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Reply to ‘Antipsychotics with similar association
kinetics at dopamine D2 receptors differ in
extrapyramidal side-effects’
David A. Sykes1,2, J. Robert Lane3, Monika Szabo4, Ben Capuano4, Jonathan A. Javitch5,6,7 &

Steven J. Charlton 1,2,8

We thank Zeberg and Sahlholm1 for their correspondence
regarding our recent paper proposing that drug rebinding to the
dopamine D2 receptor (D2R) contributes to the extrapyramidal
symptoms (EPS) observed with many antipsychotic drugs2. We
were gratified to note that, like us, the authors obtained a strong
correlation between EPS (derived from ref. 3) and the association
rates they have measured using a distinct method. We are also
pleased that the new odds ratio they calculated for remoxipride
fits our rebinding hypothesis, strengthening the overall correla-
tion between EPS and kr (Fig. 1a). However, they highlight a
discrepancy between the association and dissociation rates of
remoxipride, which they report as being much more rapid than
the values we determined. This reduces the strength of their own
correlation between association rate and EPS that, they have
argued, weakens our rebinding hypothesis.

Rather than directly measuring binding at the D2R, as in our
study, Sahlholm and colleagues4 employed an indirect functional
readout in recombinant oocytes to assess binding kinetics at the
D2R. Using an electrophysiological approach, they measure the
activation of inwardly rectifying potassium channels (GIRK) as a
surrogate of agonist binding at the D2R. This approach assumes
that there is a direct, linear relationship between agonist occu-
pancy at the receptor and GIRK channel activation. This is not,
however, commonly observed for receptor signaling events, even
for measurements of proximal events such as G protein activa-
tion. Instead, operational models of receptor activation describe a
hyperbolic relationship between agonist binding and downstream
effector activation5.

However, despite these differences in assay methodology, the
affinity measurements reported for a selection of antipsychotics
are surprisingly similar to ours, with a Pearson’s correlation (rs)
of 0.90 (P < 0.0001) between the two data sets (Fig. 1b). This close

agreement is also observed for the kinetic parameters, with the
only clear exception being remoxipride. This is illustrated in
Fig. 1c, d, where the Pearson’s correlation (rs) for koff and kon is
0.77 (P= 0.0033) and 0.59 (P= 0.0428) for the whole data set,
but rises to 0.82 (P= 0.0021) and 0.84 (P= 0.0015) when
remoxipride is removed from the analysis. It therefore appears
that this discrepancy in kinetics for remoxipride may be related to
the compound itself, rather than due to differences in assay
methodology. In Sahlholm’s study4, remoxipride was tested at a
10-fold higher concentration (100 μM) than any of the other
ligands, despite having an apparent Kd similar to that of cloza-
pine. It is possible that at this higher concentration remoxipride
could display off-target effects that contribute to the much faster
apparent association rate. For example, several other anti-
psychotics have previously been shown to directly block GIRK
channels expressed in xenopus oocytes6. If the high concentra-
tions of remoxipride used in the study of Sahlholm and collea-
gues4 were to directly block GIRK channels, it would manifest in
the appearance of a more rapid association to the D2R. This
potential off-target action is supported by a previous study7 that
directly measured the dissociation of [3H]-remoxipride from the
D2R. They reported an off rate of 3.2 min−1, similar to our own
value of 1.9 min−1, but almost 4-fold different from the value of
12.2 min−1 obtained by Sahlholm and colleagues4.

In their commentary, Zeberg and Sahlholm have offered
alternative explanations for the discrepancy in kinetic data for
remoxipride, which we will now address. The first pertains to
potential differences in “tracer” kinetics between our two assay
systems. They argue that their “tracer” (essentially the activation
and inactivation of the GIRK channel) is much more rapid than
the dissociation rate of our fluorescent tracer (F-PPHT), and is
therefore more appropriate for assessing rapid binding kinetics.
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Indeed, they require a rapid tracer because they make the
assumption that the rate-limiting step is binding and unbinding
of the antagonist, rather than the combined summation of the
steps between dopamine binding, receptor-mediated activation of
G proteins and subsequent GIRK channel activation. This, they
have acknowledged, creates an upper limit of sensitivity (or
ceiling effect) that limits their analysis to decay rates slower than
~1 s and antagonist concentrations below 10 μM4. An additional
complication is their assumption that once the antagonist dis-
sociates, dopamine will immediately occupy the empty receptor.
This is dependent upon using a concentration of dopamine that is
high enough to completely out-compete the antagonist following
washout. In a previous study, 100 nM dopamine was found to be
insufficient8, so in their latest paper4 they increase this to 100 μM.
It is important to note, however, that even at this high agonist
concentration not all antagonists can be competed back to
baseline. This observation suggests that 100 μM dopamine is not
sufficient to fully out-compete all antagonists, as is assumed in
their data analysis, but rather that a new equilibrium is estab-
lished with partial occupancy of the receptor population by the
antagonist. This will slow the overall observed reversal rate.

To avoid the above assumptions, we chose to measure binding
directly to the D2R and use a mathematical approach that
explicitly incorporates the association and dissociation rates of
the tracer molecule when calculating the kinetics of competing
antagonists. In this way we avoid the necessity for the tracer

kinetics to be much more rapid than the test compound. As
mentioned by Zeberg and Sahlholm, we have previously found
that using this assay, rapid competitor dissociation rates cannot
be accurately determined using a tracer ligand with a much
slower rate of dissociation. This observation was made using the
slowly dissociating antagonist spiperone as a tracer (koff= 0.026
min−1)2, 9. For this reason we selected PPHT-red as the tracer
ligand for our most recent studies as it has a dissociation rate 10-
fold higher than spiperone of 0.52 min−1. We acknowledge that
there will still be a theoretical limit of detection with this tracer,
but believe 1.9 min−1 (our koff for remoxipride) is within our
levels of detection as we have measured ligands with more rapid
dissociation rates (e.g., ropinirole at 2.6 min−1)9. We have
also independently verified the binding kinetics of
remoxipride and clozapine using another rapidly dissociating
tracer, clozapine-red. The association and dissociation values
calculated for remoxipride using this tracer were 1.00 × 107M−1

min−1 and 1.63 min−1, respectively, demonstrating tracer inde-
pendence with regard to kinetic determinations. Data from these
experiments are shown in Fig. 2 and a comparison of kinetic
values obtained with the fluorescent tracer clozapine-red and
those obtained previously using PPHT-red are detailed in Table 1.

Zeberg and Sahlholm also suggest that the inclusion of
GppNHp in our assay might influence the observed kinetics for
remoxipride, and that their assay is more physiologically rele-
vant because it measures interactions with the higher affinity
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Fig. 1 Comparison of kinetic binding data. a Correlation of EPS odds ratio with the rebinding reversal rate, reproduced from Sykes et al.2 to include the new
odds ratio calculated by Zeberg and Sahlholm1. b–d Comparison of b pKd, c koff, and d kon values at the dopamine D2 receptor calculated using the GIRK
channel assay of Sahlholm et al.4 and TR-FRET assay of Sykes et al.2 It should be noted that the study by Sahlholm et al.4 was performed at 20–22 °C whilst
the study of Sykes et al.2 was performed at 37 °C
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“functional” state of the receptor. This high affinity (G protein-
coupled) state is, however, extremely transient in a whole cell
due the high intracellular concentrations of GTP. We include
GppNHp with our membrane preparations to mimic this high
concentration. All current evidence suggests that once the
agonist dissociates, then in a whole cell, the receptor rapidly
reverts to the inactive uncoupled state before an antagonist
binds. This, as previously discussed, is supported by the good
agreement of the kinetic values between our membrane assay
and their whole cell oocyte system, with the only clear excep-
tion being remoxipride (Fig. 1b–d). In summary, although each
method for measuring the kinetics of unlabelled GPCR ligands
has its flaws, our direct binding approach at the receptor
minimizes issues associated with occupancy-response assump-
tions and off-target activities.

The final comment raised by Zeberg and Sahlholm relates to
the antipsychotic thioridazine, which they state has a favourable
EPS profile despite its rapid association rate. Note that this drug
was not included in the meta-analysis of Leucht et al. so could

not be included in our correlation. As discussed in our paper, it
was not our intension to present the rebinding hypothesis as the
only mechanism that might predict EPS. Rather, many anti-
psychotics display complex poly-pharmacology that may also
contribute to their relative efficacy and side-effect profiles. For
example the superior EPS profile of thioridazine may relate to
off-target activity at the muscarinic M1 receptor10. Our study
revealed a compelling correlation between EPS and association
rate, and we propose a mechanism of drug-rebinding that can
explain this correlation2. Given the complex action of anti-
psychotic drugs it would, however, be naive to expect that all
drugs would fall within this correlation. Those that do not may
act via distinct mechanisms. Indeed, in our study we observed
that aripiprazole, a drug that acts as a D2R partial agonist rather
than an antagonist, was an outlier. We proposed that this was
because of its distinct action at the D2R. As such, we feel that
one should not discount the potential importance of drug
rebinding at the D2R due to a small number of drugs that do not
fit this correlation. Instead, just as the work of Seeman and
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Fig. 2 Determination of tracer and unlabelled compound kinetic parameters. a Observed association of clozapine-red to the human dopamine D2L receptor.
Data presented in singlet from a representation of 4 experiments. Clozapine-red competition association curves in the presence of b remoxipride and
c clozapine. All binding reactions were performed in the presence of GppNHp (100 μM) and non-specific binding levels determined by inclusion of
haloperidol (10 μM). Kinetic data were fitted to equations previously described to calculate kon and koff values for the unlabelled ligands; these are
summarized in Table 1. Data are presented as singlet values from a representative of three to four experiments. All data used in these plots are detailed in
Table 1

Table 1 Comparison of kon and koff values obtained using the tracers F-PPHT and F-clozapine

F-PPHT F-Clozapine

Compound koff (min−1) kon (M−1 min−1) koff (min−1) kon (M−1 min−1)

Remoxipride 1.90 ± 0.55 1.16 ± 0.37 × 107 1.63 ± 0.16 1.00 ± 0.27 × 107

Clozapine 1.67 ± 0.25 8.23 ± 1.42 × 107 1.78 ± 0.28 4.84 ± 1.02 × 107

F-Clozapine’s association rate was measured at 2.71 × 106M−1 min−1 with a koff value of 0.79 min−1 at 37 °C in HBSS. PPHT-red experiments were performed, as previously described (Sykes et al.2)
Data are mean ± SEM from 3 to 4 experiments
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colleagues11 stimulated our study, we hope that our work will
inspire future studies aimed at carefully testing our hypothesis
and unraveling the complex mechanisms that determine anti-
psychotic drug efficacy.

Methods
Materials. Clozapine-red was synthesized in house as follows (Fig. 3).

Experimental. N-Desmethylclozapine (2): Clozapine (1, 2.50 g, 7.65 mmol) was
dissolved in 1,2-dichloroethane (20 mL) under N2 and cooled to 0 °C. 1-
Chloroethyl chloroformate (3.30 mL, 30.6 mmol) was added dropwise to the
reaction mixture. After 10 min, the reaction mixture was warmed up to r.t and
subsequently heated at reflux for 24 h. The brown reaction mixture was con-
centrated in vacuo, and the residue was dissolved in methanol (30 mL) and heated
at 50 °C for 2 h, cooled, and again concentrated in vacuo. The resulting residue was
partitioned between ethyl acetate (50 mL) and 1M aqueous hydrochloric acid
(50 mL). The aqueous layer was collected and the pH adjusted to ~10 using con-
centrated sodium hydroxide then extracted with ethyl acetate (3 × 50 mL). The
combined organic layers were washed with water (50 mL) and saturated brine
(50 mL), dried over anhydrous Na2SO4, filtered and evaporated to dryness. Pur-
ification was achieved via column chromatography (chloroform/methanol, 10%) to
give a yellow foam (1.30 g, 54% yield). 1H NMR (CDCl3) δ 2.57 (br s, 1H), 3.01 (m,
4H), 3.48 (m, 4H), 4.90 (s, 1H), 6.61 (d, J 8.3Hz, 1H), 6.81–6.84 (m, 2H), 7.02 (td, J
7.6, 1.1Hz, 1H), 7.06 (d, J 2.4Hz, 1H), 7.25–7.32 (m, 2H). 13C NMR (CDCl3) δ 45.7
(CH2), 48.2 (CH2), 120.1 (CH), 120.2 (CH), 123.2 (CH), 123.2 (CH), 123.5 (C),
126.9 (CH), 129.2 (C), 130.4 (CH), 132.0 (CH), 140.5 (C), 141.9 (C), 152.8 (C),
163.1 (C).

tert-Butyl (3-(4-(8-chloro-5H-dibenzo[b,e][1,4]diazepin-11-yl)piperazin-1-yl)
propyl)carbamate (3): N-Desmethylclozapine (2, 500mg, 1.60 mmol), sodium iodide
(240mg, 1.60mmol) and N,N-diisopropylethylamine (0.31 mL, 1.76 mmol) were
added to acetonitrile (30mL) under N2. tert-Butyl (3-bromopropyl)carbamate (419
mg, 1.76mmol) was added and the reaction mixture was heated at reflux for 24 h.
After cooling to room temperature the solvent was removed and the residue was
dissolved in ethyl acetate (30mL), washed with water (2 × 30mL) followed by brine

(50mL), dried over anhydrous Na2SO4, filtered and concentrated to give the crude
product. Further purification via column chromatography (chloroform/methanol,
5%) gave the title compound as a yellow foam (602mg, 80%). 1H NMR (CDCl3) δ
1.44 (s, 9H), 1.69 (m, 2H), 2.46 (t, J 6.8Hz, 2H), 2.52 (m, 4H), 3.21 (m, 2H), 3.47 (m,
4H), 4.90 (s, 1H), 5.26 (br s, 1H), 6.61 (d, J 8.3Hz, 1H), 6.80–6.83 (m, 2H), 7.01 (td, J
7.6, 1.1Hz, 1H), 7.06 (d, J 2.4Hz, 1H), 7.24–7.32 (m, 2H). 13C NMR (CDCl3) δ 26.6
(CH2), 28.6 (CH3), 39.9 (CH2), 47.3 (CH2), 53.3 (CH2), 57.0 (CH2), 79.0 (C), 120.1
(CH), 120.2 (CH), 123.2 (CH), 123.2 (CH), 123.5 (C), 126.9 (CH), 129.2 (C), 130.4
(CH), 132.0 (CH), 140.5 (C), 141.9 (C), 152.8 (C), 156.2 (C), 162.8 (C).

3-(4-(8-Chloro-5H-dibenzo[b,e][1,4]diazepin-11-yl)piperazin-1-yl)propan-1-
amine (4): Compound 3 (328 mg, 0.698 mmol) was dissolved in DCM (10 mL) and
TFA (2 mL) was added dropwise. Stirring at room temperature occurred for 1–2 h
before the reaction mixture was diluted with a further 20 mL of DCM. Saturated
K2CO3 (20 mL) was added slowly and the mixture further extracted with 3 × 20 mL
portions of DCM. The combined organic layers were further washed with water
(50 mL), brine (50 mL), dried over anhydrous Na2SO4, filtered and concentrated to
give the product as a yellow foam which was used in the subsequent reaction
without further purification (249 mg, 97%). 1H NMR (CDCl3) δ 1.30 (br s, 2H),
1.67 (m, 2H), 2.46 (m, 2H), 2.53 (m, 4H), 2.77 (t, J 6.8Hz, 2H) 3.47 (m, 4H), 4.90 (s,
1H), 6.61 (d, J 8.3Hz, 1H), 6.80–6.83 (m, 2H), 7.01 (td, J 7.6, 1.1Hz, 1H), 7.06 (d, J
2.4Hz, 1H), 7.24–7.32 (m, 2H). 13C NMR (CDCl3) δ 30.7 (CH2), 40.9 (CH2), 47.4
(CH2), 53.4 (CH2), 56.6 (CH2), 120.1 (CH), 120.2 (CH), 123.2 (CH), 123.2 (CH),
123.6 (C), 126.9 (CH), 129.2 (C), 130.4 (CH), 132.0 (CH), 140.5 (C), 141.9 (C),
152.8 (C), 162.9 (C).

1-(6-((3-(4-(8-Chloro-5H-dibenzo[b,e][1,4]diazepin-11-yl)piperazin-1-ium-1-
yl)propyl)amino)-6-oxohexyl)-3,3-dimethyl-2-((1E,3E,5E)-5-(1,3,3-trimethyl-5-
sulfoindolin-2-ylidene)penta-1,3-dien-1-yl)-3H-indol-1-ium-5-sulfonate 2,2,2-
trifluoroacetate (5): The free amine (4, 1 equiv.) followed the sulfo-Cy5 NHS ester
(1 equiv.) was added to DMF (1 mL) under a N2 atmosphere. The reaction was
stirred at room temperature for 12 h in the absence of light, then purified
immediately via preparative-HPLC. The clean fractions were collected, pooled and
the solvent removed via lyophillization to obtain the product as the TFA salt. Blue
solid (2 mg, 18%). 1H NMR (d6-DMSO) δ 0.83 (m, 2H), 1.15–1.29 (m, 5H), 1.51
(m, 2H), 1.69 (s, 12H), 2.02 (t, J 7.1Hz, 2H), 2.97 (m, 2H), 2.97–3.40 (m, 7H, under
water peak), 3.60 (s, 3H), 3.94 (m, 2H), 4.12 (m, 2H), 6.29 (m, 2H), 6.56 (t, J
12.6Hz, 1H), 6.88–6.94 (m, 3H), 7.01–7.09 (m, 2H), 7.29–7.41 (m, 5H), 7.64–7.66

Fig. 3 Synthesis of sulfo-Cy5 fluorescently labelled derivative of clozapine. Reagents and conditions: a 1-chloroethyl chloroformate, 1,2-DCE, N2, MeOH,
0 °C→ reflux, 24 h, 54%; b tert-butyl (3-bromopropyl)carbamate, NaI, DIPEA, N2, CH3CN, reflux 24 h, 80%; c TFA/DCM, RT, 1–2 h, basic workup, 97%;
d sulfo-Cy5 N-hydroxysuccinimidyl (NHS) ester, DMF, RT, 12 h, 18%
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(m, 2H), 7.83–7.84 (m, 3H), 8.36 (m, 2H), 9.58 (br s, 1H). HPLC purity
(λ= 214 nm): 95%, tR= 4.89 min. HRMS (ESI)-TOF (m/z): [M+H]+ 994.3762
calcd for C52H60ClN7O7S2; found [M+H]+ 994.3765.

All other reagents and materials were obtained as previously described (Sykes
et al.2).

Culture and terbium labeling of SNAP-tagged D2L cells plus membrane
preparation: CHO-D2L cells were cultured and membranes prepared, as previously
described2.

Fluorescent ligand-binding assays: Experiments using clozapine-red were
performed in white 384 well Optiplate plates, in assay binding buffer, HBSS
containing 20 mM HEPES and 0.02% pluronic acid pH 7.4, 100 μM GppNHp and
0.1% ascorbic acid. Haloperidol (10 μM) was used to define the level of nonspecific
binding.

Determination of clozapine-red binding kinetics: The association rate (kon)
and dissociation rate (koff) values of clozapine-red was determined using
multiple different concentrations of clozapine-red. Clozapine-red (50–6.25 nM) was
incubated with human D2L CHO cell membranes (2 μg/well) in assay binding buffer
(final assay volume, 40 μl). Specific binding of clozapine-red bound to the D2L

receptor was measured at 20 s intervals by HTRF detection allowing construction of
clozapine-red association curves. Data were globally fitted to the association kinetic
model to derive a single best-fit estimate for kon and koff.

Competition binding kinetics: To determine the association and dissociation
rates of D2R ligands, we used a competition kinetic binding assay. This
methodology involves the simultaneous addition of both a fluorescent ligand (the
tracer) and unlabelled competitor to the receptor preparation of interest in this case
the human dopamine D2LR, so that at t= 0 all receptors are unoccupied. 50 nM
clozapine-red (a concentration which avoids ligand depletion in this assay volume),
was added simultaneously with the unlabelled compound (at t= 0) to CHO cell
membranes containing the human dopamine D2LR (2 μg per well) in 40 μl of assay
buffer. The degree of clozapine-red bound to the receptor was measured at 20 s
intervals by HTRF detection.

As described previously nonspecific binding was determined in the presence of
haloperidol (10 μM) and was subtracted from each time point. Time points were
performed on the same 384 well Optiplate plate maintained at constant temperature,
37 °C with orbital mixing (1 s of 100 RPM/cycle). For determination of rate
parameters multiple concentrations of unlabelled competitor were employed and data
were globally fitted to simultaneously calculate kon and koff as previously described.

Signal detection and data analysis: Signal detection was performed on a
Pherastar FS (BMG Labtech, Offenburg, Germany) using standard HTRF settings
and experiments were analyzed by non-regression using Prism 6.0 (GraphPad
Software, San Diego, USA) all as previously described (Sykes et al.2).

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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