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ABSTRACT The integration of artificial intelligence (Al) techniques in power converter-based systems has
the potential to revolutionize the way these systems are optimized and controlled. With the rapid advance-
ments in Al and machine learning technologies, this article presents the analysis and evaluation of these
powerful tools as well as in computational capabilities of microprocessors that control the converter. This
article provides an overview of Al-based controllers, with a focus on online/offline supervised, unsupervised,
and reinforcement-trained controllers. These controllers can be used to create surrogates for inner control
loops, complete power converter controllers, and external supervisory or energy management control. The
benefits of using Al-based controllers are discussed. Al-based controllers reduce the need for complex math-
ematical modeling and enable near-optimal real-time operation via computational efficiency. This can lead to
increased efficiency, reliability, and scalability of power converter-based systems. By using physics-informed
methods, a deeper understanding of the underlying physical processes in power converters can be achieved
and the control performance can be made more robust. Finally, by using data-driven methods, the vast
amounts of data generated by power converter-based systems can be leveraged to analyze the behavior of
the surrounding system and thereby forming the basis for adaptive control. This article discusses several
other potential disruptive impacts that Al could have on a wide variety of power converter-based systems.

INDEX TERMS Artificial intelligence (AI), energy management, machine learning (ML), neural network
(NN), power converter control, renewable energy integration.

I. INTRODUCTION

The integration of artificial intelligence (AI) techniques in
power electronic systems has been an active area of research
for several decades. The earliest attempts to integrate Al
in power electronic systems focused on rule-based systems,
where a set of predefined rules were used to control the sys-
tem. However, these rule-based systems were limited in their
ability to adapt to changing conditions and had difficulty han-
dling more complex systems. Over the years, Al techniques
have evolved to include more sophisticated approaches, such

as expert systems, neural networks (NN), and fuzzy logic sys-
tems. These techniques have been applied to a wide range of
power electronic systems, including power converters, active
rectifiers, inverters, and motor drives. However, despite the
significant progress made in this field, there are still many
challenges that need to be addressed to fully realize the po-
tential of Al in power electronic systems.

Recently, there has been an interest in the use of
Al techniques in power electronic systems, driven by
the rapid advancements in machine learning (ML). These
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FIGURE 1. Diagram of Al applications in power electronics.

advancements have been made both in the algorithm area
and in the computational capabilities of power converter con-
trollers, which led to a significant improvement in the ability
of Al systems to handle power electronic systems. The de-
sign, control, and preventative maintenance are three key areas
where Al is currently being used in power converter-based
systems [1]. Three parts are illustrated in Fig. 1.

The design optimization of converter-based systems usually
requires a huge computing power to simulate many feasible
design candidates and select the optimal one, especially if
their fitness needs to be evaluated in various mission profiles.
The main reason for the high computing load is that converter
needs to be simulated in heat defined design process in itself
is complex in nature where mutually coupled performance
indices, such as efficiency, power density, cost, and reliability,
should be considered [2]. In addition, intelligent control is
essential for the reliable, robust, and stable operation of power
converter-based systems. For example, when Al algorithms
are added to the traditional PI/PR or advanced nonlinear
controllers, the dynamic response and tracking performance
may be improved in several aspects, such as reliability to
changing system conditions, reduction of computational load,
or consequent performance improvement [3], [4], [5]. Fi-
nally, preventive maintenance of systems, including condition
monitoring, fault tolerance, and fault diagnosis, are effective
approaches to ensure a system’s healthy operation. With the
help of Al, the desired prediction and monitoring can be
achieved much faster and more precisely than with traditional
methods [6], [7], [8].

In [1], a general review of Al algorithms and applications
for power electronics was presented from a life-cycle perspec-
tive. This article generally considered most Al techniques:
expert systems, fuzzy logic, heuristics, and ML, in three dis-
tinctive life-cycle phases: design, control, and maintenance.
Therefore, it is not specific to the controller domain in power
electronics. Supervised and unsupervised learning (UL) tech-
niques for electrical power systems were reviewed in [9].
Although popular ML algorithms were introduced, such as
recurrent NN and random forest (RF), the application areas in
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design, control, and maintenance phases were not clearly cate-
gorized and reinforcement learning (RL) was not considered.
For microgrid applications, the survey of Al techniques can
be found in [10] and [11]. Mohammadi et al. [10] discussed
the Al applications in different aspects of microgrids: energy
management, load/generation power forecasting, power con-
verter control, fault detection, cyber attacks, and protection
schemes. Arwa and Folly [11] reviewed the RL-enabled
power management in grid-tide microgrids. Also focusing on
RL, Cao et al. [12] reviewed Al applications in power and
energy systems, based on the introduction of RL principles
and categorization.

Due to the specific control features and challenges of
power converter-based systems, such as high-speed switch-
ing, complex modulation, and high-computational burden,
Al implementation in the control of these systems will be
different from the other two life-cycle phases, namely de-
sign, and maintenance. Therefore, there is an urgent need
for an analysis of Al applications in the control field for
power converter-based systems. In recent years, dramatically
increasing attention has been paid to Al applications in the
control of both individual converters and converter-based
(micro)grid systems. This article presents the analysis and
summary of the state-of-the-art research on Al and its appli-
cation status in enhancing controller performance. Regarding
the system topology, both inner loop converter control and
(micro)grid-level energy management will be considered in
this article.

The rest of this article is organized as follows. Section II
will list the popular Al techniques (mainly in ML) used in this
target domain. In Sections III and IV, this article will focus
on two aspects of Al-aided controllers: linear and nonlinear.
Both design and control applications are discussed in these
two sections. Furthermore, the specific Al application areas
will be reviewed in Section V. Finally, Section VI concludes
this article.

II. Al TECHNIQUES

Al can be implemented using predefined rules, but in most
cases, ML algorithms are used to perform specific Al tasks
based on learning from the collected data. ML algorithms can
effectively learn rules and relations from training data and
improve the trained models automatically through experience.
Therefore, the largest use of Al in power converter-based
systems is with ML. Other common Al methods include
expert systems, fuzzy logic, and metaheuristic methods. To
distinguish ML from the metaheuristic search algorithms, Gao
et al. [13] proposed a simple algorithm categorization that
comprises search algorithm and surrogate algorithm. Both
categories were used for the same optimization problem for
a converter-based actuation system.

Three main groups of ML algorithms are supervised learn-
ing (SL), UL, and RL [1], [14], as shown in Fig. 2. Generally,
both SL and UL require collecting data before training. An SL
dataset should give outputs/labels corresponding to the inputs,
while there is no label defined in UL. For RL, there is no

367



GAO ET AL.: Al TECHNIQUES FOR ENHANCING THE PERFORMANCE OF CONTROLLERS IN POWER CONVERTER-BASED SYSTEMS

On/off-line

Learning Mode Application

Learning Methods

(a). Unsupervised
Learning
(b). Supervised
Learning
(¢). Reinforcement
Learning

Regression

Classification

(a). N

FIGURE 2. Diagram of ML methods, modes, and online/offline
applications.

data collection or offline training, because it is determined
by the trial-and-error exploration of agents in an unknown
environment in order to maximize the cumulative rewards.
As shown in Fig. 2, two learning modes in ML are
regression and classification. And in practice, different on-
line/offline approaches should be investigated for different
applications. In this article, both online and offline ML model
training are reviewed for the parameter design of controllers;
but, for controller imitation learning, a common way is us-
ing the collected data for offline training. Based on the
input/output model design and the data-driven process, ML
can be an effective way to enhance the control performance of
converter-based systems. Three ML groups will be introduced
below, then ML-based emerging techniques will be discussed.

A. SUPERVISED LEARNING

If there are outputs (also called targets and answers) defined
in the training data of ML, SL methods are usually applied.
These targets can either be continuous numbers or integers.
If the targets are all integers/categories, the learning task is
known as classification, otherwise, it would be a regression
task. Therefore, both regression and classification are training
the sampled input—output pairs but their output data features
are different. Regression has no requirement for sampled data
but, in classification learning, the training outputs should in-
clude predefined categories/classes or even only 0 or 1 for
some specific problems.

According to the statistics in [1], usage of SL is 91% of all
ML applications in power electronics. In particular, artificial
neural network (ANN) is one of the most common algorithms
in SL where neurons are the fundamental information process-
ing units and the building blocks. Other SL algorithms include
linear regression [15], support vector machine [13], [16], and
RF [17].

B. UNSUPERVISED LEARNING

For UL, there is no predefined output in the training data.
UL learns how to discover patterns and information from a
dataset without preset outputs/labels/features. Such methods
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can also be used to reduce data dimensionality without losing
important information. Therefore, the training data for UL can
only have certain elements. For example, in a flower category
case, there are four elements: sepal length, sepal width, petal
length, and petal width. The UL can discover the information
that was previously undetected. An example is to categorize
different kinds of flowers by using some sampled data of four
elements.

UL problems can be further grouped into clustering and
association problems. Clustering mainly deals with finding
a structure or pattern in unlabeled data. The flower category
case is indeed a clustering problem. Association rules can
discover associations/relationships between elements in large
databases. For example, people that buy a new house are most
likely to buy new furniture.

C. REINFORCEMENT LEARNING

The third group of ML is RL, which is learning how intelligent
agents can perform a task by interacting with their environ-
ment. Unlike classical and heuristic optimization methods, RL
does not require an accurate model of the system or environ-
ment to generate an optimal solution [11], [18]. In the learning
process, these agents ought to take action (updating the policy
at the same time) in a specific environment. They would get
rewards from each step/trying and the final target is usually to
maximize the cumulative reward.

Therefore, in the beginning, how to operate in the environ-
ment is unknown, and no trustworthy data can be collected.
The agents should try different actions in the environment to
receive the corresponding rewards. Based on the cumulative
rewards, the agents can learn a good policy (which means how
to act in a certain position) in the environment. Obviously, RL
is an online learning process. It differs from SL or UL because
no input/output data pairs are collected before the learning
process.

D. ML-BASED EMERGING TECHNIQUES

The above three sections individually introduced three groups
in ML. However, the practical problems may need multiple
groups of algorithms to address, and even an independent
algorithm could encompass more than one type of learning
method. For example, deep deterministic policy gradient
usually combined SL [deep neural network (DNN)] with
RL [19], [20].

With the fast development of Al and ML, there are emerg-
ing ML techniques that came to worldwide attention in
recent years. Federated learning (FL), also known as col-
laborative learning, is one of the emerging techniques. It is
first introduced by Google in 2016 [21]. FL typically ap-
plies when individual actors need to train models on larger
datasets than their own, but cannot afford to share the data
in itself with others (e.g., for legal, strategic, or economic
reasons). The technology yet requires good connections be-
tween local servers and minimum computational power for
each node [22], [23]. FL trains an algorithm across multi-
ple decentralized edge devices or servers holding local data
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samples, without exchanging them. This approach stands in
contrast to traditional centralized ML techniques where all the
local datasets are uploaded to one server, as well as to more
classical decentralized approaches, which often assume that
local data samples are identically distributed. There are three
parts to FL: centralized, decentralized, and heterogeneous.
FL has been effectively applied to self-driving [24], wire-
less power control [25], and large-scale energy systems [23].
With the continuing development of distributed large-scale
converted-based systems, FL. could become a promising Al
technique for wireless computing and power control.
Another popular technique in ML is transfer learning (TL),
it has found several applications in electrical power systems.
TL leverages knowledge gained from one task and applies
it to a related but different task to pursue high performance
and efficiency. TL is desirable for the practical problems
that the training data are expensive or impossible to recol-
lect [26]. Some application areas of TL in electrical domain
are energy management [27], battery health [28], impedance
estimation [29], [30], and thermal performance of motor [31].

IIl. Al APPLICATIONS IN LINEAR CONTROLLERS OF
POWER CONVERTERS

Linear controllers, such as cascaded voltage and current loops,
are widely used in power converter systems to regulate the
power flow and maintain stability. However, these controllers
are designed to operate in linear systems and can have diffi-
culty performing optimally in nonlinear systems. Therefore,
for optimal performance, the parameters of linear control
loops should be adapted to the changing operating conditions
in nonlinear surrounding environments. In this context, Al-
based techniques can be used to adapt the parameters of linear
controllers in power converters.

Due to the possession of nonlinearity, and the ability of on-
line learning (transferring the real-time experience to AI mod-
els), the Al-aided PI/PR online control methods have been
widely used in different areas, such as de—dc converter [3],
[32], [33], [34], spacecraft [35], exoskeleton systems [36],
and electric vehicle charging system [37]. However, there are
generally two groups of approaches utilized to do that, design
and control, as discussed below.

A. PARAMETER ADAPTATION

1) ONLINE DESIGN

In this approach, an Al-based signal processing method is
used to take measurements from the environment and learn
the optimal parameters in real time. This can be achieved by
exploring an online Al-based surrogate model of the linear
system, which is trained using data from the system and the
environment. Al techniques, such as ANNs and heuristic al-
gorithms, can be used to build this model. By continuously
searching through the model, the controller can adapt the
parameters for different operating conditions in real time.
However, it can be computationally intensive and require a
high-frequency sampling rate.
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In [38], two types of ANNs were proposed to design a
Hammerstein model identifier and a PID controller for the
adaptive control of a converter-based hybrid energy storage
system (HESS). The online learning of Hammerstein ANN
can supply an appropriate power flow reference for the HESS
to improve unsatisfactory frequency deviations and tie power
oscillation. In [39], the student psychology optimization al-
gorithm is used for the online tuning of control parameters
within a Pl-incorporated RL. ANN controller, for power sys-
tem applications.

Apart from ANN applications, in [40], local model net-
works (also recognized as neuro-fuzzy systems) were used
to identify the model of the dc—dc buck converter, which
can model the nonlinear dynamics for the implementation
of a local linear controller regulating the converter output
voltage. To improve the transient response performance of
dc—dc converters, Liu et al. [41] combined two fuzzy-logic
controllers with a PID compensator for the coefficients and
error modifications.

2) OFFLINE DESIGN
Here, a surrogate model of the optimal parameter adapta-
tion method is created in an offline setting, using data from
the model of the environment and the converter system.
This model can be used to determine the optimal param-
eters for different operating conditions, which can then be
implemented in the controller. This approach does not re-
quire real-time adaptation, but it does require a large amount
of simulation data to be collected and processed in order
to determine the optimal parameters. Moreover, if simu-
lation data are not sufficiently well representing the real
system, this approach may yield suboptimal or even unstable
results.

The online/offline ANN-based design diagrams in a linear
controller are shown in Fig. 3. This figure uses a dc—ac voltage
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source inverter (VSI) feeding an ac load via an output LC filter
but, the general application of ANN should be similar in other
topologies, such as ac (micro)grid connected using an LCL
filter. The biggest difference between online and offline design
is that there is no intensive online training in offline design.
As a tradeoff, independent offline learning usually requires
a high number of offline simulations to collect the training
data. For dc—dc converters, Liu et al. [32] proposed using
ANN to adjust both PID coefficients and the controller struc-
ture. Maruta et al. [3] proposed an ANN-based predictor to
modify the output voltage reference values in a PID controller,
which can improve the transient response. In these studies,
ANN was trained offline to pursue high prediction accuracy
for the output voltage of the dc—dc converter.

B. CONTROL SURROGATE MODELING

Different from the above parameter adaptation studies, in [33],
an ANN was trained as an adaptive controller, which directly
outputs the duty cycle and the frequency of gate-driving sig-
nals. This belongs to the other group of Al applications in the
linear controllers, the controller surrogate model. In this ap-
proach, a surrogate Al-based model of the system is designed
that blends linear control and nonlinear system dynamics, e.g.,
by matching the linear impedance model of the converter with
the nonlinear impedance model of the grid. This model can
then be used in an online or offline search for parameters
of the linear controller, as indicated in previous subsections.
The Al-based model can be created with techniques, such
as physics-informed NN, which can incorporate the physical
laws of the system into the model.

IV. Al APPLICATIONS IN NONLINEAR CONTROLLERS OF
POWER CONVERTERS

If only simple linear controllers are employed, system dy-
namics and external disturbances may not be well addressed
though they are computationally light without much complex-
ity. In contrast, some advanced control methods can integrate
nonlinearities and consider system constraints into the model,
for example, model predictive control (MPC). One of the
key characteristics of MPC is that the control objectives and
system limitations can be simply and intuitively included in
the cost function (CF), directing the easy generalization for
different converter topologies.

Two main categories in MPC include the continuous control
set MPC (CCS-MPC) and the finite control set MPC (FCS-
MPC). CCS-MPC uses the control vector as a continuous
control signal, thus, the output of optimization can be any
vector within the control region defined by available voltage
vectors of the converter [42], [43]. Differently, FCS-MPC
considers a set with a limited number of input candidates thus
the output of optimization can only be one of the considered
vectors in the set [44]. Al techniques have been used for both
the design and imitation control of MPC. The following two
sections will look at these two aspects in detail.
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A. PARAMETER DESIGN FOR NONLINEAR CONTROLLERS
Weighting factor design continues to be a hot topic in MPC
because there are usually multiple control terms in the used
CF. Dragicevi¢ and Novak [45] proposed an ANN approach
to automatically select the weighting factors in the CF of
FCS-MPC. The trained ANN serves as a surrogate model of
the converter that can provide fast and accurate estimates of
the performance metrics for any weighting factor combina-
tion. Vazquez et al. [46] presented an ANN-based real-time
tuning method of a weighting factor to achieve the desired
average switching frequency and track the current reference.

Gao et al. [47] proposed an inverse application method of
Al that can effectively provide references and coefficients for
the control of a power converter-based system. Two different
cases were used for the method validation. One is the current
sharing for a converter-based microgrid. The other is the ex-
tension of the MMC operation region under unbalanced grid
faults. An ANN-based droop coefficient design method was
proposed in [48] for improved load sharing.

B. IMITATION CONTROLLER FOR NONLINEAR
CONTROLLERS

The high-computational burden is one of the main disadvan-
tages of MPC, especially for the implementation of multistep
predictions or/and multilevel converters. To address that,
ANNs were used to learn the MPC model via offline training,
which can keep an approximate control performance while at
the same time reducing the computational burden. The theo-
retical basis of this imitation approach is that the predictive
control process is completely deterministic, i.e., for the same
set of input variables (i.e., circuit measurements) and a given
CF, the outputs (inserted vectors/submodules) will always be
the same. In this context, while the conventional MPC uses ex-
haustive rolling optimization every time instant to identify the
optimal actuation, this is not necessary. It should be possible
to represent the deterministic input—output relationship with a
more computationally efficient structure. Therefore, the same
control effect as the MPC can be achieved by an ANN, but
with a lower online-computational burden.

The general way of MPC imitation is depicted in Fig. 4 for
an inverter system. There are three steps in this process.

1) Data collection from the original MPC model.

2) ANN offline training.

3) Online test of the trained ANN.

The first two steps are shown in Fig. 4(a) while the last step
is shown in Fig. 4(b).

Some published works studying ANN-based predictive
controllers are discussed below. A deep NN-based predictive
control strategy is generally presented in [49] for the applica-
tion of high-frequency multilevel converters. However, none
of the technical details of ML work was provided, for exam-
ple, data collection, and ANN training and validation. In con-
trast, Mohamed et al. [50] clearly presented an ANN learning
approach for the control of a two-level VSI feeding linear and
nonlinear loads. System descriptions, FCS-MPC principles,
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FIGURE 4. Diagram of MPC imitation learning. (a) Data collection and ANN
training offline. (b) Trained ANN online test.

proposed ANN architecture, and training/test/validation are
all presented in detail. Moreover, the authors collected sample
data from 60 circuit conditions (covering the linear/nonlinear
load) and tested the trained ANN for all the considered circuit
conditions. Even though the proposed method in [50] was not
validated in the experiment, it is presented with all necessary
technical details, thus easy to implement and generalize. Fol-
lowing the same approach, Novak and Dragicevic [51] trained
different ANN controllers for upto N = 3 prediction horizons
and tested them in the experiment rig.

Regarding the converter topology, the authors in [50] and
[51] used this SL method for two-level converters, and Novak
and Blaabjerg [52] further implemented it in the three-level
converter. The authors in [49] and [53] trained and validated
the ANN imitation controller to a five-level flying capacitor
converter. The authors in [54] and [55] proposed two dif-
ferent ANN imitation controllers for the modular multilevel
converter (MMC).

C. ONLINE ANN FOR NONLINEAR CONTROLLERS

Apart from the above design and control studies using ANN
offline training for MPC, there was plenty of research on
NN-based nonlinear online-learning controllers, which do not
comprise data collection for the learning but use an optimiza-
tion method, such as Levenberg—Marquard [56] and genetic
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algorithm (GA) [57]. For example, Hou et al. [58] proposed
an adaptive self-organizing fuzzy wavelet NN for an ac mo-
tor servo system, which uses adaptive GA to optimize ANN
parameters. In [5] and [59], recurrent fuzzy ANN-aided (for
feature selection) sliding-mode control was used in the power
converter-based systems for intelligent control with an active
power filter, where the online learning laws can effectively
capture unknown functions with a low-computational burden.

V. APPLICATION AREAS AND FUTURE PERSPECTIVES
After discussing the Al techniques for linear and nonlin-
ear controllers, in this section, different Al applications are
brieftly introduced. Fig. 5 shows the general structure of
this section. Solar, wind, high-voltage direct current (HVDC),
energy storage, powertrain, and promising power to X appli-
cations are presented to describe the differences between each
other.

Following the above sections, the common technolo-
gies will be first introduced in this section, those methods
are general methods and thus available for most applica-
tions/situations. Furthermore, application-specific Al tech-
nologies are given one by one, and those technologies are
designed for specific applications to achieve different goals.

A. GENERAL Al TECHNOLOGIES

Four aspects will be summarized below for the general Al
technologies. The first two (Al-based controller and controller
design using Al) have been elaborated in Section IV. The third
(converter modeling using AI) and fourth (stability analysis
by Al) are also important and practical topics regarding Al-
enabled controller. The pros and cons of each aspect will be
presented to help the potential scholars and engineers select
suitable methods.

1) AI-BASED CONTROLLER

The grid-connected converters play important roles to regu-
late the power to the grid. Section IV introduced the ANN
application in replacing the traditional PI-based controllers to
reduce the computation burden. For the photovoltaics (PV)
application, Demirtas et al. [60] gave an example that used an
ANN-based controller to control a single-phase PV inverter.
The results show that the output power can be regulated by
the proposed ANN-based controller. Similar Al-based imita-
tion methods could be generalized to different systems and
applications.

The advantage of the Al-based imitation controller is that,
the transient response of the Al controller is faster than PI
controller because there is no integral part in the controller
to slow down the dynamics behavior. However, because the
controller is trained by collected data only, there may be a risk
of running out of the training range. Thus, the response of Al
controller is not fully predictable. In [55], a case is given with
some results when the controller runs out of the training range,
the MMC is still able to control the system. But, obviously, it
is not for all the related control problems.
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2) CONTROLLER DESIGN USING Al

As mentioned in Section IV, apart from replacing the PI/PR
controllers with AI, Al technologies can be used to help better
design the traditional converters, at the same time, keeping the
existing controllers in the converters. For example, in [61],
the artificial bee colony algorithm is used to design the PID
parameters of the PV converters. Galotto et al. [62] presented
an recursive least square and GA-based tool for PID controller
tuning, with this method, the controller design process can be
accelerated. In [63], a particle swarm optimization controller
parameter design method is proposed for the dc—dc buck con-
verter to reduce the aforementioned transient and steady-state
errors.

For ML applications, Dragicevi¢ and Novak [45] proposed
an ANN-based method to design the weighting factors of the
MPC-based grid-connected controller. In [47], a special appli-
cation of ANN is introduced to select the droop coefficients
of microgrids, that is, instead of inputting system parameters
for system response, the desired system response is set as
the input of ANN, then the trained ANN can tell the user
what is the preferable input parameters for the target system.
The gain of ML approach is that, it can get rid of optimiza-
tion algorithms, no local optimal problem. This is because,
after training, computation of ANN is extremely light, thus,
exhaustive algorithm can be used in the design space. The
optimal design can be quickly found through tightly sweeping
the design space.

3) CONVERTER MODELING USING Al

Regarding the modeling of the power electronics convert-
ers, traditional analytical methods can be used to model the
converter, however, it heavily relies on the accuracy of the
system parameters. By using Al technologies, the modeling
of the converter can be obtained by measuring the converters.
In [64], Bayesian regularization along with ANN and RF-
based ML methods are used to model the power electronics
converter with collected experimental data.

In this case, most of the industrial applications will still
treat Al converter model as a trained or simulated “black
box.” That means, this method can only be used to verify
the system modeling after the physical system has been built
up. Therefore, even though this method is useful for modeling
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verification, it may not be applicable in the early design phase
of the system.

4) AI-BASED STABILITY ANALYSIS

In the modern power electronics-based power system, the
stability of the system is an important factor due to the high
share of inverter-based resources. For example, the phase lock
loop of the grid following the converter will cause system
instability under weak grid conditions. Al technologies can
contribute to stabilizing power electronics-based power sys-
tems. In [65], a RF-based power oscillation damper for grid
forming converter is proposed, the proposed damper can au-
tomatically adjust the gain of the active damping controller
based on the different operating points. In [66], the proposed
Al-based control design uses a DNN to learn the nonlinear
mapping between the virtual synchronous generator (VSG)
input and output signals, enabling it to adapt to different
operating conditions and disturbances. This article presents
simulation results to demonstrate the effectiveness of the pro-
posed control design in improving the stability and robustness
of VSGs under various operating scenarios. Liu et al. [67]
gave a comprehensive review of the Al applications to im-
prove the stability of future power systems.

For stability analysis, the key interest from the industry is
the physical principles and insights of stability issue in the
system. With traditional transfer function or state-space-based
stability analysis, there is a solid theory behind it to explain
the stability. However, due to lack of interpretation, industries
are still hesitant to embrace the Al-based stability analysis,
though it is easy to use with promising results.

B. TECHNOLOGIES FOR SPECIFIC APPLICATION

Al techniques can be applied in many specific areas, but
the function and purpose may vary according to different
requirements. For example, maximum power point tracking
(MPPT) should be considered for solar applications; however,
Al-based MPPT is not very common in powertrain applica-
tions. Some specific Al application areas are listed as follows.

1) SOLAR

For solar applications, the special application of the Al tech-
nology is for the MPPT purpose, MPPT is widely used in
dc—dc converters in solar applications to track the maximum
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power from the sun. Traditionally, two main non-AI MPPT
algorithms are commonly used: perturb and observe algo-
rithm [68] and the incremental conductance algorithm [69].
However, the traditional MPPT algorithms cannot properly
track the maximum power point under partial shading con-
ditions. The Al-added MPPT methods can track the global
maximum power point with higher computational speed and
faster dynamic speed [70]. Kiran et al. [71] compared different
Al-aided MPPT algorithms both under partial shading condi-
tions, the conclusion from this article is that RBFC optimized
Fuzzy controller has the highest efficiency under partial shad-
ing conditions.

2) WIND

In wind energy systems, one challenge is the changing of the
wind speed over time might cause power fluctuation in the
wind energy system, then the frequency of the wind network
will also be fluctuating. In [72], an adaptive ANN controller
for the energy capacitor system in a wind farm is proposed to
better control the frequency of the wind farm network. The
network frequency variation is minimized by the proposed
controller. In [73], an insulated-gate bipolar transistor (IGBT)
fault tolerant control strategy for wind turbine converter is
proposed, and fuzzy logic is used to fast detect the wind
turbine converter IGBT fault, then the protection algorithm
will activate the redundant converter leg to bypass the faulty
leg.

3) HVDC APPLICATION

The power needs to be transferred to the power grid using
high-voltage alternate current (HVAC)/HVDC technologies
to reduce transmission losses from the far away generation
units. For HVAC technology, traditional power transformers
are used, which will not require many power electronics con-
trollers in the plant, then Al application in the HVDC system
is not within the scope of this article. For HVDC technol-
ogy, two main power electronics converters are used: line-
commutated HVDC converters, and voltage-source HVDC
converters. Al technologies can be used to better control the
HVDC converters to achieve internal and external perfor-
mances. In [74], an ANN-based operational region extension
method for MMCs under unbalanced grid faults is proposed,
the ANN can automatically decide the injected circulating
current to reduce the submodule voltage ripple under grid
faults, hence, the submodule over voltage trip is avoided and
then the operating region is extended. In [54] and [55], ML-
based controllers are proposed for MMCs to achieve faster
dynamic response and lower the computation burden of the
controller.

4) ENERGY STORAGE SYSTEM

Energy storage is an important role in the future renewable-
energy-based power system to shift the mismatch between
generation and consumption. The battery is one of the most
important ways to do energy storage. Besides energy storage,
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the battery-connected converter can also provide the grid an-
cillary services, for instance, reducing the system harmonics,
regulating system frequency, and supporting system voltage.

Koganti et al. [75] proposed the design of a multi-objective-
based Al controller for a wind/battery-connected shunt active
power filter (SAPF). The controller aims to improve the per-
formance of the SAPF by simultaneously optimizing multiple
objectives, such as total harmonic distortion, voltage reg-
ulation, and energy efficiency. Abdalla et al. [76] gave a
comprehensive review of the Al applications of energy storage
systems.

5) POWERTRAIN FOR TRANSPORTATION: ELECTRIC DRIVE
CONTROL

Several studies have been conducted for electric drive applica-
tions by using ML-aided controllers. For example, Hammoud
et al. [77] used a multilayer perception feedforward ANN to
learn the long-horizon FCS-MPC, which solves the mixed-
integer optimal control problem offline to generate the training
data of ANN. After training, a two-level inverter-based motor
drive was controlled by the trained ANNSs in real-time sys-
tems, and different horizon numbers were compared. Deep
RL was used in [78] for a dc—dc buck converter-fed dc
motor to reduce the torque/current ripples. And Nikdel and
Nikdel [79] proposed ANN model predictive and variable
structure controllers for the single-degree-of-freedom rotary
manipulator.

6) FUTURE PERSPECTIVES—POWER TO HYDROGEN
With the large-scale development of renewable energies, the
constraint of the power grid limits the maximum power that
can be transferred to the grid, and also the intermittent nature
of renewable energies requires a long-term energy storage
solution for renewable energies. Producing hydrogen by using
energy can be an ideal solution for long-term energy storage.
Al has good potential to better control and design future green
hydrogen systems. The power converters in green hydrogen
systems play important roles in safe, high-efficient, and low-
cost green hydrogen production. This area is still relatively
new and many questions need to be solved in the near future.
Nowadays, the power industry is still mainly using con-
ventional analytical methods to design, model, and control
the power electronics system, because of the well-developed
theory and interpretation of the conventional methods. An
example is the impedance-based method to judge the grid-
connected converter stability. In the near future, the power
industry will not fully trust Al techniques, nor quickly turn
to Al-based methods for power converter control. However,
Al-based methods still have great potential for industrial ap-
plications, especially when the system is too complicated to
be analytically explained. The data-driven models could help
electrical engineers to gain the system insights without doing
tedious analysis or modeling, this is indeed the key advantage
of Al techniques.
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VI. CONCLUSION

This article gave an overview of Al-enabled controllers for
power converter-based systems. To begin with, the fast-
developing ML algorithms were introduced with three basic
groups: supervised, unsupervised, and RL. Then, the Al ap-
plications in linear and nonlinear controllers were discussed
separately from two perspectives: design and control. In this
part, online/offline application modes and their technical de-
tails were analyzed and discussed. In addition, the common
Al technologies were summarized with four aspects that can
be generally used for various applications. Some specific Al
application areas were further given, which may focus on
typical requirements or targets. Finally, a future perspective on
power-to-hydrogen was added as a promising way for future
green energy applications.

REFERENCES

(1]

(2]

3

—_

[4

—

[5

—

(6]

(71

(8]

[9]

[10]

(1]

[12]

[13]

374

S. Zhao, F. Blaabjerg, and H. Wang, “An overview of artificial intelli-
gence applications for power electronics,” IEEE Trans. Power Electron.,
vol. 36, no. 4, pp. 4633-4658, Apr. 2021.

R. Rajamony, S. Wang, G. Calderon-Lopez, I. Ludtke, and W. Ming,
“Artificial neural networks-based multi-objective design methodology
for wide-bandgap power electronics converters,” IEEE Open J. Power
Electron., vol. 3, pp. 599-610, 2022.

H. Maruta, H. Taniguchi, and F. Kurokawa, “A study on effects of
different control period of neural network based reference modified pid
control for DC-DC converters,” in Proc. 15th IEEE Int. Conf. Mach.
Learn. Appl., 2016, pp. 460—465.

P. Pandey, S. Bodda, and P. Agnihotri, “Comparative analysis of the
control of LLC resonant converter using proportional-integral and ma-
chine learning based techniques,” in Proc. IEEE 17th India Council Int.
Conf., 2020, pp. 1-6.

S. Hou, Y. Chu, and J. Fei, “Intelligent global sliding mode control using
recurrent feature selection neural network for active power filter,” IEEE
Trans. Ind. Electron., vol. 68, no. 8, pp. 73207329, Aug. 2021.

1. Martin-Diaz, D. Morinigo-Sotelo, O. Duque-Perez, and R. J. Romero-
Troncoso, “An experimental comparative evaluation of machine learn-
ing techniques for motor fault diagnosis under various operating
conditions,” IEEE Trans. Ind. Appl., vol. 54, no. 3, pp. 2215-2224,
May/Jun. 2018.

Y. Leén-Ruiz, M. Gonzilez-Garcia, R. Alvarez-Salas, J. Cuevas-
Tello, and V. Cardenas, “Fault diagnosis based on machine learning
for the high frequency link of a grid-tied photovoltaic converter
for a wide range of irradiance conditions,” IEEE Access, vol. 9,
pp. 151209-151220, 2021.

Z. Li, Y. Gao, X. Zhang, B. Wang, and H. Ma, “A model-data-
hybrid-driven diagnosis method for open-switch faults in power con-
verters,” IEEE Trans. Power Electron., vol. 36, no. 5, pp. 4965-4970,
May 2021.

S. Chen, “Review on supervised and unsupervised learning techniques
for electrical power systems: Algorithms and applications,” IEEJ Trans.
Elect. Electron. Eng., vol. 16, no. 11, pp. 1487-1499, 2021.

E. Mohammadi, M. Alizadeh, M. Asgarimoghaddam, X. Wang, and M.
G. Simdes, “A review on application of artificial intelligence techniques
in microgrids,” IEEE J. Emerg. Sel. Top. Ind. Electron., vol. 3, no. 4,
pp. 878-890, Oct. 2022.

E. O. Arwa and K. A. Folly, “Reinforcement learning techniques for
optimal power control in grid-connected microgrids: A comprehensive
review,” IEEE Access, vol. 8, pp. 208992-209007, 2020.

D. Cao et al., “Reinforcement learning and its applications in modern
power and energy systems: A review,” J. Modern Power Syst. Clean
Energy, vol. 8, no. 6, pp. 1029-1042, 2020.

Y. Gao, T. Yang, S. Bozhko, P. Wheeler, and T. Dragicevi¢, “Fil-
ter design and optimization of electromechanical actuation systems
using search and surrogate algorithms for more-electric aircraft applica-
tions,” IEEE Trans. Transport. Electrific., vol. 6, no. 4, pp. 1434-1447,
Dec. 2020.

[14]

[15]
[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

T. Guillod, P. Papamanolis, and J. W. Kolar, “Artificial neural network
(ANN) based fast and accurate inductor modeling and design,” /EEE
Open J. Power Electron., vol. 1, pp. 284-299, 2020.

S. Weisberg, Applied Linear Regression, vol. 528. Hoboken, NJ, USA:
John Wiley & Sons, Inc., 2005.

J. A. Suykens and J. Vandewalle, “Least squares support vector machine
classifiers,” Neural Process. Lett., vol. 9, no. 3, pp. 293-300, 1999.

M. Hannan, J. Abd Ali, A. Mohamed, and M. N. Uddin, “A random
forest regression based space vector PWM inverter controller for the
induction motor drive,” IEEE Trans. Ind. Electron., vol. 64, no. 4,
pp. 2689-2699, Apr. 2017.

L. P. Kaelbling, M. L. Littman, and A. W. Moore, ‘“Reinforcement
learning: A survey,” J. Artif. Intell. Res., vol. 4, pp. 237-285, 1996.

M. Gheisarnejad, H. Farsizadeh, and M. H. Khooban, “A novel non-
linear deep reinforcement learning controller for DC-DC power buck
converters,” [EEE Trans. Ind. Electron., vol. 68, no. 8, pp. 6849-6858,
Aug. 2021.

A.J. Abianeh, Y. Wan, F. Ferdowsi, N. Mijatovic, and T. Dragicevié,
“Vulnerability identification and remediation of FDI attacks in islanded
DC microgrids using multiagent reinforcement learning,” IEEE Trans.
Power Electron., vol. 37, no. 6, pp. 6359-6370, Jun. 2022.

J. Kone¢ny, H. B. McMahan, F. X. Yu, P. Richtdrik, A. T. Suresh, and D.
Bacon, “Federated learning: Strategies for improving communication
efficiency,” 2016, arXiv:1610.05492.

P. Kairouz et al., “Advances and open problems in federated learning,”
Found. Trends Mach. Learn., vol. 14, no. 1-2, pp. 1-210, 2021.

X. Cheng, C. Li, and X. Liu, “A review of federated learning in energy
systems,” in Proc. IEEE/IAS Ind. Commercial Power Syst. Asia, 2022,
pp. 2089-2095.

A. M. Elbir, B. Soner, S. Coleri, D. Giindiiz, and M. Bennis, “Federated
learning in vehicular networks,” in Proc. IEEE Int. Mediterranean Conf.
Commun. Netw., 2022, pp. 72-717.

D. Liu and O. Simeone, “Privacy for free: Wireless federated learning
via uncoded transmission with adaptive power control,” IEEE J. Sel.
Areas Commun., vol. 39, no. 1, pp. 170-185, Jan. 2021.

S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Trans.
Knowl. Data Eng., vol. 22, no. 10, pp. 1345-1359, Oct. 2010.

P. Qin and L. Zhao, ““A novel transfer learning-based cell SOC online es-
timation method for a battery pack in complex application conditions,”
IEEE Trans. Ind. Electron., vol. 71, no. 2, pp. 1606-1615, Feb. 2024.
S. Zhang, H. Zhu, J. Wu, and Z. Chen, “Voltage relaxation-based
state-of-health estimation of lithium-ion batteries using convolutional
neural networks and transfer learning,” J. Energy Storage, vol. 73,2023,
Art. no. 108579.

M. Zhang, X. Wang, D. Yang, Z. Cui, and M. G. Christensen,
“Transfer learning for identifying impedance estimation in voltage
source inverters,” in Proc. IEEE Energy Convers. Congr. Expo., 2020,
pp. 6170-6174.

M. Zhang, Y. Zhang, and Q. Xu, “Transfer learning based online
impedance identification for modular multilevel converters,” IEEE
Trans. Power Electron., vol. 38, no. 10, pp. 12207-12218, Oct. 2023.
Y. Wang and T. Wu, “Temperature rising model of tubular permanent
magnet linear synchronous motor based on transfer learning-deep neu-
ral network,” in Proc. 42nd Chin. Control Conf., 2023, pp. 6707-6712.
J. Liu, T. Wei, N. Chen, W. Liu, J. Wu, and P. Xiao, “A neural network
PID controller with dynamic structure adjustment for DC-DC switching
converters,” in Proc. IEEE 7th Int. Conf. Integr. Circuits Microsystems,
2022, pp. 356-360.

M. Jafari and Z. Malekjamshidi, “Design, simulation and implementa-
tion of an adaptive controller on base of artificial neural networks for a
resonant dc-dc converter,” in Proc. IEEE 9th Int. Conf. Power Electron.
Drive Syst., 2011, pp. 1043-1046.

H. Maruta and D. Hoshino, “Transient response improvement of
repetitive-trained neural network controlled DC-DC converter with
overcompensation suppression,” in Proc. 45th Annu. Conf. IEEE Ind.
Electron. Soc., 2019, pp. 2088-2093.

R. Wang, Z. Zhou, and G. Qu, “Fuzzy neural network PID control based
on RBF neural network for variable configuration spacecraft,” in Proc.
IEEE 3rd Adv. Inf. Technol. Electron. Automat. Control Conf., 2018,
pp. 1203-1207.

M. P. Belov, D. D. Truong, and P. Van Tuan, “Self-tuning PID con-
troller using a neural network for nonlinear exoskeleton system,”
in Proc. IEEE 2nd Int. Conf. Neural Netw. Neurotechnol., 2021,
pp. 6-9.

VOLUME 4, 2023



IEEE Open Journal of

Industry Applications

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

(511

[52]

[53]

[54]

[55]

[56]

[57]

(58]

Z.Li, J. Pang, C. Xu, and C. Zhang, “Electric vehicle charging system
pressure control based on fuzzy neural network pid control,” in Proc.
IEEE Conf. Telecommun. Opti. Comput. Sci., 2021, pp. 873-877.

D. Xu, J. Liu, X.-G. Yan, and W. Yan, “A novel adaptive neural network
constrained control for a multi-area interconnected power system with
hybrid energy storage,” IEEE Trans. Ind. Electron., vol. 65, no. 8,
pp. 6625-6634, Aug. 2018.

M. K. Das, P. Bera, P. Sarkar, and K. Chakrabarty, “PI-RLNN controller
for LFC of hybrid deregulated power system based on SPOA,” in Proc.
IEEE 18th India Council Int. Conf., 2021, pp. 1-5.

K. Rouzbehi, A. Miranian, E. Rakhshani, A. Luna, and P. Rodriguez,
“Identification and local linear control of a DC-DC buck converter using
local model networks,” in Proc. Int. Conf. Renewable Energy Res. Appl.,
2013, pp. 745-750.

J. Liu, T. Wei, N. Chen, J. Wu, and P. Xiao, “Fuzzy logic PID
controller with both coefficient and error modifications for digitally-
controlled DC-DC switching converters,” J. Elect. Eng. Technol.,
vol. 18, pp. 2859-2870, 2023.

S. Vazquez, C. Montero, C. Bordons, and L. G. Franquelo, “Model
predictive control of a VSI with long prediction horizon,” in Proc. IEEE
Int. Symp. Ind. Electron., 2011, pp. 1805-1810.

T. Dragicevié, S. Vazquez, and P. Wheeler, “Advanced control methods
for power converters in DG systems and microgrids,” IEEE Trans. Ind.
Electron., vol. 68, no. 7, pp. 5847-5862, Jul. 2021.

J. Rodriguez et al., “State of the art of finite control set model predictive
control in power electronics,” IEEE Trans. Ind. Informat., vol. 9, no. 2,
pp. 1003-1016, May 2013.

T. Dragicevi¢ and M. Novak, “Weighting factor design in model predic-
tive control of power electronic converters: An artificial neural network
approach,” IEEE Trans. Ind. Electron., vol. 66, no. 11, pp. 8870-8880,
Nov. 2019.

S. Vazquez et al., “An artificial intelligence approach for real-time
tuning of weighting factors in FCS-MPC for power converters,” [EEE
Trans. Ind. Electron., vol. 69, no. 12, pp. 11987-11998, Dec. 2022.

Y. Gao et al., “Inverse application of artificial intelligence for the control
of power converters,” IEEE Trans. Power Electron., vol. 38, no. 2,
pp. 1535-1548, Feb. 2023.

H. Hussaini, T. Yang, Y. Gao, C. Wang, T. Dragicevic, and S. Bozhko,
“Droop coefficient design in droop control of power converters for
improved load sharing: An artificial neural network approach,” in Proc.
IEEE 30th Int. Symp. Ind. Electron., 2021, pp. 1-6.

D. Wang et al., “A deep neural network based predictive control strat-
egy for high frequency multilevel converters,” in Proc. [EEE Energy
Convers. Congr. Expo., 2018, pp. 2988-2992.

1. S. Mohamed, S. Rovetta, T. D. Do, T. Dragicevi¢, and A. A. Z. Diab,
“A neural-network-based model predictive control of three-phase in-
verter with an output /¢ filter,” IEEE Access, vol. 7, pp. 124737-124749,
2019.

M. Novak and T. Dragicevic, “Supervised imitation learning of finite-set
model predictive control systems for power electronics,” IEEE Trans.
Ind. Electron., vol. 68, no. 2, pp. 1717-1723, Feb. 2021.

M. Novak and F. Blaabjerg, “Supervised imitation learning of FS-MPC
algorithm for multilevel converters,” in Proc. 23rd Eur. Conf. Power
Electron. Appl., 2021, pp. 1-10.

D. Wang et al., “Model predictive control using artificial neural net-
work for power converters,” IEEE Trans. Ind. Electron., vol. 69, no. 4,
pp. 3689-3699, Apr. 2022.

S. Wang, T. Dragicevic, Y. Gao, and R. Teodorescu, “Neural network
based model predictive controllers for modular multilevel converters,”
IEEE Trans. Energy Convers., vol. 36, no. 2, pp. 1562—1571, Jun. 2021.
S. Wang, T. Dragicevic, G. F. Gontijo, S. K. Chaudhary, and R. Teodor-
escu, “Machine learning emulation of model predictive control for
modular multilevel converters,” IEEE Trans. Ind. Electron., vol. 68,
no. 11, pp. 11628-11634, Nov. 2021.

W. Zhao, K. Li, and G. W. Irwin, “A new gradient descent approach for
local learning of fuzzy neural models,” IEEE Trans. Fuzzy Syst., vol. 21,
no. 1, pp. 3044, Feb. 2013.

M. R. Mashinchi and A. Selamat, “An improvement on genetic-based
learning method for fuzzy artificial neural networks,” Appl. Soft Com-
put., vol. 9, no. 4, pp. 1208-1216, 2009.

R. Hou, D. Shi, Q. Gao, and Y. Hou, “Implementation of adaptive
self-organizing fuzzy wavelet neural network: Modeling ac servo sys-
tem,” in Proc. IEEE 10th Data Driven Control Learn. Syst. Conf., 2021,
pp. 1128-1134.

VOLUME 4, 2023

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

(771

[78]

[79]

S. Hou, Y. Chu, and J. Fei, “Robust intelligent control for a class of
power-electronic converters using neuro-fuzzy learning mechanism,”
IEEE Trans. Power Electron., vol. 36, no. 8, pp. 9441-9452, Aug. 2021.
M. Demirtas, I. Cetinbas, S. Serefoglu, and O. Kaplan, “Ann controlled
single phase inverter for solar energy systems,” in Proc. 16th Int. Power
Electron. Motion Control Conf. Expo., 2014, pp. 768-772.

A. Oshaba, E. S. Ali, and S. M.Abd Elazim, “Pi controller design
using artificial bee colony algorithm for MPPT of photovoltaic system
supplied DC motor-pump load,” Complexity, vol. 21, no. 6, pp. 99-111,
2016.

L. Galotto, J. Pinto, J. Bottura Filho, and G. Lambert-Torres, ‘“Recur-
sive least square and genetic algorithm based tool for PID controllers
tuning,” in Proc. IEEE Int. Conf. Intell. Syst. Appl. Power Syst., 2007,
pp. 1-6.

A. Debnath, T. O. Olowu, S. Roy, L. Parvez, and A. Sarwat, “Particle
swarm optimization-based PID controller design for DC-DC buck con-
verter,” in Proc. North Amer. Power Symp., 2021, pp. 1-6.

H. S. Krishnamoorthy and T. N. Aayer, “Machine learning based mod-
eling of power electronic converters,” in Proc. IEEE Energy Convers.
Congr. Expo., 2019, pp. 666-672.

G. N. Baltas, N. B. Lai, L. Marin, A. Tarraso, and P. Rodriguez, “Grid-
forming power converters tuned through artificial intelligence to damp
subsynchronous interactions in electrical grids,” IEEE Access, vol. 8,
pp. 93369-93379, 2020.

Q. Xu, T. Dragicevic, L. Xie, and F. Blaabjerg, “Artificial intelligence-
based control design for reliable virtual synchronous generators,” IEEE
Trans. Power Electron., vol. 36, no. 8, pp. 9453-9464, Aug. 2021.

W. Liu, T. Kerekes, T. Dragicevic, and R. Teodorescu, “Review of
grid stability assessment based on Al and a new concept of converter-
dominated power system state of stability assessment,” IEEE J. Emerg.
Sel. Topics Ind. Electron., vol. 4, no. 3, pp. 928-938, Jul. 2023.

J. Ahmed and Z. Salam, “An improved perturb and observe (P&O) max-
imum power point tracking (MPPT) algorithm for higher efficiency,”
Appl. Energy, vol. 150, pp. 97-108, 2015.

D. Sera, L. Mathe, T. Kerekes, S. V. Spataru, and R. Teodorescu, “On
the perturb-and-observe and incremental conductance MPPT methods
for PV systems,” IEEE J. Photovolt., vol. 3, no. 3, pp. 1070-1078,
Jul. 2013.

K. Y. Yap, C. R. Sarimuthu, and J. M.-Y. Lim, “Artificial intelligence
based MPPT techniques for solar power system: A review,” J. Modern
Power Syst. Clean Energy, vol. 8, no. 6, pp. 1043-1059, 2020.

S. R. Kiran, C. H. Basha, V. P. Singh, C. Dhanamjayulu, B. R. Prusty,
and B. Khan, “Reduced simulative performance analysis of variable
step size ann based MPPT techniques for partially shaded solar PV
systems,” IEEE Access, vol. 10, pp. 48875-48889, 2022.

S. Muyeen, H. M. Hasanien, and J. Tamura, “Reduction of frequency
fluctuation for wind farm connected power systems by an adaptive artifi-
cial neural network controlled energy capacitor system,” IET Renewable
Power Gener., vol. 6, no. 4, pp. 226-235, 2012.

A. Bouzekri, T. Allaoui, M. Denai, and Y. Mihoub, “Artificial
intelligence-based fault tolerant control strategy in wind turbine sys-
tems,” Int. J. Renewable Energy Res., vol. 7, no. 2, 2017.

S. Wang, T. Dragicevic, Y. Gao, S. K. Chaudhary, and R. Teodor-
escu, “Machine learning based operating region extension of modular
multilevel converters under unbalanced grid faults,” IEEE Trans. Ind.
Electron., vol. 68, no. 5, pp. 4554-4560, May 2021.

S. Koganti, K. J. Koganti, and S. R. Salkuti, “Design of multi-objective-
based artificial intelligence controller for wind/battery-connected shunt
active power filter,” Algorithms, vol. 15, no. 8, 2022, Art. no. 256.

A. N. Abdalla et al., “Integration of energy storage system and renew-
able energy sources based on artificial intelligence: An overview,” J.
Energy Storage, vol. 40, 2021, Art. no. 102811.

I. Hammoud, S. Hentzelt, T. Oehlschlaegel, and R. Kennel, “Long-
horizon direct model predictive control based on neural networks for
electrical drives,” in Proc. 46th Annu. Conf. IEEE Ind. Electron. Soc.,
2020, pp. 3057-3064.

R. Anugula and S. P. K. Karri, “Deep reinforcement learning based
adaptive controller of dc electric drive for reduced torque and current
ripples,” in Proc. IEEE Int. Conf. Technol. Res. Innov. Betterment Soc.,
2021, pp. 1-6.

N. Nikdel, P. Nikdel, M. A. Badamchizadeh, and I. Hassanzadeh,
“Using neural network model predictive control for controlling shape
memory alloy-based manipulator,” IEEE Trans. Ind. Electron., vol. 61,
no. 3, pp. 1394-1401, Mar. 2014.

375




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


