrementing some
resource forever in a loop). If all ‘useful’ (non-resource-
decrementing-loop transitions) in the bounded game can be
accomplished without more than (4|S| ·maxM)2(r+2)3 re-
sources on any counter up to the point the ‘final’ loop is re-
peatedly executed, then the same applies to the original en-
ergy game, and hence to a witness for 〈〈Ax〉〉�φ being true
in M, s.

Proposition 2. If a witness for 〈〈Ax〉〉ψ1 U ψ2 being true
in M, s exists, then there exists a witness w with ‖w‖ ≤
(4(|S|+ 1) ·maxM)2(r+3)3 .

Proof. By contradiction, assume that in some model M , a
norm-minimal witness w for 〈〈Ax〉〉ψ1 U ψ2 being true in
M, s has norm ‖w‖ > (4(|S| + 1) · maxM)2(r+3)3 . Pro-
duce a model M ′ from M as follows. If any joint action by
Awhich is involved inw is composed of only idle actions by
all agents inA, add toM another 0 cost action α and replace
idlewith α inw. Add an extra resource type r+1, and let all

actions by agents in A involved in w (apart from the idle ac-
tion) consume one unit of r+1. Redirect all other transitions
(not involved in w) to an additional new state s′ not satisfy-
ing ψ2. Note that M ′ contains a witness w′ corresponding
to w but with extra costs on the (r + 1)th resource, and w′
is still a minimal (and the only) witness for 〈〈Ax〉〉ψ1 U ψ2.
This is because the only state in M ′ that is not part of w′ is
s′, and a ψ2 state is not accessible from s′. Note also that
w′ does not contain any non-resource-consuming loops on
the branches leading to ψ2 states because of the costs on the
(r + 1)th resource. Now to complete the transformation of
M intoM ′, we add a new propositional variable p that holds
in all w′ states but not in s′, and add 0 cost self-loops by the
idle action to all ψ2 states. Consider the formula 〈〈Ax〉〉�p.
The only way to satisfy it in M ′, s is to use a strategy corre-
sponding tow′. (This is because the only way to reach a non-
resource-consuming loop satisfying p is to reach a ψ2 state,
and w′ is a minimal witness to reaching a ψ2 state while sat-
isfying ψ1, hense while satisfying p). The norm of w′ is still
the same as the norm of w (without loss of generality, we as-
sume that the costs on r+ 1 are less than ‖w‖), so the norm-
minimal witness for 〈〈Ax〉〉�p has the norm strictly greater
than (4(|S|+1) ·maxM)2(r+3)3 , that is, strictly greater than
(4|S′|) ·maxM ′)2(r

′+2)3 , where |S′| = |S|+ 1 is the num-
ber of states in M ′ and r′ = r+ 1 is the number of resource
types in M ′. This contradicts Proposition 1.

Given that the norm of a norm-minimal witness is
bounded by BM = (4(|S|+ 1) ·maxM)2(r+3)3 , the height
of a witness is bounded by an exponential in r and maxM
(since the model is encoded in binary). This means that all
such potential witnesses can be generated and checked by
an alternating Turing Machine in EXPSPACE. As pointed
out in (Courtois and Schmitz 2014), this gives a naive algo-
rithm for computing the Pareto frontier (all non-dominated
initial resource allocations): all potential witnesses with re-
source allocations at the root starting from (0, . . . , 0) and
up to (BM , . . . , BM) can be explored in turn in AEX-
PSPACE, and the non-dominated values b saved as con-
straints x ≥ b. Since ASPACE(f(n)) = DTIME(2O(f(n))),
AEXPSPACE=2EXPTIME, and this algorithm produces a
description of satisfying assignments for non-nested Box
and Until formulas in 2EXPTIME. In the next section, we
show that this upper bound applies to the whole language.

Model-Checking Algorithm
In this section, we present a 2EXPTIME algorithm to solve
the function form of the ParRB±ATL model-checking prob-
lem. Given a model M and a ParRB±ATL formula φ with
variables x1, . . . , xn, the algorithm returns a set of pairs
‖φ‖M of the form (s, γ) where s is a state and γ a constraint
formula defining the set of assignments v to x1, . . . , xn such
that M, s, v |= φ.

Note that γ could be equivalent to ⊥ (unsatisfiable), in
which case there is no assignment v such that M, s, v |=
φ. We will say that γ is satisfiable iff there is at least one
assignment v satisfying the constraints in γ.

To formulate the cases for 〈〈Ax〉〉ψ1 U ψ2 and 〈〈Ax〉〉�ψ,
we need to redefine the notion of a witness relative to

‖ψ1‖M , ‖ψ2‖M , and ‖ψ‖M . A constrained witness for
〈〈Ax〉〉ψ1 U ψ2 being true in M, s is a finite tree where each
leaf is a node of the form (s′,b′) (for some b′) where s′ is
such that (s′, γ′) ∈ ‖ψ2‖M and γ′ is satisfiable. All other
nodes are of the form (s′,b′) where (s′, γ′) ∈ ‖ψ1‖M and
γ′ is satisfiable. A constrained witness w for 〈〈Ax〉〉ψ1 U ψ2

being true inM, s is exactly like a (non-constrained) witness
for 〈〈Ax〉〉ψ1 U ψ2 being true in M, s, but instead of requir-
ing states in the nodes to satisfy ψ1 or ψ2, we require them
to be in ‖ψi‖M with a satisfiable constraint formula γ′. The
formula γ′ describes constraints on resources required to sat-
isfy ψ1 or ψ2. If ψi is a propositional formula, then γ′ can
only be of the form >, otherwise it may be any satisfiable
constraint, for example, y < 1. These γ′ constraints are go-
ing to be used to construct the formula γ(w) defined below.3

Similarly, a constrained witness for 〈〈Ax〉〉�ψ is obtained
from a witness by replacing the notion of a state s′ satis-
fying ψ with a requirement that (s′, γ′) ∈ ‖ψ‖M and γ′ is
satisfiable.

We call a constrained witness w with the root (s,b) non-
dominated if it is norm-minimal and there is no constrained
witness w′ with root (s,b′) such that b′ < b.

We denote the set of non-dominated constrained wit-
nesses for (M, s, ψ) by W (M, s, ψ). This set is finite and
each witness has height bounded by |S| · (BM + 1)r by
Propositions 1 and 2 (because no two nodes on the same
branch have the same state and resource vector, and the max-
imal value in resource vector is BM).

Given a constrained witness w, we define a formula γ(w)
describing constraints on the nodes in w. Intuitively, for for-
mulas of the form 〈〈Ax〉〉ψ1 U ψ2 and 〈〈Ax〉〉�ψ, the con-
straint on x is x ≥ b if the root of the witness is (s,b). There
are however additional provisos. If some of the variables in x
occur in proper subformulas of that formula, then there will
be some more constraints on x arising from the constraints
on the occurrences in proper subformulas. Also, constraint
x ≥ b is only tight (in the sense ofM, s, v |= 〈〈Ax〉〉ψ1 U ψ2

iff v |= x ≥ b), if the witness is non-dominated. In ad-
dition to x, ψ1, ψ2 and ψ may have other strategic modali-
ties with variables y. The purpose of the formula γ(w) is to
extract the constraint on y from the witness, by combining
constraint formulas for the states in nodes of the witness.

For a constrained witness w for 〈〈Ax〉〉ψ1 U ψ2 with a root
(s,b),

γ(w) = x ≥ b ∧∧
s′ ∈ leaves(w), (s′, γ′) ∈ ‖ψ2‖M

γ′ ∧

∧
s′ ∈ −leaves(w), (s′, γ′) ∈ ‖ψ1‖M

γ′

where s′ ∈ leaves(w) if (s′,b′) is a leaf node of w and
s′ ∈ −leaves(w) if (s′,b′) is a non-leaf node of w.

3Note that there is no connection between γ′ and b′. As in the
(non-constrained) witness, b′ corresponds to values remaining on
the original resource assignement to x, that is, the resources used
by the A-strategy to satisfy the formula 〈〈Ax〉〉ψ1 U ψ2.

Algorithm 1 Computing ‖φ0‖
1: function PARRB±ATL-MC(M,φ0)
2: for φ′ ∈ Sub(φ0) do
3: case φ′ = p
4: ‖p‖M ← {(s,>) : s ∈ π(p)} ∪ {(s,⊥) : s 6∈ π(p)}
5: case φ′ = ¬ψ
6: ‖¬ψ‖M ← {(s,¬γ) : (s, γ) ∈ ‖ψ‖M}
7: case φ′ = ψ1 ∧ ψ2

8: ‖ψ1 ∧ ψ2‖M ← {(s, γ1 ∧ γ2) : (s, γ1) ∈ ‖ψ1‖M ∧ (s, γ2) ∈ ‖ψ2‖M}
9: case φ′ = ψ1 ∨ ψ2

10: ‖ψ1 ∨ ψ2‖M ← {(s, γ1 ∨ γ2) : (s, γ1) ∈ ‖ψ1‖M ∧ (s, γ2) ∈ ‖ψ2‖M}
11: case φ′ = 〈〈Ax〉〉©ψ
12: ‖〈〈Ax〉〉©ψ‖M ← {(s, γ) : γ =

∨
σ∈DA(s)(x ≥ cost(σ, s) ∧

∧
s′∈out(s,σ),(s′,γ′)∈‖ψ‖M γ′)}

13: case φ′ = 〈〈Ax〉〉ψ1 U ψ2

14: ‖〈〈Ax〉〉ψ1 U ψ2‖ ← {(s, γ) : γ =
∨
w∈W (M,s,〈〈Ax〉〉ψ1 U ψ2)

γ(w)}
15: case φ′ = 〈〈Ax〉〉�ψ
16: ‖〈〈Ax〉〉�ψ‖ ← {(s, γ) : γ =

∨
w∈W (M,s,〈〈Ax〉〉�ψ) γ(w)}

17: return ‖φ0‖M

For a constrained witness w for 〈〈Ax〉〉�ψ with a root
(s,b),

γ(w) = x ≥ b ∧
∧

s′ ∈ nodes(w), (s′, γ′) ∈ ‖ψ‖M
γ′

where s′ ∈ nodes(w) if (s′,b′) for some b′ is a node of w.
For each subformula φ′ of φ0 in increasing order of com-

plexity, Algorithm 1 computes ‖φ′‖M .

Theorem 3. On the input of M,φ0, Algorithm 1 returns a
set of pairs ‖φ0‖M such that (s, γ) ∈ ‖φ0‖M if, and only if:
for all v M, s, v |= φ0 iff v |= γ.

Proof. The proof is by induction on the complexity of
φ0. The inductive hypothesis is that (s, γ) ∈ ‖φ′‖M iff
(M, s, v |= φ′ iff v |= γ).

Clearly this holds for atomic propositions: (s,>) ∈ ‖p‖M
iff M, s |= p, by line 4 of Algorithm 1. For booleans, the
conditions on assignments are also straightforward (lines 6,
8, 10).

Consider 〈〈Ax〉〉©ψ. M, s, v |= 〈〈Ax〉〉©ψ iff v assigns to
x the amount of resources sufficient to execute an action σ
such that all outcomes of that action satisfy ψ under v. (This
σ is the first action in a successful strategy, but just as in the
case of Until, all subsequent actions in the strategy can be
chosen to be idle, which means the strategy will not require
more than v(x) resources.) By the inductive hypothesis, all
outcomes of σ satisfy ψ under v iff for every state s′ in
out(s, σ) such that (s′, γ′) ∈ ‖ψ‖M , v |= γ′, that is, iff v |=∧
s′∈out(s,σ),(s′,γ′)∈‖ψ‖M γ′. Hence M, s, v |= 〈〈Ax〉〉©ψ

iff for some executable σ, v |=
∧
s′∈out(s,σ),(s′,γ′)∈‖ψ‖M γ′.

This is exactly what line 12 of Algorithm 1 requires for
‖〈〈Ax〉〉©ψ‖M .
M, s, v |= 〈〈Ax〉〉ψ1 U ψ2 iff there is a strategy such

that each computation on this strategy satisfies ψ1 under
v until it satisfies ψ2 under v. This holds iff there is a

witness w such that initial amount of resources is suffi-
cient to execute the corresponding strategy and all nodes
in the witness satisfy the corresponding formulas under v.
By the inductive hypothesis, this holds iff for some non-
dominated witness rooted in (s,b) with b ≤ v(x), v |=∨
w∈W (M,s,〈〈Ax〉〉ψ1 U ψ2)

γ(w), which is the constraint for-
mula on line 14 of Algorithm 1.
M, s, v |= 〈〈Ax〉〉�ψ holds iff there is a strategy such

that each computation on this strategy reaches a loop
where no resources are consumed and every state on this
computation satisfies ψ under v. By the inductive hy-
pothesis, this holds iff for some non-dominated witness
w rooted in (s,b) with b ≤ v(x), v satisfies γ(w),
iff v |=

∨
w∈W (M,s,〈〈Ax〉〉�ψ1)

∧
s′∈nodes(w),(s′,γ′)∈‖ψ‖M γ′,

which is the constraint formula on line 16 of Algorithm
1.

Observe that if φ is a positive formula (does not con-
tain modalities in the scope of negations), then the corre-
sponding constraint formula γ only has subformulas of the
form x ≥ b. Since the constraint formula describes non-
dominated witnesses, it specifies the optimal values of re-
source parameters (the Pareto frontier).

Theorem 4. The upper bound on the complexity of the func-
tion form of the model-checking problem for ParRB±ATL is
2EXPTIME.

Proof. The set of non-dominated witnessesW (M, s, φ′) for
each subformula φ′ of φ0 can be computed in AEXSPACE.
Hence the whole algorithm can be executed in AEXSPACE
which is equivalent to 2EXPTIME.

Conclusions and Future Work
Algorithm 1 returns a set of states satisfying a ParRB±ATL
formula together with a constraint formula describing the
set of assignments to resource variables for which the

ParRB±ATL formula is true in that state. The algorithm can
be easily modified to return the witness (finite representation
of the strategy). The complexity of the algorithm is very high
(2EXPTIME). However, only the number of resource types
and the log of the largest cost in the model (log maxM) are
in the exponent; the running time is polynomial in the num-
ber of states and transitions in the model.

In future work we plan to implement the algorithm.
Another direction of future work is a parametrised ver-
sion of the fragment of Resource Agent Logic (RAL) with
a decidable model-checking problem that was described
in (Alechina et al. 2017a). In ParRB±ATL, the resources
needed for satisfying each strategic modality are indepen-
dent, even if nested subformulas share variables. For exam-
ple, 〈〈Ax〉〉>U (q ∧ 〈〈Ax〉〉>U p) means that there is a value
for x, e.g., 5, such that given 5 units of the resource, A can
enforce a state where q holds, and from where, given 5 units
of the resource, A can enforce p. The second, nested, strat-
egy does not use the amount of resource remaining from
the execution of the first strategy, but starts from scratch
with x resources, whatever value x happens to have. On the
other hand, in RAL, there is an extra annotation for strategic
modalities that means ‘with the remaining resources’. For
example, 〈〈Ax〉〉>U (q ∧ 〈〈A↓〉〉>U p) means that there is a
value for x, such that if A have this amount of resources,
then they could enforce a state where q holds, and with re-
maining resources, they could enforce p. This logic can be
used to solve model-checking problems that involve nested
goals that share a single allocation of resources.

Acknowledgements We thank the anonymous reviewers
for their helpful comments.

References
Abdulla, P.; Mayr, R.; Sangnier, A.; and Sproston, J. 2013.
Solving Parity Games on Integer Vectors. In CONCUR’13,
volume 8052 of Lecture Notes in Computer Science, 106–
120. Springer.
Alechina, N.; Logan, B.; Nguyen, H. N.; and Rakib, A. 2009.
A logic for coalitions with bounded resources. In Boutilier,
C., ed., Proceedings of the Twenty First International Joint
Conference on Artificial Intelligence (IJCAI 2009), volume 2,
659–664. AAAI Press.
Alechina, N.; Logan, B.; Nga, N. H.; and Rakib, A. 2010.
Resource-bounded alternating-time temporal logic. In van
der Hoek, W.; Kaminka, G.; Lespérance, Y.; Luck, M.; and
Sen, S., eds., Proceedings of the Ninth International Confer-
ence on Autonomous Agents and Multiagent Systems (AAMAS
2010), 481–488. IFAAMAS.
Alechina, N.; Logan, B.; Nguyen, H. N.; and Rakib, A. 2011.
Logic for coalitions with bounded resources. Journal of Logic
and Computation 21(6):907–937.
Alechina, N.; Bulling, N.; Logan, B.; and Nguyen, H. N.
2017a. The virtues of idleness: A decidable fragment of re-
source agent logic. Artificial Intelligence 245:56–85.
Alechina, N.; Logan, B.; Nguyen, H. N.; and Raimondi, F.
2017b. Model-checking for resource-bounded ATL with pro-

duction and consumption of resources. Journal of Computer
and System Sciences 88:126–144.
Alechina, N.; Bulling, N.; Demri, S.; and Logan, B. 2018.
On the complexity of resource-bounded logics. Theoretical
Computer Science 750:69–100.
Brázdil, T.; Jančar, P.; and Kucera, A. 2010. Reachability
games on extended vector addition systems with states. In
ICALP’10, volume 6199 of Lecture Notes in Computer Sci-
ence, 478–489. Springer.
Bulling, N., and Farwer, B. 2010a. Expressing properties
of resource-bounded systems: The logics RBTL and RBTL∗.
In Computational Logic in Multi-Agent Systems - 10th Inter-
national Workshop, CLIMA X, Revised Selected and Invited
Papers, volume 6214 of Lecture Notes in Computer Science,
22–45.
Bulling, N., and Farwer, B. 2010b. On the (un-)decidability
of model checking resource-bounded agents. In Coelho, H.;
Studer, R.; and Wooldridge, M., eds., Proceedings of the 19th
European Conference on Artificial Intelligence (ECAI 2010),
567–572. IOS Press.
Bulling, N., and Goranko, V. 2013. How to be both rich and
happy: Combining quantitative and qualitative strategic rea-
soning about multi-player games (extended abstract). In Mo-
gavero, F.; Murano, A.; and Vardi, M. Y., eds., Proceedings
of the 1st International Workshop on Strategic Reasoning (SR
2013), volume 112 of Electronic Proceedings in Theoretical
Computer Science, 33–41.
Courtois, J., and Schmitz, S. 2014. Alternating vector addi-
tion systems with states. In 39th International Symposium on
Mathematical Foundations of Computer Science (MFCS’14),
volume 8634 of Lecture Notes in Computer Science, 220–
231. Springer.
Della Monica, D., and Lenzi, G. 2012. On a priced resource-
bounded alternating µ-calculus. In Filipe, J., and Fred, A.
L. N., eds., Proceedings of the 4th International Conference
on Agents and Artificial Intelligence (ICAART 2012), 222–
227. SciTePress.
Della Monica, D.; Napoli, M.; and Parente, M. 2011. On a
logic for coalitional games with priced-resource agents. Elec-
tronic Notes in Theoretical Computer Science 278:215–228.
Della Monica, D.; Napoli, M.; and Parente, M. 2013. Model
checking coalitional games in shortage resource scenarios. In
Puppis, G., and Villa, T., eds., Proceedings of the Fourth In-
ternational Symposium on Games, Automata, Logics and For-
mal Verification (GandALF 2013), volume 119 of Electronic
Proceedings in Theoretical Computer Science, 240–255.
Juhl, L.; Larsen, K.; and Raskin, J.-F. 2013. Optimal bounds
for multiweighted and parametrised energy games. In The-
ories of Programming and Formal Methods - Essays Dedi-
cated to Jifeng He on the Occasion of His 70th Birthday, vol-
ume 8051 of Lecture Notes in Computer Science, 244–255.
Springer.
Jurdzinski, M.; Lazić, R.; and Schmitz, S. 2015. Fixed-
dimensional energy games are in pseudo-polynomial time. In
Proceedings of ICALP 2015, 260–272.

