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1. Introduction

Inconel 718 is a precipitation-hardened nickel-chromium 
alloy used extensively in aerospace components like gas turbine 
engines due to its high-temperature strength, corrosion 
resistance, and oxidation resistance [1,2]. Its unique properties, 
however, make machining this alloy a complex process. These 
include remarkable strength, hardness, toughness, low thermal 
conductivity, and a tendency to adhere to cutting tools. 
However, Inconel 718 contains abrasive carbide inclusions, 
resulting in work-hardening and consequent tool wear [3]. This, 
in parallel with rising temperatures at the tool-chip interface, 
which are enabled due to the alloy’s low thermal conductivity, 
leads to complex changes in chip morphology [4], which can 
vary from discontinuous to segmented or even serrated patterns 

[6,8] and distinct colouration are observed [5]. Generally, the 
continuous chips are formed at relatively low cutting speeds; 
they appear as long ribbon-like curled segments, indicating 
stable plastic deformation through shear plane localization, 
where the surface roughness is relatively low. Discontinuous 
saw-tooth-shaped chips are produced at intermediate cutting 
speeds due to adiabatic shear band propagation, leading to 
unstable segmented chip formation, where the surface 
roughness of the sample exhibits higher [5,6]. 

The chip colouration appears at high cutting speeds or when 
severe plastic deformation is present (i.e., enabled by tool wear) 
[7] as a result of thermochemical oxidation at elevated 
temperatures. This induces the formation of thin, stable oxide 
layers on the segmented chips, giving rise to varying shades of 
coloured chip formation [8]. The transitions between the
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A nickel-based aerospace superalloy, Inconel 718 presents machining challenges because of its hardness and strength. Monitoring and predicting 
chip morphology during milling is essential for early defect detection and process optimisation. This study examines the correlation between 
sensor signals with surface roughness and chip morphology in milling Inconel 718 using machine learning (ML). Due to progressive tool wear 
and heat generation, the surface roughness varies in addition to the chip exhibiting different morphologies, such as continuous, discontinuous, 
and oxidised chips. AE signals were analysed in the time and frequency domains to identify chip morphology transitions. An accelerometer 
captured cutting vibration signals that showed higher instability during discontinuous chip formation. Chip colour due to oxidization varies with 
milling forces as a result of tool wear. Based on multiple sensor data fusion, a random forest model predicts better chip morphology from different 
machining parameters. The integrated ML system enables real-time monitoring of chip morphology mechanisms through diverse signals. This 
permits early diagnosis of surface integrity and chip morphologies indicating imminent tool wear. The approach enhances process stability and 
tool life when milling difficult-to-machine alloys. It demonstrates the viability of relating sensor signals to fundamental mechanisms through AI 
for intelligent machining.
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surface roughness and chip morphologies provide vital 
macroscale evidence of the changing microscale material 
separation mechanisms, cutting forces, and thermomechanical 
conditions at the tool-workpiece interface [9]. For instance, the 
saw-tooth discontinuous chips indicate deterioration of tool 
condition and loss of process stability. Therefore, real-time 
monitoring of chip morphology enables us to maintain good 
surface integrity of the workpiece and early diagnosis of 
undesirable transitions well before catastrophic tool failure. The 
in-process chip morphology monitoring offers a pivotal route to 
enhance productivity and reliability when machining difficult-
to-cut materials e.g., Inconel 718, Ti6Al4V/SiC fibre MMCs 
[10–12]. 

Very few research has focused on leveraging multi-sensor 
signals to quantify chip characteristics objectively. Sensors, 
including dynamometers, accelerometers, acoustic emission 
sensors, and motor current sensors, can capture force, 
vibration, and acoustic signatures sensitive to chip morphology 
shifts [13]. During the machining of Inconel 718, the sensor 
signals in the time domain contain distinct signatures 
correlating to chip morphology changes [5,6]. Cutting forces 
exhibit lower steady levels for continuous chips but higher 
fluctuating amplitudes for discontinuous segmented chips due 
to the pulsed nature of shear band formation [14]. Vibration 
signals also demonstrate more intense spikes coinciding with 
each serrated chip segment being formed, indicating a loss of 
cutting stability [5]. 

Similarly, acoustic emission sensors detect increased 
modulation and ringing corresponding to the repetitive fracture 
events, producing discontinuous chips [6]. The consistently 
generated coloured chips from oxidation are due to the elevated 
temperature resulting from high cutting force levels throughout 
the machining cycle [15]. This elevated temperature is based 
on enhanced tool-chip contact friction from wear [5]. 
Advanced signal processing and machine learning (ML) 
techniques enable automated chip classification by extracting 
these morphology-sensitive features from multi-sensor data. 
The fusion of advanced sensor analytics and artificial 
intelligence algorithms enables automated, real-time 
classification of chip morphology in machining processes [16]. 
ML techniques are leveraged to establish correlations between 
the raw sensor streams and microscopic chip characteristics 
[17,18]. This study uses an instrumented machining setup with 
integrated sensors to monitor the milling of Inconel 718 
superalloy. The objective is to relate the sensor signals to 
surface roughness, chip morphology and tool wear progression, 
enabling early detection of undesirable tool conditions to 
minimise damage to the machined surface integrity.

2. Experimental setup and data acquisition  

Inconel 718 machining experiments were conducted on a 3-
axis Haas vertical milling machine. A 5-flute with 5µm TiSiN-
coated EMT100 end mill (Harmetal), with 12 mm diameter, 0.5 
mm Corner radius, 10.5° Radial rake angle, 13.5° Axial rake 
angle and 48° helix angle, was utilised for each experiment. The 
cutting parameters (Table 1) were held constant for all tests. 
Inconel 718 samples (150x50x50 mm3) were rigidly clamped to 
the milling machine's worktable to minimise vibration during 

machining. The workpiece was oriented such that the feed 
direction was parallel to the length of the part (i.e., total cutting 
length of 150 mm). This setup enabled tool wear and chip 
morphology monitoring over an extended cutting length for 
each experiment. No coolant was employed to intentionally 
promote progressive tool wear. 

Table 1. Tool geometry and cutting parameters.
Parameters Cutting 

speed 
(m/min)

Feed 
(mm/
tooth)

Axial 
depth of 
cut (mm)

Radial 
depth of 
cut (mm)

Values 30 0.05 1 5

Fig 1. Schematic representation of machine tool with 
position of various sensors for process monitoring

The milling process was instrumented with various sensors 
for in-situ monitoring, as shown in Fig 1. The Kistler 
dynamometer used for cutting force measurement has a 
sampling rate of 1 kHz. The Dytran triaxial accelerometer 
acquires vibration data at 10 kHz. This high rate enables 
tracking acceleration peaks at failure-prone spindle speeds and 
aids in the early detection of tool damage. Acoustic emission 
signals contain high-frequency components sampled at 1 MHz 
using a Kistler sensor and a NI 9775 data acquisition system. 
This level of detail is indispensable to relate signals to the 
underlying physics of chip formation and tool wear 
mechanisms when machining difficult-to-cut alloys like 
Inconel 718. The collected sensor data was then pre-processed 
to train and test ML models for chip morphology classification. 
As illustrated in Fig. 2, the approach involves acquiring force, 
vibration, acoustic emission, and microphone signals during 
milling. These multi-sensor signals are segmented into 
windows and subjected to feature extraction in the time, 
frequency, and time-frequency domains. Principle component 
analysis ranks the most relevant features for chip morphology 
prediction. The features are input into ML models to determine 
the optimal classifier. The models first identify present chip 
morphology from sensor features. The same models then 
predict morphological evolution by analysing features 
extracted from forecasted future signal values. The developed 
model enables data-driven monitoring and prediction of chip 
formation for intelligent machining.
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Fig 2. The proposed method for monitoring and predicting the chip morphology

3. Results and discussion

3.1 Tool wear and chip morphology correlation

The progression of tool wear during the end milling of 
Inconel 718 workpieces was monitored by measuring flank 
wear using an optical microscope camera after each milling 
pass. A total of 5 passes were conducted with a constant cutting 
speed of 30 m/min, feed per tooth of 0.05 mm, and radial depth 
of cut of 5 mm. The flank wear on the peripheral cutting edges 
was quantified after each cut by capturing microscope images 
for analysis, as shown in Fig 3. This revealed a gradual growth 

in wear land width as the number of cutting passes increased.
Specifically, the wear measurements were 0.08 mm, 0.11 mm, 
0.17 mm, 0.25 mm, and 0.32 mm (notch wear) after the 1st, 
2nd, 3rd, 4th, and 5th passes, respectively. The diffuse wear 
land became increasingly noticeable on the tool's clearance face 
with longer machining duration. This wear progression is 
attributed primarily to abrasion from the hard oxide particles in 
the Inconel 718 work material, coupled with plastic 
deformation and adhesion due to the high temperatures and
pressures [19]. The trend highlights the importance of wear 
monitoring and tool replacement criteria when machining 
nickel superalloys, which accelerate tool degradation.

Fig 3. Tool wear measurement after each cutting pass and classified chip morphology based on tool wear progression

In rising flank wear, the morphology of the formed chips 
was also observed to change significantly. In the initial passes 
with sharp tools, discontinuous uniform-shaped chips with 
uniform colouring were produced, as shown in Fig 3. However, 
as the wear land widened, the chips became increasingly 
segmented with non-uniform colouring. Light red-coloured 
segments began appearing along the chips, indicating 
temperature variations during formation. The segmentation is 
likely caused by deterioration of the tool's cutting edge, leading 
to cyclic sticking and release of the chips. This alters the strain, 

temperature, and friction experienced by the chip formation. 
The diverse chip morphologies and colours provide visual cues 
that correlate to the quantification of tool flank wear. 
Therefore, monitoring chip characteristics provides an indirect, 
relatively straightforward to identify excessive cutting tool 
wear during nickel alloy machining. The observations 
underscore the close linkage between evolving tool conditions 
and alterations in chip formation mechanics during milling. To 
further investigate the relationship between tool wear and chip 
morphology, sensor signals were acquired during each milling 
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pass to capture the dynamics of the cutting process. The sensor 
data streams were segmented and subjected to feature 
extraction to generate relevant inputs for developing an ML 
model. The model was trained to classify chip morphology into 
three categories - good, acceptable, and bad - based on the 
quantified flank wear measurements from the microscope 
analysis. 'Good' morphology corresponded to uniform coloured 
continuous chips produced in the sharp tool state with wear less 
than 0.15 mm. 'acceptable' denoted partially segmented chips 
with some colour variations, correlating to the transition wear 
range of 0.15-0.25 mm. Finally, 'bad' morphology refers to 
thoroughly segmented chips with highly coloured segments 
associated with wear exceeding 0.25 mm.

(a)

(b)

(c)
Fig 4. Surface roughness for the samples at (a) pass 1, (b)
pass 5, and (c) variation of surface peak

3.2 Tool wear and surface roughness correlation

As tool wear progresses during machining, the 
cutting-edge profile of the tool deteriorates, leading to an 
increase in the surface roughness of the machined workpiece. 
The gradual abrasion wear, adhesion, and diffusion effects 
blunt the sharp cutting edges, causing them to rub against the 
workpiece rather than shear cleanly. This plowing action 
produces rough peaks and valleys on the previously smooth-cut 
surface. Additionally, the built-up edge and uneven wear land 
lead to inconsistent contact conditions between the tool and 
workpiece, generating surface variations as shown in Fig 4 a, b 
and c. The changes in chip formation and morphology noted 
previously provide visual evidence of this dynamic. As flank 
wear exceeded 0.25 mm, significant segmentation and colour 
variation in the chips indicated a cyclic sticking and release 
pattern induced by the worn tool's engagement. This non-
uniform cutting phenomenon directly translates to surface 
roughness escalation. Surface profilometry measurements 
quantitatively confirmed that average roughness (Ra) increased 
monotonically from 0.27 μm in the initial cut to 0.48 μm after 
the final 5th pass. The metrics showed a strong correlation to 
the quantified tool flank wear growth per pass, affirming the 
interdependency between tool wear progression and surface 
finish degradation. This emphasises the critical need for wear 
monitoring and tool change strategies to not only protect part 
quality but also ensure dimensional accuracy. The collected 
dataset establishes a baseline for the development of predictive 
models linking tool conditions to achieve workpiece surface 
integrity.

3.3 Best Statistical Feature Selection

Adequate condition monitoring through sensor analytics 
relies on extracting informative features that capture relevant 
signatures from the raw data. For a complex process like 
machining, the multi-sensor measurements, including 
vibrations, acoustics and forces, contain valuable information 
about the machining process. Statistical techniques like time-
domain moments, frequency-domain transforms, and time-
frequency distributions can be applied to derive over 37 
statistical features. However, not all these features provide 
unique value for building predictive models. Using redundant, 
irrelevant features can degrade the model’s performance and 
interpretability. In this work, a principal component analysis 
(PCA) is used in the identification of the most important
statistical features through dimensionality reduction. PCA 
transforms the high-dimensional feature space into fewer 
principal component dimensions that explain the maximum 
variance [20]. This is achieved by computing the eigenvectors 
of the feature covariance matrix. The eigenvectors define an 
uncorrelated subspace ordered by the amount of variation 
captured from the original feature set. By retaining only, the 
top 10 principal components, PCA reduced the 37 statistical 
features down to 10 dominant features that preserved the most 
helpful information. The ten features identified through PCA 
maximised the captured variance while minimising 
redundancy. For the acoustic emission, vibration, and force 



444 Omkar Mypati  et al. / Procedia CIRP 123 (2024) 440–445

signals, the number of features reduced by PCA are depicted in 
Fig 5a, b, and c, respectively. 

(a)

(b)

(c)
Fig 5. Feature selection using PCA analysis for (a) acoustic 
emission signal, (b) vibration, and (c) force sensor signals

3.4 Chip morphology detection 

A range of ML models were applied to identify the 
optimal approach for predicting chip morphology based on key 
statistical features of the chip production process. The data was 
split into training (75%), testing (15%) and validation (15%) 
sets. Four standard ML algorithms were tested: Decision Tree 
(DT), Random Forests (RF), K-Nearest Neighbour (KNN), and 
Support Vector Machines (SVM). The models were trained on 
the training set and optimised using the validation set before 

final testing on the unseen test set, and the results are listed in 
Table 2.
Table 2: Accuracy metrics of the various ML models for chip 

morphology prediction
ML model Accuracy

1 Decision tree (DT) 98.64
2 Random forest (RF) 99.81
3 K-nearest Neighbors (KNN) 88.45
4 Support vector machines (SVM) 92.57
The RF model achieved the best performance with a test 

accuracy of 99.81%. This ensemble method creates multiple 
decision trees on bootstrapped sub-samples of the training data, 
averaging the predictions to reduce variance and avoid 
overfitting. The bagging process builds trees using a random 
subset of features, further de-correlating the trees to improve 
generalisation. Gini impurity was used as the splitting criterion 
to measure the homogeneity of node samples. Pre-pruning was 
applied to prevent overfitting. The DT model achieved 98.64% 
accuracy using a single CART tree grown on the whole training 
set, selecting optimal splits via information gain. While less 
prone to overfitting, performance is limited by high variance 
which the RF ensemble addresses by averaging predictions 
across de-correlated trees. SVM achieves 92.57% accuracy, 
which attempts to find the maximum margin hyperplane 
dividing classes using a radial basis function kernel. Grid 
search found optimal parameters for the validation set, but this
higher bias model underfits. KNN makes predictions by 
identifying the k most similar training samples and majority 
voting, but performance dropped significantly to 88.45% due 
to the curse of dimensionality

(a) (b)

(c) (d)
Fig 6. Confusion matrix analysis of various ML models (a) 
DT, (b) RF, (c) KNN, and (d) SVM

The RF model shows the true positive rate is exceptionally 
high at 99%, indicating nearly all chip classes are correctly 
classified, as shown in Fig 6b. The true negative rate is also 
high, rarely misclassifying as a negative case. The overall true 
positive and true negative rates demonstrate the RF model 
reliably identifies the chip morphology. The DT confusion 
matrix tells a similar story, with true positive and negative rates 
of 98% and 97%, respectively, as shown in Fig 6a. However, 
the increased errors highlight the limitations of relying on a 
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single tree. KNN shows much lower true positive and negative 
rates of only 80% and 92%, respectively, reflecting its poorer 
performance, as shown in Fig 6c. The SVM confusion matrix 
indicates a relatively high false positive rate of 8%, meaning it 
is more likely to classify a negative case compared to RF and 
DT incorrectly, as depicted in Fig 6d. Hence, the RF model 
shows the best accuracy at nearly 100% on unseen test data. RF 
avoids overfitting by combining diverse decision trees and 
maintains high true positive and negative rates. This 
interpretable ensemble approach is an optimal solution for 
predicting chip morphology, given its performance on key 
statistical features of the manufacturing process.

4. Conclusion 

Prolonged machining of difficult-to-machine materials such as 
Inconel 718 can induce rapid tool wear with a cutting tool. Tool
wear is often manifested as detrimental changes in chip 
morphology, such as increased segmentation and coloured 
chips. Based on the present study, chip morphology 
transitioned from uniform-coloured continuous chips at 0.08 
mm wear to thoroughly segmented and discoloured chips 
above 0.25 mm wear. This demonstrates chip characteristics 
can indicate tool wear state. Further, the correlation between 
progressive tool wear and surface roughness confirms that tool 
monitoring is necessary for maintaining machined part surface 
integrity over prolonged machining of nickel superalloys.
Based on the predictions, the RF model performed superior to 
other algorithms, achieving 99.81% accuracy on unseen test 
data. In addition, the RF model achieved an excellent 99% true 
positive rate and 99.5% true negative rate, reliably identifying 
chip morphology. In addition, there is potential to further 
extend the study to predict the subsurface plastic deformation 
layer depth utilising multi sensor-based machine learning 
models.
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