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Supporting information for ‘A classical hypothesis test for
assessing the homogeneity of disease transmission in stochastic

epidemic models’ by Aristotelous, Kypraios and O’Neill

Appendix S1

# function that calculates T #

#____________________________#

calculate.T.label <- function(label.group.order ,C.group) {

# argument description #

# label.group.order: a vector of time -ordered group labels

corresponding to time -ordered event times

# C.group: a vector giving the number of individuals in each group

# set some variables #

n <- length(label.group.order) # total number of events

group.number <- length(C.group) # total number of groups

# calculate the contribution of each group #

T.label.group <- rep(0,times=group.number) # if a group does not

appear or has C_m=1 it has contribution 0

for (k in 1: group.number) {

times.group.appears <- sum(label.group.order ==k)

if (times.group.appears == 1 & C.group[k] > 1) {

T.label.group[k] <- n - which(label.group.order ==k)

}

if (times.group.appears >= 2) {

T.label.group[k] <- sum(diff(which(label.group.order ==k)) -1)

}

}

# calculate T.label #

T.label <- sum(T.label.group)

# output #

output.list <- list(T.label=T.label ,T.label.group=T.label.group)

return(output.list)

}
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# Illustration: Abakaliki dataset #

#_________________________________#

# calculate observed value #

C.group <- c(33 ,15 ,10 ,33 ,22 ,43 ,20 ,42 ,33) # Eichner and Dietz (2003 ,

table 2)

label.group.order.obs <- c(rep(x=1,times =7)

,2,2,1,4,5,1,1,1,1,5,2,1,2,6,5,2,7,4,2,2,8,3,9,5,2) # Thompson

and Foege (1968, table 1))

T.label.obs <- calculate.T.label(label.group.order = label.group.

order.obs , C.group = C.group)$T.label

# sample from H_0 #

S <- 10000

T.label.rep <- rep(NA,times = S)

n <- length(label.group.order.obs)

group.number <- length(C.group)

for (s in 1:S) {

label.group.rep <- sample(x=rep(1: group.number ,times=C.group),size

=n)

T.label.rep[s] <- calculate.T.label(label.group.order = label.

group.rep , C.group = C.group)$T.label
}

# plot histogram #

hist(T.label.rep ,xlab=expression(bold(T^sam)),prob=T,breaks="fd")

abline(v=T.label.obs ,col="red",lty=2,lwd =2)

# calculate p-value #

mean(T.label.rep <= T.label.obs)
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Appendix S2

The random vector gesam = (ge
sam

1 , ge
sam

2 , ..., ge
sam

n ) ∼ H0 has support ge
sam

k ∈ {1, 2, ..., l}, k =
1, 2, ..., n, and for household label vector ge = (ge1 , g

e
2 , ..., g

e
n), corresponding to time-ordered event

times e = (e1, e2, ..., en), its joint probability mass function (p.m.f.) fgesam (ge) is given by

fgesam (ge) = P (gesam = ge) = P (ge
sam

1 = ge1 , g
esam

2 = ge2 , ..., g
esam

n = gen)

= P (ge
sam

1 = ge1 )P (g
esam

2 = ge2 | He−2
) . . . P (ge

sam

n = gen | He−n
)

(1)

where the first of the above terms (the marginal p.m.f. of ge
sam

1 ) is calculated as P (ge
sam

1 = m) =
Cm
C , for m = 1, 2, ..., l, and the remaining terms (the marginal p.m.f. of ge

sam

k , conditioned on He−k
,

k = 2, 3, ..., n) as P (ge
sam

k = m | He−k
) =

Cm−ν
(m)
H

e−
k

C−(k−1) , for m = 1, 2, ..., l, k = 2, 3, ..., n, where Ht−

denotes the history of the process up to time t− (where t− is the time just before time t) and ν
(m)
Ht−

denotes the number of times that the label of household m appears in ge, up to time t−.
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Appendix S3
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Figure 1: p-value from the group label test based on observing infection times, p-valuei (black
circles), and based on observing removal times, p-valuer (red crosses), against dataset index, from
the simulation study. Rows (top to bottom) correspond to scenarios 1-4 (µ =0.61, 1.32, 2.44, 3.88
and p̄L = 0.09, 0.27, 0.51, 0.70, respectively). Columns (left to right) correspond to rounds (N =
99, 199, 499, 999, respectively).
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Appendix S4

Comparison Against Other Tests

We consider the synthetic data that were generated from the Exp-2L model under the four simulation
scenarios presented in Section 4 of the main manuscript and also presented in Table 1 below. For
each of the 500 datasets that has been generated under the four scenarios below and for a given
significance level α, we implement our test using infection times and estimate its power by the
proportion of datasets in which the null hypothesis (of homogeneity of disease transmission) is
rejected out of 500.

Table 1: Simulation conditions for the simulation study. Each simulation scenario consists of 4
rounds, where the number of initial susceptibles N is set at 99, 199, 499 and 999, respectively. For
each round 500 datasets are generated. The number of individuals in each group is set at CH = 5,
in all instances.

Data generating process Parameter values p̄L

Scenario 1 Exp-2L R∗ = 2.5, γ = 0.1, µ = 0.61 0.09
Scenario 2 Exp-2L R∗ = 2.5, γ = 0.1, µ = 1.32 0.27
Scenario 3 Exp-2L R∗ = 2.5, γ = 0.1, µ = 2.44 0.51
Scenario 4 Exp-2L R∗ = 2.5, γ = 0.1, µ = 3.88 0.70

We considered three significance levels α = 0.01, 0.05 and 0.10 and the estimated power is given
in Tables 2, 3, 4 respectively. The results are in line with those presented in Table 1 in the main
manuscript, in the sense that even in the presence of a very mild within-group-transmission effect
(scenario 1) the test has adequate power if the population size N is large. For mild within-group-
transmission (scenario 2) the power of the test is somewhat evident even for small N and significance
level α.

Although there are tests in the literature for assessing the transmission homogeneity assump-
tion, they are fundamentally different to ours in many aspects as discussed in Section 7.2 of the
main manuscript. To the best of our knowledge there is no other non-asymptotic test in the liter-
ature which can be applied when only removal times are observed. Hence any fair and like-for-like
comparison between existing tests and ours is very difficult, if not impossible.

Nevertheless, we consider the case where complete temporal information is available, so that
infection and recovery times are known for each individual, and we implement the test of Britton
(1997). We estimate its power and compare it against that of our test. We note that Britton’s test
makes use of two sources of information in the data (both infection and recovery times) whereas
our is implemented using infection times only. The results are shown in Tables 2, 3, 4 respectively,
and reveal that under scenario 1 (i.e. very mild within-household transmission) our test outperform
Britton’s test especially for relatively small population size across all three significance levels. This
is not surprising given that the test of Britton (1997) is based on asymptotic results and hence more
accurate for large populations under which (scenarios 2, 3, and 4) both tests perform equally well
and have similarly high power.



6

Table 2: Power of our proposed test at significance level α = 0.01 for datasets generated under
different scenarios. In brackets, the corresponding power at the same significance level for Britton’s
test.

N = 99 N = 199 N = 499 N = 999

Scenario 1 0.056 (0.000) 0.094 (0.008) 0.232 (0.066) 0.492 (0.306)
Scenario 2 0.534 (0.350) 0.846 (0.862) 0.998 (0.996) 1.000 (1.000)
Scenario 3 0.986 (0.998) 1.000 (1.000) 1.000 (1.000) 1.000 (1.000)
Scenario 4 1.000 (1.000) 1.000 (1.000) 1.000 (1.000) 1.000 (1.000)

Table 3: Power of our proposed test at significance level α = 0.05 for datasets generated under
different scenarios. In brackets, the corresponding power at the same significance level for Britton’s
test.

N = 99 N = 199 N = 499 N = 999

Scenario 1 0.172 (0.040) 0.262 (0.142) 0.494 (0.410) 0.742 (0.744)
Scenario 2 0.746 (0.814) 0.940 (0.992) 0.998 (1.000) 1.000 (1.000)
Scenario 3 0.996 (1.000) 1.000 (1.000) 1.000 (1.000) 1.000 (1.000)
Scenario 4 1.000 (1.000) 1.000 (1.000) 1.000 (1.000) 1.000 (1.000)

Table 4: Power of our proposed test at significance level α = 0.10 for datasets generated under
different scenarios. In brackets, the corresponding power at the same significance level for Britton’s
test.

N = 99 N = 199 N = 499 N = 999

Scenario 1 0.274 (0.138) 0.372 (0.288) 0.600 (0.684) 0.830 (0.908)
Scenario 2 0.832 (0.938) 0.968 (0.998) 1.000 (1.000) 1.000 (1.000)
Scenario 3 1.000 (1.000) 1.000 (1.000) 1.000 (1.000) 1.000 (1.000)
Scenario 4 1.000 (1.000) 1.000 (1.000) 1.000 (1.000) 1.000 (1.000)
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Appendix S5

Introduction

This appendix contains the proofs of Lemmas 6.1 and 6.2 and Theorem 6.3, plus some numerical
illustrations. Note that all equations references are to equations found in this appendix. We refer
to Barbour and Eagleson (1986) as simply ‘Barbour and Eagleson’ throughout.

Proof of Lemma 6.1

Proof. For ε > 0,

P (|2Tn/n(n− 1)− 1| > ε) = P (|Tn − n(n− 1)/2| > εn(n− 1)/2)

= 1− P (|Tn − n(n− 1)/2| ≤ εn(n− 1)/2)

≤ 1− P (Tn = n(n− 1)/2) = 1− P (En) → 0

as n→ ∞ and the result follows.

Proof of Lemma 6.2

Proof. First note that

P (En) =

 ( l
n)m

n

(ml
n )

if n ≤ l,

0 if n > l,
(2)

since for n ≤ l (i) under the null hypothesis there are
(
C
n

)
=
(
ml
n

)
equally likely ways to select the

n individuals in the outbreak; (ii) the number of ways of choosing n different groups is
(
l
n

)
; (iii) in

each group selected there are m ways of choosing a single individual. Conversely if n > l then it is
impossible for all n individuals to belong to different groups.

Recall that C = ml and C ∼ θnβ, so l ∼ (θ/m)nβ = αnβ, say, where α > 0 since θ > 0.
Suppose first that β = 1, so that l ∼ αn. Since P (En) = 0 for n > l we need now only consider

the subsequence of P (En) values for which n ≤ l.
Let 0 < γ < min(α, 1), let ⌊x⌋ denote the integer part of x, and let n be large enough that

⌊γn⌋ ≥ 1. Since n ≤ l it follows from (2) that

P (En) =
n−1∏
j=1

(
l − j

l − (j/m)

)
≤

n−1∏
j=⌊γn⌋

(
l − j

l − (j/m)

)
≤
(

l − ⌊γn⌋
l − (⌊γn⌋)/m

)n−⌊γn⌋

since for 0 < x < l, f(x) = (l − x)/(l − (x/m)) is decreasing in x for m > 1. Now

l − ⌊γn⌋
l − (⌊γn⌋)/m

=
(l/n)− (⌊γn⌋)/n
(l/n)− (⌊γn⌋)/mn

→ α− γ

α− (γ/m)

as n → ∞, and since n − ⌊γn⌋ → ∞ it follows that P (En) → 0 along the subsequence for which
n ≤ l.

Suppose now that β > 1. Since l ∼ αnβ then n ≤ l for all sufficiently large n, which we
assume henceforth to be the case. We proceed by applying Stirling’s approximation (namely that
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k! ∼
√
2πk (k/e)k) to (2).

P (En) =
(
l
n

)
mn(

ml
n

) = mn l!(ml − n)!

(ml)!(l − n)!

∼ mn

√
2πl (l/e)l

√
2π(ml − n) ((ml − n)/e)ml−n

√
2πml (ml/e)ml

√
2π(l − n) ((l − n)/e)l−n

=

√
ml − n

m(l − n)

(ml − n)ml−n

(ml)(m−1)l(ml −mn)l−n

=

√
ml − n

m(l − n)

(1− (n/ml))ml−n

(1− (n/l))l−n
. (3)

We now consider the two terms in (3) as follows. Recall that that l ∼ αnβ. Since β > 1 then for
the first term in (3) we have

lim
n→∞

√
ml − n

m(l − n)
= 1.

For the second term, first observe that for sufficiently large n we have 0 < (n/ml) < (n/l) < 1.
Recall that, for |x| < 1, log(1− x) = −

∑∞
k=1(x

k)/k. Then for all sufficiently large n, the logarithm
of the second term in (3) is

log

(
(1− (n/ml))ml−n

(1− (n/l))l−n

)
= −(ml − n)

∞∑
k=1

( n
ml

)k 1

k
+ (l − n)

∞∑
k=1

(n
l

)k 1

k

= −
∞∑
k=1

nk

(ml)k−1

1

k
+

∞∑
k=1

nk+1

(ml)k
1

k

+
∞∑
k=1

nk

lk−1

1

k
−

∞∑
k=1

nk+1

lk
1

k

= −n−
∞∑
k=1

nk+1

(ml)k
1

k + 1
+

∞∑
k=1

nk+1

(ml)k
1

k

+n+

∞∑
k=1

nk+1

lk
1

k + 1
−

∞∑
k=1

nk+1

lk
1

k

= −
∞∑
k=1

nk+1

lk

(
mk − 1

mk

)
1

k(k + 1)
. (4)

Suppose that 1 < β < 2. Then

−
∞∑
k=1

nk+1

lk

(
mk − 1

mk

)
1

k(k + 1)
< −n

2

l

(
m− 1

m

)
1

2
→ −∞

as n→ ∞ since n2/l → ∞, whence P (En) → 0.
If β = 2 then as n→ ∞ the first term (k = 1) in the sum in (4) tends to −(m− 1)/(2mα) while

the remaining terms (k ≥ 2) all tend to zero. We now show that the sum of the remaining terms
also tends to zero. Recall that n ≤ l, and observe that since β = 2, n3/l2 < 1 for all sufficiently
large n; for such n and k ≥ 2,

nk+1

lk

(
mk − 1

mk

)
1

k(k + 1)
≤ n3

l2

(n
l

)k−2 1

k(k + 1)
≤ 1

k2
.
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Recall Tannery’s Theorem (a special case of the Lebesque’s dominated convergence theorem),
which states that if Sk =

∑∞
k=1 ak(n), limn→∞ ak(n) = bk, |ak(n)| ≤ ck and

∑∞
k=1 ck < ∞ then

limn→∞ Sn =
∑∞

k=1 bk. Applying this with ak(n) equal to the kth summand in (4) for k ≥ 2 and
ck = 1/k2 yields that

∑∞
k=2 ak(n) → 0 and hence P (En) → exp(−(m− 1)/(2mα)) as n→ ∞.

Finally, let β > 2. In this case all the terms in the sum in (4) converge to zero, and an identical
argument to the 1 < β < 2 case shows that the sum itself converges to zero, so that P (En) → 1 as
n→ ∞.

Although we have assumed that the population consists of groups of equal size, we conjecture
that corresponding results apply if this assumption is relaxed. Such results appear harder to prove.
For instance, deriving the corresponding equation for (2) requires summation over all possible ways
to select individuals in each possible group size, resulting in an unwieldy expression. It might be
possible to proceed using an approach in which P (En) is bounded by comparison with populations
of equal-sized groups, but it is not immediately obvious how to do this.

Proof of Theorem 6.3

Proof. We adopt the following notation from Barbour and Eagleson. First, let
∑

i,j (
∑

i,j,k,
∑

i,j,k,m)
denote the sum over all ordered pairs (i, j) (triples (i, j, k), quadruples (i, j, k,m)) of distinct integers
from {1, . . . , C}. For k = 2, 3, . . . let (C)k denote C(C − 1) . . . (C − k + 1). Define

D =
1

(C)2

∑
i,j

dij ,

d∗i =
1

C − 2

C∑
j=1

j ̸=i

(dij −D),

D1 =
1

C

C∑
i=1

(d∗i )
2,

D2 =
1

(C)2

∑
i,j

(dij − d∗i − d∗j −D)2,

and define Y , y∗i , Y1 and Y2 similarly using yij in place of dij . Next, define

d1 =
1

(C)2

∑
i,j

dij , d2 =
1

(C)3

∑
i,j,k

dijdik,

d3 =
1

(C)4

∑
i,j,k,m

dijdikdim, d4 =
1

(C)4

∑
i,j,k,m

dijdikdjm,

d5 =
1

(C)3

∑
i,j,k

d2ijdik, d6 =
1

(C)2

∑
i,j

d3ij ,

d7 =
1

(C)3

∑
i,j,k

dijdikdjk, d8 =
1

(C)2

∑
i,j

d2ij ,

and define y1, . . . , y8 similarly using yij . (Aside: in Barbour and Eagleson all of these quantities
are defined in terms of absolute values, e.g. |dijdik| for d2, but our definitions are identical for our
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setting since dij , yij ≥ 0. We also have D = d1 and Y = y1 but for ease of comparison with Barbour
and Eagleson we adopt the same notation.) Then from Barbour and Eagleson,

E[Tn] = C(C − 1)DY, (5)

s2n = var(Tn) =
4C2(C − 2)2

C − 1
D1Y1 +

2C(C − 1)2

C − 3
D2Y2. (6)

Define

εn = s−3
n

{
C4(d31 + d1d2 + d3 + d4)(y

3
1 + y1y2 + y3 + y4)

+C3(d5 + d1d8)(y5 + y1y8) + C2d6y6
}
. (7)

Corollary 2.1 of Barbour and Eagleson states that if ϵn → 0 as n → ∞ then Tn is asymptotically
Gaussian in the sense given in Theorem 6.3. We therefore proceed by obtaining suitable upper
bounds for the di and yi terms and a lower bound for the variance s2n, starting with terms involving
dij .

Observe that the C × C matrix of dij values, Md say, takes the form

Md = (dij) =



0 1/2 0 0 . . . 0 0
1/2 0 0 0 . . . 0 0
0 0 0 1/2 . . . 0 0
0 0 1/2 0 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . 0 1/2
0 0 0 0 . . . 1/2 0


. (8)

It follows that
∑

i,j dij = C/2 since the sum contains precisely C non-zero entries, all of which equal
1/2. Then

D = d1 =
1

C(C − 1)

∑
i,j

dij =
1

2(C − 1)
.

Next,

d∗i =
1

C − 2

C∑
j=1

j ̸=i

(dij −D) =
1

C − 2
(1/2)− 1

C − 2
(C − 1)

1

2(C − 1)
= 0.

Thus

D1 =
1

C

C∑
i=1

(d∗i )
2 = 0

and

D2 =
1

C(C − 1)

∑
i,j

(dij − d∗i − d∗j −D)2

=
1

C(C − 1)

∑
i,j

(
dij −

1

2(C − 1)

)2

=
1

C(C − 1)

∑
i,j

(
d2ij −

dij
C − 1

+
1

4(C − 1)2

)

=
1

C(C − 1)

(
C

4
− C

2(C − 1)
+

(C)(C − 1)

4(C − 1)2

)
=

C − 2

4(C − 1)2
.
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Next, from (8) each row and column of Md contains only one non-zero entry and it follows imme-
diately that

d2 = d3 = d4 = d5 = d7 = 0. (9)

Finally we have

d6 =
1

C(C − 1)

∑
i,j

d3ij =
1

8(C − 1)

and

d8 =
1

C(C − 1)

∑
i,j

d2ij =
1

4(C − 1)
.

We now consider the terms in (7) that involve yij values. It is helpful to tabulate these as
follows.

yij 1 2 3 4 5 . . . n− 1 n n+ 1 . . . C

1 0 0 1 2 3 . . . n− 3 n− 2 n− 1 . . . n− 1
2 0 0 0 1 2 . . . n− 4 n− 3 n− 2 . . . n− 2
3 1 0 0 0 1 . . . n− 5 n− 4 n− 3 . . . n− 3
4 2 1 0 0 0 . . . n− 6 n− 5 n− 4 . . . n− 4
5 3 2 1 0 0 . . . n− 7 n− 6 n− 5 . . . n− 5
...

...
...

...
...

...
...

...
...

...
...

...
n− 1 n− 3 n− 4 n− 5 n− 6 n− 7 . . . 0 0 1 . . . 1
n n− 2 n− 3 n− 4 n− 5 n− 6 . . . 0 0 0 . . . 0
n+ 1 n− 1 n− 2 n− 3 n− 4 n− 5 . . . 1 0 0 . . . 0
...

...
...

...
...

...
...

...
...

...
...

...
C n− 1 n− 2 n− 3 n− 4 n− 5 . . . 1 0 0 . . . 0

Writing My for the matrix of (yij) values we see that My has the form

My =

(
U V
V T Z

)
where
(i) U is an n × n symmetric matrix whose entries uij = |i − j| − 1 (i ̸= j) are the contribution
to Tn of two individuals from the same group who appear at locations i and j in the sample of n
individuals;
(ii) V is an n× (C − n) matrix with identical columns and with rows whose entries vij = n− i are
the contributions to Tn of two individuals from the same group, exactly one of whom appears in
the sample, at location i; and
(iii) Z is a (C−n)×(C−n) matrix of zeroes, these being the contribution to Tn from two individuals
from the same group who do not appear in the sample.

Observe that yij < n for all 1 ≤ i, j ≤ C. Then

y2 =
1

C(C − 1)(C − 2)

∑
i,j,k

yijyik <
1

C(C − 1)(C − 2)

∑
i,j,k

n2 = n2,

and identical reasoning yields that

y3 < n3, y4 < n3, y5 < n3, y6 < n3, y7 < n3, y8 < n2. (10)
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We thus have expressions or bounds for all terms in (7) apart from the variance s2n. However, since
D1 = 0 it follows from (6) that we can ignore Y1 and so it only remains to consider Y2. To do so
requires a number of preliminary calculations. First, note that

∑
i,j

yij =

∑
i,j

uij + 2
∑
i,j

vij

 ,

where on the right-hand side the summations are over all pairs (i, j) of distinct indices in the
U and V matrices. Since U is symmetric and uii = 0,

∑
i,j uij = 2

∑
i<j uij . Furthermore, for

k = 1, . . . , (n − 1) each k-diagonal of U (i.e. the diagonal offset by k places above the leading
diagonal) consists of (n− k) entries all equal to k − 1. Thus

∑
i<j

uij =
n−1∑
k=2

(k − 1)(n− k) = (n− 1)
n−2∑
k=1

k −
n−2∑
k=1

k2,

and after a few lines of algebra we obtain∑
i,j

uij = 2
∑
i<j

uij =
n(n− 1)(n− 2)

3
.

Since V has C − n identical columns consisting of the entries 1, 2, . . . , n− 1,

∑
i,j

vij = (C − n)
n−1∑
k=1

k =
(C − n)n(n− 1)

2

and thus ∑
i,j

yij =
n(n− 1)(n− 2)

3
+ (C − n)n(n− 1)

=
n(n− 1)(3C − 2n− 2)

3
. (11)

In a similar fashion we have ∑
i,j

y2ij =

∑
i,j

u2ij + 2
∑
i,j

v2ij

 ,

where

∑
i<j

u2ij =

n−1∑
k=2

(k − 1)2(n− k) = (n− 1)

n−2∑
k=1

k2 −
n−2∑
k=1

k3,

=
n(n− 1)2(n− 2)

12

and ∑
i,j

v2ij = (C − n)

n−1∑
k=1

k2 =
(C − n)n(n− 1)(2n− 1)

6
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yielding ∑
i,j

y2ij =
n(n− 1)2(n− 2)

6
+

(C − n)n(n− 1)(2n− 1)

3

=
n(n− 1)[2C(2n− 1)− n(3n+ 1) + 2]

6
. (12)

It follows from (11) that

Y = y1 =
1

C(C − 1)

∑
i,j

yij

=
n(n− 1)

C(C − 1)

(3C − 2n− 2)

3
,

and from (5) we obtain

E[Tn] =
n(n− 1)(3C − 2n− 2)

6(C − 1)
.

We next evaluate the row sums of My. For i = 1, . . . , C we define

ψi =

C∑
j=1

j ̸=i

yij =

n∑
j=1

j ̸=i

yij +

C∑
j=n+1

j ̸=i

yij

= ϕi + χi,

say. The structure of My implies that

χi =

{
(C − n)(n− i) i = 1, . . . , n,
0 i = n+ 1, . . . , C,

and that ϕi = n(n − 1)/2 for i = n + 1, . . . , C. Inspection of the structure of U yields that, for
2 ≤ i ≤ n− 1,

ϕi = [1 + 2 + . . .+ (n− i− 1)] + [1 + 2 + . . .+ (i− 2)]

= (n− i− 1)(n− i)/2 + (i− 2)(i− 1)/2

= i2 − (n+ 1)i+ n(n− 1)/2 + 1,

and moreover this final expression also holds for i = 1 and i = n. Assembling these results gives

ψi =

{
i2 − (n+ 1)i+ n(n− 1)/2 + 1 + (C − n)(n− i) i = 1, . . . , n,
n(n− 1)/2 i = n+ 1, . . . , C.

Note that
n∑

i=1

ϕi =
n∑

i=1

n∑
j=1

j ̸=i

yij =
∑
i,j

uij =
n(n− 1)(n− 2)

3
(13)

and, using (11),
C∑
i=1

ψi =
C∑
i=1

C∑
j=1

j ̸=i

yij =
∑
i,j

yij =
n(n− 1)(3C − 2n− 2)

3
. (14)
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Next,

y∗i =
1

C − 2

C∑
j=1

j ̸=i

(yij − Y ) =
1

C − 2
ψi −

(C − 1)

(C − 2)

n(n− 1)

C(C − 1)

(3C − 2n− 2)

3

=
ψi

C − 2
− n(n− 1)

C(C − 2)

(3C − 2n− 2)

3

and thus

y∗i + y∗j + Y =
ψi + ψj

C − 2
− 2n(n− 1)

C(C − 2)

(3C − 2n− 2)

3
+
n(n− 1)

C(C − 1)

(3C − 2n− 2)

3

=
ψi + ψj

C − 2
− n(n− 1)(3C − 2n− 2)

3(C − 1)(C − 2)

= Aij −B,

say. Then ∑
i,j

(yij − y∗i − y∗j − Y )2 =
∑
i,j

(yij − (Aij −B))2

=
∑
i,j

y2ij + 2B
∑
i,j

yij − 2
∑
i,j

yijAij

+
∑
i,j

A2
ij − 2B

∑
i,j

Ai,j +
∑
i,j

B2. (15)

We now consider the three terms in (15) involving Aij ; the remaining terms can be evaluated using
our existing results. First,

∑
i,j

yijAij =
1

C − 2

∑
i,j

yijψi +
∑
i,j

yijψj



=
1

C − 2

 C∑
i=1

ψi

C∑
j=1

j ̸=i

yij +

n∑
j=1

ψj

C∑
i=1
i ̸=j

yij


=

1

C − 2

 C∑
i=1

ψ2
i +

n∑
j=1

ψ2
j


=

2

C − 2

C∑
i=1

ψ2
i . (16)

Next,

∑
i,j

A2
ij =

∑
i,j

(
ψi + ψj

C − 2

)2

=
1

(C − 2)2

∑
i,j

ψ2
i +

∑
i,j

ψ2
j + 2

∑
i,j

ψiψj

 .
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However, ∑
i,j

ψ2
i =

C∑
i=1

ψ2
i

C∑
j=1

j ̸=i

1 = (C − 1)
C∑
i=1

ψ2
i ,

and so

∑
i,j

A2
ij =

1

(C − 2)2

2(C − 1)
C∑
i=1

ψ2
i + 2

 C∑
i=1

C∑
j=1

ψiψj −
C∑
i=1

ψ2
i


=

1

(C − 2)2

2(C − 1)
C∑
i=1

ψ2
i + 2

(
C∑
i=1

ψi

) C∑
j=1

ψj

− 2
C∑
i=1

ψ2
i


=

2C − 4

(C − 2)2

C∑
i=1

ψ2
i +

2

(C − 2)2

(
C∑
i=1

ψi

)2

.

=
2C − 4

(C − 2)2

C∑
i=1

ψ2
i +

2n2(n− 1)2(3C − 2n− 2)2

9(C − 2)2
, (17)

using (14). Next,

∑
i,j

Aij =
2

C − 2

C∑
i=1

C∑
j=1

j ̸=i

ψi

=
2(C − 1)

C − 2

C∑
i=1

ψi

=
2n(n− 1)(C − 1)(3C − 2n− 2)

3(C − 2)
(18)

using (14).
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To fully evaluate (16) and (17) we need to find
∑
ψ2
i . We have

C∑
i=1

ψ2
i =

n∑
i=1

(ϕi + (C − n)(n− i))2 +

C∑
i=n+1

(n(n− 1)/2)2

=
n∑

i=1

ϕ2i + 2(C − n)n
n∑

i=1

ϕi − 2(C − n)
n∑

i=1

iϕi

+(C − n)2
n∑

i=1

(n− i)2 +
n2(n− 1)2(C − n)

4

=
n∑

i=1

ϕ2i +
2(C − n)n2(n− 1)(n− 2)

3

−2(C − n)
n∑

i=1

{
i3 − (n+ 1)i2 + (n(n− 1)/2 + 1)i

}
+(C − n)2

n−1∑
i=0

i2 +
n2(n− 1)2(C − n)

4

=
n∑

i=1

ϕ2i +
2(C − n)n2(n− 1)(n− 2)

3

−2(C − n)n2(n+ 1)2

4
+

2(C − n)n(n+ 1)2(2n+ 1)

6
−2(C − n)(n(n− 1)/2 + 1)n(n+ 1)/2

+(C − n)2
(
n(n− 1)(2n− 1)

6

)
+
n2(n− 1)2(C − n)

4
.

(19)

The only remaining term to evaluate in (19) is
∑
ϕ2i . Writing m = n(n− 1)/2 + 1 we have

n∑
i=1

ϕ2i =
n∑

i=1

(i2 − (n+ 1)i+m)2

=
n∑

i=1

{
i4 + (n+ 1)2i2 +m2 − 2(n+ 1)i3 + 2mi2 − 2m(n+ 1)i

}
=

n(n+ 1)(2n+ 1)(3n2 + 3n− 1)

30
+
n(n+ 1)3(2n+ 1)

6

+n(n(n− 1)/2 + 1)2 − 2n2(n+ 1)3

4

+
(n(n− 1) + 2)n(n+ 1)(2n+ 1)

6

−(n(n− 1) + 2)n(n+ 1)2

2
. (20)

Since

Y2 =
1

C(C − 1)

∑
i,j

(yij − y∗i − y∗j − Y )2,
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equation (15) along with the calculations for the six right-hand side terms yields an explicit, albeit
very unwieldy, expression for Y2, and hence for the variance s2n defined at (6). However, since our
main objective is to show that ϵn → 0 as n→ ∞, it will be sufficient to find the order of magnitude
of s2n and combine this with the expressions or bounds for the other terms in (7). To begin with,
observe from (13) that the order n5 terms are dominant, and collecting them together yields

n∑
i=1

ϕ2i =

(
6

30
+

2

6
+

1

4
− 2

4
+

2

6
− 1

2

)
n5 +O(n4) ∼ 7

60
n5.

Recalling that C ∼ θn, a similar calculation applied to (19) yields

C∑
i=1

ψ2
i =

n∑
i=1

ϕ2i +

(
2(θ − 1)

3
− (θ − 1)

2
+

2(θ − 1)

3
− (θ − 1)

2
+

(θ − 1)2

3
+

(θ − 1)

4

)
n5

+ O(n4)

=

(
7

60
+

7(θ − 1)

12
+

(θ − 1)2

3

)
n5 +O(n4)

∼
(

7

60
+

7(θ − 1)

12
+

(θ − 1)2

3

)
n5. (21)

We now derive the orders of magnitude of the six terms on the right-hand side of (15). First, from
(12) we have ∑

i,j

y2ij ∼
(4θ − 3)

6
n4.

Next, from (11),

2B
∑
i,j

yij ∼
2

9

(
3θ − 2

θ

)2

n4.

From (16), (17) and (21) we obtain

−2
∑
i,j

yijAij +
∑
i,j

A2
ij =

4− 2C

(C − 2)2

C∑
i=1

ψ2
i +

2n2(n− 1)2(3C − 2n− 2)2

9(C − 2)2

∼ − 2nθ

(nθ)2

(
7

60
+

7(θ − 1)

12
+

(θ − 1)2

3

)
n5

+
2

9

(
3θ − 2

θ

)2

n4

=

(
−2θ

3
+

13

6
− 12

5θ
+

8

9θ2

)
n4.

From (18) we have

−2B
∑
i,j

Aij ∼ −4

9

(
3θ − 2

θ

)2

n4,

and finally ∑
i,j

B2 ∼ 1

9

(
3θ − 2

θ

)2

n4.
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Applying these results to (15) yields

∑
i,j

(yij − y∗i − y∗j − Y )2 ∼

(
2θ

3
− 1

2
− 2θ

3
+

13

6
− 12

5θ
+

8

9θ2
− 1

9

(
3θ − 2

θ

)2
)
n4

=

(
2

3
− 16

15θ
+

4

9θ2

)
n4.

It is straightforward to show that if f(θ) = 2/3 − (16/15θ) + (4/9θ2) then f is strictly increasing
on [1,∞) and thus for θ ≥ 1, f(θ) ≥ f(1) = 2/45 > 0. It follows that

Y2 =
1

C(C − 1)

∑
i,j

(yij − y∗i − y∗j − Y )2 ∼
(

2

3θ2
− 16

15θ3
+

4

9θ4

)
n2,

and thus from (6) and the facts that D1 = 0 and D2 = (C − 2)/(4(C − 1)2) we obtain

s2n =
2C(C − 1)2

C − 3
D2Y2

∼
(

1

3θ
− 8

15θ2
+

2

9θ3

)
n3,

whence

s−3
n ∼

(
1

3θ
− 8

15θ2
+

2

9θ3

)−3/2

n−9/2.

Noting that d1, d6, d8 = O(n−1) and recalling (9) and (10), from (7) we have

εn = s−3
n

{
C4(d31)(y

3
1 + y1y2 + y3 + y4)

+C3(d1d8)(y5 + y1y8) + C2d6y6
}
.

≤ s−3
n

{
C4(d31)(4n

3) + C3(d1d8)(2n
3) + C2d6n

3
}

= O(n−9/2)
{
O(n4n−3n3) +O(n3n−2n3) +O(n2n−1n3)

}
= O(n−1/2)

and thus εn → 0 as n→ ∞ and the result follows.

It is possible that a central limit theorem still holds if C ∼ θnβ for 1 < β < 2, but the method
of proof used for the β = 1 case appears to fail, even with tighter upper bounds on y2, . . . , y8. It
is however possible to follow the same arguments for the derivation of the asymptotic variance to
show that, if C ∼ θnβ for 1 < β < 2, then s2n ∼ n4−β/3θ.

Numerical illustrations

To illustrate Theorem 6.3 numerically for populations consisting of groups of size 2 we drew 105

samples from the sampling distribution of T for different choices of n and θ and then normalised
them using (5) and (6). Figure 2 demonstrates that even for relatively small population sizes (e.g.
250 individuals) the Gaussian approximation to the sampling distribution of T is fairly good unless
θ is large.
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Figure 2: Histograms of 105 realizations from the sampling distribution under H0 of T−E[T ]√
var(T )

for a

population of size C = θn, for different values of θ and n. The solid black lines show the probability
density function of a N(0, 1) distribution.
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