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Abstract—This paper develops a method to analyse robust
stability of a generic electrical power system for safe-critical
applications over all operating conditions. Standard methods can
guaranty stability under nominal conditions but do not take into
account any uncertainties of the model. In this work, stability
is assessed by using a Structural Singular Value concept that
can provide a measure of stability robustness of a Linear Frac-
tional Transformation (LFT)-based linear system with structured
parametric uncertainties. In line with this, the first step was to
develop a parameter-dependent linear time-invariant state-space
model of the system that is valid for all operating conditions.
The model was obtained by symbolic linearisation of the system
non-linear model and was further extended to include structured
parametric uncertainties of the system. The developed approach
was successfully applied to determine the critical destabilising
torque of a 4 kW permanent magnet motor drive over the defined
range of operating conditions. Matlab robust stability toolbox
was used for this analysis. The results were validated against
simulation and experimental data.

Index Terms—Robust stability, Linear fractional transforma-
tion, Structural singular value, Large signal stability analysis.

I. INTRODUCTION

This paper addresses stability issues in aircraft electrical

power systems (EPS). The More-Electric Aircraft will have

an increased electrical distribution with a multiplicity of

power electronics converters interfaced loads. It is well known

that these loads, when tightly controlled, present a negative

impedance to the source and thus can cause severe stability

issues within the power system [1]. In order to be able to

guaranty stability of the system over all operating conditions,

uncertainties in the system model have to be taken into

account.

Based on existing work on modelling symbolic non-linear

equations of a generic electrical power system, the work devel-

ops Linear Fractional Transformation (LFT)-based uncertainty

descriptions of the EPS for analysing stability robustness of

the system with parametric uncertainties using the principle of

structural singular value (SSV) also referred to as μ analysis.

The structural singular value is an approach that was pro-

posed to analyse the robust stability of linear models with

structured parametric uncertainties, described by Linear Frac-

tional Transformation [2] [3].The strength of robust stability

theory lies in the fact that it can determine the critical boundary

stability condition of uncertain system models where one or

multiple system parameters are allowed to vary within defined

uncertainty sets. The uncertain system model is closer to the

real system as it takes into account perturbations which are

often not considered in designs which are based solely on

nominal parameter values. Besides, where power systems are

subject to perturbations, classical stability methods, such as

Modal analysis method, cannot guarantee identification of all

critical parameters.

Generally stability studies are based on small signal models

whereby the analysis of the system behaviour is limited to

the region close to the steady state operating point. In order

to analyse small signal stability of the system for all operat-

ing points, the classical approach is to divide the operating

range into N points and for each operating point to obtain

numerical linearisation of the non-linear system model in

order to calculate eigenvalues of the linearised system matrix.

However, this approach cannot take into account dependences

of the system operating points onto the system parametric

uncertainties. Thus, the aim of our work was to develop a

general approach to linearise a non-linear system model over

all operating conditions and to represent the system by a

unique time-invariant state space model in symbolic form with

explicit parametric uncertainties suitable for μ analysis. This

has been addressed through the symbolic linearisation of a

non-linear system model. The approach will be illustrated by

applying it to a 4 kW PM machine drive to predict the system

stability margin over the defined range of operating conditions.

II. THEORETICAL BACKGROUND

A. Overview of Uncertain Systems

Fig. 1a shows an original uncertain system MΔ with the

multiple sources of perturbations embedded in the system



(a) Perturbations embedded
in original system MΔ

(b) Perturbations pulled out in MΔ

configuration using LFT

Fig. 1: Uncertain system

[3]. It is possible to separate unknown perturbations from the

known part of the system, regroup them in a diagonal matrix

Δ and represent the uncertain system in an MΔ configuration

as shown in Fig. 1b [3]. The MΔ model configuration enables

the stability margins of uncertain systems to be assessed using

SSV, as will be described later. The technique used to “pull

out” the uncertainty from the system is the Linear Fractional

Transformation (LFT).

This work is focused on the penetration of parameters

uncertainties into the system. The state space elements (A B
C D )

of an uncertain system are functions of uncertain parameters.

For instance, element Aij of the state matrix A can be

expressed as (1) where P1 to Pm denote uncertain parameters

of the system [4]. Each uncertain parameter and consequently

the whole uncertain system model can be expressed in its

corresponding LFT form [5].

Aij = f1(P1, P2...Pm) (1)

We will now define the structural singular value which follows

the Determinant Stability Condition [6]. With the assumption

that the closed loop MΔ-based model in Fig.1b is initially sta-

ble, the disturbance (Δ) is gradually increased from zero. As

the disturbance increases, it reaches the point where it becomes

sufficiently large to cause the system to become unstable. This

is the smallest structured destabilising disturbance matrix and

is measured as σ(Δ). The structural singular value (SSV or μ)

is given by the reciprocal of the minimum value of σ(Δ) at this

point, which is also known as the robust stability margin when

the poles are at the imaginary axis i.e. det(I−MΔ(jw)) = 0,

as defined in (2). The μ value also depends on the structure

of Δ which explains the designation μΔ(M(s)). This aspect

will not be pursued in this work but further information can

be found in the literature [5]- [7].

μΔ(M(s))

=
1

min[σ̄(Δ) : det(I −M(s)Δ) = 0,Δstructured]

(2)

The μ value is bounded by a lower and an upper limit. The

upper bound gives only a sufficient condition for robustness

while the lower bound gives a necessary and sufficient con-

dition and is a measure of the critical delta matrix at the

boundary of the system stability [8].

The lower bound tells us under which conditions the system

becomes unstable and is given by the reciprocal of the smallest

σ(Δ). The lower bound of μ is equal to 1 at the robust stability

margin. The smallest destabilising uncertainty σ(Δ) is equal

to 1 at this point. When the lower bound has a value larger

than 1, the system is not robustly stable, i.e. it will not remain

stable over the whole range of defined uncertainty while if its

value is smaller than 1, the system is robustly stable. In this

work, we will mainly work with the lower bound which will

be denoted by μ in later sections.

III. LINEARISATION OVER ALL OPERATING CONDITIONS

In this work, we aim to represent a non-linear system into a

linear state space symbolic configuration with all elements of

the system matrices expressed in an explicit parametric form

valid for all operating conditions. This has been addressed

through the development of the concept of symbolic lineari-

sation. The methodology will be developed and illustrated by

applying it to the PM machine drive in this section.

A. The System model

Fig. 2: The power system of the PM machine drive

We should first start with a good circuit representation of

the system under study. Fig. 2 shows the main elements of

one of the AC-DC distribution systems of a generic aircraft

power system [9]. The engine generator with the generator

control unit (GCU) assumed to have an infinitely fast controller

is represented by an ideal 3-phase balanced voltage source.

The transmission line from the power supply to the rectifier

is modelled by an RL circuit. A six-pulse diode uncontrolled

rectifier, which is an approximation of the more accepted 12-

pulse rectifier in the aerospace industry, provides DC power

to the electromechanical actuator (EMA) for a surface mount

permanent magnet (PM) machine through a DC-link filter. The

EMA of the aircraft system is a standard motor drive vector-

control structure for a PM machine, depicted in Fig. 3 [9].

With the assumption that the amplitude of the AC supply

and the DC load current are constant and that commutation

occurs only once during a commutation period, the power

stage in Fig. 2 has been modelled as the circuit in Fig. 4

by using the average-value modelling method where the six-

pulse diode rectifier is represented as a DC bus voltage (Ve).

The average modelling method has been developed in many

publications for example in [10] and will not be derived in this

work. The DC voltage Ve, the equivalent resistance Re and



Fig. 3: Block diagram of the non-linear EMA model for PM machine

the equivalent inductance Le are given by equations (3) to (5)

where Vs is the rms value of the AC phase voltage. It is to be

pointed out that the transmission line inductor Leq causes an

overlap angle and hence a commutation voltage drop which

can be represented on the DC side by a system frequency

dependent resistance rμ as shown in equation (6).

Fig. 4: Average value modelling based equivalent circuit

Ve =
3
√
3
√
2Vs

π
(3)

Re = rμ + rF + 1.824Req (4)

Le = LF + 1.824Leq (5)

rμ =
3wLeq

π
(6)

B. Symbolic linearisation of non-linear dynamic equations

The next step is the symbolic linearisation of the non-

linear dynamic equations for the PM machine drive, given in

equations (7) to (13), around its equilibrium point.

İdc = − (rc +Re)

Le

Idc +
3rcV

∗

sqmIsqm

2LeVout

−Vout

Le

+
Ve

Le

(7)

V̇out =
Idc
CF

− 3V ∗

sqmIsqm

2CFVout

(8)

ẇr =
KT

Jm
Isqm −

1

Jm
T (9)

İsqm =
−PFm

2Lq

wr −
Rs

Lq

Isqm +
Vsqm

Lq

(10)

V̇f = − 1

τf
Vf +

1

2τf
Vout (11)

V̇ ∗

sqm = −KIimIsqm +KIimI∗sqm −KPimİsqm (12)

+KPimİ∗sqm

İ∗sqm = −KIwwr +KIww
∗

r −KPwẇr +KPwẇ∗

r(13)

The linearised equations are then converted into the state

space configuration where x, u, y are the states, input and

output. The steady state variables and steady state inputs

at the nominal operating point are denoted as Xo and Uo

respectively. The variables of x, u, y, Xo and Uo are listed

below. The symbolic parametric expressions of Xo can be

obtained by equating the non-linear equations (7) to (13) to

zero. The input Ve and w∗

r have constant values over all

operating points while input torque varies and is denoted as

To at steady state. It is to be noted that the voltage across the

DC-Link capacitor was assumed to be equal to Vout given that

the voltage drop across the ESR of the capacitor is very small.

• x : Idc, Vout, wr, Isqm, Vf , V ∗

sqm, I∗sqm
• u :Ve, w∗

r , T
• y :Vout

• Xo: Idco, Vouto, wro, Isqmo, Vfo, V ∗

sqmo, I∗sqmo

• Uo :Ve, w∗

r , To

C. Express the state space matrix elements explicitly in terms

of system inputs and other system parameters

After obtaining the linearised model, all the elements in its

state space matrix have to be expressed explicitly in terms

of system inputs and other system parameters. For instance,

for our example circuit of the PM machine drive, the steady

state variables Idco, Vouto, wro, Isqmo, Vfo, V ∗

sqmo, I∗sqmo were

expressed in terms of To, w∗

r , Ve and KT , P , Fm, Rs, Re,

η as shown in (14) to (19). Using the energy conservation

conditions, Pdc = 3Pdq/2 where Pdq is the power in the dq

frame, Idco which is equal to ICPLo has been derived as (14).

The expression of Vouto in (18) is based on the constant power



load equation Icplo = Po/Vouto where Po = Towro/η and the

efficiency of the PM machine η = 0.89.

Idco =
(3To/2KT )(RsTo/KT + PFmwro/2)

Vouto

(14)

Isqmo = I∗sqmo = To/KT (15)

Vfo = Vouto/2 (16)

V ∗

sqmo = Vsqmo = RsTo/KT + PFmwro/2 (17)

where Vouto =
Ve

2
[1 +

√
1− 4ReTowro

ηV 2
e

] (18)

wro = w∗

r (19)

D. Approximate irrational terms using polynomial expansion

All the elements in the linearised system matrix have to be

in their rational form so that their parameters can be expressed

in their LFT configuration. Hence, all irrational terms have

to be estimated to satisfactory accuracy as a sum of rational

terms by using polynomial expansion such as Taylor series

expansion. In our case, the non-rational expression of Vouto in

(18) has been estimated in its rational form in (20) by using

the first two terms of the binomial expansion of the square

root term in (18). (20) is a good approximation of Vouto with

respect to variations in torque as shown in Fig. 5. Taylor’s

series approximation with high orders may have to be used

for more complex cases. However this tends to increase the

complexity of the final state space matrix and the order of the

delta matrix, resulting in additional computational burden and

higher simulation time.

Vouto−est = Ve −
ReTowro

ηVe

(20)

E. Replace the linearised state space matrix elements by their

explicit rational expressions

The final step is to replace the elements in the state space

matrix by their equivalent explicit rational expressions. In

our case, Vouto is to be replaced by (20) and the other

steady state variables by (14) to (17) and (19). We have

thus obtained a linear time-invariant state space symbolic

model with explicit rational parameters representing with good

accuracy all linearisations of the non-linear model over all

operating conditions. The matrix A of the developed model

is shown below. The expressions for the symbols Asubs1 and

Asubs2 which are used in matrix A are given in equations (21)

and (22) respectively. It is to be pointed out that all four state

space matrices A,B,C and D are required for μ analysis. The

developed model can now be used for robust stability analysis

of the PM machine drive over all operating conditions.

Asusb1 =
RsTo

KT

+
PFmwro

2
(21)

Asubs2 = −KIim −
KPimKPwKT

Jm
+

KPimRs

Lq

(22)

TABLE I: Nominal values for System parameters

Parameters Units Nominal Description
Values

Vs Vrms−ph 223 phase source voltage
w rad/s 2π50 source frequency
Req Ω 0.045 line resistance
Leq μH 60 line inductance
rF Ω 0.2 DC-link inductor resistance
LF mH 24.15 DC-link inductor
rc Ω 0.4 ESR of DC-link capacitor
CF μF 320 DC-link capacitor
wrated rpm 1140 rated speed
w∗r rpm 800 speed reference
Trated Nm 40 rated load torque
Rs Ω 0.5 stator resistance
Lq mH 2.3 stator leakage inductance
P poles 20 number of poles

Jm kgm2 0.004 moment of inertia
Fm Wb 0.123 constant flux of PM machine
KPim - 4.124 current loop PI constant
KIim - 3632 current loop PI constant
KPw - 0.02 speed loop PI constant
KIw - 0.863 speed loop PI constant

TABLE II: Uncertain parameter value

Parameter Unit Nominal Range of variation wrt
Value (To) nominal value (Tvar)

To (torque) Nm 20 ± 90 %

IV. ROBUST STABILITY ANALYSIS

In this section, robust stability analysis will be applied to

determine the critical destabilising load torque for the system

shown in Fig.2. In this analysis, all the system parameters are

assumed to be constant and equal to their nominal values as

defined in Table I. The only varying variable is the load torque

and it can vary up to Tvar = ±90% around its nominal value

of To = 20 Nm, as defined in Table II.

A. Modelling of uncertainties

Prior to applying μ analysis, the developed linearised system

model has to be converted in the equivalent MΔ form. The

first step is to express all the uncertain parameters of the

system matrix in their LFT form. In our case the uncertain

element To has been expressed in its LFT form in (23) where

Too is the nominal value, Tvar is the range of variation of

To expressed as a percentage of Too and δT is the unknown

normalized perturbation in torque which lies between −1 and

1 [2]. Too and Tvar are derived from the minimum torque

(Tmin) and the maximum torque(Tmax) as shown in (25) and

(26).

To = Too + ToTvarδT (23)

−1 ≤ δT ≤ 1 (24)

Too = (Tmax + Tmin)/2 (25)

Tvar = (Tmax − Tmin)/(Tmax + Tmin) (26)

From Fig.6, which is an illustration of equation (23), we can

see that when the ‘perturbation’ in torque is absent, δT = 0,



A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−rc +Re

Le

− 1

Le

0
3rcAsusb1

2LeVouto−est

−3rcAsusb1(To/KT )

LeV
2

outo−est

3rc(To/KT )

2LeVouto−est

0

1

CF

0 0
−3Asusb1

2CFVouto−est

3Asusb1(To/KT )

CFV
2

outo−est

−3(To/KT )

2CFVouto−est

0

0 0 0
KT

Jm
0 0 0

0
Asusb1

LqVouto−est

−PFm

2Lq

−Rs

Lq

−2Asusb1

LqVouto−est

1

Lq

0

0
1

2τf
0 0 − 1

Tf

0 0

0
−KPimAsusb1

LqVouto−est

(−KPimKIw +
KPimPFm

2Lq

) Asubs2

2KPimAsusb1

LqVouto−est

−KPim

Lq

KIim

0 0 −KIw

−KPwKT

Jm
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Fig. 5: Polynomial estimation of the steady state variable Vouto

torque equals to its nominal value of To = Too = 20Nm.

When the ‘perturbation’ is at its maximum, either δT = −1
at the low end of the uncertainty range where To = Tmin = 2
Nm or δT = 1 at the high end of the uncertainty range where

To = Tmax = 38 Nm.

Fig. 6: Relationship between torque and the normalised dis-

turbance in torque

After the uncertain parameters have been expressed in their

LFT form, the software MATLAB Robust stability toolbox,

can then be used for the automatic conversion of the uncertain

system model into the normalised MΔ structure and for the

computation of the lower and upper bounds of the SSV [11].

B. Application of SSV

The uncertainty matrix Δ in the MΔ configuration of the

PM machine is a (24 × 24) diagonal matrix with all the

diagonal elements being equal to δT ; “24” corresponds to

the number of times the uncertain element To appears in

the system matrix and δT is the unknown disturbance in

To. In order to determine the critical torque using structural

singular value theory, Δ is increased gradually from zero until

it reaches the point at which the system becomes unstable.

This is the minimum destabilising disturbance matrix denoted

as ΔTcr. In our case, the smallest σ(ΔTcr) is equal to δTcr

which is shown in Fig. 6. Hence, the lower bound (μ) is equal

to the reciprocal of δTcr as given in (27) [11] [12]. From the

μ or δTcr value, the critical destabilising torque Tcr can then

be derived from (28).

δTcr = 1/μ (27)

Tcr = Too + TooTvarδTcr (28)

The μ analysis of our uncertain model produced the μ chart

in Fig. 7 which shows μ to be equal to 2.38 at a frequency of

57 Hz. The critical frequency of 57 Hz corresponds to the

resonant frequency of the DC-link LC filter which can be

determined from 1/2π
√
LFCF . The critical uncertainty matrix

ΔTcr, which was also extracted from the μ analysis, is a (24

× 24) diagonal matrix with each of the diagonal elements

being equal to δTcr = +0.42. Based on the critical value

δTcr and the known values of Too and Tvar from Table II, the

critical destabilising torque Tcr can be determined 27.6 Nm

from equation (28).

μ > 1 indicates that the system is not robustly stable.

The system will not remain stable over the whole defined

uncertainty set which is 20± 18 Nm but only from Tmin = 2
Nm up to Tcr = 27.6 Nm. In this way, μ operates as a measure

of the robustness of the system stability .

In order to ensure that our system remains stable for the

whole uncertainty range, μ or the minimum value of δTcr

should be equal to 1. The first way to do this is to limit the

operating range of the system to ± 7.6 Nm i.e. To = 20±38%.

If we want to maintain the operation range to 20Nm± 90%,

then uncertainties in the LF , CF filter can be modelled in

order to find their optimal values that will guaranty stability

of the system in the whole operating range.



Fig. 7: μ chart for the determination of critical torque

V. SIMULATION RESULTS

The PM machine drive was also modelled in the Simulink

environment to enable time-domain verification of the result

from μ analysis. With the speed kept constant at 800 rpm, three

values of torque were applied in steps to the model. At time

t = 4 s, 95 % of the critical torque (26.22 Nm) was applied

to the system and the DC link voltage Vout stabilised with

time as can be seen in Fig. 8. At time t = 8 s, application of

the critical torque Tcr = 27.6 Nm caused the system to reach

boundary stability with sustained DC-Link voltage oscillation.

This confirms the results from μ analysis which predicted the

critical torque of 27.6 Nm. Applying 5% additional torque

over the critical value at t = 12s caused the system to become

unstable as shown in Fig. 8.

Fig. 8: Simulation DC-Link voltage Vout at (i) t=4s, T =
0.95Tcr (ii) t=8s, T = Tcr(iii) t=12s, T = 1.05Tcr

VI. EXPERIMENTAL RESULTS

In [9], a number of experiments were undertaken on the

rig of the PM machine drive which was described in this

work. It was found in the experiment that when the torque

was increased to 26.72 Nm at a speed of 800 rpm, the DC-

Li nk voltage waveforms showed sustained oscillation with

peak-to-peak value of 80V [9] [13]. This is in very close

agreement with the critical torque of 27.6 Nm determined from

μ analysis. The approach developed in this work to determine

the stability margin of the system over all defined operating

conditions using the principle of SSV has thus been verified

and validated against simulation results and experimental data

of the PM machine drive.

VII. CONCLUSION

The aim of this work was to apply robust stability analysis to

determine the robust stability margins of a non-linear model of

an electrical power system over all operating conditions. The

objective was met through the development of the modelling

approach which involved the representation of the non linear

model into a linear state space explicit parametric form that

is valid for the whole operating range and can account for

uncertainties in system parameters. The approach was suc-

cessfully applied to determine the critical destabilising torque

of a 4 kW permanent magnet motor drive over its defined

range of operation. The results from robust stability analysis

were validated against results from time domain simulations

and experimental data.
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