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Abstract  16 

The need for improved prediction of clinical response is driving the development of cancer models 17 

with enhanced physiological relevance. A new concept of ‘precision biomaterials’ is emerging, 18 

encompassing patient-mimetic biomaterial models that seek to accurately detect, treat, and model 19 

cancer, by faithfully recapitulating key microenvironmental characteristics. Although recent advances 20 

allow tissue-mimetic stiffness and molecular composition to be replicated in vitro, approaches for 21 

reproducing the 3D fibre architectures found in tumour extracellular matrix (ECM) remains relatively 22 

unexplored. Whilst the precise influences of patient-specific fibre architecture are unclear, we 23 

summarise the known roles of tumour fibre architecture, underlining their implications in cell-matrix 24 

interactions and ultimately clinical outcome. We then explore the challenges in reproducing tissue-25 

specific 3D fibre architecture(s) in vitro, highlighting relevant biomaterial fabrication techniques and 26 

their benefits and limitations. Finally, we discuss imaging and image analysis techniques (focussing on 27 

collagen I optimised approaches) that could hold the key to mapping tumour-specific ECM into high 28 

fidelity biomaterial models. We anticipate that an interdisciplinary approach, combining materials 29 

science, cancer research and image analysis, will elucidate the role of 3D fibre architecture in tumour 30 

development, leading to the next generation of patient-mimetic models for mechanistic studies and 31 

drug discovery. 32 
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[H1] Introduction 35 

The cells in our bodies are surrounded by an intricate network of fibrillar [G] and non-fibrillar proteins, 36 

glycoproteins, and polysaccharides. This network, termed the extracellular matrix (ECM), is known to 37 

play vital roles in disease progression, influencing many of the biological processes underpinning the 38 

hallmarks of cancer1,2. ECM composition, structure and mechanical properties all have critical 39 

influences on cell behaviour, varying according to tissue and disease state3–5. As such, there is an 40 

increasing focus on harnessing in vitro and in vivo disease models to replicate and study these tissue-41 

specific relationships. While cells cultured in 2D can lack appropriate cell polarity, phenotype and 42 

tissue organisation6,7, 3D culture systems are being increasingly adopted due to their ability to reflect 43 

a more physiologically relevant environment8,9. In recent years, there has been particular focus on the 44 

development of biomaterials for recreating tissue-realistic ECM microenvironments: a topic known as 45 

‘precision biomaterials’10–13. 46 

Given the notoriously high attrition rate in current drug discovery pipelines14, advanced 3D models 47 

could act as more predictive preclinical models of patient response15. For this to be achievable, it is 48 

crucial to ensure that these 3D models can accurately capture real-life disease progression 49 

mechanisms and tissue-specific cell phenotypes. This would have the potential to improve the 50 

identification of targetable mechanisms specific to cell-matrix interactions. Recent analysis has shown 51 

that most current cancer therapies target mechanisms independent of the surrounding 52 

microenvironment16, indicating huge untapped potential for new, undiscovered therapies targeting 53 

the role of the ECM. 54 

While there is now a large body of research focussed on the design of biomaterials with tissue-realistic 55 

stiffness and, more recently, controlled composition17–19, reproducing the complex 3D fibrous 56 

architectures found in the cancer stroma within a high-fidelity scalable biomaterial model is still an 57 

unmet challenge. While models with controlled composition generally focus on altering the relative 58 

proportions of individual, or small numbers of ECM constituents20, their potential to replicate specific 59 

fibre [G] patterns, orientations and feature sizes found in native tissue remains relatively unexplored. 60 

This has, in part, been hindered by the vast heterogeneity of ECM architecture found in tumours. This 61 

Review addresses this knowledge gap, highlighting the need for such tissue-realistic biomaterial 62 

models of fibre architecture, discussing the challenges involved in their design and fabrication, and 63 

outlining the current state-of-the-art technologies used in reproducing tissue-specific 3D fibre 64 

networks in vitro. We highlight the need for a multidisciplinary approach in designing the next 65 

generation of precision tissue models, combining new innovations in materials science with advanced 66 

microscopy and image analysis techniques (Fig. 1). In the context of this review, we define ‘fibre’ as 67 

any elongated structural unit within biomaterials or in tissue, including those composed of ECM 68 

proteins and synthetic substances. 69 

 70 

[H1] Role of 3D fibre architecture in cancer 71 

[H2] Changes in ECM architecture during tumorigenesis 72 

The ECM may broadly be divided into two components: the interstitial ECM [G] and the basement 73 

membrane [G]. In normal, non-diseased tissue, the ECM undergoes constant remodelling, but this 74 

process becomes dysregulated in cancer, leading to changes in both ECM deposition and 75 

degradation21. Remodelling of both the interstitial matrix and the basement membrane is observed in 76 

cancer, with for example, a loss of the basement membrane disrupting apicobasal polarity and 77 

bringing epithelial cells into contact with the interstitial matrix3. 78 

https://sciwheel.com/work/citation?ids=6732528,301017&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=301010,301050,487600&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=11743604,487305&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=4073796,350207&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=748645,16309709,14416263,15247732&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=16309773&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=9130087&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=11134209&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=11047611,2566635,16309739&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=1419334&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=301016&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=301010&pre=&suf=&sa=0&dbf=0
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ECM remodelling in cancer is a complex process, involving crosstalk between the heterogeneous cell 79 

populations within the tumour microenvironment. For instance, growth factors secreted by cancer 80 

cells and immune cells play a role in fibroblast recruitment and activation to cancer associated 81 

fibroblasts (CAFs)22. Transforming growth factor β (TGFβ) signalling is perhaps the most well-known 82 

mechanism of fibroblast activation to CAFs, but there are many other examples, including increased 83 

tissue stiffness and DNA damage, for example from chemotherapy23. This indicates positive feedback 84 

loops by which tumour-associated ECM remodelling likely helps sustain the CAF phenotype, instead 85 

of the deactivation that would be seen in normal wound repair and tissue remodelling24. Although 86 

CAFs are the main drivers of tumour remodelling, being the main producers of ECM in the interstitial 87 

matrix, tumour cells can also contribute to ECM synthesis5,25–30. Other remodelling processes also 88 

include regulation by the release of proteases (including matrix metalloproteinases (MMPs) and 89 

cathepsins); post-translational modifications, such as glycosylation, sulfation, and cross-linking via 90 

enzymes (including lysyl oxidases (LOX) and transglutaminases); and force-mediated remodelling via 91 

integrins22,23,31–35. The combination of these processes leads to the development of discrete, often 92 

highly heterogenous (both spatially and temporally) tumour tissue-specific ECM. This tumour-specific 93 

ECM is typically of higher stiffnesses relative to associated normal tissue, as well as altered ECM 94 

composition, whereby the amount, and the types of ECM molecules secreted differ from that of the 95 

normal tissue27. Together, these changes directly influence progression and metastatic potential5,32,36.  96 

Moreover, these changes are accompanied by reorganisation of the 3D fibre network in the interstitial 97 

matrix, which is thought to be highly dependent on cell contractility37,38. Typically, randomly oriented 98 

fibres are indicative of normal stroma, whereas aligned and often thickened fibres are indicative of 99 

tissue fibrosis and tumour development39. However, this is highly dependent on tumour type. Breast 100 

and pancreatic cancers are often considered examples of highly fibrotic tumours, due to the relatively 101 

high density of matrix deposition compared with other tumours40. Heterogeneity in ECM 102 

microarchitecture is also apparent even within a single tumour type, for instance in colorectal cancer 103 

high variability has been observed between patients, but with an overall trend of increasing collagen 104 

alignment in colon carcinoma compared to normal tissue41. A range of collagen fibre morphologies 105 

can also be observed in human breast cancer patient tissue, ranging from wavy to straight, thick to 106 

thin, and high to low density42. 107 

[H2] Clinical significance of 3D architecture 108 

Much of the earliest pioneering work examining the link between fibre organisation and patient 109 

prognosis focussed initially on breast cancer. It has long been recognised that mammographic density, 110 

which is associated with an increase in stromal matrix proteins, is one of the strongest independent 111 

risk factors associated with breast cancer onset43,44. More recently, tissue from regions of high 112 

mammographic density has been found to correlate with increased prevalence of long, aligned 113 

bundles of fibrillar collagen, rather than with levels of amorphous collagen [G]45. In a seminal study, 114 

biopsied tissue sections from human breast carcinoma were imaged using second harmonic 115 

generation microscopy and categorised according to the presence and alignment of collagen fibres at 116 

the tumour boundary, defining a set of tumour-associated collagen signatures (TACS)46. In a mouse 117 

model of breast cancer, increasing TACS level from TACS-1 to TACS-3, representing transition from 118 

early stage to late stage tumourigenesis, corresponded to an increase in directional local cell invasion. 119 

In clinical samples, TACS-3 score is also an independent prognostic factor related to poor disease-120 

specific and disease-free survival (Fig. 2A)47. Building on this concept, recent work indicates that 121 

tumours have highly heterogeneous structures on larger length scales. Whether the intra-tumour 122 

heterogeneity of collagen fibre architecture, both in and around the tumour, is driven by the cellular 123 

heterogeneity known to be present in tumours, or itself contributes to establishing that cellular 124 

https://sciwheel.com/work/citation?ids=9813080&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=8153748&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=3865430&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=8490602,487600,623625,7428374,8194134,93274,286995&pre=&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=15315763,153249,2499261,8153748,16309776,8542948,9813080&pre=&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=7428374&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=511634,153249,487600&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=91627,2420392&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=5544043&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=8497976&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=5063146&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=5544050&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=487362,1629553&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=1200163&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=112414&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=763017&pre=&suf=&sa=0&dbf=0
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heterogeneity remains unknown. That said, the prognostic value of the TACS score may be improved 125 

by considering additional categories of collagen structure further from the tumour boundary48. 126 

Features resembling TACS-specific fibre organisation can also be observed in other tumours, including 127 

pancreatic ductal adenocarcinoma (PDAC). Here, TACS-3 like structures representing conduits for 128 

invasion are present both in early preinvasive cancer (defined histologically), and in more advanced 129 

disease49. Combined with evidence of early-stage cancer cell dissemination in the KPC mouse model, 130 

this suggests that TACS scores may discriminate disease progression to a greater extent than is 131 

possible using standard histology. Further aspects of 3D collagen arrangement are found to vary with 132 

disease progression in other tumour types but are less clearly categorised. For instance, in ovarian 133 

cancer, collagen fibres become more crimped than in normal tissue (Fig. 2C), but the overall changes 134 

in collagen alignment are less clear-cut and highly heterogeneous both between and within 135 

patients50,51. The effect of collagen fibre alignment is also complex in basal cell carcinoma (BCC), with 136 

increased alignment in BCC samples compared with normal tissue and benign lesions. Paradoxically, 137 

highly aligned bundles were associated with the least aggressive BCC subtypes, measured relative to 138 

other collagen fibres rather than to the tumour boundary in contrast to the TACS scores discussed 139 

previously52. Importantly, this study highlighted that parallel organisation of collagen bundles was still 140 

a more effective marker for BCC than the parameters of individual collagen fibres (i.e. width, length, 141 

angle, and straightness). Fibre characteristics beyond density and alignment also have clinical 142 

relevance in many settings: for instance, increased thickness of periductal collagen fibres has been 143 

linked to low survival in PDAC patients (Fig. 2B)53. Another recent study identified increased fibre 144 

“straightness” as a potential diagnostic marker indicating the presence of non-small cell lung cancer54. 145 

Interestingly, high fibre width and low fibre alignment were also associated with poor survival, but 146 

only in lung adenocarcinoma, highlighting the need for disease-specific consideration of the role of 147 

different fibre architecture(s) (Fig. 2F). 148 

Notably, the impact of ECM fibre architecture and ECM remodelling is not restricted to the primary 149 

tumour but is also observed in metastasis. For instance, fibrosis of metastatic lymph nodes in 150 

colorectal cancer has been shown to correlate with lower survival55. Collagen fibre orientation in 151 

ovarian cancer metastases has also shown strong correlation with disease score and outcome56. 152 

Interestingly, relative collagen abundance was decreased in diseased tissue, due to the increased 153 

levels of other proteins such as fibrinogen and fibronectin. Secretion of other matrix molecules such 154 

as fibronectin in a fibrotic, collagen-rich lung has been shown to chemoattract hepatoma and breast 155 

carcinoma cells in a mouse model of metastasis57. Regions of fibronectin accumulation have also been 156 

suggested to bind various LOX, proteins enhancing fibrillar collagen crosslinking and bundling, 157 

contributing to the formation of a pre-metastatic niche58. Supporting this finding, LOX activity was 158 

responsible for developing a collagen-rich, fibrotic microenvironment permissive to breast cancer 159 

metastasis in mouse models of pulmonary fibrosis59. 160 

3D fibre architecture is also known to change during chemotherapeutic, radiotherapeutic and targeted 161 

therapy treatment. These therapies can induce tissue fibrosis through the generation of reactive 162 

oxygen species, DNA damage, rewiring of intracellular signalling, and inflammation31,60–63. This 163 

therapy-induced fibrosis likely plays an important role in recurrence and metastasis, as well as the 164 

debilitating side-effects of therapy, as reviewed elsewhere64,65. In a study of matrix-mediated drug 165 

resistance in melanoma, BRAF inhibition was seen to increase collagen fibre area and thickness, 166 

through clustering of phosphorylated discoidin domain receptors (DDRs) along collagen fibres66. 167 

Interestingly, the hormonal therapy tamoxifen, has also been reported to decrease mammographic 168 

density, when given as a preventative strategy to patients at high risk of breast cancer67. 169 

https://sciwheel.com/work/citation?ids=16309695&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=14743933&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=16309694,16309696&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=16309728&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=1419342&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=16309697&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=16309924&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=4587353&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=3903886&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=487285&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=487231&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=4841365,15315763,1635131,8594034,3560641&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=1416918,3388468&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=15745511&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=16309700&pre=&suf=&sa=0&dbf=0
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While most of the above discussion focusses on the tumour-promoting role of tissue fibrosis, some 170 

studies also indicate a tumour-suppressive role of increased matrix density. Using a mouse model of 171 

pancreatic cancer, one study found that some highly aggressive tumours induced by sonic hedgehog 172 

deficiency had reduced stromal content and increased vascularity68. In rats, investigations into 173 

pregnancy-associated changes in collagen density revealed an increase in fibrillar collagen correlating 174 

with decreased tumour incidence69. These matrices had more randomly aligned collagen fibres, and 175 

lower overall stiffness, suggesting multiple factors related to 3D fibre architecture may be at play. 176 

Similar increases in collagen I were observed in samples from premenopausal parous women relative 177 

to nulliparous women. It has also been suggested that the role of fibrotic tissue in tumour growth or 178 

suppression is dependent on the stage of tumour development70. It is, however, clear that the clinical 179 

implications of fibre arrangement at both the primary and metastatic sites are extensive, tumour-180 

specific, and highly heterogeneous. 181 

 182 

[H2] Role in cell-matrix interactions 183 

  184 

[H3] Cell adhesion and migration 185 

Changes in ECM microarchitecture subsequently alter the arrangement (and presentation) of 186 

adhesion sites, which can directly impact bidirectional cell-matrix interactions, thereby affecting 187 

cellular behaviour and ultimately tissue function and/or disease progression71. Cell-matrix adhesion 188 

sites provide an interactive interface between the extracellular chemical and physical milieu, and 189 

intracellular scaffolding and signalling networks. This dynamic, reciprocal regulation is predominantly 190 

orchestrated by membrane receptors known as integrins72. When the cell pulls or pushes on the 191 

matrix, mechanical signals are transformed into biochemical responses in a process known as 192 

mechanotransduction (discussed in further detail below). This can trigger cell migration, proliferation, 193 

differentiation and intracellular signaling73. 194 

The specific pore size within a matrix is also known to be crucial for regulating cell motility74–76. In an 195 

ECM structure with pore sizes above the nuclear diameter, cell migration can occur without 196 

proteolysis by exploiting existing microtracks in the ECM network. The mode of migration used in this 197 

case is dependent on cellular properties including contractility and adhesion to the matrix77. For 198 

instance, at pore sizes above 2.5 µm diameter, HT1080 fibrosarcoma cells migrate by deforming their 199 

nuclei, upregulating integrin activation and cell contractility78,79. At lower pore sizes, MMPs become 200 

necessary for migration, and evidence suggests that the exact pore size level of this transition is cell 201 

type dependent.  202 

Fibrillar wave amplitude has also been shown to affect directional cancer cell migration. Over a certain 203 

amplitude, wavy fibrillar networks can act as a barrier to cell polarisation, with the exact level 204 

depending on the myosin contractility of the migrating cells80. Such ECM barriers to migration can 205 

secondarily impact cancer cell metabolism. In particular, the ATP:ADP ratio is impacted by collagen 206 

density and fibre alignment. Specifically, the ATP:ADP ratio increases in cells in denser matrices, where 207 

migration is impaired and decreases in cells in aligned collagen matrices, where migration is facilitated. 208 

This is thought to relate to the energy required for cancer cells to remodel and migrate through the 209 

matrix81. Moreover, integrin switching [G] can occur as the biochemistry and microarchitecture of the 210 

tumour matrix evolves82,83. Such changes are thought to influence how tumour cells navigate the 211 

heterogenous 3D tissue, and importantly, how they are stimulated to transition between modes of 212 

invasion such as mesenchymal, amoeboid and collective invasion [G]84,85. 213 

https://sciwheel.com/work/citation?ids=77135&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=487549&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=6666336&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=16356959&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=330323&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=11296757&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=1168792,15243275,7707032&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=2759282&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=16309692,530169&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=16309741&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=4661501&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=9858066,9509797&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=3690344,1561393&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
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[H3] Collective cell invasion 214 

The switch between single cell and collective invasion has been shown to relate to collagen density, 215 

via cell jamming [G] in high density matrices86. Intravital imaging of collective cell invasion in an in vivo 216 

B16F10 mouse model of melanoma demonstrated that leader cells preferentially exploit existing ECM 217 

channels to invade, rather than generating new paths87. Supporting this work, collectively invading 218 

cells following microtracks [G] in the collagen fibre network have also been observed in tissue sections 219 

from human breast carcinoma88, and prior work demonstrated that both collective invasion and 220 

collagen alignment correlate with metastatic outcome in patients with breast cancer46,47,89,90. 221 

Collective cell invasion in squamous cell carcinoma (SCC) may be promoted by fibroblast-mediated 222 

matrix remodelling, and deposition of fibronectin and tenascin-C, to create physical tracks for cancer 223 

cell migration91. Similar patterns were observed in organotypic in vitro assays (collagen I and Matrigel) 224 

and in clinical samples from SCC patients (Fig. 2D). 225 

[H3] Immune response 226 

While the immune response and its relationship to the ECM in cancer is a very broad research area 227 

and has been reviewed elsewhere,92,93 here we highlight a few key studies relating to fibre 228 

architecture. One study has shown that matrices of high collagen density compared to lower, 229 

decreased T cell proliferation, increased CD4+ T cell to CD8+ T cell ratio, and reduced T cell cytotoxic 230 

activity94. Another study, using viable slices of patient-derived lung tumours, found that immune cell 231 

infiltration correlated with increased fibre orientation and decreased collagen and fibronectin density 232 

within the tumour stroma95. Similarly, a study examining BCC histological sections found correlations 233 

between matrix organisation and the number of tumour infiltrating lymphocytes (TILs), where 234 

increasing fibre length and lacunarity, or decreasing matrix density increased the number of TILs (Fig. 235 

2E)96.  236 

[H3] Paracrine interactions 237 

ECM organisation also influences molecular transport through tumour tissue, and alters the cancer 238 

cell secretome97,98. Hormone-restricted breast tumour cells cultured on aligned matrices show a 239 

modified secretome that increases tumour cell proliferation relative to randomly aligned matrices98. 240 

High matrix density and alignment can also alter molecular transport by confining molecular diffusion 241 

to the direction of fibre alignment, which could alter inter-cellular transport of signalling molecules99. 242 

In silico computational studies, modelling the predicted effect of matrix remodelling at a tumour-243 

stroma interface, have also found an increase in circumferential, relative to radial, permeability at the 244 

tumour boundary, likely due to the circumferential orientation of collagen fibres, although this has yet 245 

to be confirmed in in vitro or in vivo models100. Interestingly, the arrangement of ECM fibres affects 246 

the formation of tunnelling nanotubes (TNTs) [G], such that when mesothelioma cells were cultured 247 

on aligned matrices, the cells formed longer, but fewer TNTs relative to cells on cross-hatched 248 

matrices101. Given the proposed role of TNTs in regulating cell-cell interactions102, these matrix effects 249 

on TNTs may alter long-range cell-cell communication101.  250 

[H3] Mechanotransduction 251 

Changes in matrix microarchitecture can also alter how forces propagate through and deform 252 

tissues103. Alterations in microarchitecture can both enhance and diminish viscoelastic behaviour, 253 

influencing tissue and cellular response to mechanical stress104. Computational simulations have 254 

suggested that cells in a fibrous matrix can sense long-distance mechanical cues, from distances up to 255 

20 times their diameter105. Fibre architecture has also been shown to regulate the trans-differentiation 256 

of adipose stromal cells into myofibroblasts, with an increase in cell contractility and α-smooth muscle 257 

https://sciwheel.com/work/citation?ids=476176&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=4765533&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=9587532&pre=&suf=&sa=0&dbf=0
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actin (αSMA) staining observed in cells in matrices with thick fibres and large pores106. Moreover, 258 

higher TACS scores correlate with ephrin type-A receptor 2 (EPHA2) non-canonical signalling, which is 259 

thought to be involved in TWIST1-mediated activation of epithelial-to-mesenchymal transition (EMT) 260 

in in vitro and in vivo models of breast cancer107. Interestingly, mechanotransduction has also been 261 

linked to mechanisms of chemoresistance in breast cancer cells cultured on aligned 262 

nanotopographies, via upregulation of aryl hydrocarbon receptor (AhR) and cytochrome p450 family 263 

1 (CYP1) signalling to protect against chemotherapy-induced oxidative stress108. 
264 

[H1] Biomaterial-based approaches for controlling 3D fibre architecture  265 

Whilst the many different polymeric biomaterials used in cancer research have been extensively 266 

discussed previously109, here we focus on how biomaterial models may be developed and applied to 267 

study mechanisms of cancer progression relating to tissue-specific 3D fibre architecture (Fig. 1B, Fig. 268 

3). Since much is still unknown as to how specific matrix microarchitecture alters tumour progression, 269 

a reductionist approach is typically taken, whereby careful and robust mimicking of a small number of 270 

matrix parameters is prioritised over recapitulating the complexity observed in tumours (Fig. 1A). 271 

However, we must note that there exists a fine balance between reductionist approaches aimed at 272 

asking defined questions, and accurately recapitulating the complexity. 273 

[H2] Hydrogels 274 

Hydrogels are defined as networks of hydrophilic polymers with characteristically high water 275 

content110,111 (Figure 3). Typically sub-categorised as naturally-derived or synthetic hydrogels (Fig. 3), 276 

arguably the most well-known example is Matrigel, a naturally-derived hydrogel with well-established 277 

applications for tumour growth, invasion and angiogenesis assays, and more recently the 278 

establishment of ‘living biobanks’ of patient-derived organoids112,113. Matrigel is one of several 279 

commercially available hydrogel products derived from Engelbreth-Holm-Swarm (EHS) mouse 280 

tumours and referred to as basement membrane extracts. However, since the animal-derived nature 281 

of Matrigel results in batch-to-batch variation and poorly defined composition, there has been a 282 

recent push for more well-defined alternatives114. 283 

Naturally-derived hydrogels can also include collagen, alginates, gelatin and hyaluronic acid115–117. In 284 

some cases, synthetic components or functional groups are incorporated for crosslinking, in which 285 

case the hydrogel may be considered a ‘hybrid material’110. Equally, hydrogels fabricated using 286 

primarily synthetic materials have important applications in cancer research. In particular, pioneering 287 

work has demonstrated the application of poly(ethylene glycol) (PEG) as an alternative to Matrigel for 288 

the successful expansion of mouse and human-derived intestinal organoids18. These PEG-based gels 289 

may be functionalised by the addition of full-length ECM proteins, glycans or ECM-mimetic peptide 290 

sequences, further increasing the versatility of the system. Similarly, synthetic hydrogels fabricated 291 

from self-assembling peptides can be modified using full-length ECM proteins and glycans17. 292 

Application of hydrogels for 3D cancer modelling is a popular approach, given their ability to mimic 293 

key features of the tumour microenvironment118. This includes the ability to control mechanical 294 

properties such as stiffness and viscoelasticity119,120, within a physiologically relevant range, as 295 

reviewed elsewhere121. Synthetic systems can, in some cases, provide superior control over 296 

mechanical properties compared with naturally-derived matrices, particularly in the case of PEG gels, 297 

which may also be designed to be mechanically dynamic122,123. Such synthetic systems also avoid the 298 

reproducibility issues commonly seen in naturally-derived hydrogels123, and enable the relatively cost-299 

effective incorporation of bioactive ligands124. Arguably, however, native ECM accounts for the 300 
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possibility of multiple binding sites on a single protein, as well as for the alternative ECM isoforms that 301 

may be seen in cancerous tissues, such as those resulting from splice variants125. 302 

[H3] Control of 3D fibre organisation in hydrogel-based materials 303 

While the versatility of hydrogels in mimicking tissue-realistic stiffness and composition is well-304 

established, it has recently been recognised that such systems do not typically mimic in vivo fibre 305 

architecture126,127. As such, techniques for patterning fibre networks in hydrogels are becoming more 306 

established, including methods of controlling pH and temperature of gelation83,106,135,136, as well as 307 

inducing directionality with laminar or Marangoni flow128,129, chemical gradients130, magnetic fields131, 308 

and/or electric fields132,133. 309 

For example, one key study used pH and collagen concentration to control the rate of collagen 310 

fibrillogenesis, producing independent changes in pore size and fibril diameter134. This was a powerful 311 

tool for elucidating the roles of different 3D fibre architectures on cell behaviour, revealing that 312 

increasing collagen fibril diameter promotes both mesenchymal and amoeboid cell invasion, 313 

independent of matrix stiffness and pore size. In another study, a similar effect was achieved by 314 

varying the temperature of collagen gelation, with lower gelation temperatures giving longer and 315 

thicker collagen fibres135. These thicker fibres were observed to increase vascularisation and 316 

anastomosis [G] of endothelial cells cultured in collagen gels supplemented with Matrigel. As this 317 

effect was abrogated upon IL-8 inhibition, the authors hypothesised that the thicker fibres induced 318 

vascularisation through IL-8 secretion altering integrin engagement. Adding sodium sulphate during 319 

the gelation process, a salt with strong collagen binding affinity, also induced bundling of collagen 320 

fibrils into thicker fibres, which decreased the velocity of invading HeLa cells136. 321 

Fibre organisation and orientation may also be induced in hydrogels by the application of mechanical 322 

forces during or after fibrillogenesis, which generates alignment along the direction of the induced 323 

mechanical strain137,138. A typical approach for this is to stretch collagen gels between two pins, 324 

producing alignment that increases with increasing strain137,139. One study used this approach to 325 

demonstrate that migration persistence, but not speed, was increased in matrices with higher collagen 326 

alignment137. Mechanical agitation during gelation has also been observed to influence the 327 

characteristics of the resulting fibre network140,141. Disrupting the gelation process in this way created 328 

long, thick and entangled fibres more closely mimicking those seen in fibrotic tissues, and enhanced 329 

invasion of cancerous MDA MB 231 and non-cancerous MCF10A breast epithelial cells compared to a 330 

standard collagen gel140. Another simple, yet elegant, approach uses warm water in collagen gel 331 

precursor to disrupt hydrogel formation141. This technique creates thick collagen bundles reminiscent 332 

of the early stages of breast cancer, specifically the TACS-2 morphology (Fig. 2A). These bundles can 333 

then be re-organised post-production using flow alignment or incorporated into a composite system 334 

by embedding them into agarose gels of differing concentrations. 335 

Highly aligned hierarchical structures can also be induced through exploiting the tensile stress 336 

generated when dilute hydrogels dry in confined conditions. This method has been used to align 337 

polymer hydrogels such as alginate and cellulose, noting that the polymer backbone must be rigid 338 

enough to allow reorientation (not deformation) along the direction of mechanical stress126. To our 339 

knowledge, this has not yet been applied for 3D cell culture. Another study used a force-guided 340 

method to induce collagen fibre alignment, using shear forces generated by coaxial rotating cylinders 341 

during fibre nucleation, followed by gravity-induced fibre elongation138. Interestingly, although 342 

tumour spheroids could be incorporated into this system, their presence interfered with fibre 343 

elongation, leading to different fibre orientations on either side of the spheroids. Nonetheless, this 344 

enabled the study of the role of fibre directionality on the characteristics of breast cancer invasion. 345 
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[H3] Limitations and future directions 346 

Unfortunately, the range of fibre diameters achievable in hydrogel-based systems is relatively low, 347 

generally from the nanometre scale up to 1 µm127,142,143, although more recent innovations in hydrogel 348 

technology increase this range up to 10 µm141,144. This is still, however, lower than the largest fibre 349 

diameters found in cancer tissue, which may reach 25 µm or above53. Moreover, many methods for 350 

altering fibre organisation also intrinsically alter the density and/or stiffness of the matrix, 351 

complicating the biological read-outs of the effect of each parameter individually94,127,145. In a recent 352 

study that incorporated cellulose nanocrystals (CNCs) into gelatin hydrogels to control pore size, 353 

mechanical stiffness and fibre thickness, these parameters could only be varied concurrently. 354 

Increasing CNC concentration led to a combined decrease in pore size, increase in stiffness and 355 

decrease in fibre diameter, albeit whilst retaining a constant level of cell-adhesive ligands127. 356 

Independently varying key hydrogel properties such as these, both in time and space, is of much 357 

interest for advanced hydrogel-based cancer models. 358 

We and others have also shown that interpenetrating networks (IPNs) may be used to decouple the 359 

influences of stiffness and collagen fibre density. IPNs used for this purpose combine collagen with a 360 

second hydrogel, usually one that lacks bioactive ligands, although can be applied to mixtures of 361 

collagen and Matrigel. In this way, collagen density may be controlled while simultaneously tuning 362 

hydrogel stiffness, for example by varying the degree of methacrylation in gelatin methacrylate 363 

(GelMA) hydrogels or the concentration of peptide in self-assembling peptide hydrogels122,146. 364 

Independent variation of collagen concentration in this manner has demonstrated the influence of 365 

collagen fibre density on cell alignment, proliferation and angiogenic potential17,122,146. For example, 366 

the use of collagen-GelMA IPNs demonstrated that MDA MB 231 breast cancer cells require a fibrous 367 

collagen microarchitecture for efficient invasion, while endothelial cells do not146. 368 

Another potential solution to this problem is through deploying macromolecular crowding. This uses 369 

macromolecules such as PEG to alter polymerisation and fibril formation in hydrogels such as collagen 370 

I. It increases the nucleation rate, and therefore fibre density, by increasing local concentration of 371 

collagen molecules, while keeping the overall collagen concentration constant142. Importantly, this 372 

method has recently been adapted to allow control over fibre architecture while maintaining a 373 

constant mechanical stiffness147. Application of 8 kDa PEG as a molecular crowding agent could control 374 

both pore size and fibre length in 2.5mg/ml collagen matrices, with no significant changes in stiffness. 375 

This induced a change from single cell to collective migration when MDA-MB-231 cells were cultured 376 

in matrices with macromolecular crowding, likely due to the smaller pore sizes and shorter fibre 377 

lengths148. Extension of these findings will be necessary to further delineate the roles of each fibre 378 

parameter in cancer.  379 

[H2] Fibrous scaffolds 380 

Fibrous scaffolds are a subtly different class of biomaterials to hydrogels, generally created by fibre-381 

by-fibre deposition rather than the process of self-assembly and cross-linking involved in hydrogel 382 

gelation. Electrospinning, one of the most common methods for creating fibrous scaffolds, uses 383 

electrostatic forces to generate fibres (Fig. 3B). Using this technique, fibre diameter may be controlled 384 

between 3 nm and 1 mm149. This is a much greater range than is typically achievable by self-assembly, 385 

which typically produces fibre diameters up to ~10 µm141,144. Although more commonly applied in the 386 

tissue engineering field, electrospun scaffolds have been investigated for their potential in cancer 387 

modelling applications. Using electrospun polycaprolactone (PCL) scaffolds to culture Ewing sarcoma 388 

cells has demonstrated comparable gene expression and chemotherapeutic response to that 389 

observed in vivo, unlike 2D monolayer culture150. 390 
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[H3] Control of fibre-by-fibre deposition 391 

Electrospinning is a common technique for fabricating fibrous scaffolds, allowing substantial control 392 

over the properties of the fibre network. Broadly, this technique creates fibres by driving a polymer 393 

solution through a needle using a syringe pump in the presence of an electric field. Fibres are then 394 

deposited onto a collector plate, which if static, results in a random fibre network, or if rotated, can 395 

result in an aligned network151. Such an aligned fibre network was shown to upregulate markers 396 

related to EMT in cells isolated from the MMTV-Her2/neu transgenic mouse model of breast cancer152. 397 

Other parameters of the electrospinning process, including flow rate, polymer concentration and 398 

electric field strength, can be varied to control fibre diameter, pore size and porosity, as previously 399 

reviewed151. Although such properties are often interdependent, further control may be gained by 400 

integrating other techniques, such as the use of porogens153. These techniques are of particular 401 

interest in the tissue engineering field as they typically enhance cell infiltration into the scaffold154. 402 

‘FiberGel’ is an alternative technology allowing independent control over fibre diameter, stiffness and 403 

orientation155. By sequentially stretching and folding a core-shell structure of gelatin surrounded by 404 

PCL, fibre diameter may be controlled within a range of 500 nm – 100 µm, while also determining pore 405 

and channel width. The number of folds determines the final fibre diameter, and subsequent photo-406 

crosslinking of the gelatin enables independent control over stiffness. Unlike many techniques for 407 

creating fibrous scaffolds, this readily allows cell encapsulation within the fibre network, prior to cross-408 

linking the final structure with light155. Another approach is counter-rotating extrusion [G], where a 409 

high concentration (4-5% by weight) of gel or insoluble collagen is extruded through a system of two 410 

rotating cones156,157. This produces a collagen film made up of 2-4 µm thick fibres, and since the 411 

rotation speeds of the extrusion cones can control collagen fibre orientation across the film cross-412 

section, the approach can generate fibre orientation gradients157. 413 

[H3] Limitations and future directions 414 

Many methods for fabricating fibrous scaffolds are incompatible with cell viability, and cells are 415 

therefore generally seeded onto pre-fabricated scaffolds152. This can be problematic as fibre mats, 416 

such as those created by electrospinning, are typically dense, therefore limiting the ability to seed cells 417 

homogeneously151. While methods for increasing porosity have been investigated to circumvent this, 418 

these methods intrinsically alter scaffold structure, placing limits on the range of structures that can 419 

be investigated in a disease modelling context153. While cell-compatible electrospinning methods do 420 

exist, these are often limited by cell viability as many key parameters such as electric field strength, 421 

flow rate and the chosen solvent for polymer dissolution can cause cell death158. FiberGel is cell 422 

compatible, yet the range of fibre diameters achievable are relatively thick compared to some of the 423 

nm-scale fibrillar structures found in tissues159. 424 

Moreover, it is relatively difficult to electrospin natural materials149. While reports of electrospinning 425 

collagen do exist, there are concerns regarding the loss of the native triple helix structure during the 426 

electrospinning process, even when using relatively gentle solvents such as acetic acid and ethanol160. 427 

As a result, 3D electrospun scaffolds are often fabricated from synthetic polymers, before including 428 

natural materials to enhance cell adhesion160–162. A recent study demonstrated the incorporation of a 429 

fibronectin within an electrospun microfibrous poly(lactide-co-glycolide) (PLG) scaffold, by inducing 430 

fibrillogenesis at the interface between the scaffold, the air and the fibronectin solution. These 431 

scaffolds enhanced engraftment efficiency in a mouse model of breast cancer, and improved ex vivo 432 

expansion of patient derived breast cancer cells163. 
433 
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Alternatively, synthetic and natural electrospun fibres can be functionalized with cell adhesive 434 

peptides such as RGD sequences for cell attachment164,165. Further, magnetic particles can be 435 

embedded within RGD-modified electrospun dextran vinyl sulfone (DVS) fibres and manipulated to 436 

control fibre orientation during gelation within the DVS hydrogel by applying a magnetic field164. This 437 

method recently showed that aligned architectures produced more unidirectional tendon cell 438 

(tenocyte) spreading and increased directional migration of breast cells from an encapsulated 439 

spheroid. Such composite systems, assembling pre-deposited fibres along with cells within a second 440 

system, hold promise for expanding the range of fibre architectures currently achievable by classical 441 

fibre-by-fibre deposition methods.  442 

[H2] Porous scaffolds  443 

Porous scaffolds form another class of biomaterials, encompassing a much wider range of porosity 444 

and pore size than is achievable in hydrogels. By some definitions, hydrogels can be considered a 445 

subcategory of porous scaffolds, although since their fabrication method is distinct, we will consider 446 

them separately. Many porous scaffolds typically contain pore sizes above the cell diameter, unlike 447 

hydrogels, which more commonly have pores smaller than the size of the embedded cells166. They also 448 

tend to be ‘sponge-like’, with rounder or thicker pores relative to hydrogels or fibrous scaffolds167. 449 

They may contain heterogeneous structures with a range of pore sizes (sometimes referred to as 450 

macro- and micro-porosity), which may mimic the hierarchical nature of some native tissues168. This 451 

can be accomplished through techniques such as gas foaming, where high pressure gas creates 452 

porosity by generating bubbles169, or porogen leaching, where additives such as salt crystals are 453 

incorporated into the biomaterial mix and dissolved after formation170. Methods for creating and 454 

controlling porous scaffold structures are wide-ranging and their applicability to natural and synthetic 455 

materials varies with each technique, as has been discussed extensively in previous reviews on the 456 

topic170–173. 457 

One of the earlier examples of porous scaffolds in cancer research demonstrated the use of PLG as a 458 

3D model of oral SCC. This model had pore sizes greater than 100 µm, and recreated the in vivo tumour 459 

growth profile of oral SCC, triggering the release of similar angiogenic factors7. More recently, primary 460 

PDAC cells grown in scaffolds created from primarily synthetic polymer formulations, either by 461 

particle-leaching or freeze-drying167, formed a duct-like morphology similar to the tumour tissue. A 462 

similar morphology was not seen in synthetic fibrous scaffolds. 
463 

[H3] Incorporating control over fibre architecture 464 

Although such scaffolds clearly have applications in cancer research, one downside is that many of the 465 

techniques used to induce porosity result in smooth, rounded pore walls. Although these may contain 466 

some level of micro- or nano-porosity, generally this is not representative of the 3D fibrous 467 

architecture of the ECM of soft tissues and tumours174,175. A fibrous component can, however, be 468 

introduced, for example by coating the scaffolds with ECM-derived proteins. When ECM-coated PCL 469 

scaffolds, generated using salt leaching and gas foaming, were implanted subcutaneously into mice 470 

bearing primary mammary carcinomas, the ECM-coated scaffolds showed enhanced colonisation by 471 

the cancer cells relative to uncoated scaffolds176. Another study created macroporous PLA scaffolds 472 

by incorporating PLA nanofibers into the pore walls to mimic collagen structure175. This was achieved 473 

using paraffin spheres as a porogen, and thermally-induced phase separation to create 50–500 nm 474 

fibres within the pore walls. Interestingly, these nanofibers were found to adsorb proteins such as 475 

fibronectin and vitronectin from the serum-containing medium, indirectly enhancing cell attachment 476 

in culture. 477 
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Ice-templating provides superior control over fibre architecture and has been extensively studied in 478 

tissue engineering but only recently adopted in cancer research (Fig. 3B). This induces porosity 479 

through the crystallisation of ice, thereby allowing control over fibre architecture by carefully tuning 480 

ice crystallisation kinetics177–179. For example, applying a thermal gradient across a collagen suspension 481 

causes directional ice crystal growth, leading to aligned collagen channels, whereas a more 482 

homogeneous freezing profile creates more rounded pores180. The nature of ice crystallisation means 483 

that collagen is excluded from the freezing water, becoming trapped between the ice crystals to form 484 

a negative replica of the ice crystal network. This approach has been routinely used in tissue 485 

engineering to create tissue-mimetic structures, which can include controlled architectural 486 

gradients181,182. Ice-templated scaffolds have been applied to study the relationship between breast 487 

cancer cell line invasion and proliferation, noting an increase in proliferation at the leading edge183. 488 

Therapeutic responses of tumour segments from MMTV-Wnt1 mouse models of cancer have also 489 

been examined in collagen scaffolds designed to mimic TACS-3 structures, combined with pre-490 

adipocyte co-culture, examining cell invasion over several mm using tissue clearing technology184.  491 

[H3] Limitations and future directions 492 

Many fabrication techniques for porous scaffolds have so far been designed to yield pore size ranges 493 

suitable for tissue engineering, typically between 20-120 µm for dermis185, and between 100-500 µm 494 

for cartilage and bone, though larger pore sizes have also been investigated186,187. This restricts their 495 

application given that cancerous tissue can contain pore sizes of less than 5 µm188. Techniques do exist 496 

for smaller pore size fabrication, such as ice-templating181, however, the relative paucity of studies 497 

replicating features at this scale warrants further study. Recent materials science studies have shown 498 

the link between scaffold structure and thermal profile during ice solidification, facilitating the 499 

controlled design of bespoke pore structures189,190. Application of ultrasound for improved control 500 

over fibre nucleation also overcomes one of the traditional downsides of ice-templating, the batch-501 

to-batch variation that occurs due to stochastic ice crystal nucleation191. 502 

Many techniques for fabricating porous scaffolds are not cell compatible, due to the harsh 503 

temperatures or solvents used192,193, although unlike electrospun scaffolds, porous scaffold 504 

microarchitectures that are permissible to cell colonisation post-fabrication may be readily designed 505 

allowing efficient cell seeding and colonisation194. Porous collagen-based scaffolds may also now also 506 

be fabricated in medium-throughput arrays using ice-templating, in a set-up compatible with 507 

fluorescent readouts of cell behaviour, allowing the dual influences of scaffold microstructure and 508 

biomolecular gradients to be probed195. 509 

[H2] Decellularised matrices  510 

Decellularised matrices are derived from animal tissue, human tissue or cell cultures, and is treated to 511 

remove the cells while preserving ECM composition and/or architecture196,197. In the case of animal- 512 

or human-derived tissue and depending on the protocol used, the resulting tissue may be seeded with 513 

cells in its native state or may be milled and reprocessed into a natural hydrogel or coating198,199. A 514 

similar process can be used to extract biomaterials from ECM deposited by stromal cells cultured in 515 

vitro, with the resulting structures termed cell-derived matrices (CDMs)200. ECM deposition may be 516 

promoted in vitro by supplementing the media with ascorbic acid (an essential cofactor for collagen 517 

biosynthesis), adding macromolecular crowding agents, or using physical supports as templates for 518 

ECM deposition such as poly-lactic acid (PLA) microcarriers201,202 (Fig. 3B). Both decellularized tissue 519 

and CDMs retain a complex ECM biochemical composition characteristic of the tissue or cell type of 520 

origin, however since their composition is typically heterogeneous, it requires characterization to 521 

delineate ECM contribution to the phenotype under study203. 
522 
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[H3] Manipulation of fibre networks by cellular remodelling 523 

When decellularized matrices are used to produce hydrogels, many of the previously discussed 524 

techniques for controlling fibre networks are applicable. The resulting hydrogel may retain some 525 

structural characteristics of the original ECM, as reviewed elsewhere204, which could be advantageous 526 

if using patient-derived ECM from the tissue of interest, but potentially limiting for alternative ECM 527 

sources (Fig. 3A). When CDMs are used in their native state, a ‘guiding template’ can be used to 528 

manipulate the properties of the cell-deposited fibre network. For example, a PDMS film containing 529 

micro-sized grooves induces alignment of collagen and fibronectin deposited by cultured fibroblasts, 530 

absent from ECM deposited on unpatterned PDMS, as assessed with second harmonic generation 531 

(SHG) imaging and immunostaining203. Although relatively thin at 20 µm, these matrices may 532 

nevertheless be used to compare cell migration dynamics in disordered versus aligned 3D fibre 533 

architectures205,206. 534 

Further work has shown that ECM alignment may also be induced by tissue maturation within moulds 535 

of defined aspect ratio (AR). After 5 weeks of culturing fibroblasts seeded into gelatin microparticles 536 

in a bioreactor, a more aligned ECM was produced by fibroblasts confined in moulds with an AR of 50, 537 

relative to ECM produced in a mould with an AR of 1207. Similarly, fibroblast seeding around an agarose 538 

plug can induce ECM deposition under tension208, generated by the circumferential cytoskeletal forces 539 

that occur through cell-cell adhesion and alignment around the plug. Release from the plug induced 540 

relaxation of the fibroblast-deposited ECM, creating a crimped collagen structure resembling that 541 

seen in fibrotic tissues. Cell seeding density and media composition could be modified to tune the 542 

ECM properties further, with higher amounts of foetal bovine serum leading to lower stiffnesses whilst 543 

retaining constant collagen concentrations  544 

[H3] Limitations and future directions 545 

Like many naturally derived matrices, cell-deposited ECM has batch-to-batch variation but 546 

compensates for this with other advantages. These include more in vivo realistic composition and 547 

organisation relative to synthetic or single-component natural materials, as well as the capability of 548 

transferring long range mechanics200,209. A potentially larger concern is the limited size and scale-up of 549 

these CDMs, and due to their thickness they are sometimes considered 2.5D culture systems rather 550 

than truly 3D210,211. Techniques such as macromolecular crowding agents and bioreactors (reviewed 551 

elsewhere)212 can improve the yield of CDM systems, however the cell expansion needed to increase 552 

CDM yields can be laborious and costly. Furthermore, these approaches do not allow for a 553 

premeditated design and so rely on post-generation analysis to map their resulting architecture.  554 

An alternative approach is to encapsulate contractile cells within a synthetic or naturally derived 555 

hydrogel. Cells encapsulated in synthetic hydrogels, including breast cancer cell lines and patient-556 

derived breast cells, have been shown to deposit additional ECM components specific to their tissue 557 

of origin, and to modify local ECM protein arrangement17,213. Another example of this approach is the 558 

organotypic assay, which is based on the premise that fibroblasts remodel a collagen gel into a matrix 559 

resembling their tissue of origin214. This has been validated by histological similarities to the native 560 

tissue in terms of cell organisation215, however, to our knowledge the precise structural features of 561 

such matrices have not been validated. As with CDMs, there is limited control over the resulting matrix 562 

architecture. 563 

Fibre remodelling on a similar scale to that in collagen gels has also been recently observed in synthetic 564 

hydrogels93 and in synthetic fibre networks216. In methacrylated dextran fibre networks generated 565 

through combined electrospinning and lithography, mesenchymal stem cell-matrix interactions and 566 
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remodelling were similar to the levels seen in collagen gels. Importantly electrospinning provided 567 

additional control over fibre network parameters216, indicating the possibility of combining several of 568 

the approaches discussed here as a route towards superior control over fibre architectures. 569 

[H2] 3D bioprinting approaches 570 

For the purposes of this review, we consider the term “3D bioprinting” to encompass any additive 571 

manufacturing [G] technique applied to biological materials, as reviewed in detail previously217. This 572 

encompasses methods that deposit materials using a print head or similar technology, as well as light-573 

activated polymerisation218. 574 

[H3] Patterning fibre networks by 3D bioprinting 575 

3D bioprinting may be used to impart highly defined, regular architectural features into a biomaterial. 576 

Typically, these structures are computationally pre-defined before synthesising. Synthesis methods 577 

include extrusion, inkjet bioprinting (printing drop-by-drop), and stereolithography (layer-by-layer 578 

photopolymerisation)219. Of these, light-based techniques typically offer the greatest resolution, 579 

particularly multiphoton polymerisation, which can achieve sub-micron resolution. This technique 580 

uses a laser to polymerise a light-responsive biomaterial [G], creating patterns such as meshes with 581 

defined pore size220. This has been used to demonstrate that migrating HT1080 fibrosarcoma cells 582 

decreased in migration speed and persistence in lower pore size matrices (down to 12.5 µm)221, and 583 

to define the pore sizes needed for various breast cancer cell lines to invade220. 584 

Although multiphoton polymerisation can achieve resolutions of as little as 0.5 µm220,222, it is generally 585 

slower, with a lower throughput, and less suited to multicomponent printing than lower resolution 586 

techniques such as extrusion and inkjet bioprinting219,223. These lower resolution techniques often 587 

have the advantage of faster fabrication and therefore better maintenance of cell viability223. One 588 

bioprinting technique with intermediate resolution is cell electrowriting, which has been used to 589 

fabricate silk fibroin and gelatin-based fibres with diameters of 40–45 µm and 3–6 µm respectively224. 590 

This enabled printing of cells encapsulated within the gels while tuning fibre properties such as 591 

diameter, curvature, and straightness. The main limitation was the relatively small size of the 592 

constructs achievable, with a maximum thickness of 200 µm for silk-based and 50 µm for gelatin-based 593 

scaffolds. The loss of printing resolution at greater thicknesses was hypothesised to be a result of 594 

charge accumulation from the electrowriting process. It is possible that this size limitation may limit 595 

application of these constructs for some applications, such as 3D cell cluster cultures or long-range 596 

migration studies. 597 

[H3] Limitations and future directions 598 

As techniques advance, validating the final printed structures will be crucial. Although precise 599 

fabrication is possible, especially at submicron resolution, it is essential to confirm whether the 600 

theoretical resolution provided by the optics of the system matches the results. As noted previously, 601 

soft materials may produce distortions, while light penetration and photochemistry can limit true 602 

resolution, indicating a need for thorough evaluation of the printed scaffold to ensure reproducibility 603 

(Fig. 1)219,225.  604 

There is often a trade-off between the resolution and throughput in 3D bioprinting, constraining both 605 

the size of the constructs and the production speed. Multiphoton printing is particularly limited by its 606 

slow speed and low throughput, with a typical 1 cm x 1 cm x 100 µm structure requiring over a week 607 

to print due to the fabrication by laser point-by-point scanning226. While advances for multiphoton 3D 608 

printing have improved scalability of printing synthetic polymers, translation of these methods to 609 
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bioprinting is challenging due to the aqueous environment required and the photosensitivity of 610 

biological materials226–228. However, multiple laser foci have been implemented to create 3D materials 611 

for stem cell culture, indicating future potential for application to 3D cancer models225, while new 612 

advances in bioinks with high reactivity also allow faster printing while maintaining biocompatibility229. 613 

A promising alternative technique, allowing control of 3D structure within hydrogels of dimensions 614 

over 10 mm, is filamented light (FLight) biofabrication230,231. This uses a projected light beam231, which 615 

breaks up into multiple filaments as it enters a photoresponsive material, such as methacrylate- or 616 

norbornene-modified gelatin or hyaluronic acid, to induce photocrosslinking. Using this method, 617 

crosslinked microfilaments with diameters between 2 and 30 µm can be produced in seconds, with 618 

corresponding pore sizes between 3 and 14 µm230. Although structures with pore sizes above 5.8 µm 619 

have been shown to guide fibroblast migration231, to our knowledge, pore sizes larger than 14 µm have 620 

not yet been explored, and certainly not in the cancer space. 621 

Fibre length and alignment in cell-containing collagen networks can also be tuned by combining 622 

microextrusion, a relatively low resolution bioprinting method, with control over gelation kinetics232. 623 

This is achieved using additions that allow the collagen to be stably extruded without disrupting its 624 

self-assembly, such as Matrigel, and by controlling nozzle exit diameter and printing pressure/speed. 625 

This allowed complex multidirectional alignment of collagen fibres with a diameter 1-2 µm, despite an 626 

actual print resolution of 600 µm, demonstrating that control of collagen self-assembly may be 627 

successfully combined with 3D bioprinting methods. 628 

[H2] Application of microfluidics 629 

Microfluidics, a technology manipulating fluid flow through microchannels of highly-defined 630 

geometry, is an alternative approach for studying how specific features affect cell behaviour. It 631 

enables investigation of cellular responses to channel width or shear stress, akin to the fibrotic tumour 632 

microenvironment233,234. For example, a study used a polydimethylsiloxane (PDMS) microfluidic device 633 

to study cancer cell migration in narrow channels, facilitating attachment through inclusion of collagen 634 

or fibronectin235. While not directly controlling fibre architecture, such approaches nevertheless allow 635 

for reproducible study of cell behaviour in response to architectural features resembling key tumour 636 

tissue features. 637 

A subcategory of microfluidic devices, designed to mimic a particular tissue, may be referred to as an 638 

organ on a chip, or ‘organ chip’. These are generally more complex, and may incorporate multiple 639 

channels, an air-liquid interface (e.g. for lung cancer modelling) and multiple ECM proteins and cell 640 

types234. These devices may incorporate hydrogels, allowing for control of fibre networks within them. 641 

Alternatively, microfluidics can be used to pattern fibre networks, as seen in a study patterning fibres 642 

of various alignments in collagen within microfluidic channels of different widths236. Previous reviews 643 

further discuss the use of microfluidics for modelling responses to geometrical features in the tumour 644 

microenvironment233,234. 645 

[H1] Informing tissue-specific model design  646 

While the end goal of the techniques summarised above is to produce 3D models that reproduce key 647 

features of the tumour microenvironment, achieving this requires detailed knowledge of the tissue-648 

specific fibre architecture. While certain fibre characteristics correlate with clinical outcome, fully 649 

recapitulating tumour fibre structures with biomaterials remains a challenge. Here, we highlight 650 

techniques with the potential to accurately map the tumour ECM, facilitating translation towards 651 

tissue-mimetic biomaterial design (Fig. 1). 652 
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[H2] Imaging 3D fibre organisation from patient-derived tissue 653 

Histological staining of formalin-fixed paraffin-embedded (FFPE) patient derived tissue sections, using 654 

haematoxylin and eosin (H&E), Masson’s Trichrome and picrosirius red (PSR), provides an overview of 655 

the protein and cellular compartments in the tissue and visualisation of the connective tissue237. While 656 

PSR is not intrinsically specific to collagen, it binds to collagen fibres, increasing the natural 657 

birefringence for structural analysis when imaged under polarised light. Although the resolution is 658 

typically not at the level of the individual fibre, these methods may be used to assess collagen bundle 659 

orientation with high efficiency and reproducibility in large samples238. Similar staining methods also 660 

exist with more specificity to individual ECM components, such as antibody-based 661 

immunofluorescence staining and collagen binding peptides239. 662 

Although generally used for 2D imaging, archival FFPE material (5-10 µm thick sections) holds potential 663 

for extensive mapping of 3D fibre architecture and a recent tutorial described the considerations for 664 

extracting 3D information240. One approach is to create serial sections from the FFPE block, followed 665 

by sequential imaging and 3D image alignment to generate a volumetric image. Another approach is 666 

to visualise the entire block without sectioning, using tissue clearing followed by light-sheet 667 

microscopy, or X-ray Micro-Computed Tomography (Micro-CT) [G]. Care should be taken, however, if 668 

implementing these protocols for the study of fibre organisation, since some tissue fixation and 669 

clearing protocols involve collagen dissociation, degradation and/or disruption241. 670 

Generally, there is an inverse correlation between the penetration depth into the tissue and the 671 

resolution achievable by a given technique242. For example, Micro-CT allows non-destructive imaging 672 

through entire cm3 samples, but at the cost of lower resolution (~μm range). However, correlating 673 

Micro-CT with physical tissue sectioning and histology could be a powerful means of evaluating and 674 

validating 3D tissue architecture243. This approach of combining multiple imaging technologies at 675 

different length scales has also been implemented for the characterisation of ovarian tissue244. 676 

Combining scanning electron microscopy (SEM) [G], atomic force microscopy [G], and various 677 

histological stains demonstrated key changes in fibre network characteristics between prepuberty, 678 

reproductive age and menopause, at different length scales. Although an intrinsically 2D surface 679 

technique, SEM can provide 3D fibre information, although this is typically destructive and often 680 

laborious244,245. 681 

A widely-accepted and specific approach for imaging 3D collagen fibres is second harmonic generation 682 

(SHG) imaging. This is a high-resolution 2-photon optical microscopy technique that specifically 683 

detects non-centrosymmetric biomolecules such as fibrillar collagen246. Unlike other imaging methods 684 

based on native autofluorescence or fluorescent stains, this technique has the capability to isolate and 685 

image only the fibrillar collagen playing a structural role in the tumour fibre architecture. SHG imaging 686 

originally defined TACS in breast cancer (Fig. 2A)46,47, indicating its capability for identifying key fibre 687 

patterns and thus informing the design of 3D biomaterial models. Its key features are that it is non-688 

destructive and stain-free, allowing high imaging depth into 3D tissue. 689 

SHG imaging does, however, require specialised equipment. This has led to the development of an 690 

alternative and cheaper label-free system, liquid crystal-based polarisation microscopy (LC-PolScope). 691 

SHG imaging and LC-PolScope analysis show good agreement in quantifying breast and pancreatic 692 

tissue organisation from histological sections of patient tissue samples247. LC-PolScope however is 693 

limited in that it can only image thin samples, and requires time-consuming serial sectioning, imaging 694 

and analysis to understand 3D topology. In contract, SHG imaging excels in 3D sample analysis by 695 

imaging deep with minimal loss of resolution, offering a deeper understanding of native 3D 696 

structure246. 697 
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Other 3D label-free techniques include Raman microscopy, which can offer similar resolution to two-698 

photon fluorescence imaging248. This is potentially very powerful for informing biomaterial model 699 

design, since it has the capability to correlate composition and structure, and map the fibre 700 

architecture of specific biomolecular components.249. Such methods can identify the composition of 701 

biological samples based on molecular ‘fingerprints’ that arise based on each molecule’s interaction 702 

with the incident light250. A recent study combined Raman spectroscopy and SHG imaging to 703 

investigate the makeup of fibrotic tissue251, highlighting again the potential of multimodal imaging to 704 

maximise output.  705 

[H2] Image analysis approaches for quantifying fibre architecture 706 

Gray level co-occurrence matrix (GLCM) analysis of SHG imaging data is an example of a texture-based 707 

analysis that quantifies similarities in structures according to properties of the fibre network246. 708 

Textural variations, stemming from factors such as fibre density, width and length, require careful 709 

interpretation for meaningful biological understanding. Although GLCM analysis is limited to 2D 710 

quantification, another method, Fiber-Analysis-Algorithm, allows 3D texture analysis using machine 711 

learning to categorise SHG images of various tissues, according to a wide range of matrix structural 712 

parameters252,253. 713 

While these methods allow categorisation of images according to global patterns, they do not provide 714 

quantification of individual fibre parameters. Several software-based tools have been developed for 715 

this purpose, including The Workflow Of Matrix BioLogy Informatics (TWOMBLI), which allows a 716 

number of “matrix metrics” to be extracted, both those describing individual fibres and those 717 

describing general ECM patterning, which can feed into biomaterial design254. TWOMBLI is often used 718 

for quantifying histological stains such as PSR, including patient tissue sections and sectioned 719 

biomaterials211,255. Conversely, CurveAlign, which measures the overall trend in fibre alignment, and 720 

CT-Fire, which allows extraction of individual fibre parameters such as straightness, thickness and 721 

curvature, are commonly used for SHG image data42. TWOMBLI and CurveAlign currently only support 722 

2D image analysis, although CT-Fire does have the capability to extend the same methods to 3D256.  723 

Quantifying 3D data is crucial for accurately assessing fibre architecture, as 2D data can be affected 724 

by artefacts in fibre orientation252. Emerging methods for 3D fibre parameterisation include MatLab 725 

codes allowing quantification of 3D fibre orientation, diameter and branching from image data 726 

including multiphoton and SHG imaging253. Standalone, open-source packages are also available, such 727 

as Foa3D for 3D fibre orientation analysis257, and VesselExpress and VesselVio, originally designed for 728 

quantification of vascular network parameters258,259, and may also apply to fibre network 729 

parameterization. Together, these programs allow extraction of many different parameters that can 730 

describe fibrous tissue networks. While some of these parameters have known links to cancer 731 

outcome, such as fibre diameter53, others, such as branchpoints and tortuosity, remain unexplored. 732 

Understanding whether these relatively unstudied structural parameters also play a role in cancer 733 

progression remains a key question. 734 

[H2] Mapping tissue-specific 3D fibre organisation into biomaterials 735 

Combined with advances in biomaterials synthesis technology (Fig. 3C), the ability to recreate key 3D 736 

architectural features within tissue-mimetic biomaterials is now tangible. One recent example applied 737 

multiscale imaging to characterise fibre diameter, pore size and fibre orientation in healthy and 738 

diseased ovarian tissues, to create age-specific models244. Using collagen–GelMA structures, the fibre 739 

networks were replicated and ovarian cell migration dynamics were assessed in response to the 740 

various fibre architectures222. Here, the structures were 10 µm in thickness, however if this could be 741 

https://sciwheel.com/work/citation?ids=126427&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=16324514&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=2242429&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=16324526&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=6460968&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=14323257,7897269&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=10636872&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=14138355,16333153&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=5544050&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=16309766&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=14323257&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=7897269&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=16309764&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=15342797,14675585&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=1419342&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=15919287&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=7564484&pre=&suf=&sa=0&dbf=0
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expanded to allow recreation of larger-scale 3D tissue structures, it could have broader applicability. 742 

While currently not feasible with multiphoton bioprinting due to its slow and labour-intensive process, 743 

techniques for increasing its speed and throughput are rapidly expanding. Such methods are now 744 

being applied to reproduce SHG image data with high fidelity in biomaterials, reducing printing time 745 

from a week to 2 days226. Such speed enhancements, coupled with accurate recapitulation of 3D 746 

topology, will greatly assist in the implementation of these approaches into general cancer research. 747 

While it seems that the goal of reproducing the exact features of tumour ECM is indeed achievable, 748 

and advances are constantly being made in this area, it should be considered that many of the 749 

methods required to do this, such as the two-photon polymerisation method, will likely remain 750 

relatively time-intensive, expensive, and require the use of specialised equipment. It is therefore likely 751 

that a balance will need to be struck between the complexity and fidelity of the biomaterial design, 752 

and its ease of use and reproducibility between labs. One approach for model standardisation is to 753 

parameterise the key structural features of tissue fibre architecture, allowing this to be more readily 754 

reproduced between labs (Fig. 1). For instance, fibre shapes in ovarian tissue at different disease 755 

stages have been modelled as sine waves222, shapes which may be easier to replicate using faster, 756 

higher-throughput techniques.  757 

The scalability and reproducibility of biomaterial design may also be enhanced using 3D printed 758 

templates or moulds. For instance, a simple but innovative method of controlling collagen alignment 759 

uses 3D printable wedges that incline collagen-coated coverslips to a controlled degree, relying on 760 

gravity to generate reproducible alignment within the resulting collagen matrix260. Similarly, others 761 

have created a modular, 3D-printable system to create thermal gradients for application to ice-762 

templating, which could be adopted without the need for specialised equipment261. Another study 763 

parameterised gradients in collagen fibre orientation from SHG images of breast cancer and 764 

reproduced them in collagen gels using a microfluidic system with an intentionally reproducible design 765 

to allow its use by other research laboratories262. 766 

[H1] Conclusions and Future Perspectives 767 

Current research in the fields of biomaterials and 3D image characterisation is rapidly progressing 768 

towards a stage where precise models of tumour fibre architecture can be utilized widely. While 769 

models of controlled stiffness and ECM composition are available, the addition of biologically realistic 770 

fibre organisation will enhance the design of tissue-realistic models, impacting both basic science and 771 

drug discovery. We suggest that moving forward, detailed tissue imaging and fibre network 772 

parameterisation could inform the design and fabrication of advanced biomaterials with tissue 773 

realistic structure, followed by imaging of the biomaterial structures themselves to enable correlation 774 

to the original tissue (Fig. 1). With the emergence of such biomaterial technologies allowing 3D 775 

architectural control, it will soon be possible to elucidate, functionally test and validate the key roles 776 

of ECM organisation in cancer development, drug response and eventual patient outcome. 777 

Additionally, tissue-specific biomaterials could help to predict therapeutic efficacy, ultimately aiding 778 

in patient stratification to enhance the likelihood of therapeutic success.  779 

Moreover, these advanced biomaterials could also have potential applications in precision medicine. 780 

Recent studies have applied biomaterial models for the expansion and culture of patient-derived 781 

material from patients with breast and pancreatic cancer, controlling for ECM stiffness, composition 782 

and fibre alignment213,263. Based primarily on animal-free biomaterials technology, these methods 783 

could replace, reduce, and refine the use of reagents such as Matrigel for maintaining and expanding 784 

patient-derived organoids. Furthermore, engineering patient-specific biomaterials based on 785 

combined analysis of tissue composition and structure is a promising approach. The development of 786 

https://sciwheel.com/work/citation?ids=16309756&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=7564484&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=16309698&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=16309699&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=16333121&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=16309767,11762691&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
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Raman and mass spectrometry imaging methods for spatial mapping of ECM composition, combined 787 

with new techniques for 3D patterning biomaterial functionalisation264, could potentially lead to 788 

combined spatial control over ECM fibre structure and composition in highly advanced precision 789 

biomaterials. While there remain key outstanding questions in the field (Box 1), the future application 790 

of such precision biomaterials holds great promise to improve cancer outcomes. Through the 791 

coordinated efforts of interdisciplinary teams of materials scientists, cancer researchers and experts 792 

in tissue imaging and analysis, the once distant goal of patient-specific methods for drug screening is 793 

steadily advancing. 794 

  795 

https://sciwheel.com/work/citation?ids=10300221&pre=&suf=&sa=0&dbf=0


 20 

Glossary 796 

Additive manufacturing – the process of building an object based on 3D data, usually layer by layer, 797 

encompassing methods that directly deposit materials using a print head or similar (commonly 798 

grouped together as “3D printing”, as well as other techniques such as light-activated polymerisation. 799 

Amorphous collagen – collagen molecules that are not organised into fibrous or fibrillar structures. 800 

Anastomosis – A connection between two passageways, such as where two previously independent, 801 

discrete blood vessels subsequently join.  802 

Atomic force microscopy – A technique used for mapping the atomic-scale topography of a surface 803 

by means of the repulsive electronic forces between the surface and the tip of a microscope probe 804 

moving above the surface. 805 

Basement Membrane – Structure visible by light microscopy and, in addition to the basal lamina, that 806 

consist of layers that are typically secreted by cells from underlying connective tissue. Many basement 807 

membranes are rich in fibronectin. 808 

Cell jamming – A collective cell behaviour observed in densely packed groups of cells such as tumours, 809 

where they exhibit solid-like properties akin to jammed granular materials.  810 

Collective invasion – A mode of migration in which groups of cells move together as a cohesive unit 811 

through the surrounding extracellular matrix. 812 

Extrusion – A printing approach in which a continuous strand of material is deposited. 813 

Fibrillar – Indicates that a molecule or substance has formed, or is intrinsically capable of forming, 814 

elongated units i.e. fibres, which in the ECM are often hierarchical, containing structure on multiple 815 

length scales.  816 

Light-responsive biomaterial – A biomaterial that can undergo reversible or irreversible changes in its 817 

properties or functions upon exposure to light.  818 

Integrin switching – A process in which cells dynamically alters integrin expression, engagement 819 

and/or or activation. For example, during cancer metastasis, tumour cells may undergo integrin 820 

switching to acquire a more invasive phenotype, enabling them to detach from the primary tumour, 821 

invade surrounding tissues, 822 

Interstitial matrix – The interstitial matrix generally contains a high level of structural proteins, where 823 

collagen I and fibronectin are the main components in many tissues.  824 

Micro-CT – A non-destructive imaging technique that produces detailed three-dimensional images of 825 

objects at a microscopic scale. 826 

Microtracks – Microtracks are narrow, often microscopic-scale pathways or channels within the 3D 827 

matrix structure, that can guide the movement or alignment of cells. 828 

Scanning electron microscopy (SEM) – A high resolution imaging technique that deploys a focused 829 

beam of electrons to scan the surface of the sample. 830 

Shear stress – A type of stress that is defined as force per unit area and is caused by forces acting 831 

parallel to a surface, leading to a deformation or displacement. 832 

Tunnelling nanotubes (TNTs) – Actin-based membrane protrusions that form cell-cell contacts.  833 
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Table of content summary: 847 

While there has been increasing interest in developing models that mimic the tumour 848 

microenvironment (TME), these models often fail to replicate the complex 3D fibre architectures 849 

observed in tumours. Here, Ashworth and Cox address this, discuss the current design and fabrication 850 

challenges, and outline state-of-the-art biomaterial technologies useful for recreating tissue-specific 851 

3D architectures in vitro.  852 
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Table 1: A summary of the main techniques for controlling 3D fibre orientation in polymeric 853 

biomaterials. 854 

Technique for 
controlling 
fibre 
architecture 

 Advantages   Disadvantages  Example 
references 

 Altering collagen 
fibrillogenesis 
through parameters 
such as pH, 
temperature of 
gelation and collagen 
concentration  

Can mimic the 
collagen-rich ECM 
found in many tissues. 
 
Fibre diameters up to 
10 µm now 
achievable. 
 
Well-documented 
application for 
assessing cell 
migration response to 
structural features. 
 
Compatible with cell 

encapsulation. 

Difficult to vary 
parameters 
individually 
 
Naturally derived 
material with 
batch-to-batch 
variability. 
 
Difficult to 
achieve the larger 
pore sizes and 
fibre diameters 
found in tissue 
(>10 µm). 
 

79,106,134,136,1

44,265 

 Aligning fibre 
structures in 
hydrogels by applying 
mechanical forces, 
magnetic fields, 
electric fields or fluid 
flow 

Fibre diameters 
between 1 nm and 10 
µm achievable. 
 
Application of force 
and/or fields readily 
produces fibre 
alignment. 
 
Many techniques are 
compatible with cell 
encapsulation. 
 
Combining different 
biomaterials facilitates 
independent variation 
of structural 
properties. 

Difficult to 
achieve the larger 
pore sizes and 
fibre diameters 
found in tissue 
(>10 µm). 
 
Methods for 
controlling other 
fibre architectural 
features are 
relatively 
unexplored. 

128,129,137–

139,141 

 Altering the 
characteristics of 
individual fibres as 
they are produced 
through electric fields 
(e.g. electrospinning), 
flow/extrusion rates 
or stretching 

A very wide range of 
diameters achievable, 
nm – mm scale. 
 
Enhanced control may 
be achieved by 
combining with other 
techniques. 
 

Often not 
compatible with 
cell 
encapsulation. 
 
Often restricted 
to synthetic 
materials due to 
harsh solvents 

150,152,153,155,

159,266 

https://sciwheel.com/work/citation?ids=530169,5878736,762654,8914293,16309747,7996945&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=530169,5878736,762654,8914293,16309747,7996945&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=29752,16309746,16309370,11790480,16309685,2008583&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=29752,16309746,16309370,11790480,16309685,2008583&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=4505348,3945354,16309751,1497040,16309725,16309748&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=4505348,3945354,16309751,1497040,16309725,16309748&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0
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New techniques 
emerging to 
incorporate natural 
materials. 

and/or 
temperatures. 
 
Structures 
produced are 
typically dense 
and difficult to 
seed evenly with 
cells. 

 Controlling pore 
structure and 
therefore fibre 
structure using 
porogens such as ice, 
gas or salt. 

Wide range of pore 
sizes achievable, from 
<5 µm up to mm. 
 
Well-established in 
tissue engineering 
with known routes for 
mimicking tissue 
structures (especially 
ice-templating). 
 
Heterogeneous and 
gradient structures 
can be achieved. 

Smaller, nm-size 
fibres may be 
difficult to 
achieve. 
 
Techniques for 
patterning fibre 
shape so far 
relatively 
unexplored. 
 
Cells must be 
seeded after 
fabrication. 
 
Can be associated 
with batch-to-
batch variation. 

7,166,176,181–

183 

 Influencing the way 
cells in culture 
synthesise ECM or 
contract and remodel 
hydrogels using 
media additives or 
physical scaffolds. 

Complex, tissue-
realistic composition 
can be created 
including multiple 
ECM components. 
 
Produces histological 
similarity to native 
tissue. 
 
Cell-compatible, while 
also allowing for 
subsequent cell 
removal and/or 
seeding of different 
cell types. 

Produces 
complex matrices 
that may vary 
batch-to-batch 
and are difficult 
to characterise 
fully. 
 
Slow, low-
throughput 
technique that is 
difficult to scale 
up. 
 
Structures cannot 
be precisely 
defined. 

201–

203,207,208,214 

 Creating 
computationally-
defined structures 
using a 3D bioprinting 
technique (ranging 
from extrusion-based 

Covers a very wide 
range of architectural 
features down to sub-
micron resolution, 
with virtually any 
structural feature seen 
in native tissue 

Balance must be 
made between 
resolution and 
throughput: 
highest resolution 
techniques 
(multiphoton 

220,222,224,229,

231 

https://sciwheel.com/work/citation?ids=487305,16310254,1200157,16309329,16332411,2472074&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=487305,16310254,1200157,16309329,16332411,2472074&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=15079188,16309738,3302749,4569132,16309761,15896611&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=15079188,16309738,3302749,4569132,16309761,15896611&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=7564484,7719136,16309760,16309759,14438158&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=7564484,7719136,16309760,16309759,14438158&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0
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methods to 
stereolithography). 

achievable within this 
size range. 
 
Allows very precise 
definition of printed 
constructs with highly 
regular features or 
based on image data. 
 
A rapidly advancing 
field with new 
advances improving 
speed, resolution and 
biocompatibility. 
 
Many techniques are 
compatible with 
encapsulated cells. 

polymerisation) 
typically take 
days to weeks to 
print each 
construct. 
 
Multiphoton 
printing requires 
complex 
equipment and 
technical 
expertise. 
 
Fibrillar collagen 
is often difficult 
to print and is 
typically mixed 
with other 
materials. 
 
Most techniques 
are not optimised 
to produce 
feature sizes 
smaller than 500 
nm. 

*Table references include pertinent studies only and is not meant to be an exhaustive list. The 855 

references given have been chosen to reflect particular relevance or potential application to cancer 856 

research. 857 

858 
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Figures 859 

860 

Figure 1: Approaches for designing and fabricating precision biomaterials with tissue-matched 3D 861 

fibre architecture. Patient-derived tissue samples, e.g. from surgery or biopsy, could in the future be 862 

imaged with the necessary accuracy and precision to allow (A) identification of key fibre network 863 

characteristics (e.g. fibre length, straightness) for (B) reproduction in a high-fidelity biomaterial. Via 864 

application of the same imaging approaches (e.g. histology, 3D microscopy), the characteristics of 865 

this biomaterial could then be correlated back to the original tissue, allowing fine-tuning and 866 

validation. 867 
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868 

Figure 2: Fibre architecture varies across cancers of various origins, showing correlations with 869 

prognosis. These examples are not intended to be exhaustive, but to highlight the diversity in fibre 870 

patterns found to correlate with clinical outcome in a wide range of tissues. (A) TACS (tumour-871 

associated collagen signatures) found primarily in breast cancer is linked to disease free/specific 872 

survival46,47; (B) fibre thickness is found to correlate to survival and prognosis in pancreatic cancer53; 873 

(C) fibre shape is found to correlate with risk of disease, tumour grade and age in ovarian cancer50,51; 874 

(D) fibroblast-generated tracks surrounded by thick collagen/fibronectin bundles have been linked to 875 

collective cell invasion in squamous cell carcinoma (SCC)91; (E) high fibre length and low density are 876 

found to correlate with infiltration of tumour-infiltrating lymphocytes (TILs) and immunotherapy 877 

response in basal cell carcinoma96; (F) fibre alignment is found to increase in lung cancer relative to 878 

normal tissue but has also been associated with improved survival specifically in adenocarcinoma54. 879 

https://sciwheel.com/work/citation?ids=763017,112414&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=1419342&pre=&suf=&sa=0&dbf=0
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https://sciwheel.com/work/citation?ids=16309704&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=16309697&pre=&suf=&sa=0&dbf=0
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880 

Figure 3: Approaches for control of fibre architecture through biomaterial fabrication. A) The initial 881 

choice of biomaterial raw material, along with other factors including B) the need for defined 882 

architecture beyond that found in native tissue, compatibility with harsh solvents and/or 883 

temperatures, the need for cell encapsulation during manufacture, and the availability of bioprinting 884 

technology will determine the choices of fabrication techniques available. C) Each technique is most 885 

suited to tuning distinct features. The typical fabrication parameters used to control such structural 886 

features are listed.  887 

  888 
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[b1] Box 1: 10 key outstanding questions in the field 889 

1. What specific roles do key components of the extracellular matrix, such as collagens and fibronectin, 890 

play in regulating the genesis and maturation of matrix microarchitecture in the 3D tumour 891 

microenvironment? 892 

2. How do alterations in the microarchitecture of the extracellular matrix contribute to the initiation 893 

and progression of different types of cancer, and do these changes interact with different mutational 894 

burdens in different ways. 895 

3. To what extent does the interaction between cancer cells and the extracellular matrix 896 

microarchitecture influence the efficacy of conventional and contemporary cancer therapies and 897 

ultimately the development of acquired resistance? 898 

4. Can targeting specific aspects of extracellular matrix architecture (or blocking cellular response to 899 

specific aspects) offer novel therapeutic strategies to impede cancer metastasis and improve patient 900 

outcomes? 901 

5. Can the identification and validation of matrix architecture biomarkers aid in tailoring individualised 902 

treatment strategies and improving patient outcomes? 903 

6. Can patient-mimetic models identify the relative importance of ECM stiffness, composition and 904 

fibre structure in determining patient outcome, and which should be the main focus of new therapies 905 

targeting the microenvironment? 906 

7. Can tumour-specific fibre architectures be accurately recapitulated in biomaterial models to a 907 

sufficient extent that would allow application to precision medicine? 908 

8. How accurately can complex structures such as tumour-margin boundaries and structural 909 

heterogeneity be replicated using biomaterials technology? 910 

9. Can automated and robust workflows be developed for quantifying biologically meaningful features 911 

of the fibre networks in the tumour microenvironment, e.g. by application of machine learning? 912 

10. What specific features of tumour fibre architecture are most important in determining patient 913 

outcome, and are these well-characterised structural features (e.g. fibre density, orientation) or 914 

features that are so far relatively unexplored (e.g. tortuosity, number of branchpoints)? 915 

 916 

  917 
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