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ABSTRACT

Numerous metrics exist to quantify the dynamical state of galaxy clusters, both observationally and within simulations. Many of
these correlate strongly with one another, but it is not clear whether all of these measures probe the same intrinsic properties. In this
work, we use two different statistical approaches — principal component analysis (PCA) and uniform manifold approximation and
projection (UMAP) — to investigate which dynamical properties of a cluster are in fact the best descriptors of its dynamical state.
We use measurements taken directly from THE THREE HUNDRED suite of galaxy cluster simulations, as well as morphological
properties calculated using mock X-ray and SZ maps of the same simulated clusters. We find that four descriptions of dynamical
state naturally arise, and although correlations exist between these, a given cluster can be ‘dynamically relaxed’ according
to all, none, or some of these four descriptions. These results demonstrate that it is highly important for future observational
and theoretical studies to consider in which sense clusters are dynamically relaxed. Cluster dynamical states are complex and
multidimensional, and so it is not meaningful to classify them simply as ‘relaxed” and ‘unrelaxed’ based on a single linear scale.

Key words: methods: numerical —galaxies: clusters: general —galaxies: kinematics and dynamics—dark matter — X-rays:
galaxies: clusters.

its morphology (Moore et al. 1996; Mihos et al. 2017; Knebe et al.

1 INTRODUCTION 2020; Haggar et al. 2023). Additionally, processes such as ram-

The structure of a galaxy cluster consists of a large dark matter halo,
typically with a mass in the range 10'*-10"> My, filled with hot
intracluster gas, and populated with hundreds or thousands of galax-
ies. A wide range of physical processes take place within clusters,
meaning they play a crucial role in many areas of astrophysics and
cosmology.

The evolution of galaxies is strongly dependent on their cosmic
environment, and clusters represent one of the most extreme environ-
ments for a galaxy. Strong tidal forces due to a cluster’s gravitational
potential can disrupt the structure of a galaxy, dramatically changing
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pressure stripping (Gunn & Gott 1972) by the intracluster gas can
remove both the cold gas in a galactic disc and the surrounding
halo gas, quenching star formation in galaxies (Larson, Tinsley
& Caldwell 1980; Zabel et al. 2019). Galaxy clusters are also an
important tool in constraining cosmology — for example, studying the
shapes of cluster halo density profiles can provide information about
the nature of dark matter (Eckert et al. 2022; Limousin, Beauchesne &
Jullo 2022). Galaxy clusters can also be used as a proxy for measuring
cosmological parameters, either through cluster number counts from
large surveys (Evrard 1989; de Haan et al. 2016; Abdullah, Klypin &
Wilson 2020, for example), or using cluster properties. For example,
Amoura et al. (2021) measure the formation times of clusters in a
suite of simulations with varying values of 2y, the matter density
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parameter, and og, the amplitude of the matter power spectrum at
a scale of 8 2~ 'Mpc, and show that the formation times of galaxy
clusters depend on the values of 2y and os.

One of the core properties of a galaxy cluster is its dynamical state
— that is, whether or not it is dynamically relaxed. Numerous areas
of galaxy cluster physics, including many of those described above,
are dependent on an understanding of cluster dynamical states. It
has been shown that various phenomena in the intracluster medium
(ICM), such as turbulence, differ between relaxed and unrelaxed
clusters (Lau, Kravtsov & Nagai 2009; Vallés-Pérez, Planelles &
Quilis 2021; Simonte et al. 2022). Furthermore, Nagai & Lau (2011)
and Vazza et al. (2013) both show that, in dynamically disturbed
clusters, the hot X-ray-emitting ICM contains dense, cooler clumps
of gas, associated with infalling galaxies and galaxy groups. The ICM
drives galaxy evolution mechanisms such as ram-pressure stripping;
this has also been shown to be enhanced in dynamically disturbed
groups and clusters (Mauduit & Mamon 2007; Roberts & Parker
2017; Lourenco et al. 2023).

Additionally, many of the astronomical and cosmological mea-
surements described above are indirectly related to the cluster
dynamical states, as they rely on accurate measurements of the
masses of clusters, which are in turn dependent on a their dynamical
state. Cluster masses are often calculated under the assumption that a
cluster is in hydrostatic equilibrium. As a result of this, clusters that
are dynamically unrelaxed (and so are not in hydrostatic equilibrium)
can have their masses underestimated by up to 20 per cent (Nagai,
Vikhlinin & Kravtsov 2007; Kravtsov & Borgani 2012). Relaxed
clusters can also have their masses underestimated, albeit to a lesser
extent (Lau, Nagai & Nelson 2013; Gianfagna et al. 2021), and the
strength of this bias is dependent on the redshift of the cluster in
question (Bennett & Sijacki 2022). Cluster scaling relations also
differ between clusters that are relaxed, and those that are rapidly
accreting material (Planelles & Quilis 2009; Lau et al. 2015; Chen
et al. 2019). Additionally, properties such as location of a cluster’s
splashback radius (Adhikari, Dalal & Chamberlain 2014; More,
Diemer & Kravtsov 2015) are dependent on its dynamical state.
This is the radius within which the cluster material dominates over
the surrounding infalling material, and so this implies that the region
in which a galaxy is impacted by a cluster is also dependent on cluster
dynamical state. Because of this, a thorough understanding of cluster
dynamical states is vital if we are to use clusters as an astronomical
and cosmological tool.

In its simplest form, a system of collisionless particles can be
described as dynamically relaxed and virialized once the velocities
of particles in the system are uncorrelated with their initial velocities.
Equivalently, this means the average magnitude of the velocity of
each particle, v, is equal to the change in velocity of the particle due
to interactions with other particles, §v. The typical time required for
a system to reach this stage is given by the relaxation time, #:ejax,

0.1N

~ 7ICFOSS £ 1
In(N) 1

Trelax

where N is the number of particles in a system, and .o 1 the average
crossing time for a particle in the system (Binney & Tremaine 1987).
For a galaxy cluster, the number of particles (galaxies) is ~ 10°, and
the crossing time is ~ 1 Gyr, leading to a typical relaxation time
of ~ 10 Gyr, comparable to the age of the Universe. However, in
the context of galaxy clusters, this definition of dynamical state is
not particularly useful for several reasons. First, clusters are not
collisionless systems. Galaxies in clusters frequently experience
near-misses or tidal interactions (Knebe et al. 2006; Muldrew, Pearce
& Power 2011; Bahé et al. 2019), and the intracluster gas, which
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makes up a significant portion of a cluster’s mass, is not a collisionless
fluid. Secondly, this definition describes a closed system, which
galaxy clusters are not; clusters are continuously accreting material
from their surrounding environment. As such, the effects from their
‘boundary’ need to be included to quantify their dynamical state.
Finally, according to this definition, only material that has been in
a cluster for greater than 10 Gyr can be dynamically relaxed. This
means that a z = 0 cluster can only be truly relaxed if it accreted
all, or most, of its material before z = 1.5. While this is technically
possible, it is an exceptionally rare scenario in a typical Lambda cold
dark matter cosmology.

Consequently, throughout the literature, numerous properties of
clusters are treated as indicators of ‘dynamical state’, each of which
is used to quantify how relaxed is a galaxy cluster. Many of these
are theory-based metrics, taken from simulations of galaxy groups
or clusters. In Cui et al. (2017), the dynamical state of a cluster is
described by three properties: dynamically unrelaxed clusters are
those with a centre of mass that is offset from the cluster halo density
peak, those with large amounts of substructure, and those that are
not virialized.

This combination of observables has been widely used for some
time. For example, Neto et al. (2007) classify dark matter haloes
based on these three parameters, and place a limit on each of these,
describing relaxed haloes as those that satisfy all three of these
conditions, and unrelaxed haloes as those that do not. Cui et al. (2018)
place similar constraints on simulated galaxy clusters, and use this
to classify clusters as relaxed and unrelaxed. Haggar et al. (2020),
by contrast, combine the three into a single parameter, xps, giving
a single continuous parameter describing how relaxed is a cluster.
Other work also uses these measures, such as Wen & Han (2013), who
use the amount of substructure as an indicator of dynamical state.
They describe how a large amount of structure is indicative of a recent
merger event. The results of Kimmig et al. (2023) also demonstrate
this — they show that the amount of substructure, and in particular
the size of the eighth most massive substructure, is indicative of the
merger history of a cluster over the last 2 Gyr. Further works have
shown that numerous other cluster properties correlate with recent
merger activity, such as the virialization and centre-of-mass offset of
acluster (Power, Knebe & Knollmann 2012), its concentration (Wang
et al. 2020), or similarly its sparsity (Richardson & Corasaniti 2022).
Contreras-Santos et al. (2022) also use the time since a major merger
as an measure of cluster relaxation, and show how this correlates
with the xps measure from Haggar et al. (2020).

Already, it is apparent that different measures of a cluster’s
dynamical state are probing different core properties. Measurements
such as the substructure fraction and centre-of-mass offset are
quantities that can be measured observationally at a single epoch,
although in observations they are projected into two dimensions.
This is in contrast to the time since the last major merger, which
is a property of the history of a cluster. Other studies also take this
approach to dynamical state, connecting it to the total history of
a cluster. For example, Diemer & Kravtsov (2014) introduced the
accretion rate proxy I', variants of which have since become widely
used as measures of halo relaxation (e.g. Vallés-Pérez, Planelles &
Quilis 2020). An alternative approach is to use a redshift-dependent
definition of dynamical state, based on the fact that different cluster
properties evolve over different time-scales (e.g. Mendoza et al. 2023;
Vallés-Pérez et al. 2023).

Gouin, Bonnaire & Aghanim (2021) probe the dynamical state of
clusters from the IllustrisTNG simulation (Nelson et al. 2019) using
three separate measures of cluster growth history: the z = 0 halo
growthrate, the z = 0.5 mass accretion rate, and the cluster formation
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time (zos, see Section 2.2.1). They also show that dynamically
disturbed clusters are more strongly connected to the cosmic web
— that is, they have more cosmic filaments attached to the cluster
(see Santoni et al. 2024, for a similar study with THE300 clusters).
Similarly, Darragh Ford et al. (2019) find that simulated clusters that
have recently experienced a major merger have a higher connectivity.
This is yet another interpretation of dynamical state, as a property
of the surrounding region of the Universe. This cosmic environment
can also impact global properties of the cluster and its dark matter
halo, such as its shape (Gouin et al. 2021; Smith et al. 2023) and
concentration (Neto et al. 2007).

Additional complexity comes from the large number of cluster
dynamical state metrics and morphological parameters that are used
in observational astronomy. For example, cluster shapes can be
mapped using X-ray and Sunyaev—Zel’dovich (SZ) effect observa-
tions. From these, many quantifiable properties can be measured,
such as the amount of substructure (Ge et al. 2016), offset of the
brightest cluster galaxy (BCG) from the X-ray/SZ peak (Zenteno
et al. 2020), or the power spectrum of the hot gas distribution (Cerini,
Cappelluti & Natarajan 2023). Combinations of multiple X-ray or
SZ morphological parameters have been shown to provide even more
robust measures of dynamical state than these individual parameters
(Parekh et al. 2015; Yuan & Han 2020; Campitiello et al. 2022; Yuan,
Han & Wen 2022; see Rasia, Meneghetti & Ettori 2013 and Zhang
etal. 2024 for more comprehensive discussions). Other observational
studies include Wen & Han (2013), who quantify cluster substructure
using optical data from the Sloan Digital Sky Survey (Aihara et al.
2011).

The result of having so many different properties in common use
is that the ‘dynamical state’ of a cluster is not clearly or consistently
defined in the literature. Consequently, when the dynamical states
of clusters are inferred from observations, it is not entirely apparent
which fundamental property of a cluster these are probing. It is also
not clear if they are all probing the same intrinsic cluster property,
or if the ‘dynamical state’ of a cluster is actually made up of several
properties.

In this study, we aim to gain a deeper understanding of cluster
dynamical state measurements by investigating the connections
between theory-based and observable properties of dynamical state,
the degeneracy between different measures of dynamical state, and
the core, intrinsic properties of clusters that these measurements
are actually probing. Our primary approach to this is through
dimensionality reduction — reducing a large number of dynamical
state metrics to a smaller set of variables will make the nature of
dynamical state clearer and easier to interpret. Previous studies have
taken a similar approach to ours, although mostly to consider the
accretion histories of dark matter haloes, rather than the dynamical
states of galaxy clusters. One notable example is Wong & Taylor
(2012), who use principal component analysis (PCA; Jolliffe &
Cadima 2016) to determine the principal components of 10 input
properties of dark matter haloes, and study the mass accretion
histories of these haloes. They show that splitting these clusters
by their first and second principal components naturally displays
two separate modes of accretion history: the halo formation time,
and the acceleration/deceleration of a halo’s accretion. For further
discussion, we also refer the reader to Jeeson-Daniel et al. (2011)
and Skibba & Maccio (2011), who perform similar analyses on
simulations of dark matter haloes.

In this work we develop the methods used in previous studies,
applying PCA to 17 indicators of cluster dynamical state, based on 3D
data (as opposed to directly observable quantities) from simulations
of z = 0 galaxy clusters. This analysis uses THE THREE HUNDRED
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project, a suite of hydrodynamical zoom simulations of massive
galaxy clusters, taken from a large 1 h~!Gpc cosmological volume.
We physically interpret the principal components that naturally arise
from this analysis, and show how they correspond to the mass
accretion histories of these clusters. Despite this work focusing on a
theoretical approach to dynamical states, we also compare our PCA
to X-ray and SZ properties measured from mock observations of
the same simulated clusters, originally calculated in De Luca et al.
(2021). Finally, we expand further on previous studies in this area
by analysing the same simulated clusters using uniform manifold
approximation and projection (UMAP; Mclnnes, Healy & Melville
2018), an alternative approach to dimensionality reduction. While
we do not develop a quantitative means to classify clusters, we
demonstrate qualitatively the different dynamical states of clusters
that exist in our simulations.

We interpret our results as showing that the dynamical state of a
cluster is not a single property. Instead, a single cluster has multiple
‘dynamical states’, and can be relaxed in all of these dimensions, or
none of them, or some of them.

The paper is structured as follows: in Section 2 we introduce
the simulation data used throughout this work, as well as the
dynamical state indicators we use directly from the simulations
(Section 2.2.1) and from mock X-ray and SZ-effect maps generated
from the simulation data (Section 2.2.2). In Section 3 we study these
parameters using both PCA and UMAP, and discuss how the results
connect to the mock observations of clusters, and their mass accretion
histories. Finally, in Section 4 we summarize our findings, and the
implications this has for how the dynamical state of galaxy clusters
should be interpreted.

2 SIMULATIONS AND METHODOLOGY

This work utilizes simulation data from THE THREE HUNDRED
project. We study these galaxy clusters in the final snapshot of the
simulations (z = 0). In Section 2.1 we provide an overview of the
simulation data, but for a detailed description we refer the reader to
Cui et al. (2018).

2.1 Simulation data

THE THREE HUNDRED project (hereafter THE300) is a suite of
hydrodynamical resimulations of large galaxy clusters. The sim-
ulations are based on the MDPL2 MultiDark simulation (Klypin
et al. 2016).! MDPL2 is a large dark matter-only simulation, with
a comoving box size of 1 #~'Gpc, which uses Planck cosmology
(M = 0.307, Qp = 0.048, Q25 = 0.693, h = 0.678, o3 = 0.823,
ns = 0.96) (Planck Collaboration XIII 2016).2

From this simulation, the 324 most massive dark matter haloes
were selected, and resimulated from their initial conditions (at an
initial redshift of zi,; = 120) with baryonic physics included. For
each cluster, the 1 #~!'Gpc dark matter-only simulation box was re-
centred on the cluster, and the particles within 15 A~'Mpc of the
cluster centre at z = 0 were traced back to their initial conditions.
Each of these particles was then split into a dark matter particle
and a gas particle, with masses of mpy = 1.27 x 10° h~'Mg, and
Mgy = 2.36 x 10% h™'M, respectively, set according to the cosmic

The MultiDark simulations are publicly available from the CosmoSim data
base, https://www.cosmosim.org.

2The reduced Hubble constant, /, is defined such that the Hubble constant,
Hy = h x 100 km s~! Mpc~L.

MNRAS 532, 1031-1048 (2024)
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baryon fraction. The resolution of dark matter particles outside of
this radius was degraded, allowing the large-scale tidal forces acting
on the cluster to be maintained with a reduced computational cost.

In this work, we use clusters from THE300 data set simulated
using the GADGETX code. GADGETX is an updated version of the
GADGET3 code (Springel 2005; Beck et al. 2016; Sembolini et al.
2016), and uses a smoothed-particle hydrodynamics scheme to
simultaneously evolve the baryonic and dark matter components
of a simulation. In addition to gas, the stochastic star formation
in GADGETX produces stellar particles of varying mass, typically
around mg, ~ 4 x 107 h~'M, (Tornatore et al. 2007; Murante et al.
2010; Rasia et al. 2015). Type II supernova feedback and active
galactic nucleus feedback are included, as described in Springel &
Hernquist (2003) and Steinborn et al. (2015), respectively. The final
data set consists of 324 galaxy clusters, with masses ranging from
Moy =5 % 0™ h_]MO to Myyy = 2.6 x 105 h_lMo. Here, My
is the mass enclosed within a sphere of radius Ry, defined such
that the average density within this sphere is equal to 200 times the
critical density of the Universe at that redshift. For the cluster masses
in THE300, the 15 A~'Mpc high-resolution region corresponds
approximately to 7-10R,go. In addition to the extensive description
in Cui et al. (2018), further description of THE300 data set is available
in other previous studies that have used these data. We particularly
refer the reader to studies that have investigated cluster dynamical
states using THE300 (Haggar et al. 2020; Capalbo et al. 2021; De
Luca et al. 2021; Contreras-Santos et al. 2022; Li et al. 2022, for
example).

In this work, we specifically use the data from the final snapshot of
THE300 simulations (z = 0), as the focus of this work is on present-
day galaxy clusters. However, some of the cluster properties we
calculate also rely on cluster properties at z > 0 (see Section 2.2.1
for details). This information requires the construction of halo merger
trees, which are described in the following section.

2.1.1 Galaxy identification and tree-building

In each snapshot of THE300 data, the haloes and subhaloes are
identified using the Amiga Halo Finder, AHF (see Gill, Knebe &
Gibson 2004; Knollmann & Knebe 2009, for a detailed description
of AHF). AHF is a density peak halo finder, and is used to identify the
particles in the main cluster halo, subhaloes of the cluster, and haloes
in the surrounding region. For each of these (sub)haloes, properties
such as the position, velocity, and mass are given as outputs. The
halo catalogues in each snapshot were linked together using the
MERGERTREE tree-builder, which is part of the AHF package. This
tree-builder uses a merit function, M;, given in table B1 of Knebe
etal. (2013), to identify the main progenitor of each halo by searching
for particles that are common between the two haloes. MERGERTREE
is also able to ‘skip’ snapshots, meaning that if AHF is unable to
resolve a halo in one snapshot, the tree-builder can instead find an
appropriate progenitor in an earlier snapshot (see Knebe et al. 2011;
Srisawat et al. 2013, for additional details on MERGERTREE).

For most of this work, we include all of these subhaloes (and
thus all of the particles) in the calculations of dynamical state
parameters. For those measures that rely on galaxy properties (e.g.
cluster richness, Nygo, and magnitude difference between galaxies,
my,, detailed in Section 2.2.1), we include all galaxies with a total
mass greater than 10! 2='Mg, and a stellar mass of greater than
10°3 h~'Mg. These limits have an extremely minor impact on our

3http://popia.ft.uam.es/ AHF
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results, as most dynamical state indicators based on galaxy properties
are dependent on the largest, brightest galaxies in a cluster.

2.2 Measures of dynamical state
2.2.1 3D measures

From the simulations, we utilize 17 different properties, each of
which is associated with cluster dynamical state. These are detailed
below, along with relevant information on how they were calculated
in our simulations. Many of these quantities are calculated using
R>00 as an outer boundary, as this is the characteristic radius used by
AHF in calculating halo properties; we state explicitly when this is
not the case. These properties are also calculated using all particles
within the relevant radius (typically Rp unless stated otherwise),
apart from c,9 which only uses dark matter particles.

(1) fs: the fraction of cluster mass inside a given radius that is
contained within subhaloes. Two values of this are used, f;(R200)
and f(Rs00), equal to the substructure mass fraction inside the radii
R0 and Rsp, respectively. Using these two radii allows us to probe
both the outer and inner regions of a cluster: as Cui et al. (2017) show,
dynamical state indicators are dependent on cluster-centric distance.

(i) A;: the offset of the centre of mass of the cluster from the
density peak of the cluster halo, as a fraction of the cluster radius
Rooo. Similarly to f;, A(Rap) and A,(Rsp) are both used, which
are each calculated using the centre of mass of all material inside the
radii Ryop and Rsgp, respectively.

(iii) n: the virial ratio, a measure of how well a cluster obeys
the virial theorem, based on its total kinetic energy, 7', its total
potential energy, W, and its energy from surface pressure, Es. It
is typically defined in the literature as 7j = 2T — E;)/|W/|, so that
fj = 1 for virialized haloes. However, PCA is designed to capture
linear, monotonic relationships between variables. This variable,
where the ‘extreme’ cases (most virialized haloes) correspond to
an intermediate value (77 = 1) is therefore not well suited to PCA.
Consequently, we perform a transformation, defining a new n such
that

_ (2T—Es>_]‘

2
W @)

Increasing values of this quantity correspond to a greater deviation
from virialization, and thus to less virialized haloes, making this
quantity better suited for use in PCA. Note also that this virial ratio
differs from the classic definition of virialization, due to the additional
surface pressure term which accounts for clusters’ ongoing accretion
of material (Poole et al. 2006; Shaw et al. 2006). The surface pressure
is calculated as the energy from surface pressure integrated over the
halo boundary — a detailed mathematical description is given in
section 3 of Cui et al. (2017). The virial ratio is also calculated twice,
for all material inside Rygo and Rsq.

(iv) zos: the formation time of a cluster: the redshift at which the
cluster mass, M, is equal to half its value at z = 0.

(v) A: a dimensionless spin parameter, used to describe the bulk
rotation of a cluster. It is defined in the same way as Bullock et al.
(2001),

. J200 3)

\/ G M3y R0

where Jy is the total angular momentum of material inside R,p0. We
note that other definitions of the cluster spin also exist (e.g. Peebles
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1969), but we use this value as it is calculated using only mass within
a well-defined radius, Rygp.

(vi) c¢/a: sphericity, the ratio of the minor and major axes of the
cluster halo’s moment of inertia tensor. As this calculation of the
moment of inertia includes all particles (dark matter, gas, and stars), it
accounts for these particles’ varying masses accordingly. We note that
several alternative measures of cluster shape are also used throughout
the literature, including triaxiality, ellipticity, and prolaticity (Lau
et al. 2021), but we only use sphericity in this work.

(vii) cp00: the concentration of the dark matter halo. This is equal
to the ratio between R, and Ry, the scale radius of a halo, as defined
by an NFW profile (Navarro, Frenk & White 1996). Here, p(r) is the
dark matter density of a halo as a function of halo-centric distance,
and pg is some characteristic density:

BItDs

This is an output from AHF, which selects cluster centres based on
a density peak finder. The concentration of a halo is not calculated
directly, but is instead a numerical solution to equation (9) in Prada
et al. (2012), based on the maximum circular velocity of a cluster.

(Vi) Zmerge,50: the redshift at which a cluster last experienced a
merger that increased its mass by more than 50 per cent. These
are equal to the values of zy,, calculated in Contreras-Santos et al.
(2022), which describe the jump in the mass accretion history of the
cluster and therefore the onset of a merger phase.

(ix) y: the mass accretion rate of the cluster, defined as the
fractional increase in My, within the last dynamical time, #4. We
use the crossing time of a cluster as its dynamical time (see Binney
& Tremaine 1987; Contreras-Santos et al. 2022, for example), equal
to

p(r) = (C)]

ju R [ Ko )
Vcire G Moo

Using the definition of Myy, and the fact that the critical density
Peic = 3H? /87 G, we find that the dynamical time at z = 0 is given
by tq =~ 1/(10H,). For the cosmology used in THE300 simulations,
this dynamical time is equal to approximately 1.4 Gyr, or a redshift
of z = 0.1. Hence, the value of y is the fractional increase in mass
between z = 0.1 and z = 0.

(x) Npgi: the number of filaments, or connectivity, of a cluster.
The connectivity of each cluster was calculated using the DIScrete
PERsistent Structure Extractor (DisPerSE) filament finding algo-
rithm (Sousbie 2011). In our specific case, the cosmic filaments
were identified based on the number density of gas particles around
a cluster. Multiple definitions for the connectivity of clusters exist
— we use it to refer to the number of these filaments beginning at
the cluster centre (node) and passing through a sphere of radius
R0 surrounding the cluster. Cosmic filaments around the clusters
in THE300 have been studied extensively in other works via galaxies
(Cornwell et al. 2022; Kuchner et al. 2022) and their gas component
(Santoni et al. 2024).

(xi) D, s: this environment parameter is defined as the distance
to the nth nearest halo whose mass is greater than f Mg, in units
of Rygo. In our case, we use n =1, f = 0.1, and so D is the
distance to the nearest halo whose mass is greater than one-tenth
of the cluster’s mass (see also Jeeson-Daniel et al. 2011; Wong &
Taylor 2012). This is consequently a measure of how isolated a
galaxy cluster is from other clusters with masses of the same order
of magnitude.
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(xii) Nogo: richness, the number of cluster members whose abso-
lute magnitude is between m3 and m3 + 2, where m is the magnitude
of the third-brightest cluster member (this definition is given by Abell
1958, and while multiple definitions of cluster richness exist, this is
the one we use throughout this work). We use R-band luminosities,
calculated using the stellar population synthesis code STARDUST (see
Devriendt, Guiderdoni & Sadat 1999).

(xiii) my,: difference in magnitude between the brightest and
second-brightest cluster member galaxies, or ‘magnitude gap’.
Multiple names are used throughout the literature to refer to this
property, or similar properties (e.g. the ‘fossil parameter’ in Ragagnin
et al. 2019, also used as a measure of dynamical state). As in
our calculations of cluster richness, we calculate this using R-band
magnitudes.

(xiv) opcg: the velocity dispersion of stars in the BCG of our
simulated clusters. This was calculated using the stellar particles
located within a spherical aperture of radius 200 2~ 'kpc around the
centre of the cluster halo, a radius which should include most of the
material associated with the BCG (Lin & Mohr 2004; Contreras-
Santos et al. 2022).

It should be noted that the order in which we present these 17
dynamical state indicators is arbitrary. In principle, one could group
these parameters together — for example, o5, Zmerge,50, and y all
depend on temporal information about a cluster. However, we have
not chosen to do this here, as these properties are taken by our analysis
in a random order, without any further information relating them to
one another. Later, we will deliberately reorder these 17 parameters
based on our PCA (see Section 3.1).

These measurements are all dependent on information that is only
available from the full 3D version of our simulations. While the
strength of this dependence varies, it means that none of these are di-
rectly measurable from observations. Some of these properties can be
measured quite well in observations, such as the velocity dispersion
of the BCG, opcg, which can be measured using spectroscopy, and
the magnitude difference between the two brightest galaxies, m ;.
Conversely, some are much more sensitive to 2D projection effects.
For example, the centre-of-mass offset, A, is strongly dependent
on the viewing angle, particularly if the offset is caused by a single
major merger event. If the merger takes place along the line of sight,
the apparent offset will be minimal. If instead it occurs in the plane
of the sky, the calculated offset of the centre of mass will be apparent
and measurable (see Zenteno et al. 2020). A similar property is
the sphericity, c/a — very different values of this will be measured
depending on whether a cluster’s major axis is aligned along the line
of sight or not. Other properties such as the substructure fraction,
fs, and cluster richness, Ny, are likely to be measured quite well
in observations, but will still suffer somewhat due to the presence of
interloper galaxies along the line of sight. Additionally, some of these
cluster properties cannot be measured at all. The cluster formation
time, zos, requires knowledge of the growth histories of a cluster
over several gigayears, which can be inferred from other properties
but not measured directly.

The fact that some of these properties are difficult, or impossible,
to measure observationally is a topic we plan to address in a future
study (see also Section 4). However, in this work our focus is on the
actual properties of a cluster, rather than the limitations of what can
be measured. The exception is the mock X-ray and SZ data that we
use, which we describe in the following subsection.
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2.2.2 X-ray and SZ morphological parameters

In De Luca et al. (2021), mock observations were created for all the
clusters of THE300 sample. Maps were generated for each of these
clusters in X-rays, and also as they would be seen through the SZ
effect, in terms of the Compton parameter. From these maps, six
morphological parameters are calculated, as described below. More
rigorous descriptions of these parameters, as well as details on the
production of the mock maps and a more thorough review of the
literature, can be found in De Luca et al. (2021).

(i) A: asymmetry (Schade et al. 1995), the normalized difference
in flux between the original map, and a rotated map. The value
of A chosen is the maximum calculated from four different rota-
tions/reflections (90°, 180°, and reflection along the main cluster
axes).

(i) K: light concentration ratio (Santos et al. 2008), the ratio of
surface brightness computed within two concentric apertures. For the
X-ray maps these are 0.025Rsgo and 0.25 Rsg, and for the SZ maps
these radii are 0.05Rsoy and 0.25 R5.

(iii) W: centroid shift (Mohr, Fabricant & Geller 1993), a measure
of how much the centroid of a map shifts as different apertures are
used to calculate the centre.

(iv) P: power ratio (Buote & Tsai 1995) is based on a multipole
decomposition applied to the maps of the ICM. Specifically, P is the
third-order power ratio.

(v) G: Gaussianity (Cialone et al. 2018), the ratio of the two values
for standard deviation required to describe a 2D Gaussian fit to the
map. This can distinguish elongated and circular clusters, and so is
analogous to the cluster sphericity, c/a.

(vi) §: strip variation (Cialone et al. 2018), the normalized
difference between four light profiles, inclined by 45° to one another,
passing through the centroid.

Additionally, De Luca et al. (2021) calculate M, a normalized,
linear sum of these six morphological parameters, each weighted
such that the difference in M between relaxed and unrelaxed clusters
is maximized. Each of these seven total parameters (six parameters,
plus the combined measure) is calculated for both X-ray and SZ-
effect maps, and we use subscripts to distinguish between these. For
an additional study using similar methods, we also refer the reader
to Campitiello et al. (2022).

3 RESULTS

3.1 PCA of dynamical state indicators

Principal component analysis (PCA) is a commonly used dimen-
sionality reduction technique, which defines new variables (principal
components) in a multidimensional parameter space. These principal
components are linear sums of the input parameters, defined by
the eigenvectors of the covariance matrix of the data, meaning
they are orthogonal and uncorrelated to one another. The principal
components can also be ordered based on the variance in the data
for which they account, thus allowing one to only consider the
‘most important’ components. These components can be interpreted
physically, and can be used to identify correlations, trends, and
degeneracies in high-dimensional data. PCA requires the input data to
be standardized; we have applied this to each of our 17 parameters,
and also for our subsequent UMAP analysis (Section 3.4). Some
discussion of the non-standardized distributions can be found in
Appendix B.

Fig. 1 shows the contributions of each of the 17 dynamical state
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indicators to the four major principal components, PC1, PC2, PC3,
and PC4, as determined by PCA. For each dynamical state indicator,
its contribution (i.e. the coordinate value in that dimension) to each of
these four components is shown by the height of the bars, coloured
based on the component number. Horizontal lines are marked at
+0.24. We take component coordinates that have an absolute value
of greater than 0.24 to be ‘important’ contributing parameters to a
principal component; as these principal components are normalized,
the root-mean-square contribution is Np‘a?‘s ~ 0.24, where Ny, is the
dimensionality of the data (17 in our case). While this distinction is
still somewhat arbitrary, it is in line with previous similar work, such
as Wong & Taylor (2012), who use a boundary of 0.3 for Ny, = 13.
These data are also shown in Table 1, and component coordinates
greater than 0.24 are shown in bold.

Throughout the remainder of this work, we consider only these
four dominant principal components. Between them, these four
explain 64 per cent of the variance of the 17 dynamical state indicators
(38 per cent, 14 per cent, 6 per cent, and 6 per cent for PC1-
PC4, respectively), as shown in Fig. Al. We choose to consider
only four parameters as this is the minimum number such that
every dynamical state indicator contributes strongly to at least one
principal component, and one of the aims of this work is to group
these indicators in as simple a way as possible. While there is not
a sharp decrease in the importance of components after PC4, we do
not believe that including these additional components allows for
significantly more scientific interpretation; this is discussed further
in Appendix A.

The major contributors to each principal component can be
summarized as follows:

(i) PC1: substructure fraction, centre-of-mass offset, formation
time, accretion rate, cluster richness, and dominance of BCG.

(i) PC2: virial ratio, concentration, accretion rate, and BCG
velocity dispersion.

(iii) PC3: cluster spin, connectivity, and distance to nearest large
halo.

(iv) PC4: sphericity, time since last major merger, and BCG
velocity dispersion.

Throughout the remainder of this work, we have reordered our
17 indicators from the order in which they were presented in
Section 2.2.1, based on the principal component to which they
strongly contribute (see Fig. 2, for example).

We can interpret these principal components physically, as four
different forms of dynamical state.

PC1 describes the formation time of a cluster, and the properties
of galaxies in this cluster — that is, whether a cluster is a recently
forming rich cluster with many bright galaxies, or an old, poor cluster
dominated by a single BCG. This component primarily describes the
history of substructure accretion by this cluster, and is the ‘most
important’ principal component, explaining more than one-third of
the total variance in the data set.

PC2 describes the relaxation and virialization of the dark matter
halo of the cluster. It is dependent on whether the halo is virialized or
not, and how concentrated it is. In turn, the BCG velocity dispersion is
also included in this. Highly concentrated haloes have a greater BCG
velocity dispersion as their central dark matter density is greater,
while low-concentration haloes (those with more of a central core)
have a lower BCG velocity dispersion.

PC3 represents the local environment of a cluster: how connected
it is to cosmic filaments, and whether it is in an isolated region of the
Universe. The local environment will impact the shear forces on a
cluster, potentially explaining the inclusion of spin in this component.
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Figure 1. Contribution of each of the 17 dynamical state parameters to the four main principal components, as determined by PCA. Dynamical state indicators
are listed horizontally, and the value of the bars shows the coordinate value of that dimension for PC1, PC2, PC3, and PC4, coloured based on the component
number. Horizontal lines are marked at +0.24, the root-mean-square contribution of any parameter to a given principal component — this is the boundary at
which we consider a parameter to be an ‘important’ contributor to that principal component. These data are tabulated in Table 1.

Table 1. Coordinate values for the four major dynamical state principal
components (these data are also shown in Fig. 1). Component coordinates
with an absolute value greater than 0.24 are highlighted in bold.

Parameter PC1 PC2 PC3 PC4
fs(Ra00) -0.36 —0.12 0.03 0.15
fs(Rs00) —0.32 0.09 0.13 0.09
Ar(R200) -0.32 —0.13 0.03 —0.02
Ar(R500) —-0.33 0.04 0.08 —0.08
n(Ra00) —0.16 0.39 —0.11 0.05
n(Rs00) —0.09 0.37 —-0.23 0.11
20.5 0.35 —0.01 —0.11 0.13
A —0.18 -0.12 —-0.32 —0.18
cla 0.18 0.16 —0.13 -0.56
€200 0.10 0.52 -0.07 —0.11
Zmerge,50 0.19 —0.07 —-0.22 0.65
y —-0.27 0.28 -0.12 —0.12
N 0.02 0.18 0.77 0.09
Dio1 0.16 0.19 0.34 —0.04
Nago 0.26 0.11 0.01 0.04
mio 0.35 0.10 —0.05 —0.07
OBCG —0.11 0.43 —-0.09 0.36

PC4 includes the information on whether this cluster is a recent
merger. Currently merging clusters are unlikely to be spherical as
they will consist of a superposition of two approximately spherical
haloes. Moreover, Contreras-Santos et al. (2022) use THE300 data
to show that BCG properties are strongly impacted by major
mergers, explaining the inclusion of BCG velocity dispersion in this
component.

Interestingly, we note that PC4 actually consists of a positive
Zmerge,50 COmMponent and a negative ¢/a component, implying that the
value of this component is greater for elongated clusters, and those
that last merged long ago. While this is not necessarily expected,
we believe that this behaviour is a consequence of the definition
Of Zmerge,50, Which only includes mergers that have already finished
— ongoing mergers will not be counted as a ‘recent merger’, even
though their measure of c¢/a will be strongly impacted (this is the
same as the ‘reduced’ merger sample in Contreras-Santos et al. 2022).
Additionally, we note that both of these parameters also appear in
PC1 (albeit with lower contributions than in PC4) and vary in the
same direction. PC1 explains more of the total variance than PC4,
and so some of the merger behaviour is also encompassed within
PC1, as well as in PC4. This is supported by the fact that there is no
significant overall correlation between Zmerge, 50 and ¢/a (Spearman’s
rank, p; = 0.06, p = 0.30, as shown later in Fig. 3).
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Figure 2. Spearman’s rank correlation coefficient, ps, between the 17 dynamical state parameters described in Section 2.2.1, and the seven observable
morphological parameters described in Section 2.2.2, for both X-ray and SZ mock observations (separated by a horizontal black line, with X-ray measurements
in the top half). The colour of each cell represents the (absolute) value of the Spearman’s rank; the lighter colours represent a stronger correlation. The value of
the Spearman’s rank is also written in each cell. Note that the 17 dynamical state indicators have been reordered, and grouped together based on the principal

component to which they contribute (see Section 3.1).

Similarly, we note that PC2 includes positive contributions from
1, c200, ¥ » and opcg, indicating that a greater value of this component
corresponds to clusters that are non-virialized, rapidly accreting, have
adisturbed BCG, and are highly concentrated. Mergers are generally
known to make cluster haloes less concentrated, and so this result
is also unexpected. It can potentially be explained by the fact that
some of the components of PC2 (such as y) also contribute to PC1,
similarly to how some elements of PC4 contribute to PC1. Also, as
shown in Wang et al. (2020), the relationship between mergers and
halo concentration can be somewhat complex and non-monotonic;
we discuss this further in Section 3.4.

Each of these four principal components are, by definition,
orthogonal and uncorrelated, and they are each driven by specific
properties of a cluster. However, it is important to note that these
four different forms of the dynamical state of a galaxy cluster are
not independent of one another; multiple dynamical state indicators
contribute in a non-negligible way to several principal components.
We do not perform a detailed, qualitative analysis of the relationship
between these different forms in this work, but instead focus on
exploring these four different dimensions of dynamical state.
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3.2 X-ray and SZ morphological indicators

This paper is primarily a theoretical study, focusing on properties that
are taken directly from simulations, rather than from mock observa-
tions of simulated clusters. In this section we draw some connections
to observational astronomy, by comparing these parameters to mock
X-ray and SZ observations of the same galaxy clusters.

To test which of the different interpretations of ‘dynamical state’
described in Section 3.1 are actually probed by X-ray and SZ
morphological parameters, in Fig. 2 we show the Spearman’s rank
correlation coefficient between each of these 12 observables (plus
the composite parameters, Mx and Mg;) and the 17 dynamical state
indicators that we use. Here we only show the magnitude of the
Spearman’s rank — that is, we do not distinguish between positive
and negative correlations, we are only studying the strength of the
correlation.

Overall, the morphological parameters correlate well with dynam-
ical state indicators that contribute strongly to the primary principal
component, PC1, with a median correlation coefficient of 0.53
(median of the absolute values of the Spearman’s rank coefficients).
The exception to this is the Gaussianity of the cluster, which does
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Figure 3. Spearman’s rank correlation coefficient, ps, between all 3D dynamical state parameters. The darker coloured cells represent stronger correlations;
the value of the Spearman’s rank is also written in each cell. A corner plot showing the distributions of each of these parameters can be found in Appendix B.
The principal component to which each dynamical state indicator contributes is indicated at the top of the figure, and by the coloured bars along the axes.

not correlate as well with the PC1 parameters, regardless of whether
it is measured from X-ray or SZ maps. This result is not unexpected
— previous studies have also found that Gaussianity is generally
a less informative parameter than other X-ray/SZ morphological
parameters. For example, De Luca et al. (2021) show that G is
weighted three to four times weaker than the other parameters in
the calculation of the composite parameter M. They attribute this
to several factors: Gaussianity is mostly dependent on the global
shape of a cluster, not on cluster substructure, and is also highly
dependent on projection effects. Furthermore, even virialized dark
matter haloes can have an ellipsoidal (non-spherical) shape, and
so it is not necessarily a good metric for distinguishing relaxed
and unrelaxed clusters. Similarly, Cialone et al. (2018) show that
Gaussianity calculated from SZ maps is less effective at separating
clusters by dynamical state, and give similar reasons for this finding.

In both of these sets of mock observations, the weighted sums
of morphological parameters (Mx and Msz) correlate most strongly
with the elements of PC1. This is predictable, given that M is defined
in such a way that the difference in M between relaxed and unrelaxed
clusters is maximized. These results are in general agreement with

De Luca et al. (2021). It is important to note that the apertures for
calculating these morphological parameters were chosen such that
clusters could be separated based on f;(Rso0) and A(Rsgo). However,
the correlations of the morphological parameters with f(Ryo) and
A;(Ryp0) are similarly strong, and so we do not consider this to be
an issue in our analysis.

The X-ray and SZ morphological parameters correlate far less
well with the parameters that contribute to PC2, PC3, and PC4 —
the median (absolute) Spearman’s rank coefficient is equal to 0.24
for these combinations. The exception to this is, once again, the
cluster Gaussianity, particularly in X-rays. For parameters in PCl1,
the correlation coefficients associated with Gx were lower than those
for the other morphological indicators, but for several parameters in
PC2, PC3, and PC4, Gx is comparable to the other morphological
indicators. For example, Gx has a moderate correlation with the
cluster sphericity c/a (ps = 0.23, p = 2 x 107°), due to the fact that
G is a direct measure of a cluster’s shape.

These results are summarized in Table 2, which shows how each of
these 14 morphological measurements of each cluster correlate with
the four main principal component values of that cluster. Indeed,

MNRAS 532, 1031-1048 (2024)

202 AInF 1 U0 1sanB AQ 2G5269./L€01/L/ZES/AI0IME/SEIUW /W00 dno-ojwapede//:sdny Wwoly papeojumoq



1040  R. Haggar et al.

Table 2. Spearman’s rank correlation coefficient between X-ray and SZ
morphological parameters, and each of the four principal components. These
data are similar to that shown in Fig. 2, but showing the correlation coefficient
for each full principal component, not for their contributing dynamical state
indicators.

Observable PC1 PC2 PC3 PC4
Ax —0.65 —0.11 —0.08 0.08
Kx 0.72 0.13 -0.07 0.04
Wx —-0.71 -0.17 0.04 0.06
Px -0.70 —-0.03 0.01 0.02
Gx 0.25 0.11 0.02 —0.07
Sx —0.57 —0.12 —0.04 0.06
Mx —0.78 —0.13 0.01 0.05
Asz —0.64 —0.11 —0.04 0.11
Ksz 0.75 0.23 —0.11 0.02
Wsz -0.73 —0.11 —0.01 0.07
Psz, —0.60 —0.01 0.02 0.03
Gsz 0.18 —0.05 —0.05 —0.05
Ssz —0.63 —0.06 —0.08 0.12
Mgy, -0.82 —0.14 0.02 0.06

we see that (apart from the Gaussianity), each of these X-ray/SZ
measures correlates well with PC1, which we interpret as a measure
of the time since much of the cluster’s galaxy population was accreted
and built up (see Section 3.1). However, the halo virialization (PC2),
local environment (PC3), and recent merger history (PC4) do not
correlate as well with any of the morphological parameters.

Despite the fact that the observable morphological properties of a
cluster only strongly correlate with the dynamical state indicators that
make up PCI1, there are still correlations between other indicators.
Fig. 3 shows the Spearman’s rank correlation coefficient between
all 17 of these 3D (non-observational) parameters. For example, the
time since the last major merger, Zmerge,50. and the cluster formation
time, z¢ 5, have a positive correlation (p; = 0.50). This result is quite
intuitive, as clusters that have recently merged will not have a high
formation redshift. Other dynamical state indicators also correlate
well — for instance, all five of the parameters that contribute to PC2
show weak to moderate correlations with each other (|ps| > 0.20,
p <2 x 107*). These correlations are weaker for the dynamical
state indicators in PC3 and PC4, but this is not unexpected given
that these components explain less of the variance of the total data
set (see Fig. Al).

This figure also displays some counter-intuitive results. For exam-
ple, one might consider clusters with lots of substructure to be ‘rich’,
but there is actually a negative correlation between f; and Ny (for
Js(Rago), ps = —0.63, and for fi(Rs00), ps = —0.46). This is due
to the fact that N, is defined by the number of galaxies of similar
magnitude to the third brightest, and clusters with lots of substructure
are more likely to have several bright galaxies, meaning that the
threshold for galaxies to be counted in Ny is higher. Nevertheless,
N is a useful dynamical state indicator, although using the term
‘richness’ for this is somewhat ambiguous. While we do not explicitly
show the correlations between these parameters in Fig. 3 (for the sake
of clarity), we have included a corner plot showing these correlations
in Appendix B.

3.3 Mass accretion histories of clusters

In order to try and learn more about the dynamical histories of
these clusters, we separate our sample of 324 clusters based on
the coordinate values of their principal components, and study their
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mass accretion histories. A similar analysis was performed by Wong
& Taylor (2012), who also split simulated dark matter haloes into
different classes based on PCA analysis. They show that the mass
accretion histories of their classes of clusters differ — their first
principal component separates the clusters into early-forming and
late-forming, and their second component describes whether a halo’s
growth is accelerating or decelerating.

For our similar analysis, we find the upper and lower quartiles of
the values of each of our principal components. For example, based
on PC1, we have a group of clusters that have low values of PC1, and
a group with high values. As the contribution of z 5 to PC1 is positive
(0.35, see Table 1), this also implies that selecting clusters with low
values of PC1 is equivalent to choosing a group with low values of
Z0.5, making them a ‘late-forming’ quartile. Similarly, we describe
the group with high values of PC1 (and so higher values of z 5) as the
‘early-forming’ quartile. We then look at the median mass accretion
history of the clusters in each of these two extreme groups, ignoring
the intermediate clusters. The median mass accretion histories for
each principal component are shown in Fig. 4.

When splitting clusters by their PC1 coordinate values, we see a
clear difference between the mass accretion histories. As expected,
the mass of the early-forming clusters is built up far earlier. On
average, the early-forming clusters have built up half of their mass
by aredshift of 0.7, while the late-forming clusters do not do this until
a redshift of 0.2. This is very similar to the first principal component
found by Wong & Taylor (2012), which also splits their haloes into
early-forming and late-forming.

We interpret the PC2 coordinate values as separating the clusters
based on how virialized are their dark matter haloes. Separating
the clusters based on their PC2 coordinate values, we find that the
difference in their mass accretion histories is less pronounced than
for PC1, and that there is a significant overlap in the spread of
the data. However, by ‘bootstrapping’ the data, we can study the
uncertainty in the median mass accretion histories. From this, we
find that there is a significant difference between the clusters split by
PC2, particularly at low redshifts. The ‘more virialized’ clusters have
experienced only a very small change in mass since z = 0.1, having
an average mass at z = 0.1 of (0.97 £ 0.01)M5p0(z = 0) (median
and uncertainty). Meanwhile, the ‘less virialized’ clusters have an
average mass of (O.SOfgjgg)Mgoo(z = 0) at z = 0.1. This indicates
that this ‘virialization’ component is strongly dependent on the very
recent growth history of a cluster, although we emphasize that there
is a large overlap in the spread of these data. We also note that
the shapes of these mass accretion histories are similar to the mass
accretion histories of haloes that Wong & Taylor (2012) separate by
PC2. They describe these as accelerating or decelerating growth rates,
although their PC2 component is interpreted as describing the shape
and spin of their haloes, not the ‘virialization” as we find. Some slight
variations between our results and those of Wong & Taylor (2012)
are to be expected, as their work uses dark-matter-only simulations,
not hydrodynamical simulations. The baryonic effects in THE300 are
particularly strong in the cluster centres (Haggar et al. 2021), a region
on which PC2 appears to be strongly dependent (see also Section 4).

The component values of the third principal component, PC3, do
not appear to have a strong impact on the mass accretion histories
of clusters. Splitting the clusters by their coordinate values in this
component (into ‘symmetric environments’ with many filaments
and a large distance to the nearest large halo, and ‘asymmetric
environments’ with few filaments and a nearby large halo) does not
show a large difference in mass accretion histories. This indicates that
the present-day local environment of a cluster is not closely tied to its
mass accretion history, although Fig. 3 does show a weak correlation
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Figure 4. Median mass accretion histories for clusters, split based on the values of their principal components, with a different principal component considered
in each panel (PC1 in top-left, PC2 in top-right, PC3 in bottom-left, PC4 in bottom-right). The upper and lower quartiles of each principal component are shown.
The horizontal axis shows redshift (bottom axis), and lookback time in units of the dynamical time at z = O (top axis), equal to approximately 1.4 Gyr as defined
in equation (5). The vertical axis shows the fraction of the z = 0 mass that has been built up by a given time. The faint lines show the mass accretion histories
of individual galaxy clusters. Some of these have temporary decreases in mass, which can be explained by several well-established mechanisms, such as the
decrease in M»( as a halo virializes after a period of rapid growth (e.g. Tormen, Bouchet & White 1997), or through mismatches in halo tracking (Fakhouri &
Ma 2009; Behroozi et al. 2015). The thick lines show the median accretion history for that group, the light shaded regions and thin lines show the 1o (16-84
percentile) spread in the data, and the dark shaded regions show the uncertainty in the median.

between zp s and D o (ps = 0.22, p = 6 x 1075). We also note that
a physical interpretation of this component is challenging. Based
on past work, one would expect that relaxed clusters have both
fewer filaments and a large distance to their nearest neighbour, but
splitting clusters based on their PC3 values puts clusters with many
filaments in a group with those that have a large distance to the
nearest neighbour. However, this is likely due to the weak correlations
between the components of PC3 that we find throughout this work,
particularly Nj (also shown in Fig. 3). We discuss the strength of
these correlations further in Section 3.4.

For the fourth principal component, PC4, the accretion histories
are similar, although there is a slight difference in the shapes of the

profiles; similarly to in PC1, the ‘relaxed’ (non-merging) clusters
build up their mass at slightly earlier redshifts. However, the main
difference between the recent mergers and non-mergers is that the
spread in mass accretion histories is far greater in recently merged
clusters. For example, at z = 0.2, the non-merging clusters have an
average mass of 0.777(}] times their present-day mass (median and
1o spread). In contrast, the recently merging clusters have an average
mass of 0.73f8j§§ times their present-day mass, corresponding to a 50
per cent greater spread. This increased spread in accretion histories
for recently merging clusters is likely due to the stochastic nature
of mergers — these objects will have experienced a large jump in

their mass at some recent time, but the exact time of this jump varies

MNRAS 532, 1031-1048 (2024)

202 AInF 1 U0 1sanB AQ 2G5269./L€01/L/ZES/AI0IME/SEIUW /W00 dno-ojwapede//:sdny Wwoly papeojumoq



1042  R. Haggar et al.

between clusters. Again, this is similar to the findings of Wong &
Taylor (2012), who explain that mass accretion histories are not well
modelled by smooth curves due to the stochasticity of merger events.

3.4 Cluster dynamical state with UMAP

Uniform manifold approximation and projection (UMAP; McInnes
et al. 2018) is an alternative dimensionality reduction technique to
PCA. UMAP is commonly used as part of more complex machine
learning studies, but is also a useful data visualization method in its
own right. UMAP involves first constructing a graph of data points
(in our case, 324 galaxy clusters), each connected to their nearest N
neighbours in a high-dimensional space (the 17 dimensions defined
by the dynamical state indicators). Some additional connections
between points are also added, with a decreasing likelihood for points
separated by greater distances. Next, a low-dimensional space, the
‘embedding space’, is populated randomly with (324) corresponding
data points. These are iteratively repositioned according to some loss
function. This function is designed to match the pairwise distances
between connected points in the new low-dimensional space to the
pairwise distances in the original high-dimensional space.

This process preserves local structure in the data set, meaning
that objects with similar properties remain close together in the low-
dimensional ‘embedding space’. It also preserves global properties
of the data set, so that groups of objects that are far apart in the high-
dimensional space remain separated from one another. Similarly
to PCA, UMAP is able to reduce a high-dimensional data set
into a smaller number of parameters (in our case, two). Unlike
PCA however, the stochastic, iterative nature of UMAP allows
for complex, non-linear relationships between parameters to also
be captured. This means that the outputs of UMAP are harder to
physically interpret — whereas PCA produces mathematically well-
defined axes, the output ‘axes’ of UMAP are determined numerically.
Similarly, a simple measure of the fractional variance that is captured
by UMAP, analogous to the ‘explained variance’ of PCA, does not
exist (McInnes et al. 2018). We use UMAP as a complementary
method to PCA, approaching the same problem but in a different
way.

Fig. 5 shows the results of our UM AP analysis for the 17 dynamical
state indicators also used in the PCA. Each point represents one
galaxy cluster, with the horizontal and vertical axes showing the
two combined parameters produced by the two-dimensional UMAP
analysis, analogous to the principal components that we summarized
in Table 1. Due to the definition and optimization processes in UMAP,
points that are close together on a UMAP plot are close together in
the 17-dimensional space that we started with. Consequently, these
are likely to be dynamically similar clusters. As the UMAP axes are
a dimensionless (due to the standardization of the data), complex
combination of many parameters, these axes are left unlabelled for
clarity.

Each panel in this figure shows data for one of our 17 3D dynamical
state indicators, and the colour of each point in this panel represents
the value of this dynamical state indicator for each cluster. Linear
colour scales are used for each, but the colour scale is flipped for some
quantities, such that the clusters we interpret as more dynamically
relaxed (according to this individual parameter) are shown by darker
colours. This allows us to see which regions of this new UMAP
embedding space contain dynamically relaxed clusters, according to
each of the different definitions. Similarly to in Fig. 2, the panels
are grouped by the principal component to which they most strongly
contribute, according to our PCA — otherwise, this approach is fully
independent of our PCA.

MNRAS 532, 1031-1048 (2024)

For each of these panels, we calculate the direction in which the
z-axis (i.e. the value of the dynamical state indicator) varies most
quickly, and thus the direction in this space in which the clusters
become more dynamically unrelaxed. We do so using the partial
correlation coefficients (PCCs) approach described in Lawrance
(1976); see also Baker et al. (2022) for a clear explanation of this
method. The PCC between two quantities, A and B, while controlling
for a third quantity, C, is given by pap|c, and is calculated using the
equation below:

PAB — PAC Psc

PAB|IC = .
V1= pic/1— i

Here, pxy is the Spearman’s rank correlation coefficient between
two quantities, X and Y. Equation (6) allows the partial correlation
coefficient between the colour (the value of the dynamical state
indicator) and the vertical UMAP axis to be found, while controlling
for the horizontal axis. Similarly, we find the PCC between the colour
and the horizontal UMAP axis, while controlling for the vertical axis.
The ratio of these two PCCs can then be used to calculate the maximal
variation direction of the colour in the UMAP embedding space (see
also Bluck et al. 2020, for further details of this method). We plot
each of these directions of maximal dynamical state variation in
the top-left panel of Fig. 5, coloured by the principal component
to which they contribute most strongly. The length of each arrow
is equal to the Spearman’s rank correlation coefficient between the
dynamical state indicator (colour) and the position of clusters along
this direction in embedding space. Each arrow is also shown on
the bottom-left corner of the panel to which it corresponds. This
top-left panel therefore shows which direction in this embedding
space contains the unrelaxed clusters, according to each of the 3D
dynamical state measures.

Fig. 5 shows that each of the parameters making up the first
principal component of dynamical state ( f5(R200), fs(Rs00)s Ar(Ra00),
Ar(Rs00), 205, M2, and Nago) vary in approximately the same
direction across the UMAP plots, from bottom to top. According to
these measures, the relaxed clusters are generally found at the bottom
of these plots, and the unrelaxed clusters at the top. This indicates that
the UMAP has also grouped clusters based on this interpretation of
dynamical state, separating clusters that have formed and developed
their substructure recently, from those that formed long ago. The top-
left panel of Fig. 5 confirms that the increasingly disturbed clusters,
according to PC1 parameters, are at the top of the UMAP plots.

However, the dynamical state indicators that contribute to the
second, third, and fourth principal components do not all vary in
the same way. The PC4 parameters (c¢/a and Zpmerge,50) do follow
a similar trend to those in PC1, with more dynamically disturbed
clusters (10W-Zperge,50 and low-c/a) being found near the top of the
plot — this is consistent with our interpretation of PC4 in Section 3.1,
where we described how some of the merger history behaviour is also
included in PC1. The PC2 indicators, representing the virialization
and concentration of the cluster haloes (n(Rx0), 7(Rs00), and c¢xo),
instead vary more strongly from right to left, although not all in
the same direction; y follows a similar trend. The UMAP can also
separate clusters by their environmental dynamical state indicators
(PC3: A, Ng), and D, o), but not very well, indicated by the weak
trends in these panels. The high-A and low-Dy o ; clusters, usually
interpreted as unrelaxed, are located towards the top of the plot —
these trends are not strong, but are significant, and are along the
same axis as the PC1 components’ trends. For spin, A, |ps| = 0.44.
For the environment parameter, D o1, |ps| = 0.24 (p = 107°). The
number of filaments and UMAP position correlate in the opposite
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Zmerge,50

Figure 5. UMAP of 17 cluster properties, also used in PCA. For all panels apart from top-left, each point represents one galaxy cluster, with the horizontal
and vertical axes representing the first and second UMAP axes, respectively. The colour of each point shows the value of one dynamical state indicator for that
cluster — the specific indicator is written in the bottom-left of each panel. The colour scale has been implemented using our interpretation of the dynamical
state parameters, such that a darker colour represents clusters that are dynamically relaxed according to that single parameter. For fs(R200), f5(Rs500), Ar(R200),
Ar(Rs00), v» 1(R200), 1(R500), 0BCG» A, and Npj, lighter colours represent greater values of these parameters (as defined in Section 2.2.1). For zg 5, Nago, m12,
€200, €/ @, Zmerge,50- and D1 .1, lighter colours represent lower values. For simplicity, quantitative colour bars are not shown here. In the top-right of each panel,
the principal component (or components, in the case of y and opcg) to which that parameter belongs is indicated. The dynamical state indicators are grouped in
the same way as in Fig. 2. For each of these panels, we calculate the direction in which the clusters become more disturbed (less relaxed) using partial correlation
coefficients (PCC) analysis. These directions, coloured by the principal component to which the parameter belongs, are shown in the top-left panel. For y and
OBCG, these arrows are dashed with colours corresponding to the two components to which they contribute. The length of each arrow represents the strength of
the correlation, quantified by the Spearman’s rank correlation coefficient, ps, with the black circle showing where p; = 1. The magnitude and directions of each
arrow is also included in the bottom-left of the panel to which it corresponds. With the exception of Ng, all of these correlations are significant (p < 1075).
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direction along the same axis, but this correlation is not significant
(lps] = 0.10, p = 0.06).

This UMAP analysis gives many subtle results that are not
immediately straightforward to interpret, but overall it confirms
the indications of our PCA — the different groupings of clusters
in the plots correspond to different classes of dynamically relaxed
objects. For example, the early-forming, low-substructure clusters
(PC1) are found at the bottom of the UMAP plots. These clusters
have highly concentrated haloes, as would typically be expected of
arelaxed cluster (Yuan & Han 2020). At the top of the UMAP plots,
we instead find recently formed clusters. However, there is also a
third major population of clusters in the top-left of the plots — these
are dynamically unrelaxed haloes that have formed recently, have
much substructure, and have non-virialized haloes, yet are highly
concentrated. Clusters in this population have recently experienced
major mergers (Zmerge,50)> and have very high accretion rates, y,
indicating that they are currently accreting large amounts of material.
This is in contrast to the other clusters at the top of these plots, which
have recently merged but have not accreted lots of material in the
last dynamical time (since z = 0.1). This difference is equivalent to
the mass accretion histories in the top-right panel of Fig. 4, where
we group clusters based on PC2 and show that their recent (z < 0.2)
growth histories are different.

These three populations can be interpreted as follows: high-
concentration galaxy clusters are likely to have formed long ago,
while low-concentration clusters are likely recently formed, often
after a major merger. However, if a merger is still ongoing, or if
large amounts of galaxies are pulled into the cluster immediately
afterwards (potentially accompanying the merging cluster), this can
make a cluster appear highly concentrated, and therefore dynamically
relaxed. This explanation is strongly supported by Wang et al.
(2020), who show that major mergers can produce oscillations in
concentration, driving concentration up significantly when merging
material reaches the first pericentre of its orbit, before concentration
quickly decreases again. Alternatively, if a cluster is continuing to
accrete large amounts of diffuse material into its halo (rather than a
single large object), this could also result in a high mass accretion
rate without a corresponding decrease in halo concentration.

As a result of this, a simple measurement of the concentration of
a cluster is insufficient to draw conclusions about the virialization of
its halo, its formation time, or its merger history. Additionally, the
dynamical state of a cluster’s BCG (opcg) also seems to only probe
some of these unrelaxed clusters. This complex behaviour cannot be
fully accounted for by a 1D linear fit, which explains our previous
counter-intuitive result that highly concentrated clusters appear to be
less virialized and rapidly accreting (Fig. 1 and Fig. 3); simplifying
this to a single correlation coefficient does not capture the complete
behaviour.

Additionally, the UMAP analysis shows that the early-forming
clusters can be split into two groups based on their merger histories.
The group in the bottom-left have not experienced major mergers
for a very long time (~ 10 Gyr), or not at all throughout their
history. Meanwhile, those in the bottom-right have experienced a
major merger more recently, although still not for several gigayears.
There seems to be a (weak) correlation with the connectivity of
these clusters, Ng): early-forming clusters that have still experienced
a major merger are more strongly connected than early-forming
clusters that have never experienced a major merger. This may be
indicative of the extremely long time-scales (~ 10 Gyr) over which
cosmic filaments are persistent, but a more detailed analysis would
be needed to investigate this connection.

MNRAS 532, 1031-1048 (2024)

4 DISCUSSION AND CONCLUSIONS

Using hydrodynamical simulations of galaxy clusters, we show that
the wide variety of parameters used in the literature to quantify
the ‘dynamical state’ of a cluster are actually probing multiple
properties of a cluster. Consequently, by applying PCA, we conclude
that the dynamical state of a cluster as described in the literature
is actually made up of approximately four different properties,
summarized in Section 3.1. To use any measurement (or set of
measurements) to describe a cluster as simply ‘dynamically relaxed’
or ‘dynamically unrelaxed’ is an incomplete description. Different
classes of dynamically relaxed clusters exist, and so instead one must
specify in which sense is a cluster relaxed.

The main component of a cluster’s dynamical state is its ‘formation
dynamical state’, describing the formation time of a cluster — that
is, whether a cluster built up most of its mass and galaxy population
recently or long ago. This formation state is indicated by galaxies and
substructure within the cluster. Recently forming clusters have more
substructure and a greater offset between their centre of mass and the
position of their BCG. Additionally these clusters are typically less
dominated by a single, bright galaxy, and are accreting material at
a faster rate. This ‘formation state’ is similar to the dynamical state
used in many previous studies (Cui et al. 2017; Gouin et al. 2021,
for example). It should be noted that several such studies include
the virial ratio, n, in this measure of dynamical state, making it
analogous to a combination of our PC1 and PC2; however it has
been shown that the virial ratio is not an important contributor to
this measure of dynamical state (Haggar et al. 2020; De Luca et al.
2021). As we see in Fig. 4, separating clusters based on their first
principal component from our PCA is equivalent to separating them
based on their formation times, in agreement with Wong & Taylor
(2012). The ‘late-forming’ clusters have a median formation time
of zp5 =0.2£0.1, compared to zo5 = 0.7 0.2 for the relaxed
‘early-forming’ clusters.

In addition to this dynamical description of the subhaloes and
galaxies in a cluster, the diffuse material in the cluster halo itself can
be virialized and dynamically relaxed. This ‘virialization dynamical
state’ describes how well the material in a cluster obeys the modified
virial theorem (accounting for surface pressure, see Poole et al. 2006;
Shaw et al. 2006). It is particularly well described by the properties of
the central regions of a cluster — the NFW concentration of the halo,
and the velocity dispersion of the BCG — as well as the present-day
accretion rate of the cluster, y. The UMAP analysis in Section 3.4
also showed that, in this space, the ‘virialization state’ varies along a
different axis to the ‘formation state’, described by PC1. These com-
plex relationships can be seen through the apparent inconsistencies
when only considering monotonic relationships between quantities.
For example, Fig. 3 shows that highly concentrated haloes (typically
considered ‘relaxed’) correlate with having less substructure (a sign
of being relaxed), but also with a less virialized halo according to 7.
The complex relationships between these dynamical state indicators
are much more apparent in Fig. 5.

Clusters can also be dynamically relaxed in terms of their local
environment, or in terms of their merger history. These components
of dynamical state are driven by global properties of a cluster, such as
their shape and spin. These components are typically noisier, and the
cluster properties that constitute these components do not correlate
as well with one another. However, it is still meaningful to separate
clusters based on this —for instance, Fig. 4 shows an increased spread
in the mass accretion histories of recently merged clusters.

Of these four forms of dynamical state, X-ray and SZ mea-
surements of morphological properties of clusters, such as their
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asymmetry, concentration, and centroid shift, overwhelmingly probe
the formation dynamical state (PC1). Generally, X-ray and SZ
morphological parameters are very well suited to describing the
formation of clusters and their accretion of substructures, but not
well suited to describing the virialization of cluster haloes, their
merger history, or their cosmic environment. This is not unexpected:
as we discussed in Section 3.4, mergers appear to have a somewhat
chaotic effect on other dynamical state parameters, and can lead to a
cluster halo appearing either relaxed or unrelaxed. Additionally, these
morphological measurements, particularly the X-ray measurements,
are heavily weighted towards the central regions of clusters (Rsoo
or smaller). We would therefore not necessarily expect them to be
good indicators of clusters’ larger scale cosmic environments. There
are also some slight exceptions to this rule — for example, the light
concentration ratio calculated from the SZ-effect, K7, does indeed
correlate with the NFW concentration, ¢ (05 — 0.37).

As stated previously, this work is very much a theoretical,
simulation-focused study of dynamical state, and any further detailed
analysis of observable cluster properties is beyond the scope of this
paper. However, numerous other observable properties of clusters
exist, and in future work we hope to examine how these observable
quantities correspond to dynamical state. For example, although the
mock X-ray observations used in this work are focused on the cluster
centres, X-rays can also be used to map out substructures in cluster
outskirts (Zhang et al. 2020), and even cosmic filaments (Walker et al.
2019; Biffi et al. 2022). Other measures of cluster X-ray and SZ maps
also exist, such as decomposition into Zernike polynomials (Capalbo
et al. 2021). Beyond this, optical data can also be used to quantify
the dynamical states of clusters, by determining properties such as
their substructure (Wen & Han 2013), richness, and brightest galaxies
magnitude difference, m, (Zhoolideh Haghighi et al. 2020). A future
study (Cornwell et al. in preparation) will use THE300 simulations
to investigate how cluster dynamical states can be determined using
spectroscopic measurements.

The results from this paper confirm that, although a description
of dynamical state (see Binney & Tremaine 1987) is theoretically
quite simple, the dynamical state of galaxy clusters in practice is
more complex. This has implications for wider work on galaxy
clusters. Many studies split clusters into two samples, ‘relaxed’ and
‘unrelaxed’, based on a small number of properties, but this has the
potential to combine clusters with very different dynamical histories
into a single group. Instead, it is important to describe in which
sense a cluster is known to be dynamically relaxed or unrelaxed — for
example, in terms of their substructure accretion history, their recent
merger history, or how virialized they are at the present day.

In future we plan to carry out a more quantifiable analysis of
this multidimensional dynamical state, rather than the qualitative
description presented in this work. Instead of a linear scale of
dynamical state, it may be more natural to quantify the dynamical
state of clusters in two or more dimensions; the UMAP analysis in this
paper is similar to this, but it not simple to interpret physically. Such a
study could also be extended to study the dynamical state in different
‘apertures’, looking at the kinematics of the cluster centre, or of its
outskirts. Additionally, we plan to investigate whether clusters can
be naturally separated into groups based on their dynamical states.
Previous work (e.g. Zhang et al. 2022) has investigated defining a
bimodal function to describe dynamical state, to allow clusters to
be split into ‘relaxed’ and ‘unrelaxed’ groups. In a future study, we
will investigate whether a multimodal description of dynamical state
exists that would allow clusters to be split into more than two groups.
This would provide a means to compare the properties of clusters that
do actually have similar dynamical states, and to select samples of
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truly relaxed galaxy clusters in order to reduce biases in cosmological
studies.
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APPENDIX A: EXPLAINED VARIANCE OF
PRINCIPAL COMPONENTS

The four principal components selected and analysed throughout this
work collectively describe 64 per cent of the total variance of the
17 dynamical state indicators described in Section 2.2.1. In Fig. A1,
we show the proportion of the variance explained by all 17 of the
principal components, and the cumulative explained variance.
Clearly, PC1 is the dominant component, explaining 38 per cent of
the total variance alone. Other than this, there is not a clearly visible
‘cut-off” point, beyond which parameters are far less important.
Consequently, the decision to keep only the first four principal
components is not obviously mathematically justifiable. This choice
was made in order to select the minimum number of components
such that each of the dynamical state indicators contributed strongly
to at least one of them, to provide an idea of the number of
dimensions along which dynamical state varies. For example, PC5
(which explains 5 per cent of the total variance) is dominated by
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Figure Al. Cumulative proportion of variance of the dynamical state
indicators data set explained by the ordered principal components (black
line and points), and by the individual components (blue bars). Throughout
our analysis, we only consider the first four components, indicated by the
vertical red dashed line.
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Table A1. Similar to Table 1, but showing coordinate values for PC5, which
is excluded throughout this work. Component coordinates with an absolute
value greater than 0.24 are highlighted in bold; the three parameters that
contribute strongly to PC5 (A, N1, and Dy 1) also contribute strongly to
PC3, albeit with different weights.

Parameter Contribution to PC5
Ss(Rao0) —0.04
Js(Rs00) 0.05
Ar(Raoo) —-0.02
Ar(Rs00) 0.02
1n(R200) —0.14
1n(Rs00) -0.13
205 —0.04
A —0.40
cla —-0.23
€200 0.08
Zmerge, 50 —-0.14
y 0.09
N —-0.55
Dio.1 0.59
Nooo —0.24
mio —0.05
OBCG 0.05

A, Ngi, and Do, which all also strongly contribute to PC3 (see
Table Al). We interpret this as PC5 providing a ‘second-order’
correction to the environment of a cluster, as described by PC3;
we believe that including such a component would not meaningfully
add to this work.

APPENDIX B: CORRELATIONS BETWEEN
DYNAMICAL STATE INDICATORS

In Fig. 3 we show the Spearman’s rank correlation coefficient
between each of the 3D dynamical state indicators used in this
study (described in Section 2.2.1). In Fig. B1, we explicitly show the
correlations between these measures, from which these correlation
coefficients were calculated. As in Fig. 3, we also group these
parameters based on the principal component to which they most
strongly contribute. Finally, we also include the cluster mass as an
additional parameter here, to explicitly show the mass dependence
of these quantities.

It should be noted that several of these parameters have a highly
skewed distribution (for example, 1). These parameters were all
standardized for the PCA and UMAP analysis in this work to
approximate a normal distribution with a mean of zero and a unit
standard deviation, but here we show the raw distributions. Most
of these parameters also display either no dependence, or a weak
dependence, on cluster mass (] ps| < 0.15, p > 0.005). The exception
is the velocity dispersion of the BCG (ps = 0.74), which has a
fairly strong positive correlation with the cluster mass. This result is
expected, as numerous previous studies have found that the BCG
velocity dispersion scales with the mass of its host cluster (e.g
Sohn et al. 2020). One could account for this mass dependence by
normalizing the BCG velocity dispersion by the maximum circular
orbital speed around the cluster, vci. For THE300, the Spearman’s
rank correlation coefficient between M,y and opcg/veire 1 far
reduced (p, = 0.19, p = 6 x 107*); although we have chosen to
just use opcg in this study, this ratio is a potential alternative choice
that one could use instead.
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Figure B1. Corner plot showing the correlations between the 17 dynamical state indicators described in Section 2.2.1. The Spearman’s rank correlation
coefficients displayed in Fig. 3 are calculated from these scatter plots. This figure also includes histograms showing the distribution of these parameters. We
also include the logarithmic mass of each galaxy cluster as an additional quantity here, to show any mass dependence of these 17 parameters.
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