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In our previous investigations, we demonstrated that certain living cells exposed to bio-

electrosprays remained viable, and behaved as expected in comparison to control cells. 

These studies also extended to post-bio-electrosprayed cells being transplanted into mice, 

which demonstrated no rejection, and in fact they were seen to integrate with the 

surrounding host tissues. Therefore, highlighting bio-electrosprays as a front running 

bioplatform for engineering functional tissues for repair, replacement and rejuvenation 

of damaged and/ageing tissues. In the present studies, we take bio-electrosprays further 

into human health, investigating the possibility of this platform biotechnology to directly 

handle the smallest and most highly specialised cell in the human body, the spermatozoon. 

These studies demonstrated the ability for bio-electrosprays to directly handle human 

sperm without compromising their viability, while also demonstrating the technology’s 

capacity to encapsulate human sperm. These investigations reported herein present 

interesting implications to human reproductive science and medicine, while also having 

promising applicability to areas such as the agriculture and aquaculture industries.   
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Introduction 

There are many approaches to handling living cells, these range from the direct to the non-direct 

methods. 1 Briefly the direct methods are those that mix together all the constituents of tissues, 

namely the multiple cell types together with components of the extracellular matrix such as 

collagen to deposit into an architecture of a desired tissue. Conversely non-direct approaches 

adopt the deposition of a cell friendly/signaling material in a given architecture, subsequently 

introduced to cells which later are found to engulf that cell friendly architecture, thus forming 

a cellularised construct. The former is most desirable as it constitutes the least number of steps 

which would not only significantly reduce contamination issues but would also lower the time 

taken for creating a fully functional three-dimensional tissue to its implantation. There are many 

other positive aspects which the direct approaches offer over the non-direct methods. 2 Hence, 

in the category of direct approaches, there are many techniques for handling cells, these range 

from 3D bioprinting techniques to bio-electrosprays, cell electrospinning to others such as 

aerodynamically assisted biojetting/threading. 3 In the 3D bioprinting approaches, there are 

many manifestations to have shown promise, unfortunately those techniques have limitations 

negating the creation of tissues with the required densities of both cell types and proteins to 

other tissue constituents as those found in native tissues. This has been limited primarily by the 

3D printing technologies, approaches themselves, which have limits on the processable cell 

densities and types to others, which have shown to cause proteins to denature to inflicting 

apoptosis and cell death. 4 Therefore, these technologies do not possess the ability to create a 

tissue for transplantation in both the laboratory and clinic. On the other hand, bio-electrosprays, 

cell electrospinning and aerodynamically assisted biojetting/threading, have demonstrated its 

ability to overcome all the obstacles faced by 3D bioprinting, but have undergone thorough 

viability studies from the genetic, genomic to physiological level, which have assessed their 

possibilities for entering the clinic. 5 In fact, bio-electrosprays have recently entered the clinic 
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for combatting autoimmune diseases such as type 1 diabetes. 6 In addition, this platform is 

currently in the process of being assessed for addressing a multitude of regenerative medicine 

applications in terms of its ability to directly create living fully functional three-dimensional 

tissues. However, in this communication the authors will focus on bio-electrosprays as applied 

to the direct handling of human sperm. 

 

Bio-electrosprays (BES) unveiled in 2005 by Jayasinghe et al., 7 have since been shown to have 

no negative effects on cells and their behavior in comparison to controls, post exposure over 

long periods of time. This technology has been applied to a wide range of cell types spanning 

the immortalized, primary to stem cells including whole fertilized embryos. 8 In these studies 

we wish to demonstrate our investigations into bio-electrospray’s ability to handle human sperm. 

Our curiosity is not only triggered by bio-electrospray’s flexibility and our accumulated 

knowledge on the technique, but also by our awareness of the escalating issues currently faced 

in human reproductive science and medicine. Despite a number of assisted reproductive 

technologies constantly being introduced or evolving for the improved and safer treatment of 

infertile patients, those current methods have failed to address the poor success rates of human 

sperm preservation where a large proportion of sperm is damaged during the freezing and 

thawing process due to various factors that can affect sperm viability such as temperature 

changes, ice formation during freezing or thawing and osmotic stress from the cryoprotective 

solutions that are used in the process. 9 This is a major disadvantage for men with poor semen 

parameters as those account for 40-50 % of all infertility cases. 10 This also highlights the 

fragility of this specialized cell and the importance of using it in this research model to suggest 

new alternatives for its preservation. Therefore bio-electrosprays offer a route to both forming 

encapsulations of multiple compartments, 11 which could be formed with either separated 

material membranes, to those of a mixed membrane, within a single encapsulation. This enables 

the possibility to both precisely control freezing and thawing of sperm samples without 
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damage/loss during the process. Therefore, in addressing our curiosity, the first step was to 

understand whether human sperm could be bio-electrosprayed, without causing any damage, to 

studying the operational conditions of bio-electrosprays for processing these self-propelling 

cells in both a medium favorable for maintaining their viability, and for forming near-

monodispersed sperm bearing encapsulations.   

 

 

Experimental  

Human sperm: Semen samples provided kindly by consented healthy human donors through 

the GENNET City Fertility clinic in London United Kingdom. Neat and prepared semen 

explored in these studies were formulated by density gradient.   

 

Computer Assisted Semen Analysis (CASA): Semen analysis was carried out using the IVOS II 

Hamilton-Thorne Research CASA system (Beverly, MA) with the Motility software HT CASA 

II version 1.10. In summary, a sperm sample is placed in a fixed depth chamber, examined 

microscopically and imaged with a digital camera. The HT CASA II software records a series 

of images (n = 30-45) of the field using a rate of 60 images per second. The sperm swim freely 

in the x-y direction, while z-motion along the optic axis is limited by the chamber ceiling and 

floor. The concentration of sperm and their motility, velocity motion and morphometry 

parameters are derived for each sperm individually. The sperm tracks are classified according 

to their velocity and motion parameters and reported to the user. The quality of the specimen is 

determined from these parameters. 
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Semen solution preparation for bio-electrospraying: Human semen solutions were mixed in 

combinations of alginate and laminin which were mixed in phosphate buffer saline. The alginate 

explored in these studies were provided by FMC biopolymer, Norway. These explored alginates 

are ultrapure alginates which are used for biomedical and pharmaceutical applications. The 

laminin (human recombinant laminin 521) used in these experiments were provided by 

BioLaminin, Sundbyberg, Sweden. Both these solutions were prepared in their many 

concentrations (the alginate and laminin concentrations were varied from 1-5% and 1-10% 

respectivly), and added and mixed with either the as neat or prepared samples. The mixed 

samples were then exposed to bio-electrosprays in a wide range of applied voltage-to-flow rates 

and imaged using a high-speed camera (Phantom V7, Photo-sonics International Ltd, Oxford, 

UK).   

 

Bio-electrospraying: Sperm cells were handled using a single needle bio-electrospray setup. In 

summary the single needle bio-electrospray setup had an internal bore diameter of ~1000 μm 

with a wall thickness of ~700 μm with the ground electrode placed at ~5 cm below the needle. 

The needle was connected to a DC high voltage power supply manufactured by Glassman 

Europe Ltd., (FP-30, Tadley, U.K.), while the flow rate was modulated with a syringe pump 

manufactured by Harvard Apparatus Ltd., (PHD 4400, Edenbridge, U.K.) An applied voltage 

and flow rate regime of ~1kV to ~20kV and ~10-9 to ~10-12m3s-1 was investigated respectively 

in these studies. The bio-electrospray system was housed in a class II laminar flow hood to 

maintain sterility. 
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Results and discussion 

The first step was to explore bio-electrosprays in the single needle configuration, for assessing 

whether these cells would survive the exposure to high voltages and collection in comparison 

to control cells. Note that control cells (CTRL) are those cells that have not been exposed to the 

bio-electrospray process. Cell suspensions exposed to bio-electrospraying are indicated as BES. 

A process operational window ranging from ~1kV - ~20kV for the applied voltage to the flow 

rate ranging from ~10-9 – ~10-12m3s-1 was investigated. In addition, we varied the ring ground 

electrode diameter and its distance away from the exit of the needle, for assessing any effects 

on either the processed sperm or on the BES process. The human sperm was provided in two 

different solution configurations namely, neat, and as prepared samples. The neat samples refer 

to samples that were fresh as collected from patients, while the prepared samples indicate those 

that are suspended in phosphate buffer saline (PBS). The neat samples on exposure to BES was 

seen to elongate similar to electrospinning a high viscosity polymer which was later found to 

attach to either the ring ground electrode or the inlet of the collecting sterile falcon tube. The 

attachment point varied from either the ground electrode to the top of the flacon tube, as a result 

of the position of the BES needle with respect to the ground electrode and the falcon tube. These 

bio-electrospray results did not alter very much for these samples in terms of their jet/fiber 

behavior under the electric field. The only observation was that for a given equipment set-up if 

the applied voltage was kept constant and the flow rate was increased, the extending filament 

was seen to increase in diameter. The converse was observed if the flow rate was constant and 

the applied voltage was increased. However, the collected semen was analyzed using a 

computer assisted semen analyzer (CASA) system, showing that post-treated cells were 

indistinguishable when compared with those control cells. Having assessed the cells, the neat 

semen samples were mixed with 2% of PBS, and were subsequently subjected to bio-

electrosprays. This mixed semen solution was found to possess the ability to form an unstable 
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cone and jet(s), which were later seen to break up into semen-containing droplets. Figure 1 

depicts the as collected semen mixed with ~2% PBS, bio-electrospraying at an applied voltage 

of ~11kV for a flow rate of ~10-9m3s-1. High speed photography showed the unstable multiple 

jets forming from a single filament of semen suspension exiting the BES needle (figure 1, arrow 

mark 1). From previous literature 12 we see that this process which is unstable promotes the 

production of a polydisperse distribution of semen-containing droplets, which is also captured 

in the image (figure 1). In addition, the evolving jets are found to be undergoing jetting modes 

referred to as stable cone-jetting (figure 1, arrow mark 2) and ramified (figure 1, arrow mark 3) 

modes. An interesting jetting behavior we have captured during this process was where a 

completely detached jet from the main filament continues its flight during which the detach jet 

segment is seen to breakdown into droplets (figure 1, arrow mark 4). This detached jet segment 

fragmenting into droplets results from the loss in connectivity to the primary filament (figure 1, 

arrow mark 1) of liquid at the needle exit.      
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Figure 1. Characteristic high-speed digital image captured using a Phantom V 7.3 high speed 

camera. Capturing was carried out at ~15000fps. Arrow mark 1) depicts the filament of 

suspension containing sperm, 2) stable cone-jetting with the jet undergoing whipping and 

transitioning to droplets, 3) ramified jetting with droplets generating from the breaking up of 

the whiskers formed off the jet to finally 4) a segment of a jet having detached from the primary 

filament (arrow mark 1), thus loosing electrical connectivity which is later seen to break up into 

droplets. Scale bar represents 1700um.  

 

This chaotic jetting behavior was seen to be random if the applied voltage was elevated with 

the frequency of whipping increasing. If the applied voltage was kept constant and the flow rate 

was increased, this would cause jetting but would reduce in whipping frequency with the 
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increasing flow rate. Nevertheless, stable cone-jetting as a single jetting mode was never 

achieved. From our past experience in the handling of living cell suspensions this is a direct 

result of the sample’s unbalanced properties of primarily electrical conductivity and viscosity. 

Therefore, having established that processed cells are seen to remain viable post-treatment, at 

both varied applied voltage and flow rates for given constant flow rates and voltages 

respectively, we set out to establish stable cone-jetting in the single jet mode. As one of our 

intentions was to encapsulate sperm, having now established that the process does not have any 

negative effects on the sperm, we decided to include alginate in the semen mixture which has 

previously been explored for compartmentalizing a wide variety of living cells. 14 Furthermore, 

we added laminin into the mix so that the matrix properties (such as the rheological properties) 

within the mixture would be enhanced. Therefore, in the proceeding studies we varied the 

percentage of alginate mixed in PBS from 1-5% and also included 2-10% of laminin.  

 

Medical grade alginate PRONOVO UP MVM supplied by FMC Biopolymer (Norway) and 

human recombinant laminin 521 (BioLamina, Sundbyberg, Sweden) was mixed with PBS at 

varied concentrations, and was mixed with prepared samples of human sperm and exposed to 

bio-electrosprays. At the lowest concentrations of mixtures, the sperm was seen to oscillate 

from unstable to near stable cone-jetting conditions (figure 2). The equipment arrangement was 

set to the needle exit having a distance of ~5cm away from the ring ground electrode.           
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Figure 2. Representative captured digital images of the near-stable jetting process, achieved 

during the bio-electrospraying of human sperm with 1% alginate mixed with 2% laminin and 

human sperm. The panels from a) – l) depict the achievement of instantaneous single stable 
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cone and jet forming at the exit of the needle subsequently resulting in the cone elongating into 

a large filament of liquid, later detaching from the recoiling cone at the needle exit. The 

detaching end of the large filament similar to the liquid at the exit of the needle is found and 

seen to recoil and cause a rippling-like liquid filament while the opposite end is jetting and 

generating droplets of near mono-dispersity. The loss in electrical connectivity of the detached 

fragment of liquid while undergoing this rippling or oscillatory behavior is seen to detach from 

the droplet generating jet and forms into a single large droplet, while the remaining jet on 

generating droplet soon after detachment are seen to fragmentate into droplets much like in 

figure 1 arrow mark 4. Scale bar denotes 1700um. 

 

Figure 2 depicts the sequence of digital images captured during the instantaneous forming of 

the near stable cone-jetting sequence (instability) which was repetitive. The applied voltage and 

flow rate at this stage was set to ~8kV and ~10-10m3s-1 respectively. The sequence of events 

captured show the stable cone and jet form, and generate a steady jet from which droplets are 

generated. This stability evolves into an unstable scenario where the cone section elongates 

(figure 2, panels b - d) and collects into a larger jet which continues to produce a stable jet and 

the formation of a near-mono dispersity of droplets. This elongating cone is later seen to narrow 

and pinch off yet continuing to maintain a stable jet and form droplets (figure 2, panels e- g). 

In panels f) and g) the liquid cone detaches with the elongating cone fragment and starts to 

withdraw towards the needle exit. Consequently, panels h) to j) show the liquid at the exit of 

the needle recoil with the cone fragment behaving in a similar fashion but retains the jet and the 

droplet production process. The disconnection of the liquid from the main cone, on further time 

lapse shown in panels k) and l), demonstrate the oscillatory recoiling fragment detaching the 

jet from its apex and forming into a single large droplet while the detached jet generating 

droplets are seen to subsequently transition from a jet to a droplet line. These sequences of 

events take form due to the instability in the jetting process together with the loss in electrical 
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connectivity with the charged needle. The behavior of the jetting scenario observed till reaching 

the voltage of ~8kV for a given flow rate of ~10-10m3s-1 was seen to undergo jetting from 

microdripping to unstable and oscillatory to unstable coning mode. After reaching the jetting 

scenario just described in detail and captured in figure 2, further elevating the applied voltage 

was seen to increase the frequency of the scenario captured in figure 2, to progressing to the 

spindle and multi-jet modes which all took place in the unstable mode. If the voltage was kept 

constant and the flow rate was either lowered or increased the stability would be disturbed in 

terms of it increase in frequency for reducing the flow rate while, in the case of increasing the 

flow rate, the jetting process was seen to reduce in frequency and transition into a pulsating jet 

to microdripping from small to larger droplets with the increasing flow rate. This behavior is 

typical of a medium having unbalanced properties (electrical conductivity, viscosity, density, 

relative permittivity and surface tension). Note that unlike previous work carried out with 

electrosprays 13, these jets are much more complex, as they contain living biological material 

which are in motion. In addition, the media explored for maintain these living materials contain 

components which are not favorable for forming stable spray conditions, such as the need for 

this media to contain high concentrations of ions, which are required for maintaining the cells 

complicated metabolisms. The bio-electrospray needle was varied in distance from the ring 

ground electrode from ~1-10cm. The closer the needle was to the electrode at elevated applied 

voltages, for a majority of flow rates, discharging was experienced. For distance nearing 10cm 

the applied voltage required elevation and yet did not stabilise the jetting process. In our pursuit 

for achieving stable cone-jetting we mixed the highest concentrations of alginate and laminin 

with the prepared sperm samples, namely 5% and 10% of alginate and laminin respectively. 

These samples were subsequently introduced to bio-electrosprays, a similar operational window 

was traversed and investigated in detail.   
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These high concentrations for both alginate and laminin together with the prepared sperm 

samples, were seen to encourage greater stability, but this time with the notable observation of 

the jetting process to yield a much more pronounced cone with a longer jet. The bio-electrospray 

equipment set-up, namely the distance between the two electrodes were maintained at ~5cm 

with the applied voltage and flow rate set to ~8kV for a given flow rate of ~10-10m3s-1. The 

increase in the percentage of mixed alginate and laminin with the purified sperm samples 

increased the suspension viscosity which resulted in a very distinctive formation of a cone and 

jet at the exit of the needle. The viscosity increase was seen to contribute significantly to the 

ensuing jet by elongating, thus increasing its whipping motion which is due to the accelerating 

jet between the electrodes, undergoing resistance forces due to air drag caused by the 

surrounding atmosphere. Although the viscosity increase gave an increase in the length of the 

jet and its whipping, the droplets generated were polydispersed as evident from the sequence 

of images in figure 3. It is noteworthy that although the properties of this sperm suspension 

were very different to the other, which had a significantly lower percentage of both alginate and 

laminin, they shared one common behavioral characteristic as seen in the sequence of images 

depicting the jet detaching from the liquid cone. Noticeably the elongating jet fragment did not 

contain the same volume of liquid but behaved in a similar fashion. Additionally, the whipping 

jet did somewhat also behave in a similar manner yet with the differentiation of a chaotic 

whipping and jetting fragment.  

 

Establishing these bio-electrospray operational conditions were as before where we maintained 

the distance of ~5cm between the electrodes and varied the applied voltage and flow rates. In a 

very similar jetting behavioral pattern similar to those of figure 2 the applied voltage for a 

constant flow rate and vice versa were seen to give similar results with the noticeable defined 

cone which formed at the exit of the needle with the much longer elongating jet. The erratic 

whipping nature of the jet was seen to increase in frequency with increasing applied voltage 
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whist this behavior was seen to settle down to instability at rather lower applied voltages to 

higher flow rate for a given applied voltage.    
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Figure 3. Characteristic digital images of bio-electrospraying in the pulsating cone jet mode, of 

human sperm with 5% of alginate mixed with 10% laminin and prepared human sperm. Panels 

a) – e) illustrate an evolving pulsating cone and jet forming at the exit of the needle. Note the 

elongating jet which is fine and later seen to start jet whipping. Sequence in panels f) to i) depict 

the elongating jet which demonstrates a feature in pulsation. Panels j) - r) show a distinctive 

dimensional and shape change in the character of the cone whist the jet initially elongate and 

narrows to subsequently pinching and breaking off. From panels k) to r) the process behavior 

is very similar to those described and shown in figure 2. Scale bar in panel A) applies to all 

panels and represents 1700um. 

 

Many samples were studied and closely investigated for their jetting behaviors with varied 

percentages of both alginate and laminin. In these studies, we subsequently found stable jetting 

conditions did prevail for the bio-electrospray set up as described above, for an addition of 

alginate and laminin at ~2.5% and ~6.5% respectively, mixed with the prepared sperm samples. 

Figure 4a portrays the stable cone-jetting process in action at an applied voltage of ~9kV for a 

given flow rate of ~10-9m3s-1. Increasing the flow rate to ~10-7m3s-1 was seen to increase the 

droplet sizes but was seen to also promote some unstable behavior. At this stage, the applied 

voltage was elevated to ~10kV. This increase in both flow rate and applied voltage gave rise to 

a much larger jet diameter, shorter jet and a much more vivid jet whipping behavior (figure 4b). 

This is not related to the increase in applied voltage as the flow rate was also increased. 

Moreover, the whipping at the lower voltage, the jet and whipping sections of the jet were 

similar in length (figure 4a) but in the latter operational condition the whipping jet section was 

much longer than the jet (figure 4b). Previous literature does not explain this behavior, however 

from our experience with these jets we believe this is brought about by the complexity of these 

matrix rich solutions accommodating living cells, which are studied less than previous studies 

on suspensions containing non-living materials.   
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Figure 4. Typical high-speed digital images captured at a) an applied voltage of ~9kV for a flow 

rate of ~10-9m3s-1 and b) at an applied voltage ~10kV for a given flow rate of ~10-7m3s-1. These 

conditions are seen to have effect on the jet length and diameters, which increases with the 

increasing flow rate. A notable feature previously not reported clearly in the literature, is the 

proportions in the lengths in the jet compared to that of the whipping section of the jet. 

Commonly the whipping section is shorter than the jet and in some scenarios, despite being 

longer, is seen to frequently detach after formation from the jet and breaks down into droplets. 

This was not the case here. Therefore, this feature is attributes to the properties of these living 

suspensions for maintaining the well-being of the human sperm. Scale bars in panels a) and b) 

represent 1700um. 

 

Since achieving stable cone-jetting mode, all subsequent samples of prepared sperm were 

mixed at these proportions of alginate and laminin and bio-electrosprayed. The resulting droplet 

were collected directly into sterile falcon flasks. The collected sperm samples were immediately 



     

18 
 

analyzed using the CASA system for assessing the various aspects of sperm viability in 

comparison to controls. Figure 5a shows the collected sperm samples in comparison to control 

samples (figure 5b). 
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Figure 5. Representative optical micrographs of a) bio-electrosprayed (BES) and b) the control 

(CTRL) sperm cells. On observing the samples, they were indistinguishable from each other. 

Both samples were seen to have a significantly large proportion of live sperm cells. The colour 

coded lines seen on the heads of the spermatozoa are the trajectories followed and generated on 

the CASA system for assessing their different motility classifications according to the World 

Health Organisation (WHO) guidlines. Note that immotile spermatozoa are identified with a 

red dot and very few cells contain these dots instead of trajectory lines in both panels. Scale 

bars in both panels represent 50um.     

 

On assessment of samples through the CASA system, we noted that a large majority were 

progressively motile in all the collected (56 % category A and 20 % category B motility sperm, 

Figure 6a) and control samples (52 % category A and 20 % category B motility sperm, Figure 

6a), no statistical significance was noted between the two groups. Further analysis of all velocity 

motion parameters of spermatozoa again highlighted no significant differences between 

collected and control samples (Figure 6b); average velocity path (VAP, 33.7 vs 32.0 % 

respectively, NS), curvilinear velocity (VCL, 62.6 vs 59.9 % respectively, NS), straight line 

velocity (VSL, 23.1 vs 21.6 % respectively, NS), and amplitude of lateral head displacement 

(ALH, 4.6 % for both groups, NS), and no significant differences in terms of proportion of 

spermatozoa that are hyperactivated (5.1 and 4.6 % respectively, NS, Figure 6c).  
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Figure 6. Summary graphs representing a) motility according to WHO classifications of 

spermatozoa between BES and control samples, b) classification of sperm velocity motion 

parameters between BES and control samples, and c) hyperactivation index sub-population of 

spermatozoa in BES and control samples, no significant differences observed in any of the 

groups, NS>0.05. 

 

The post-bio-electrosprayed cells were comparable in all the assessed aspects in term of their 

viability. Therefore, our investigations progressed to encapsulating the sperm which was carried 

out with calcium chloride. In this instance, the bio-electrospray equipment set up was modified, 

removing the sterile falcon flask (previously used for sample collection) and was replaced with 

a magnetically stirred beaker accommodating the calcium chloride. The concentrations of 

calcium chloride explored in these studies were similar to those explored in our previous studies. 

14 Cross-linked and collected samples were observed and were seen to be indistinguishable with 

control samples. Figure 7a shows the encapsulated spermatozoa within a cross linked bead of 

alginate. Closer examination of the bead showed the encapsulated sperm within the bead (figure 

7b).  
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Figure 7. Optical micrographs depicting characteristics images of a) semen encapsulating 

microbead and b) a high magnification image of the compartmentalized semen. Scale bars in 

panels a) and b) represent 1mm and 50um respectively.  

 
 
In figure 7a the fine specks which appear to be dispersed within the bead are the spermatozoa, 

the relatively large darker spheres are trapped bubbles within the bead. Note that some of these 

specks which are the spermatozoa, and these bubbles appear to be in focus while some are out 

of focus, this is due to the focus plane of the microscope, and these encapsulate proximities 

being in three-dimensions. The magnification in panel 7b depicts the dispersed and 

compartmentalized spermatozoa within the bead, here as in the previous image in panel 7a some 

of the encapsulates appear to be in focus while other are not. These encapsulates where 

dissolved and found to have retained the sperm cells viability, as the live cell numbers were 

comparable to control cells. Figure 8 depicts collected sperm cell encapsulates over a time 

frame of ~10 minutes.    
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Figure 8. Bio-electrosprayed and compartimentalised semen collected over a time frame of ~10 

minutes. The image depicts those encapsulates resuspensed in phsophate buffer saline. Scale 

bar represents ~3mm.  

 

 

Conclusions 

These studies demonstrate the versatility of bio-electrosprays ability to handle a wide range of 

living cells. Similar results were observed for cell electrospun human sperm. In these studies, 

we demonstrated the ability for bio-electrosprays to directly handle human sperm without 

compromising its viability. Many aspects of sperm viability were assessed using the well-

established computer assisted semen analysis system. The post-bio-electrosprayed cells were 

compared with controls, and found to be indistinguishable. In addition to this finding we 
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pursued the ability to BES these sperm cells in stable conditions, for generating near-

monodispersed sperm containing crosslinked beads, which could be applied to many purposes 

in the reproductive science and medicine fields of research and development. For example, 

where patients with low sperm counts, could have semen encapsulated and stored for use at a 

later date, at which time the harvesting of these cells would be susceptible to minimum or no 

loss in cell viability. This would be controlled by the capacity for cells to be compartmentalized 

in multiple compartments which would allow the encapsulated spermatozoa to be frozen and 

thawed without inflicting any negative aspects on those encapsulates. This application is also 

relevant in fields such as the agriculture and aquaculture industries where sperm could be sorted 

and used when required without any losses. Thus, enabling the maintenance of a longer shelf-

life for encapsulated spermatozoa and seeds.  
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