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Simple Summary: The standard method for monitoring lameness in U.K. dairy herds is mobility
scoring. Data from mobility scoring can be used to estimate the proportion of cows in the herd that are
lame (prevalence), the rate at which cows become lame (incidence), and how long cows remain lame
(duration). It is unknown how the frequency and accuracy of mobility scoring impact the accuracy of
measurement of these parameters. We developed a model to simulate lameness in a range of herd
scenarios with different prevalences and durations of lameness. We used this model to understand
how the frequency and accuracy of mobility scoring affected the accuracy of lameness parameters
calculated from mobility scoring data. Our results showed that reduced accuracy of mobility scoring
results in an over-estimation of lameness incidence and an under-estimation of lameness duration.
This effect increased with more frequent scoring. Lameness prevalence and the average number of
days to first lameness best identified lameness patterns when simulating monthly mobility scoring.
We conclude that the frequency and accuracy of mobility scoring should be considered when using
mobility scoring data to inform on lameness patterns on farms.

Abstract: Mobility scoring data can be used to estimate the prevalence, incidence, and duration of
lameness in dairy herds. Mobility scoring is often performed infrequently with variable sensitivity,
but how this impacts the estimation of lameness parameters is largely unknown. We developed a
simulation model to investigate the impact of the frequency and accuracy of mobility scoring on the
estimation of lameness parameters for different herd scenarios. Herds with a varying prevalence (10,
30, or 50%) and duration (distributed around median days 18, 36, 54, 72, or 108) of lameness were
simulated at daily time steps for five years. The lameness parameters investigated were prevalence,
duration, new case rate, time to first lameness, and probability of remaining sound in the first
year. True parameters were calculated from daily data and compared to those calculated when
replicating different frequencies (weekly, two-weekly, monthly, quarterly), sensitivities (60–100%),
and specificities (95–100%) of mobility scoring. Our results showed that over-estimation of incidence
and under-estimation of duration can occur when the sensitivity and specificity of mobility scoring
are <100%. This effect increases with more frequent scoring. Lameness prevalence was the only
parameter that could be estimated with reasonable accuracy when simulating quarterly mobility
scoring. These findings can help inform mobility scoring practices and the interpretation of mobility
scoring data.

Keywords: lameness; dairy cattle; object-oriented simulation; prevalence; incidence; duration;
mobility scoring; sensitivity; specificity; frequency
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1. Introduction

Lameness represents a major health and welfare concern in dairy cows, with significant
costs associated with treatment and reduced performance of affected animals [1]. Lameness
is most frequently quantified in dairy herds using prevalence; prevalence estimates can be
compared to target levels or national benchmarks and can be used to monitor lameness
over time. However, the prevalence does not provide a sufficient description of lameness in
dairy cows; the incidence and duration of lameness are also important to reveal the nature
of lameness in a herd [2].

The calculation of the incidence and duration of lameness requires the collection of
longitudinal data. In the U.K., mobility scoring using a four-point scale (0 = good mobility,
1 = imperfect mobility, 2 = impaired mobility, and 3 = severely impaired mobility) is the
industry standard method for collecting lameness data on commercial farms [3], and this is
commonly conducted monthly or quarterly. Eriksson, Daros [4] demonstrated that the fre-
quency of scoring impacts the estimation of lameness incidence and recommended scoring
every two weeks for longitudinal research studies. In a commercial setting, two-weekly
scoring may be deemed unrealistic, and it is, therefore, essential to understand the impact
of less frequent scoring on the accuracy of estimation of different lameness parameters.

A low intra- and interobserver agreement is frequently reported for mobility scoring
reviewed by [5], and a low sensitivity for detecting mildly lame cows can result in the
under-estimation of lameness prevalence [6]. How the accuracy of mobility scoring impacts
on the estimation of the incidence and duration of lameness, and how this varies depending
on the frequency of scoring, has also not been previously investigated.

The impact of the frequency and accuracy of mobility scoring on the estimation of
lameness parameters may not be the same across all farms but may rather depend on the
incidence, duration, and prevalence of lameness on each farm. To fully understand this,
mobility scoring data from many farms with different levels of lameness would need to
be obtained. Scoring would need to be conducted frequently (at least weekly) and over
a relatively long time period. It is, therefore, unlikely that such data could be obtained.
An alternative approach is to simulate data for a variety of herd scenarios. Simulation
approaches have the advantage that they allow research questions to be answered without
requiring large numbers of animals [7], and they provide a theoretical understanding of
how different factors interact to influence an outcome of interest, e.g., [8,9]. In the context
of livestock farming, they have most commonly been used to understand the economic
consequences of different diseases or management interventions [10–12]. Simulation has
not previously been used to investigate the estimation of lameness parameters from mobility
scoring data.

The aim of our study was to develop and deploy a simulation model to investigate
the impact of the frequency and accuracy of mobility scoring on the estimation of dairy
herd lameness parameters including prevalence, incidence, and duration.

2. Materials and Methods
2.1. Object-Oriented Simulation Model Description

The object-oriented simulation model used in this study was developed as part of
a wider project to create a real-time decision support system for dairy farms (REMEDY:
REal tiME DairY; https://gtr.ukri.org/projects?ref=48717, accessed on 3 June 2024). One
component of the REMEDY platform is a whole-farm model designed to allow accurate
forecasting of key health, welfare, economic, and environmental outcomes and provide a
framework for making informed farm management decisions. Below, we provide specific
details relating to the simulation of lameness using the REMEDY simulation model; de-
scriptions are provided with reference to the Overview, Design concepts, and Details (ODD)
protocol [13]. The simulation model was coded in the Python programming language [14]
utilising an object-oriented programming paradigm.

https://gtr.ukri.org/projects?ref=48717
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2.1.1. Model Purpose

The proximate purpose of the lameness model was to simulate the dynamics of
lameness in a dairy herd as a result of different incidences and durations of lameness
cases. This allowed the simulation of a range of scenarios for which the availability of
real-world data was limited. Our ultimate purpose was to explore how the accuracy of the
estimation of herd-level lameness parameters varies with the frequency and accuracy of
mobility scoring.

2.1.2. Model Entities, Attributes, and Scales

The model entities were the herd and cows within the herd. The simulation model was
at cow level and was simulated in daily timesteps. The model did not represent the space
or location of the animals. Real farm data were utilised for the instantiation of both herd
and animal objects (see Section 2.1.3) including the following attributes: animal identifier,
age, parity, lactational status, days in milk (DIM), reproductive status, lameness state, and
current management group (full list in Table S1). The animals had a management group
assigned, such as pre-weaned calf (age 0–41 days), weaned calf (age 42–364 days), breeding
heifer (female, age ≥ 365 days, parity = 0), cow (female, age ≥ 365 days, parity ≥ 1), or bull
(male, age ≥ 365 days), according to imported farm data (TotalVet, QMMS Ltd., Wells, UK).
The functions being applied to each animal object were dependent upon the management
group on a given day, and the animals could move through several management groups
throughout their simulated lifetime (Figure 1).
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Figure 1. Process of simulating animals depending on management group at daily timesteps. Created
with BioRender.com.

2.1.3. Process Overview and Scheduling

A “burn-in” period of 180 days was run to obtain a steady lameness prevalence
(Figure 2a), and then, each simulation was run for a further 4.5 years (5 years total sim-
ulation time) to provide sufficient data for lameness parameter estimation. On the com-
mencement of a simulation, data from a real, seasonal calving herd of 140 Holstein Friesian
cows located in Southwest England was utilised to calculate key herd characteristics and
populate the attributes of the animals currently on-farm. This herd was selected because

BioRender.com
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the herd size is similar to the U.K. average [15], and high-quality data were available to
calculate the herd characteristics and populate the animal attributes. Events were simulated
for individual animals daily, dependent on the management group of each animal as shown
in Figure 1. Reproduction and culling processes were defined to maintain the population
dynamics and target herd size, as described below.
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Figure 2. Impact of frequency and accuracy of mobility scoring on estimation of lameness parameters
for simulated herd scenarios. (a) Daily prevalence estimates with varying accuracy of mobility
scoring for one replicate simulation of a herd scenario with median prevalence = 30% and median
duration = 72 days. Points show the estimated prevalence on each date, and the red line shows
smoothed prevalence over time. The left panel shows “true” lameness, i.e., daily observations
with 100% sensitivity and 100% specificity. The centre and right panels show estimated prevalence
values based on mobility scoring with 99% specificity and 90% and 70% sensitivity, respectively.
(b) Estimated median duration of lameness compared to “true” median duration. Herd scenarios
with prevalence = 10% are shown as an example. Panels show different sensitivities and specificities
of mobility scoring, and colours show different frequencies of mobility scoring. Points show the
mean estimated duration across ten replicate simulations, and error bars show the standard deviation
around this mean. Red dashed line shows x = y. (c) Variation in relative error in estimated new cases
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per cow-year with different frequencies and accuracies of mobility scoring for four example herd
scenarios. The relative error was calculated as the difference between the estimated and true values
divided by the true value and then converted to a percentage. A positive relative error indicates an
over-estimation of the parameter, whereas a negative relative error indicates under-estimation. The
true value was that calculated from the daily time-step data with 100% sensitivity and specificity.
Colours show the true median duration, and shapes show the true median prevalence for each herd
scenario. Panels show different sensitivities and specificities of mobility scoring. Points show the
mean relative error across ten replicate simulations, and error bars show the standard deviation
around this mean.

2.1.4. Reproduction and Culling

The reproductive parameters including oestrus cycle length (mean 21 days, sd 2 days),
gestation length (mean 282 days, sd 5 days), and heat detection and conception proba-
bilities were simulated from the onset of puberty. Heat detection was assumed to have
a sensitivity of 0.6 and a specificity of 0.999 [16]; the conception probability was 0.4 [17];
and the mean age of onset of puberty was 435 days based on imported farm data (see
Supplementary Information for further details). The culling or sale of animals and mortality
were simulated dependent on the management group. The culling of milking cows was
based on animal age, pregnancy, and lameness status, i.e., older, non-pregnant cows with
a history of lameness were more likely to be culled. The risk of mortality was based on
mortality rates in the farm input data; for milking cows, the mortality varied by the stage of
lactation (DIM < 50 days: 0.000613 day−1, 50–100 DIM: 0.000442 day−1). Further detail on
the reproduction, culling/sale, and mortality sub-models is provided in the Supplementary
Information. The lameness sub-model is described below.

2.1.5. Lameness Model

Lameness was simulated for cows from their first calving and was simulated during
both lactation and the dry period. The lameness attribute had two potential values, “sound”
or “lame”. All cows were assigned as sound on initialisation of the simulation. Cows in
the “sound” group became lame at a rate determined by the incidence parameter: each
day, a random number in the interval (0, 1) was generated; if this was greater than the
incidence parameter, the cows remained sound, otherwise their lameness state was updated
to “lame”. Once a cow became lame, the duration of the lameness episode in days was set
based on a gamma distribution with defined shape and scale parameters dependent on
the duration input parameter (see Equations (2) and (3)). The end date for the lameness
episode was then calculated as the current date plus the duration in days. For cows in the
“lame” state, at each daily time step, the current date was compared to the end date for
the lameness episode. Once the end date was reached, the lameness state was updated
to “sound”.

The input parameters for the lameness model were the mean herd prevalence of
lameness and the mean duration of lameness episodes. The daily incidence rate was then
calculated as follows:

IR = (P/(1 − P))/D (1)

where IR was daily incidence rate, P was prevalence, and D was average duration in days.
The duration of lameness was modelled as a gamma distribution because the litera-

ture suggests that a small proportion of cows have much longer durations than the herd
average [18,19]. The shape and scale parameters for the gamma distribution of the duration
were calculated according to the following equations [20]:

Shape = D2/σ2 (2)

Scale = σ2/D (3)
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where D was the average duration of lameness in days and σ was the standard deviation
of the duration of lameness in days. The selection of input values for D and σ was as
described below (Section 2.1.7). A minimum threshold was applied to prevent very short
durations because we believed this would be unrealistic (Table 1).

Table 1. Simulated scenarios by input prevalence and duration parameters used in the simulation.

Input Duration
(Minimum Threshold)

Input Prevalence
10% 30% 1 50% 1

18 (14) days p10_d18 Excl Excl
36 (30) days p10_d36 p30_d36 Excl
54 (30) days p10_d54 p30_d54 Excl
72 (30) days p10_d72 p30_d72 p50_d72

108 (60) days p10_d108 p30_d108 p50_d108
1 Excl = combinations of prevalence and duration that were excluded from analysis because they resulted in >6
new cases per cow-year.

2.1.6. Stochasticity

The transitions from “sound” to “lame” were stochastic using pseudorandom number
distributions to determine the outcome. The duration of the lameness episodes was also
stochastic because it was drawn from a gamma distribution (Figure S1) for each lameness
event. Stochasticity was used to enable the incidence and duration to vary around defined
input parameters without needing to model the cause of the variability.

2.1.7. Selection of Prevalence and Duration Input Parameters

The literature suggests that the mean within-herd prevalence of lameness in U.K. dairy
herds is 30% [21,22]. We, therefore, selected three input prevalence values of 10%, 30%, and
50% to represent low-, average-, and high-prevalence herds (Table 1).

For the duration of lameness, the minimum values reported in the literature for U.K.
herds are 14 days [19,23] whilst the median duration is suggested to be 4 weeks with
an interquartile range of 2–7 weeks [24]. Lesion severity influences the recovery time,
with severe lesions having longer recovery times [25]. We simulated lameness in our
herd using different average duration values of 18, 36, 54, 72, and 108 days and with the
minimum thresholds shown in Table 1. We included higher values than those reported in
the literature, because without these, it was impossible to achieve the higher prevalence
values reported [21,22] without extremely high incidence rates (Figure S2c).

There was little information from the literature to inform our choice of the standard
deviation of duration (σ in Equations (2) and (3)). We, therefore, tested a variety of values
for D/σ and found that a value of 2.5 produced distributions that best matched the authors’
clinical experience. The resulting gamma distributions for the duration are shown in
Figure S1.

2.1.8. Model Testing

The criteria for model usefulness were that the prevalence and duration of lameness
calculated from the model outputs matched the values that were used as inputs.

2.2. Replicating Different Frequencies of Mobility Scoring

The model output was a .csv file containing the lameness state for every animal in
the herd at every time step over ten repeat model runs. For each replicate model run,
four additional datasets were created in R [26] by removing observations to mimic weekly,
two-weekly, monthly, and quarterly mobility scoring. These additional intervals were
selected because they are commonly used for mobility scoring in research studies or on
commercial farms.
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2.3. Varying the Sensitivity and Specificity of Mobility Scoring

To investigate the effect of varying the sensitivity and specificity of mobility scoring
on the estimation of lameness parameters, we converted lame scores to sound scores with a
probability equal to one minus the target sensitivity and converted sound scores to lame
scores with a probability equal to one minus the target specificity. Therefore, to adjust for
the sensitivity of mobility scoring, for each lame score, a random number was drawn from
(0, 1), and if this number was greater than the specified sensitivity, the lame score was
converted to a sound score, otherwise it remained a lame score. To adjust for specificity, the
same process was applied, but sound scores were converted to lame scores. This process
was carried out in R [26].

We used a range of values for the sensitivity and specificity of mobility scoring, so
we could investigate relationships between sensitivity, specificity, frequency of mobility
scoring, and herd lameness parameters. The sensitivity and specificity of mobility scoring
for detecting lameness are not known and are likely to vary between observers and farms.
Studies comparing mobility scores to the presence of lesions or claw pain report high speci-
ficity compared to sensitivity [27,28]. Extrapolating from this and the authors’ expertise,
we defined specificity as either 95% or 99% whilst exploring sensitivity at values of 60, 70,
80, or 90%.

2.4. Calculating Lameness Parameters from Simulation Data

All calculations were performed in R [26]. The lameness parameters we investigated
were prevalence and duration and three incidence-based parameters: new cases per cow-
year, median days to first lameness event, and probability of remaining sound in the year
after first calving. Lameness parameters were calculated for each dataset (daily, weekly,
two-weekly, monthly, and quarterly scoring) as follows. The prevalence was observed
to reach an equilibrium around 180 days into the simulation (Figure 2a); therefore, data
from the first 180 days of each simulation were excluded as a burn-in period. The point
prevalences and the incidence rate (new cases per cow-year) were calculated according
to the equations below. The prevalence was then summarised as the median across all
time points.

Point prevalence = Lame cows/Total cows × 100 (4)

New cases per cow-year = Total new cases/At risk cow-years (5)

For the point prevalence, total cows refers to the number of cows in the “cow” manage-
ment group (i.e., parity > 0) and, therefore, included in the lameness model on the date
in question.

The duration of each lameness episode was calculated as the number of days between
a cow first being scored lame and the first occasion that she was scored sound following
the lameness episode. Left- and right-censored episodes (i.e., episodes that included the
first or last time point) were excluded as the length of the episode could not be deter-
mined. The median duration was then calculated across all lameness episodes. The time
from calving to the first lameness event analysis for first-parity animals was performed
using the Kaplan–Meier method with the survival package [29] in R. Left-censored ob-
servations (i.e., individuals that were lame at the first time point) were excluded. The
parameters reported were median days to first lameness event and one year probability of
remaining sound.

2.5. Calculating Relative Error in Lameness Parameters

For each herd scenario, the true value of each lameness parameter was taken as the
value calculated from the daily time-step data with 100% sensitivity and specificity. The
“estimated” parameter values were those calculated when the frequency and/or accuracy
of scoring was reduced. The relative error of the estimated parameters compared to the
true value was calculated as the difference between the estimated and true values divided
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by the true value and then converted to a percentage. Finally, the mean and standard
deviation of the relative error were calculated across the ten replicate simulations.

3. Results

We have provided example figures to illustrate the results we describe below. All the
estimated lameness parameters and the relative error of these parameters compared to the
true values are shown in Figures S4 and S5, respectively.

3.1. Model Testing

For each herd scenario, we compared model outputs from 4.5-year simulations to
our input parameters. Our model accurately replicated a range of target prevalence and
duration values (Example in Figure S2a,b). We confirmed that, after the initial burn-in
period, the within-herd prevalence remained stable over the course of each simulation
(e.g., Figure 2a).

Several of the scenarios resulted in incidence rates that we deemed to be unrealistic,
particularly those with a high prevalence but low duration (Figure S2c). We decided to
exclude scenarios that resulted in fewer than six new cases per cow-year from further
analysis (n = 4 scenarios, Table 1).

3.2. Impact of Scoring Frequency on Estimation of Lameness Parameters

We initially investigated the impact of the scoring frequency on the estimation of
lameness parameters without any adjustment for accuracy of scoring; therefore, we set
the sensitivity and specificity of the mobility scoring to 100%. There was a clear effect of
scoring frequency on accuracy of lameness parameter estimation under these conditions,
and the nature of this relationship was different for different lameness parameters and
different herd scenarios. The estimated median prevalence showed the least variation
with scoring frequency, with no more than a 7% relative difference (i.e., the difference
between the estimated and true value was 7% of the true value) between the estimated and
true median values irrespective of the herd scenario. The estimated duration of lameness
was the parameter most affected by the mobility scoring frequency because the estimated
duration of the lameness episodes will always be a multiple of the length of the scoring
interval. Therefore, the accuracy of the estimated duration increased with an increase in the
frequency of scoring (the left panel of Figure 2b shows a comparison of daily, two-weekly,
and monthly scoring).

In situations in which the lameness episodes were shorter than the interval between the
scoring occasions, the incidence of lameness cases was under-estimated because cows could
become lame and recover between mobility scoring occasions. This effect was evident in
all three incidence parameters (new case rate, days to first lameness event, and probability
of remaining sound in the first year); the left panel of Figure 2c shows an example for the
new case rate. In this figure, a positive relative error indicates the over-estimation of a
parameter, i.e., the estimated new case rate is greater than the true value.

3.3. Impact of Imperfect Mobility Scoring on Estimation of Lameness Parameters

In reality, mobility scoring is not 100% sensitive or specific. We, therefore, repeated
our analysis using a range of sensitivity and specificity values for mobility scoring.

The relative error in the prevalence estimates across all simulated conditions ranged
from <1% to 55%; i.e., the greatest difference between estimated and true prevalence was
0.55 times the size of the true value. The prevalence was increasingly under-estimated
with decreasing sensitivity and increasingly over-estimated with decreasing specificity
(Figure S5) as would be expected [30]. Figure 2a shows an example of this for herd sce-
nario p30_d72: in the right panel (sensitivity = 70% and specificity = 99%), the smoothed
prevalence over time is stable at about 22% rather than at the true prevalence of 30%.

The relative error in the estimates of incidence parameters across all simulated condi-
tions ranged from <1% to 7479%, 783%, and 4300% for new case rate, median days to first
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lameness, and probability of remaining sound in the year after first calving, respectively
(Figure S5). The impact of the sensitivity and specificity on the estimation of incidence
parameters varied with the scoring frequency and herd scenario (an example of this is
shown for median time to first lameness in Figure 2c). The most notable effect was the
over-estimation of incidence with daily, weekly, and two-weekly scoring; the relative error
was the highest for the new case rate estimated from daily scoring. With monthly scoring,
the effect of reducing the sensitivity and specificity was dependent on the herd scenario,
and both under- and over-estimation of incidence occurred (shown by positive and negative
relative errors in the new case rate for monthly scoring in the middle and right panel of
Figure 2c).

The relative error in the estimates of median duration across all simulated condi-
tions ranged from <1% to 384% and varied with the scoring frequency and herd scenario
(Figure S5). The reduced sensitivity and/or specificity of scoring caused the estimated
duration of lameness to tend towards the length of scoring interval (Figures 2b and S3).
Therefore, the most marked under-estimation of duration occurred for scenarios with
long durations and daily scoring. In contrast, there was minimal impact of reducing the
sensitivity and specificity on the estimates of duration from quarterly scoring because these
were already equal to the length of the scoring interval (Figure S5).

3.4. Differentiation between Scenarios with the Same Prevalence

Whilst the prevalence of lameness was the parameter least affected by the frequency
or accuracy of mobility scoring, the prevalence is less useful to inform on the patterns of
lameness on a farm than the other parameters investigated. We, therefore, examined which
parameters facilitated the differentiation of herd scenarios with the same prevalence but
different incidences and durations. To achieve this, we replicated monthly scoring with a
sensitivity of 70% and a specificity of 99% as a reasonable representation of mobility scoring
on commercial farms. Figure 3 shows the estimated incidence and duration parameters for
the different herd scenarios dependent on their estimated prevalence to visualise whether
scenarios that appear similar in terms of estimated prevalence (x axis) could be separated
in terms of the y-axis parameter under these conditions. It is clear from Figure 3a that, in
this situation, the estimated median duration of lameness did not differentiate between
herd scenarios, with most estimated median duration values equal to the scoring inter-
val (~30 days). The three incidence parameters provided similar differentiation between
scenarios with the same prevalence, although the magnitude of the difference between
scenarios was relatively small (shown by the separation of points with respect to the y-axis
in Figure 3b–d).
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Figure 3. Differentiation between herd scenarios using lameness parameters calculated from imperfect
monthly mobility scoring. The lameness parameters, (a) estimated median duration, (b) estimated
new cases per cow-year, (c) estimated median days to first lameness event in heifers, and (d) esti-
mated probability of remaining sound in the year after first calving, are shown dependent on the
estimated median prevalence of lameness (x axis) and herd scenario (point colour). Points show
the mean estimated parameter across ten replicate simulations and error bars show the standard
deviation in the y-axis parameter around this mean. Specificity = 99%, sensitivity = 70%, and scoring
interval = monthly. For scenarios shown in the legend, p indicates prevalence (%) and d indicates
duration (days).

4. Discussion

In this study, we developed an object-oriented simulation model of lameness in
dairy herds to understand how the frequency and accuracy of mobility scoring impact
on the estimation of a variety of lameness parameters. Eriksson, Daros [4] previously
provided evidence that the frequency of mobility scoring affected the estimation of lameness
incidence; however, our simulation-based approach allowed us to perform more detailed
investigations over a broad range of scenarios. This allowed us to establish the relationships
between the prevalence and duration of lameness in a herd and the frequency and accuracy
of mobility scoring. Below, we discuss the practical implications of our findings and the
choices that were made during model development.

4.1. Practical Implications of Results

The relationship between the frequency of mobility scoring and the true duration of
lameness episodes was a key determinant of the accuracy of the evaluation of lameness
parameters. Substantial inaccuracies occurred in the estimates of all lameness parameters
except the prevalence when the true duration of lameness was shorter than the interval
between mobility scores. The median duration of lameness is reported as 4 weeks [24], and
our data highlight that, on farms with an average lameness prevalence (30%), median a
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duration <30 days cannot occur without very high incidence rates (Table 1 and Figure S2).
We would, therefore, suggest that a minimum of monthly scoring is required for the
meaningful interpretation of lameness data in a commercial setting. From our data, two-
weekly or monthly scoring appears optimum for assessing the key metrics. Quarterly
scoring is likely to under-estimate the incidence, time to first lameness, and the proportion
remaining sound in lactation one and over-estimate the lameness duration.

Accounting for uncertainty in the mobility scoring data by changing the sensitivity and
specificity greatly impacted on the accuracy of all the estimated lameness parameters with
daily, weekly, and two-weekly scoring. Even optimistic estimates of sensitivity resulted in
estimated duration values equal to the length of the scoring interval, which were, therefore,
meaningless. Caution should be exercised in interpreting duration values calculated from
mobility scoring data, particularly if the estimated median duration of lameness is observed
to equal to the length of the scoring interval.

Whilst, in this study, the daily data were largely included as a baseline comparison
for the other measures, the findings relating to sensitivity and specificity are relevant
considering the increasing use of sensor-based technologies that report in real time [31].
The existing research has focused on the ability of the data from sensors to predict mobility
score, e.g., [32,33] rather than on the impact of the frequency at which data are collected. Our
results showed that, with daily data, even small decreases in the sensitivity and specificity
resulted in a large over-estimation of incidence and an under-estimation of duration. With
this type of data, it will, therefore, be necessary to implement some form of correction for
this effect, and the approach we have developed will be valuable to investigate this further.

In summary, none of the parameters we studied were completely robust to the effects
of the frequency and accuracy of mobility scoring. It is unlikely that mobility scoring will be
carried out more frequently than monthly for most U.K. herds, and assuming an imperfect
sensitivity and specificity of mobility scoring, our results indicate that the assessment of
prevalence alongside a measure of incidence such as time to first lameness event may be
the best way to benchmark and monitor lameness.

4.2. Model Development and Input Choices

In this study, we took a theoretical approach, whereby we simulated “true” lameness
data, and various choices were made in building our lameness model. There was limited
information available in the literature to inform the parameterisation of the model, and
therefore, we based our input values for the duration and prevalence on a combination
of the available literature and our expertise. Our objective was to explore the interaction
between our input parameters and the frequency of mobility scoring rather than to recreate
specific scenarios, and therefore, we explored a range of values for each input. We also
explored a range of possible values of sensitivity and specificity to provide a better under-
standing of the relationship between the estimated lameness parameters and the accuracy
of mobility scoring in different scenarios.

We decided to model all lameness as being of a similar type with the same epidemio-
logical parameters; therefore, we did not attempt to recreate scenarios in which multiple
different aetiologies (e.g., different foot lesion types) occur together within a herd. This was
to ensure a clear demonstration of the relationships between our input parameters and the
frequency of mobility scoring. It has previously been suggested that the presence of both
infectious and claw horn lesions within a herd would likely create a bimodal distribution
for duration [4]; therefore, the results from the current study could be interpreted with
respect to each of these distributions separately. Our model does have the capability to
include multiple prevalence and duration inputs; therefore, this could be investigated
further in future studies.

The limitations of this study include that we did not model associations between
the incidence of lameness and either parity or days in milk although these have been
reported [34–36]. We did not model lameness in the dry period differently to that occurring
during lactation, and we did not include different parameters for first and recurrent cases.
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We also did not include changes in incidence and prevalence over time, such as seasonal
changes. Our model could be expanded to include these features in future work.

Finally, we replicated the sensitivity and specificity randomly rather than allowing
an increased probability of false positives or negatives for some observations compared
to others. In reality, the sensitivity and specificity are likely to be better for MS3 (severely
impaired mobility) than for MS2 (impaired mobility). Previous evidence shows that poor
agreement in mobility scoring occurs between cows with imperfect and impaired mobility,
with cows that are severely lame being unlikely to be classified as sound [37]. In most U.K.
herds, there are only a small proportion of cows that are severely lame at any one time
point with most cows being classified as either MS1 (imperfect mobility) or MS2 (impaired
mobility) [23,24,38]. We, therefore, believe that the model we created was a reasonable
representation for our purpose. It would be possible to expand the model to include
different severities of lameness; however, an increase in complexity would be required to
model the transitions between multiple different states, and there are little data available to
inform the parametrisation of such a model.

5. Conclusions

In this study, we developed a novel approach for the simulation of lameness within a
dairy herd and demonstrated the value of this approach for understanding how the mea-
surement of lameness impacts on the accuracy of the estimated epidemiological parameters.
Our findings highlight that accurate estimation of the lameness parameters other than
the prevalence cannot be achieved with quarterly mobility scoring. In addition, an over-
estimation of lameness incidence and an under-estimation of duration occur with imperfect
mobility scoring, and this effect increases with more frequent scoring. We propose that, on
commercial farms using monthly mobility scoring, prevalence together with a measure of
incidence may provide the best way to understand lameness patterns.
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www.mdpi.com/article/10.3390/ani14121760/s1: Supplementary methods: Description of object-
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Figure S2: Results of model testing for an object-oriented simulation model of lameness in a dairy
cow herd; Figure S3: Distribution of duration of simulated lameness episodes with different frequency
and accuracy of mobility scoring for herd scenario with median prevalence of lameness of 30% and
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Author Contributions: Conceptualisation, L.O. and M.G.; Methodology, L.O., R.H., M.B., E.C. and
R.C.; Validation, R.H. and R.C.; Formal Analysis, R.C.; Investigation, R.C.; Resources, A.B.; Data
Curation, R.C. and R.H.; Writing—Original Draft Preparation, R.C.; Writing—Review and Editing,
R.C., M.G., R.H., E.C., A.M., A.B. and L.O.; Visualisation, R.C.; Supervision, L.O. and M.G.; Funding
Acquisition, L.O., M.G., and A.B. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by Innovate UK in collaboration with the industry partners
QMMS Ltd. and The Dairy Group, grant number REMEDY 48717.

Institutional Review Board Statement: This project was approved by the University of Nottingham
School of Veterinary Medicine and Science’s Committee for Animal Research and Ethics (CARE,
project number 3114 200218) on the 05/05/2020.

Informed Consent Statement: Informed consent was obtained for use of farm data to inform model
parameterisation.

https://www.mdpi.com/article/10.3390/ani14121760/s1
https://www.mdpi.com/article/10.3390/ani14121760/s1


Animals 2024, 14, 1760 13 of 14

Data Availability Statement: The simulated data supporting the conclusions of this article will be
made available by the authors on request. The real farm data used to populate the simulation model
are not readily available due to privacy reasons.

Conflicts of Interest: Andrew Bradley is director of Quality Milk Management Services Ltd. Al
Manning is employed by Quality Milk Management Services Ltd. The authors declare no commercial
or personal conflicts of interest. All funders had no role in the design of the study, in the analyses, or
in the decision to publish the results.

References
1. Huxley, J.N. Impact of lameness and claw lesions in cows on health and production. Livest. Sci. 2013, 156, 64–70. [CrossRef]
2. Whay, H. Locomotion scoring and lameness detection in dairy cattle. Practice 2002, 24, 444–449. [CrossRef]
3. AHDB. Mobility Score Sheet; AHDB: Warwickshire, UK, 2020.
4. Eriksson, H.K.; Daros, R.R.; von Keyserlingk, M.A.; Weary, D.M. Effects of case definition and assessment frequency on lameness

incidence estimates. J. Dairy Sci. 2020, 103, 638–648. [CrossRef] [PubMed]
5. Schlageter-Tello, A.; Bokkers, E.A.; Koerkamp, P.W.G.; Van Hertem, T.; Viazzi, S.; Romanini, C.E.; Halachmi, I.; Bahr, C.;

Berckmans, D.; Lokhorst, K. Manual and automatic locomotion scoring systems in dairy cows: A review. Prev. Vet. Med. 2014,
116, 12–25. [CrossRef]

6. Espejo, L.; Endres, M.; Salfer, J. Prevalence of lameness in high-producing Holstein cows housed in freestall barns in Minnesota.
J. Dairy Sci. 2006, 89, 3052–3058. [CrossRef]

7. Chambers, R.B. The role of mathematical modeling in medical research: “research without patients?”. Ochsner J. 2000, 2, 218–223.
8. Russell, V.; Green, L.; Bishop, S.; Medley, G. The interaction of host genetics and disease processes in chronic livestock disease: A

simulation model of ovine footrot. Prev. Vet. Med. 2013, 108, 294–303. [CrossRef]
9. Bryant, J.; López-Villalobos, N.; Holmes, C.; Pryce, J. Simulation modelling of dairy cattle performance based on knowledge of

genotype, environment and genotype by environment interactions: Current status. Agric. Syst. 2005, 86, 121–143. [CrossRef]
10. Bruijnis, M.; Hogeveen, H.; Stassen, E. Assessing economic consequences of foot disorders in dairy cattle using a dynamic

stochastic simulation model. J. Dairy Sci. 2010, 93, 2419–2432. [CrossRef] [PubMed]
11. Kaniyamattam, K.; Elzo, M.; Cole, J.; De Vries, A. Stochastic dynamic simulation modeling including multitrait genetics to

estimate genetic, technical, and financial consequences of dairy farm reproduction and selection strategies. J. Dairy Sci. 2016, 99,
8187–8202. [CrossRef]

12. Liang, D.; Arnold, L.M.; Stowe, C.J.; Harmon, R.J.; Bewley, J.M. Estimating US dairy clinical disease costs with a stochastic
simulation model. J. Dairy Sci. 2017, 100, 1472–1486. [CrossRef] [PubMed]

13. Grimm, V.; Berger, U.; Bastiansen, F.; Eliassen, S.; Ginot, V.; Giske, J.; Goss-Custard, J.; Grand, T.; Heinz, S.K.; Huse, G.; et al.
A standard protocol for describing individual-based and agent-based models. Ecol. Model. 2006, 198, 115–126. [CrossRef]

14. Van Rossum, G.; Drake, F. Python 3 Reference Manual; CreateSpace: Scotts Valley, CA, USA, 2009.
15. AHDB. Average Size of Dairy Herd by Country; AHDB: Stoneleigh, UK, 2022.
16. Holman, A.; Thompson, J.; Routly, J.E.; Cameron, J.; Jones, D.N.; Grove-White, D.; Smith, R.F.; Dobson, H. Comparison of oestrus

detection methods in dairy cattle. Vet. Rec. 2011, 169, 47. [CrossRef] [PubMed]
17. Hudson, C.D.; Green, M.J. Associations between routinely collected Dairy Herd Improvement data and insemination outcome in

UK dairy herds. J. Dairy Sci. 2018, 101, 11262–11274. [CrossRef] [PubMed]
18. Mason, W.; Laven, L.; Cooper, M.; Laven, R. Lameness recovery rates following treatment of dairy cattle with claw horn lameness

in the Waikato region of New Zealand. N. Z. Vet. J. 2023, 71, 226–235. [CrossRef] [PubMed]
19. Leach, K.; Tisdall, D.; Bell, N.; Main, D.; Green, L. The effects of early treatment for hindlimb lameness in dairy cows on four

commercial UK farms. Vet. J. 2012, 193, 626–632. [CrossRef] [PubMed]
20. Alarid-Escudero, F.; Knowlton, G.; Easterly, C.; Enns, E. Decision Analytic Modeling Package (dampack). 2021. Available online:

https://github.com/DARTH-git/dampack (accessed on 3 June 2024).
21. Randall, L.V.; Thomas, H.J.; Remnant, J.G.; Bollard, N.J.; Huxley, J.N. Lameness prevalence in a random sample of UK dairy herds.

Vet. Rec. 2019, 184, 350. [CrossRef] [PubMed]
22. Barker, Z.; Leach, K.; Whay, H.; Bell, N.; Main, D. Assessment of lameness prevalence and associated risk factors in dairy herds in

England and Wales. J. Dairy Sci. 2010, 93, 932–941. [CrossRef] [PubMed]
23. Groenevelt, M.; Main, D.; Tisdall, D.; Knowles, T.; Bell, N. Measuring the response to therapeutic foot trimming in dairy cows

with fortnightly lameness scoring. Vet. J. 2014, 201, 283–288. [CrossRef]
24. Reader, J.; Green, M.; Kaler, J.; Mason, S.; Green, L. Effect of mobility score on milk yield and activity in dairy cattle. J. Dairy Sci.

2011, 94, 5045–5052. [CrossRef]
25. Miguel-Pacheco, G.G.; Thomas, H.J.; Huxley, J.N.; Newsome, R.F.; Kaler, J. Effect of claw horn lesion type and severity at the time

of treatment on outcome of lameness in dairy cows. Vet. J. 2017, 225, 16–22. [CrossRef] [PubMed]
26. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna,

Austria, 2020.

https://doi.org/10.1016/j.livsci.2013.06.012
https://doi.org/10.1136/inpract.24.8.444
https://doi.org/10.3168/jds.2019-16426
https://www.ncbi.nlm.nih.gov/pubmed/31677832
https://doi.org/10.1016/j.prevetmed.2014.06.006
https://doi.org/10.3168/jds.S0022-0302(06)72579-6
https://doi.org/10.1016/j.prevetmed.2012.11.006
https://doi.org/10.1016/j.agsy.2004.09.004
https://doi.org/10.3168/jds.2009-2721
https://www.ncbi.nlm.nih.gov/pubmed/20494150
https://doi.org/10.3168/jds.2016-11136
https://doi.org/10.3168/jds.2016-11565
https://www.ncbi.nlm.nih.gov/pubmed/28012631
https://doi.org/10.1016/j.ecolmodel.2006.04.023
https://doi.org/10.1136/vr.d2344
https://www.ncbi.nlm.nih.gov/pubmed/21730035
https://doi.org/10.3168/jds.2017-13962
https://www.ncbi.nlm.nih.gov/pubmed/30316603
https://doi.org/10.1080/00480169.2023.2219227
https://www.ncbi.nlm.nih.gov/pubmed/37230967
https://doi.org/10.1016/j.tvjl.2012.06.043
https://www.ncbi.nlm.nih.gov/pubmed/22884565
https://github.com/DARTH-git/dampack
https://doi.org/10.1136/vr.105047
https://www.ncbi.nlm.nih.gov/pubmed/30824601
https://doi.org/10.3168/jds.2009-2309
https://www.ncbi.nlm.nih.gov/pubmed/20172213
https://doi.org/10.1016/j.tvjl.2014.05.017
https://doi.org/10.3168/jds.2011-4415
https://doi.org/10.1016/j.tvjl.2017.04.015
https://www.ncbi.nlm.nih.gov/pubmed/28720293


Animals 2024, 14, 1760 14 of 14

27. Logan, F.; McAloon, C.G.; Ryan, E.G.; O’Grady, L.; Duane, M.; Deane, B.; McAloon, C.I. Sensitivity and specificity of mobility
scoring for the detection of foot lesions in pasture based Irish dairy cows. J. Dairy Sci. 2024, 107, 3197–3206. [CrossRef] [PubMed]

28. Dyer, R.; Neerchal, N.; Tasch, U.; Wu, Y.; Dyer, P.; Rajkondawar, P. Objective Determination of Claw Pain and Its Relationship to
Limb Locomotion Score in Dairy Cattle. J. Dairy Sci. 2007, 90, 4592–4602. [CrossRef] [PubMed]

29. Therneau, T. A package for survival analysis in R. 2023. Available online: https://CRAN.R-project.org/package=survival
(accessed on 3 June 2024).

30. Diggle, P.J. Estimating prevalence using an imperfect test. Epidemiol. Res. Int. 2011, 2011, 608719. [CrossRef]
31. Rutten, C.; Velthuis, A.; Steeneveld, W.; Hogeveen, H. Invited review: Sensors to support health management on dairy farms.

J. Dairy Sci. 2013, 96, 1928–1952. [CrossRef] [PubMed]
32. Thorup, V.; Munksgaard, L.; Robert, P.-E.; Erhard, H.; Thomsen, P.; Friggens, N. Lameness detection via leg-mounted accelerome-

ters on dairy cows on four commercial farms. Animal 2015, 9, 1704–1712. [CrossRef] [PubMed]
33. Riaboff, L.; Relun, A.; Petiot, C.-E.; Feuilloy, M.; Couvreur, S.; Madouasse, A. Identification of discriminating behavioural and

movement variables in lameness scores of dairy cows at pasture from accelerometer and GPS sensors using a Partial Least Squares
Discriminant Analysis. Prev. Vet. Med. 2021, 193, 105383. [CrossRef] [PubMed]

34. Warnick, L.; Janssen, D.; Guard, C.; Gröhn, Y. The effect of lameness on milk production in dairy cows. J. Dairy Sci. 2001, 84,
1988–1997. [CrossRef] [PubMed]

35. Green, L.; Hedges, V.; Schukken, Y.; Blowey, R.; Packington, A. The Impact of Clinical Lameness on the Milk Yield of Dairy Cows.
J. Dairy Sci. 2002, 85, 2250–2256. [CrossRef]

36. Randall, L.; Green, M.; Green, L.; Chagunda, M.; Mason, C.; Archer, S.; Huxley, J. The contribution of previous lameness events
and body condition score to the occurrence of lameness in dairy herds: A study of 2 herds. J. Dairy Sci. 2018, 101, 1311–1324.
[CrossRef]

37. Schlageter-Tello, A.; Bokkers, E.A.; Koerkamp, P.W.G.; Van Hertem, T.; Viazzi, S.; Romanini, C.E.; Halachmi, I.; Bahr, C.;
Berckmans, D.; Lokhorst, K. Effect of merging levels of locomotion scores for dairy cows on intra- and interrater reliability and
agreement. J. Dairy Sci. 2014, 97, 5533–5542. [CrossRef] [PubMed]

38. Archer, S.C.; Green, M.J.; Huxley, J.N. Association between milk yield and serial locomotion score assessments in UK dairy cows.
J. Dairy Sci. 2010, 93, 4045–4053. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3168/jds.2023-23928
https://www.ncbi.nlm.nih.gov/pubmed/38101728
https://doi.org/10.3168/jds.2007-0006
https://www.ncbi.nlm.nih.gov/pubmed/17881680
https://CRAN.R-project.org/package=survival
https://doi.org/10.1155/2011/608719
https://doi.org/10.3168/jds.2012-6107
https://www.ncbi.nlm.nih.gov/pubmed/23462176
https://doi.org/10.1017/S1751731115000890
https://www.ncbi.nlm.nih.gov/pubmed/26040626
https://doi.org/10.1016/j.prevetmed.2021.105383
https://www.ncbi.nlm.nih.gov/pubmed/34092420
https://doi.org/10.3168/jds.S0022-0302(01)74642-5
https://www.ncbi.nlm.nih.gov/pubmed/11573778
https://doi.org/10.3168/jds.S0022-030274304-X
https://doi.org/10.3168/jds.2017-13439
https://doi.org/10.3168/jds.2014-8129
https://www.ncbi.nlm.nih.gov/pubmed/24996266
https://doi.org/10.3168/jds.2010-3062
https://www.ncbi.nlm.nih.gov/pubmed/20723678

	Introduction 
	Materials and Methods 
	Object-Oriented Simulation Model Description 
	Model Purpose 
	Model Entities, Attributes, and Scales 
	Process Overview and Scheduling 
	Reproduction and Culling 
	Lameness Model 
	Stochasticity 
	Selection of Prevalence and Duration Input Parameters 
	Model Testing 

	Replicating Different Frequencies of Mobility Scoring 
	Varying the Sensitivity and Specificity of Mobility Scoring 
	Calculating Lameness Parameters from Simulation Data 
	Calculating Relative Error in Lameness Parameters 

	Results 
	Model Testing 
	Impact of Scoring Frequency on Estimation of Lameness Parameters 
	Impact of Imperfect Mobility Scoring on Estimation of Lameness Parameters 
	Differentiation between Scenarios with the Same Prevalence 

	Discussion 
	Practical Implications of Results 
	Model Development and Input Choices 

	Conclusions 
	References

