COMODULE ALGEBRAS AND 2-COCYCLES OVER THE (BRAIDED)
DRINFELD DOUBLE

ROBERT LAUGWITZ

ABSTRACT. We show that for dually paired bialgebras, every comodule algebra over one of the
paired bialgebras gives a comodule algebra over their Drinfeld double via a crossed product
construction. These constructions generalize to working with bialgebra objects in a braided
monoidal category of modules over a quasitriangular Hopf algebra. Hence two ways to provide
comodule algebras over the braided Drinfeld double (the double bosonization) are provided.
Furthermore, a map of second Hopf algebra cohomology spaces is constructed. It takes a pair of
2-cocycles over dually paired Hopf algebras and produces a 2-cocycle over their Drinfeld double.
This construction also has an analogue for braided Drinfeld doubles.

1. INTRODUCTION

1.1. Motivation and Background. The Drinfeld double Drin(H) of a Hopf algebra H from
[Dri86] appears as part of the structures used in algebraic approaches to constructing different
types of 3-dimensional topological quantum field theories (TQFTs). For example, Dijkgraaf-
Witten TQFTs involve the Drinfeld double Drin(G) of a group algebra kG' [DW90, DPR90].
Further, Reshetikhin—Turaev type TQFTs, defined for a modular tensor category, are of partic-
ular interest in the case of the quantum groups U,(g) [RT91]. These quantum groups can be
obtained from a braided version of the Drinfeld double (the double bosonization) of its nilpotent
part [Maj99].

Related to the philosophy of categorification, which aims to construct 4-dimensional TQFT's
by lifting the algebraic structures used in the construction of 3-dimensional theories to categories
[CF94], modules over monoidal categories M have been studied. A detailed account of this theory
is given in [EGNO15, Chapter 7]. A left module over M is a category C admitting a k-linear
bifunctor =: M x C — C, such that the module axioms hold only up to natural isomorphisms
which satisfy coherences.

The category of modules over the Drinfeld double of a bialgebra B is a braided monoidal
category, which is equivalent to the center Z(B-Mod) of the category B-Mod of modules over
B. A theorem of [Ost03, EGNO15] gives, for a finite tensor-category M, a categorical Morita
equivalence M X M°P-Mod — Z(M)-Mod. On the left hand side M-bimodules appear, while
the right hand side consists of categorical modules over the monoidal center of M.

More generally, bialgebras (or Hopf algebras) B can be defined in a braided monoidal category
B and are sometimes called braided bialgebras (respectively, braided Hopf algebras), see e.g.
[Maj0o0, AS02]. Modules over such a braided bialgebra again form a monoidal category, denoted
by B-Mod(B). A central motivation for this paper is to contribute to understanding categorical
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modules not over the whole category Z(M), for M = B-Mod(B), but over the a subcategory,
called the relative monoidal center Zg(M) € Z(M) defined on the categorical level in [Laulb,
Laul8]. For the framework of this paper, it is sufficient to view Zp(M) as the equivalent
category BYD(B) of Yetter-Drinfeld modules (also called crossed modules) over B within B of
[Bes97, BD9S].

Working with braided Hopf algebras has become a productive point of view in quantum algebra
(see e.g. [Maj93, Maj94a, Lyu95, AS02] and other papers). A prominent example is given by the
positive part Uy(n™) of the quantum group U,(g) associated to a Kac-Moody algebra g [Dri86,
Jim85, Lus10]. The algebra U,(n*) is not a Hopf algebra over C(g), but a Hopf algebra object
in the braided monoidal category of comodules over a lattice, with a special, non-symmetric,
braiding obtained from the parameter ¢ and the Cartan datum defining g [Maj99, AS02].

The relative monoidal center of U, (n™)-modules is equivalent to the braided monoidal category
of highest weight modules over Uy,(g) [Laul8]. To study modules over the quantum group Ug(g),
it is often reasonable to assume certain restrictions on the modules. For example, one can study
the category consisting of highest weight modules, which are semisimple with integral weights,
such that U,(g") acts locally finitely. In addition, finite generation as U,(g*)-modules can be
assumed, giving an analogue of the category O [BGGT1] for quantum groups [AM15]. However,
the class of finitely generated modules is not closed under tensor products. This point of view
that the relative center is a natural category to study holds for a larger class of braided Hopf
algebras of infinite dimension [Laul5, Section 3.7]. This relative version of the center turns out
to be related to the braided Drinfeld double, called double bosonization in [Maj91].

Another structure of interest in this paper are bialgebra 2-cocycles. These are a part of a gener-
alization of Sweedler’s bialgebra cohomology [Swe68] with coefficients in k to non-cocommutative
bialgebras [Maj94b]. Twists by bialgebra 2-cocycles are a fundamental tool in the deformation
theory leading to quantum groups, and the study of the larger class of pointed Hopf algebras.
The idea goes back to [Dri86], where a Hopf algebra can be given a twisted coproduct by con-
jugation with a 2-cycle, and [DT94] for the twist of the algebra structure by conjugation with a
2-cocycle, see also [AS02,Mas08,AS10]. In this paper, we give an explicit map inducing bialgebra
2-cocycles on the (braided) Drinfeld double from the datum of bialgebra 2-cocycles on B and
its dual. Such 2-cocycles have been classified for the Drinfeld double and similarly constructed
bicross product algebras by Schauenburg [Sch99,Sch02]. Other results on inducing so-called lazy
2-cocycles on the Drinfeld double are found in [BC06, CP07].

1.2. Summary. Let B be a braided monoidal k-linear category, and A a bialgebra in . Further
let A be a B-comodule algebra in B (see Section 2). The first main result of the paper (Theorem
2.3) is that there exists a left categorical action

>: BYD x A-Mod(B-CoMod) — A-Mod(B-CoMod),

of the monoidal category BYD of left Yetter-Drinfeld modules over B from [Bes97, BD98] (cf.
Definition 2.1). A similar result holds given a right B-module algebra A, see Theorem 2.4. These
actions generalize the induced A-module structure in a non-trivial way (cf. Example 2.11). In
the special case where A = B with the regular coaction, the result gives an action of gYD on
Hopf modules over B (Example 2.10) similar to [Lu94,Laul5]. If B = H is a commutative Hopf
algebra, using A = H with the adjoint coaction, the functor = corresponds, under equivalence,
to the tensor product of YD (see Example 2.15).
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In Section 3, we slightly generalize these results to produce comodule algebra over a braided
version of the Drinfeld double, (the double bosonization of [Maj99, Maj00]), which we denote by
Dring (C, B). For this, let B = H-Mod where H is a quasitriangular Hopf algebra over a field
k, and let C, B be bialgebras with a bialgebra pairing ev: C ® B — k in B. This way, there is a
monoidal functor

¥: BYD — Dring(C, B)-Mod,
see Proposition 3.6. The setup allows for infinite-dimensional bialgebras C| B, for which the
latter category may be larger. If the pairing ev is non-degenerate, then W is fully faithful.

The main results of Section 3 are:

e Let A be a left B-comodule algebra in B = H-Mod. Then A x “°PC x H is a left
Dring (C, B)-comodule algebra, see Corollary 3.12.

e Let A be a right C-comodule algebra in B = H-Mod. Then A x B x H is a left
Dring (C, B)-comodule algebra, see Corollary 3.17.

A notable example is that the braided Heisenberg double is a comodule algebra over the braided
Drinfeld double Dring(C, B) (Example 3.12). This case recovers a result of [Laul5] generalizing
[Lu94].

Weakening the assumption of H being quasitriangular to that of a weak quasitriangular struc-
ture of [Maj99], cf. Definition 3.19, the above results can be applied to Lusztig’s version of the
quantum groups U,(g). Namely, for B = U,(n*), the nilpotent part of the quantum group, its
braided Drinfeld double with U, (n™) is isomorphic as a Hopf algebra to Uy(g) by [Maj99]. The
results of this paper add that any Uj(n™)-comodule algebra can be used to produce a U,(g)-
comodule algebra. In particular, the regular comodule algebra gives an algebra D,(g) containing
the quantum Weyl algebra of [Jos95], cf. Corollary 3.27.

In Section 4, we investigate the construction of bialgebra 2-cocycles over the (braided) Drinfeld
double from 2-cocycles over weakly dually paired Hopf algebras. In the most general form
(Theorem 4.18), there is a map

H%(B,k) x Hy(“°PC,k) — H?*(Dring(C, B),k), (o,7)— 0o,

where C, B are dually paired Hopf algebra objects in the braided monoidal category H-Mod
for a quasitriangular Hopf algebra H. The subscripts H here indicate that these 2-cocycles live
in the braided monoidal category H-Mod (see Section 4.3 for basic facts of a theory of such
braided 2-cocycles). Such 2-cocycles in B were defined in [BD99] and relate to 2-cocycles of a
monoidal category as discussed in [PSVO10,BB13] in general.

The Dring (C, B)-comodule algebras constructed in Section 3 relate to the map

Indg: H%(B,k) — H?*(Dring(C, B),k), o — o otrivg

by means of constructing one-sided twists, or cleft objects (see [DT86, Sch96, Mas08]). If B,
denotes the one-sided twist of B by o, then B, x “PC x H is the one-sided twist of Dring (C, B)
by Indp (o) using the Dring (C, B)-comodule algebra structure from Theorem 2.8. In particular,
using the trivial 2-cocycle o = triv g, we recover the result of [Laul5] that the braided Heisenberg
double Heisy (C, B) is a one-sided 2-cocycle twist of Dring(C, B) (see Example 4.19). This is a
generalization of an earlier result of [Lu94]. An example is that the ¢-Weyl algebra D,(g) is a
2-cocycle twist of Uy(g).

To conclude the summary, note that the categorical actions from Theorem 2.3 and 2.4 fit into
a more general categorical picture [Laul8] of constructing categorical modules over the relative
monoidal center. We further note that it would be interesting to construct more explicit examples
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of comodule algebras over the class of braided Hopf algebras given by Nichols algebras (see e.g.
[AS02, AS10]). In the literature of Nichols algebras over a group, examples of such comodule
algebras can be given using twists by 2-cocycles which are typically defined over the bosonization
(Radford biproduct [Rad85]) of the braided Hopf algebra by twisting the group part, see e.g.
[Mas08].

1.3. Setup. In this paper, B is a braided monoidal category with braiding ¥. We assume that
B is k-linear (or even abelian), over k a field. As a prototype example, we may think of B
as a category H-Mod for H a quasitriangular Hopf algebra over k, or H-CoMod for H dual
quasitriangular (see e.g. [Maj94a, Section 1.3]). All categories considered are assumed to be
equivalent to small categories.

Let A be an algebra object in B, with associative multiplication m: A ® A — A and unit
1: I — A. We can then consider the category A-Mod = A-Mod(B) of left A-modules in B5.
Here, a left A-module is an object V' of B together with a morphism a: AQV — V in B satisfying
the usual module axioms:

(1.1) a(m®Idy) = a(Ids ®a), a(l®Idy) = Idy .

This category is again k-linear (and abelian if B is abelian). Analogously, we denote by Mod-A,
A-CoMod, and CoMod-A the categories of right A-modules, left A-comodules, respectively
right A-comodules. Although these categories consists of objects in B and all morphisms are in
B, we often suppress B in the notation of these categories.

Unless otherwise specified, B denotes a bialgebra object in B. That is, B has an algebra
structure m: BQ B — B, 1: I — B, and a coalgebra structure A: B - B® B, ¢: B — I, such
that the following axioms are satisfied:

(1.2) m(m ®@Idp) = m(Idp ®m),

(1.3) m(1®Idg) = m(ldp®1) = Idp,
(1.4) (A®IdB)A = (Idp ®A)A,

(1.5) (e®Idp)A = (Idp®e)A = Idp,
(1.6) Am =m@m(Idp®@Up p®Idr)(A® A),
(1.7) Al=1®1,

(1.8) em=cQ®e.

Here, the last three axioms say that A, e are morphisms of algebras (equivalently, m and 1 are
morphisms of coalgebras). Morphisms of bialgebras are morphisms in B which commute with all
these structures. If, in addition, there exists a morphism S: B — B in B which is a two-sided
convolution inverse to Idp, i.e.

(1.9) m(Idg ®S)A = m(S ®Idp)A = le,

then we say B is a Hopf algebra in B. We assume that all Hopf algebras have an invertible

antipode. Morphisms of bialgebras between Hopf algebras commute with the antipodes.
Further, we say that B is commutative in B if m = m¥, which is equivalent to m = m¥ 1.
Graphical calculus, similar to that used in [Maj94a], is helpful for computations in the monoidal

category B-Mod(B). For example, the B-module structure sy gy on the tensor product VW
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of left B-modules V', W is depicted as
CI
(1.10) Byw = (>V X® DW)(IdB ®‘1JB,V X® Idw)(A X IdV®W) = .

Here, ¥ = X denotes the braiding in B, A =  denotes the coproduct of B, and > =
L| B®V — V denotes a left action of B on V. To give another example of such graphical
calculus, the bialgebra condition (1.6) can be displayed as:

1-00

Lemma 1.1. For B a commutative (or cocommutative) bialgebra in B, B is also a bialgebra in
B = (B,U 1), the braided monoidal category with inverse braiding.

Proof. We have to verify the bialgebra condition using the inverse braiding ¥~! instead of the
braiding ¥. For B commutative in B, this amounts to the following computation:

Am = AmU~! (m@m)AB®B\P !
= (MU '@mU HIdp¥ ' @Idp)(A®A)
= (m®m)IdpgR¥ ' ®Idp)(A® A).
The proof for B cocommutative is similar; it follows dually. O
In fact, it was shown in [Sch98] that for a cocommutative Hopf algebra in B, it follows that
\IJ%,H = Idggm, i.e. the braiding on H is symmetric.

For A an algebra and C' a coalgebra in B, there exists a convolution product * on Homp(C, A),
where

(1.12) ¢ x1p =maled ®V)Ac, Vo, 0: C — A.

Note that 14e¢ is the neutral element with respect to *. If a two-sided inverse for ¢ exists, then
it is unique, and we denote it by ¢~*.

Further, recall that a bialgebra B over k is quasitriangular if there exists a universal R-matrix
R e B® B such that

(1.13) R(1)(1) ®R(1)(2) Q@R = R§1) ®R§1) ®R§2)Rg2),
(1.14) R ®R(2)(1) ®R(2)(2) _ Rgl)Rgl) ®R§2> ®R§2),
(1.15) R(l)b(l) ® R(2)b(2) = b(Q)R(l) ® b(l)R(z), VYbe B,

cf. [Majo0, Definition 2.1.1]. We require R to be convolution invertible. Given B quasitriangular,
the category B-Mod is braided with braiding (cf. [Majo0, Theorem 9.2.4])

(1.16) Uyw(v@w) = (R? =w) @ (RY =), YoeV,we W.

Here, the notation b = v is used to denote a left B-action.
Dually, B is dual quasitriangular if there exists a dual R-matriz R: B® B — k such that

(117) R(ab7 C) = R(a’a C(l))R(bv 6(2)),
(118) R(av bC) = R(a(l)a C)R(G(Q)’ b)a
(1.19) a@)be) R(agy, bay) = bayaayR(aw), b)),
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for all a,b,c € B; cf. [Majo0, Definition 2.2.1]. In this case, the category of left B-comodules is
braided monoidal with braiding given by

(1.20) Ty (v @w) = w® @O R v,

where §(v) = vi-D @09 € BV is adapted Sweedler’s notation for the left B-coaction on V
(sums are implicit).

1.4. Acknowledgments. The author thanks Kobi Kremnizer and Shahn Majid for interesting
and helpful discussions on the subject of this paper. Early parts of this research were supported
by an EPSRC Doctoral Prize at the University of East Anglia. The author also thanks Florin
Panaite for hints to further references and a helpful discussion, and the anonymous referee for
helpful feedback and suggestions.

2. A TENSOR PRODUCT ACTION BY YETTER-DRINFELD MODULES

In this section, B is a bialgebra in a braided monoidal category B (cf. Section 1.3). Let
A be an algebra object in the category B-CoMod. That is, A has a B-comodule structure
6: A— B® A, a multiplication mg: AQ A — A, and a unit 14: I — A, such that
(2.1) dmyg = (mp@ma)(Idp @V 4 p®1da)(6 ® ),

(2.2) 0ly=1R14.

These conditions can be depicted as

e 7-C0 J- 11

where 1 = ¥ denotes the units (of B and A). Given A, the category A-Mod(B-CoMod) can
be defined, consisting of left A- modules in B such that the A-action is a morphism of left B-
comodules, where B itself has the regular B-comodule structure given by A.

2.1. Yetter—Drinfeld Modules. We recall some facts about the category of Yetter—Drinfeld
modules over a bialgebra in B. Such modules were introduced in [Bes97, Section 3.3] and [BD9S|
and called crossed modules therein.

Definition 2.1. The category YD = BYD(B) of left Yetter-Drinfeld modules over B in B
consists of objects V in B which are equipped with a left B-action a and a left B-coaction § in
B, such that the following compatibility holds:

(mp®a)(Idp®@¥p s @Idy)(A®H)

(24) = (mp®@Idy)(Idp®¥v,p)(da ®@1dy)(Idp @Y v )(A ®Idy).

That is,
(2.5) =

Morphisms in EYD are required to commute with both the B-action and coaction.
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It was shown in [Bes97, Theorem 3.4.3] that the category gYD is a braided monoidal category,
where the monoidal structure is given by the tensor product action of Eq. (1.10) and the tensor
product coaction given by

(2.6) Svaw = (m@Idyew)(Ids @U@ Idw) (6 @ dw) = CH .

The braiding is given by
(2.7) VYR = (a®1dy)(Idp ®@Tyw) (6y ®©1d) = (N

Lemma 2.2. If H is a Hopf algebra in B, Equation (2.5) is equivalent either one of the following
equations

03 (m®Idy)(Idyg ®0)(S ® a)(A ®Idy)
( . ) = (m®Idv)(Id@‘I’V,H)(Id(@a®Id)(\I’H,H ®Idv ®S)(IdH ®(5®IdH)\I’Hyv)(A®Idv)
(2.9) da = (MID(IA®Ty x)(m®a@Idy)Idy @V g ®I) (AR (5 ® )Ty )(A@Idy).

Proof. These equations are depicted as

using graphical calculus, and follow easily under use of the antipode axioms. O

The category of Yetter—Drinfeld module is a realization of a version of the center of the
monoidal category B-Mod, relative to B, the relative monoidal center (cf. [Laulb,Laul8]).

2.2. The Tensor Product Action. The following first main theorem of this paper states that
we can tensor (using the tensor product of B) objects of A-Mod(B-CoMod) with objects of
BYD on the left and obtain modules in A-Mod(B-CoMod).

Theorem 2.3. Let A be an algebra object in B-CoMod. Given objects (V,ay,dy) in BYD,
and (W, aw,ow) in A-Mod(B-CoMod), their tensor product V®W becomes an object V =W
of A-Mod(B-CoMod) with A-action ay=w and B-coaction dye=w given by

(2.11) ayew = (ay @ aw )(Idp @V 4 v @ Idw ) (64 @ Idygw) = \ql—‘ ,

(2.12) vew = (mp @ldyvew)(Idp @Vy @ Idw)(dy ® dw) = C‘r‘ .

Proof. Tt follows directly from A being a B-comodule algebra that ay .y defines an A-action.
We need to check that it is a morphism of B-comodules. A proof of this, using graphical calculus,

can be given by
| |
- 9ot
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The first step uses that A is a B-comodule algebra, see Eq. (2.3). The second equality uses
coassociativity of the coproduct of B an that ¢ is a coaction. Next, we apply the Yetter—Drinfeld
compatibility condition depicted in Eq. (2.5), and finally, coassociativity and the comodule
axioms are used again to conclude this proof that V =W is an object in A-Mod(B-CoMod).
Alternatively, the proof can be given using the notation of composition and tensor products
of maps:
mp ®1d)(Idg @¥y.p ® aw)(dvay @ daew)(Idp Q¥ 4y @ Idw ) (04 @ Idygw)
mp ®@1d)(mp @ ¥y, @ Idw)(Idp ®¥v, g ® Idpew ) (day ® Idpgs ®aw)
ldp@¥Ypy @ VA @Idw)(AQ@ YAy ®ow)(d4 ® Idvgw)
mp ®1d)(Idg @¥y g @ Idw)(mp ® aw @ Idpgw ) (Idp @V B B ® Idver @aw)
ARy @V pRIdw)(Idp®¥Y Ay ® dw)(04 @ Idvew)

=(Idp ®avew)dagvew - O

Vewayew

(
(
(
(
(
(

The following theorem gives a version of Theorem 2.3 for B-module algebras which is proved
in an analogous way. A right B-module algebra in B is an algebra object in the category Mod-B.
That is, A has a right B-module structure a4: A ® B — A, a multiplication m4: A® A — A,
and a unit 14: I — A, such that
(2.13) as(ma®Idp) = maaaga,

(2.14) as(la®Idg) = 1»e.

These conditions can be displayed as

P

where € = l denotes the counit.

Theorem 2.4. Let A be a right B-module algebra. Given objects (V,ay,dy) in YDg, and
(W, aw,bw) in A-Mod(Mod-B), where aw: AQW — W and byy: W ® B — W are A-,
respectively B-actions, their tensor product VW becomes an object V=W of A-Mod(Mod-B)
with A-action ay=yw and B-action by-w given by

(2.16) Ay =W ‘= (Idv ®aw)(1dv s ® Idw)(\IJAy ® Id3®w)(IdA Ry ® Idw) = ml_‘ s

(2.17) byew = (by @ by )(Idy @V g @ Idp)(Idvew ®AR) = \/D
Theorems 2.3 and 2.4 in fact provide categorical modules in the sense of [EGNO15, Definition
7.1.1]:

Corollary 2.5. Let A be an algebra object in B-CoMod and D an algebra object in Mod-B.

(i) The category A-Mod(B-CoMod) is a left module over the monoidal category BYD.
That s,

>: BYD x A-Mod(B-CoMod) — A-Mod(B-CoMod), (V,W) — VW
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extends to a k-bilinear functor such that 1 =V =V and there is a natural isomorphism
V@V eW=V=(Voe=W),

for two objects V1, Va of BYD.
(ii) Similarly, D-Mod(Mod-B) is a left categorical module over YD via the k-bilinear
functor

>: YDB x D-Mod(Mod-B) — D-Mod(Mod-B), (VW) — V=W

Remark 2.6. Note that the categorical actions in Corollary 2.5 are instances of a categorical
construction of modules over the relative monoidal center. This point of view is explored further
in [Laul8].

For a version of Theorem 2.4 valid for a right B-module algebra, we need the following lemma
about right-left translation of Yetter—Drinfeld modules. We then obtain a version of Theorem
2.4 for left B-module algebras.

For this, denote by “PB the bialgebra in B with the same product mp as B but opposite
coproduct \IIB}BA B. If B is a Hopf algebra, then “PB is a Hopf algebra with antipode is S~

Lemma 2.7. Let B be a Hopf algebra in B. There is an equivalence of braided monoidal cate-
gories

(218) YDE(B) - ZZigYD(E), (V: a, 6) — (‘/’ CL/, 6/)7
where
a' =a¥gh (ST @ldy), &' = W56

Proof. We first verify that given a right B-module V', with action a, (V, a’) as above is a left “°P B-
module, and the tensor product is given using the opposite coproduct (\I/;B)A B (in the category

B). This provides a monoidal functor Mod-B(B) — “PB-Mod(B). Similarly, (V,d) = (V,d")
gives a monoidal functor CoMod-B(B) — “°P? B-CoMod(B). Finally, given a right YD-module
over B, the left “°? B-module and comodule structures are again YD-compatible, but using the

braiding of B. To show this, it helps to use Equation (2.8) for the Hopf algebra B in B. [

Corollary 2.8. Assume B is a Hopf algebra in B. Let A be an algebra object in B-Mod. Given
two objects (V,ay,dy) in BYD, and (W, aw,bw) in A-Mod(B-Mod), where ay: AQW — W
and byy: BQW — W are A-, respectively B-actions, their tensor product V® W becomes an
object V=W of A-Mod(B-Mod) with A-action aye=w and B-action by~w given by

avew = (1dQaw) (¥} @ ldw)(av U5, @ Idpew)(Ida®(S~! ®1dy)dy ® Idw)
(2.19) |

== i

CI
(2.20) byow = (bv ® bw)(IdB ®\I'B,V ® Idw)(AB ® IdV®W) = .

Proof. This follows from Theorem 2.4 under Lemma 2.7. O

Theorem 2.3 and 2.4 can further be dualized to give a version for (co)module coalgebras.
Graphically, dualizing corresponds to rotating a picture by 180 degrees in the horizontal middle
axis. From this, formulas for the tensor product can be derived.
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Corollary 2.9. Let B be a bialgebra in B.

(i) Let C be an coalgebra object in B-Mod, with B-action ac: B® C — C. Given objects
(V,ay,6v) in BYD, and (W, dw, aw) in C-CoMod(B-Mod), then V@ W becomes an
object V =W of C-CoMod(B-Mod) with C-coaction dy=w and B-action ay=w given
by

(2.21) vew = (ac @ Idvew)(Idp QUyc® Idw)(dy ® dw) = F“( ,

CI
(222) Ay =W = (av ® aw)(IdB ®‘IIB,V ® Idw)(AB ® Id\/@W) = .

(ii) Let C be an coalgebra object in CoMod-B, with B-coaction 6¢c: C — C ® B. Given ob-
jects (V,ay,dy) in YDE, and (W, vy, dw) in C-CoMod(CoMod-B), where vy : W —
CRW and dy: W - W ®B are C, and B-coactions, then V QW is an object V =W
of C-CoMod(CoMod-B) with C-coaction yy=w and B-coaction dy=w given by

(2.23) YWew = (Idc Ray ® Idw)(\IfMC X IdB®W)(IdV Roc ® Idw)(IdV @’yw) = /M ,

(2.24) dvew = (Idvew @mp)(Idy @¥pw @1dp)(dy ® dw) = \f )

Hence, similarly to before, there are categorical actions
>: BYD x C-CoMod(B-Mod) — C-CoMod(B-Mod),
>: YD x C-CoMod(CoMod-B) — C-CoMod(CoMod-B).

2.3. Examples. The rest of this section is devoted to the inclusion of various general examples,
based on natural (co)module algebra structures from the literature.

Ezample 2.10 (Regular coaction). Any bialgebra B is a B-comodule algebra with respect to the
left regular coaction via the coproduct A, see e.g. [Maj00, Example 1.6.17]. We denote B viewed
as a B-comodule algebra in this way by B**&. The category B"¢-Mod(B-CoMod) is equivalent
to the category of Hopf modules over B in B as treated (in such a generality) in [Bes97, BD98§].
A Hopf module V is an object of B with a B-coaction § and a B-action a, such that

(225) oa = (mB ®a)(IdB ®\I/B,B ®Idv)(A @5) — ::' = CJ\Q

In this case, Theorem 2.3 recovers the result of [Laul5] (proved there for quasi-Hopf algebras)
that the tensor product V& W of a Yetter—Drinfeld module V' with a Hopf module W is again
a Hopf module over B. We will remark in Examples 3.13 and 4.19 how this tensor product
generalizes the main result of [Lu94].

Ezample 2.11 (Trivial coaction). A more basic example is given by viewing B as a comodule
algebra BV with respect to the trivial coaction (via the counit ¢) on itself. In this case, the
category B'™V-Mod(B-CoMod) consist of simultaneous left B-modules and comodules such
that the structures commute, i.e. an object (V,a,d) with action a and coaction ¢ satisfying

(2.26) da = (Idp®a)(¥p g @Idy)(Ids ®9).
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In this case, the action of BYD factors via the forgetful functor BYD — B-CoMod through
the regular categorical action of B-CoMod on B"'V-Mod(B-CoMod), which acts by tensoring
the B-comodule structures, and the induced B-module structure.

Ezample 2.12 (Adjoint action). Another natural action for a Hopf algebra object H in B on itself
is given by the right adjoint action, defined by

(2.27) = my(S@my) (Vg @1dy)(Idy ®A) = :

cf. [Maj00, Example 1.6.9]. This makes H a right H-module algebra denoted by H2d. Thus, by
Theorem 2.4, we we have a left tensor action

YD x H*-Mod(Mod-H) — H*-Mod(Mod-H).

Example 2.13. A more concrete example can be given by considering the case H = kG of a
group algebra. In this case, the category H*-Mod(Mod-H) consists of G' x® G-modules, for
the group algebra of the semidirect product of G by itself, in which (1,g)(h,1) = (ghg™',9)
holds. Indeed, an object W in H*-Mod(Mod-H) has a right H-action w-g and a left H-action
g-w, for we W and g € G. Tt becomes a left G x*! G-module by linearly extending an action
defined for pairs g, h € G by

(2.28) (g,h)>w=g-(w-h").
Theorem 2.4 states that we can tensor a module over G x4 G by right G-crossed module, i.e a

G-graded right G-module V' = @), Vy such that Vj, - g = V-1,. Then the resulting G x2d G-
module has action given, for v € V},|, w € W, by

(h,1)>v@w=v® |v] 'hlv| - w,
(Lo r@uw=v-g 'Quw-g '

Ezample 2.14 (Adjoint coaction coalgebra). We can also consider the left adjoint coaction for a
Hopf algebra H in B on itself which is defined by

(2.29) 6= (m @1d)(1d @¥(Id ®S)A)A =

This makes H a coalgebra object in H-CoMod. The left comodule coalgebra version of Corollary
2.9 implies a right tensor action

>: CoMod-H*(H-CoMod) x YD — CoMod-H*(H-CoMod).

Given an object (W, 4!,6") in CoMod-H?*!(H-CoMod), where ' is the left and 6" the right
H-coaction, and an object (V, a, d) of EYD, the left tensor product H-comodule W <1V obtains
a right H-comodule structure given by

(2.30) ey = (Idy ®a @ Idg) (Idy ¥ v) (Idw @52 @ 1dy ) (6, @ Idy) =

Robert Laugwitz 11



Comodule Algebras and 2-Cocycles over the (Braided) Drinfeld Double

Ezample 2.15 (Adjoint coaction algebra). Let H be a commutative Hopf algebra in B, cf. Section
1.3. In this case, H! is also an algebra in the category H-CoMod. To prove this, graphical
calculus can be used:

VPTG

The third equality uses Lemma 1.1. In fact, combining this observation with the previous
example, H*d becomes a Hopf algebra in the braided monoidal category H-CoMod. Again
using commutativity of H, the category H*-Mod(H-CoMod) is equivalent to YD (compare
to condition 2.9), and the tensor product of Theorem 2.3 recovers the monoidal structure on
BYD under this equivalence.

Ezample 2.16 (Transmutation). Let now let B = Vectg. An interesting generalization of the
previous example was constructed by Majid (see [Maj93, Theorem 4.1], and also [Maj00, 9.4.10])
using a process called transmutation. Let H be dual quasitriangular. Then H is replaced by
the covariantized version H. As coalgebras, H = H, but the product is changed so that H
is an algebra object in H-CoMod with respect to the adjoint coaction (in [Maj93, Maj00],
right comodules are used, but a left comodule version can be constructed). There exists an
equivalence of monoidal categories H-Mod(H-CoMod) ~ YD [Maj00, Theorem 7.4.5]. Under
thi}s{ equivalence, the tensor product action of Theorem 2.3 corresponds to the monoidal structure
of 7YD.

3. CONSTRUCTING COMODULE ALGEBRAS OVER THE DRINFELD DOUBLE

In this section, we relate the results from Section 2 to the construction of comodule algebras
over braided Drinfeld doubles.

3.1. Dually Paired Braided Bialgebras. We now describes the setup adapted throughout
this section. We let B be a bialgebra object in B as before. Assume C' is another bialgebra
object in B which is a left weak dual to B.

Definition 3.1.

(i) Two bialgebras B, C in B are weakly dual if there exists a weak bialgebra pairing ev: C'®
B — I, denoted by ev =\_J such that

(3.1) ev(me ®1dp) = ev®(Idcge ®AR), ev(Idc @mp) = ev®*(Ac @ Idpgn),
(3.2) ev(le ®1dp) = ep, ev(lde ®1p) = ec,

where ev®? = ev(lde ®ev®Idp).
(ii) If B,C are Hopf algebras, then we require, in addition, that

(3.3) ev(Sc ®1dp) = ev(Ide ®Sp).

(iii) We say that the weakly dual bialgebras (or Hopf algebras) B, C are strongly dual if there
exists a coevaluation coev: I — B ® C such that

(3.4) (ev®Ide)(Ide ® coev) = Ide, (Idp ® coev)(coev®Idp) = Idp.
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Remark 3.2. Note that a weak bialgebra pairing ev is not required to be non-degenerate in
general. Any pairing of strongly dual bialgebras is non-degenerate, but in the infinite-dimensional
case, the converse does not hold as the coevaluation map only exists in a completion of the tensor
product. Hence, in this case, the duality is not strong.

Note further that the convention on ev®? is different from the usual induced pairing on V&?
for vector spaces, but more suited to working in a braided monoidal category since it minimizes
the occurrence of the braiding. Duality pairings following this convention are sometimes called
categorical, cf. [Maj94a, Section 2.2].

The conditions of Definition 3.1 are express via graphical calculus as

o Y- Y- UL Ul
If B = Vecty then C can be taken to be the finite dual B° [Mon93, Chapter 9].

Ezample 3.3 (Nichols algebras). Let V' be a Yetter-Drinfeld module over a Hopf algebra H over
k. Then T(V) has a unique structure of a braided Hopf algebra in £ YD, generated by primitive
elements v € V. The prototype example of a duality pairing as in Definition 3.1 of braided
Hopf algebras is given by the self-duality of Nichols algebras (due to [Lusl0, Proposition 1.2.3]
in the case of an abelian group). The pairing is obtained by taking quotients by the left and
right radical in the induced weak Hopf algebra pairing T(V) ® T'(V') — k of the tensor algebras.
Then there is a non-degenerate pairing B(V) ® B(V) — k for the corresponding Nichols algebra
B(V). This non-degeneracy characterizes the Nichols algebra B(V') as a quotient of T'(V'), see
g. [AS02] for details.

More generally, one can take any ideal I in T(V) which is homogeneous and generated in
degree larger or equal to two and a Yetter—Drinfeld submodule. Then T'(V')/I is a braided Hopf
algebra, sometimes called a pre-Nichols algebra, cf. [Mas08]. As I is contained in the radical
of the pairing T(V) ® T(V') — k, the pairing factors to a weak self-duality of the braided Hopf
algebra T'(V')/I.

Lemma 3.4. Let C, B be dually paired Hopf algebras. Then there are functors of monoidal
categories

5 ¢: B-CoMod(B) — “°°C-Mod(B), (V,6) — (V,a),
— (ev®Idy)(Ide ®6) = Lﬂ;
8, ©°PC-CoMod(B) — B-Mod(B (V,8) — (V,d),

= (ev®Idy)(Ypc ®@Idy)(S®0) Q%/—{

where B denotes the monoidal category B with the inverse braiding ¥~', and ©°PC is C with the
same product, and (inverse) opposite coproduct W~'Ac. The functor @zpc does not require the
existence of antipodes for B and C.

We call the pairing ev non-degenerate if the above functor @gpc is fully faithful. If B = Vecty
then this is equivalent to the usual definition of a non-degenerate pairing, i.e. that the left and
right radicals are zero.
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3.2. Braided Drinfeld Doubles. We briefly recall the construction of braided Drinfeld doubles
(called double bosonizations in [Maj99]) for conformity with the conventions of this paper. We
now assume that B = H-Mod for a quasitriangular Hopf algebra H with universal R-matrix R
(cf. Section 1.3). Let C, B be (weakly) dual bialgebras in B = H-Mod. We denote the H-action
on B and C by = in order to be able to distinguish it from the product in the Drinfeld double
defined below.

Definition 3.5. We define Dring(C, B) to be the k-bialgebra generated by C, H, B as subalge-
bras such that

(3.6) (R_(l) > b(g))(R_(Q) > C(l)) eV(C(Q), b(l)) = R_(l)C(z)b(l)R(Z) eV(R_(z) B> C(1), R(l) = b(z)),
for any be B, ce C. Further,

(3.7) hb = (h(1) = b)h(a), he = (h(1y = c)ha), Vhe H.
The coproduct is given on generators by

(3.8) A(h) = h(1) @ h),

(3.9) A(b) = by R @ (R & b)),

(3.10) A(e) = R Wepy @ (R =cqy).

The counit is defined on generators using the underlying counits in C, H, and B, and extended
multiplicatively.

If B, C are weakly dual Hopf algebras, then Dring (C, B) is C ® H ® B as a k-vector space.
In this case, the antipode Spin is given by

(3.11)  Sprin(h) = S(h), Sprin(b) = S(RP)(RM = 8b), Sprin(c) = S(R-WY(R P =51¢).
Further, in this case, Equation (3.6) is equivalent to
(3.12) chb = R;(l)(R;(l) = b(Q))(R;(Q) = 0(2))R(2) ev(R;@) = C(l), R(l) &> Sb(3)) ev(c(g), b(l))

Here, the notation Apg(b) = b(1) ®@ba) and Ac(c) = c(1)®c(z) is used. Equivalent to Equation
(3.7) we have zh = h(Q)(S_lh(l) >x) for z in B or C.

If C, B are strongly dual in the sense of Definition 3.1(iii) and we denote the coevaluation
morphism coev: I - B® C, by coev = e, ® f* (which is a sum of tensors), then Dring (C, B)
is quasitriangular with universal R-matrix

(3.13) Rprin = RY 2 @ e R,

Proposition 3.6. If C, B are weakly dual bialgebras (or Hopf algebras), then Dring(C, B) is a
bialgebra (respectively, Hopf algebra), and there is a monoidal functor

®: BYD — Driny (C, B)-Mod.

If the pairing ev of C and B is non-degenerate, then this functor is fully faithful.
If B,C are strongly dual, then ® is an equivalence of braided monoidal categories.

Proof (sketch). Given an object V in BYD, define ®(V) = V with the same left H-action and
B-action. The C-coaction is given by c>v = ev(c@v(_l))v(o), for any c € C, v € V. This
assignment becomes a functor by setting ®(f) = f for any morphism f: V — W in 3YD.
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The result is due to [Maj99], with slightly different relations (as there a different category
of Yetter—Drinfeld modules is used, see [Maj99, Appendix B], and B is regarded as a right
H-module).

Consider the monoidal functor @gpc from Lemma 3.4 to produce a monoidal functor from
gYD into a category ©PYD of simultaneous left B-modules and “°°C-modules V which are
compatible via the condition

(3.14) ap(ldg ®ac) (¥ ®1d)(Ide @ev@Idpgy)(Ac ® Ap ®1dy)

(315) = (ev ® Id\/) (Id ®\I/B,V) (Idc’ ®ac ® IdB) (Id ®GB ® IdB) (Id ®\I/va) (AC ® AB @ Idv),
where ap denotes the B-action, and a¢ the “°PC-action. It is not hard to check that this category
is monoidal and braided monoidal if B and C are strongly dual. If B, C are Hopf algebras, the
subcategory on finite-dimensional objects is rigid. Since B = H-Mod for a quasitriangular Hopf

algebra H, we can now apply a type of Tannaka—Krein duality (see e.g. [Majo0, Chapter 9]) to
the monoidal category ©"#YD, using the forgetful functor

F: YD — Vecty.

Note that the representability condition [Maj00, Equation (9.40)] holds for Dring(C, B). That
is, there are natural bijections

Homvect, (V, Dring (C, B)) = Nat(V @ F",F"), Yn = 0.
Hence [Maj00, Theorem 9.4.6] gives a monoidal functor
3': “BYD — Dring(C, B)-Mod

which is in fact an equivalence of categories. This follows as it can be explicitly described as
follows: Given an object V of ©“BYD, the actions of H, B, and C on @' (V') are given by
the original actions on V, and hence uniquely determine V. This shows that ® is essentially
surjective and full. It is faithful since F is faithful. The relations for Dring(C, B) are now
obtained via Tannaka—Krein reconstruction, and the general theory ensures that Dring (C, B) is
a bialgebra (or a Hopf algebra, provided that C, B are), cf. [Maj00, Section 9.4].

To find the formulas for the antipode in the Hopf algebra case, the identities

RYRP @ RPS(RP) =191, RyYS(R, Yo R, PR® =101,
are used. Note that if the duality is strong, then the functor @gpc from Lemma 3.4 gives an

equivalence 3YD ~ ¢BYD. O

Remark 3.7. If the pairing ev is convolution invertible, then Dring(C, B) is isomorphic to C' ®
H ® B as a k-vector space even if C; B are no Hopf algebras. This follows using the approach of
[Maj90a, KS97].

Ezxample 3.8. For H = k, the trivial Hopf algebra, and B a finite-dimensional Hopf algebra, we
define
Dring(B) := Dring(“°? B, ““’ B*).
Here, B* = Homy (B, k) is the dual of B, which becomes a bialgebra by defining
(3.16) (Af)(h®g) = f(hg), (e f)(h) = e(h)) f(he2)), Vh,g€ B,e, f € B*.
There is strong duality pairing
ev: “PBR“PB* — Kk, h® f+— f(h)
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in the sense of Definition 3.1(iii).
Equivalently, this pairing gives a pairing

{, Y: B®B*" — Kk, h® f— f(h),
which satisfies the conditions
(317) <hgaf> = <h’ f(1)><gaf(2)>’ <h7 €f> = <h(1),6><h(2),f>

The Hopf algebra Dring(B) defined this way recovers the usual Drinfeld double (or quantum
double) in the form containing B*“°P as found, for example, in [Maj00, Theorem 7.1.2].

For completeness, we give an explicit presentation for Dring(B). The algebra Dring(B) is
defined on B ® B* subject to the relation

hayfoyevihey, fy) = fayhe) evihay, f2), Vhe B, f e B*.
The coproduct and counit are the respective structures on (B*)“P @ B.

Ezample 3.9. Now assume that C, B are primitively generated. That is, as algebras, the sets
P(C) and P(B) generate C, respectively B. Here, be P(B) and c € P(C) if and only if

Ap(b) =b®1+1®Hb, Ac(c) =c®1+1®ec.
Denote the braided commutator by
[e,b]w = cb—mU(c®b) = cb— (R® =b)(RY =¢).
The algebra Dring (C, B) is then generated by b € P(B), c€ P(C) and h € H such that
(3.18) [c,b]g—1 = ev(e,b) — RWRP ev(R=®) &= ¢, R = ).
Or, equivalently,
(3.19) [b,cly = RP (yR" P ev(R"P R ) = ¢, RV = b) — ev(R® ¢, RV =),

together with the relations from Equation (3.7) and those from the products of B,C, and H.
The equivalence of the two commutator relations Eqgs. (3.18) and (3.19) is seen by precom-
posing with W¢ g in Equation (3.18) to produce Equation (3.19), under use of the axioms for
the universal R-matrix, or more conveniently, using graphical calculus.
For primitive elements, the coproduct formulas from (3.9)-(3.10) become

ADrin(b) =b ® 1+ R(Q) ® (R(l) > b)’
ADrin(c) =c®1+ R_(l) ) (R_(Q) > C)7
with counit
6Drin(b) = EDrin(C) = 0, EDrjn(h) = €(h)

The antipode is given by the same formulas as in Equation (3.53).
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3.3. Braided Crossed Products. Given an algebra object A in B-Mod = B-Mod(B). We
recall the construction of the algebra A x B from [Maj94a, Proposition 2.6]. The defining feature
of A x B is that A x B-Mod is equivalent to A-Mod(B-Mod).

The algebra A x B is given on the tensor product A ® B in B with product

(3.20)  magr = (Mma®@mp)(Ilds ®as @ Idpgp)(Idags @Y B A ®1dp)(Ida @A ® IdagB)-

Using graphical calculus, the multiplication becomes
ABA B

a1 = (1)
A

Given weakly left dual bialgebras C for B, recall the monoidal functor \I/j;pc from Lemma 3.4.
Given a B-comodule algebra A, A becomes a “°C-module algebra (in B) with action given by
ca=aev(c,al™), for all a € A, c e C, where 6(a) = al ™) ®a® € B® A. Hence, we can
consider the crossed product A x “°PC. Now again assume B = H-Mod for a quasitriangular
Hopf algebra H over k. We give a presentation for the algebra A x “PC. The product from
Equation (3.20) gives that A x “PC = A ® C with A, C as subalgebras and the additional
relations

(3.22) ca= (R Wead)(R® =cqy)evicy,a ™), Vae A, ceC.

We also need the iterated cross product algebra A x “°?C x H. This algebra is defined on
A®C® H, with A, C, and H as subalgebras, and relations Equation (3.22) as well as

(3.23) ha = (h(l) Da)h@), hc = (h(l) >C)h(2), Vhe Hyae A,ce C.

Ezample 3.10 (Braided Heisenberg double). In Example 2.10 we saw that B itself is naturally a
left B-comodule algebra in B, denoted by B™&. Applying the construction above, we obtain the
braided cross product

Heisy (C, B) = B™ x “PC x H

which is referred to as the braided Heisenberg double (cf. [Laulb, Section 2.3]). It is generated
as an algebra by the subalgebras C, B, and H subject to the relations Equation (3.7) and

(3.24) ch = (R_(l) B> b(g))(R_(Q) B> 0(1)) eV(C(g), b(l))7 Yee C,be B.
If, for example, B, C' are primitively generated, this relation becomes
(3.25) [c,b]g—1 = ev(c,b).

Ezample 3.11 (Twisted tensor product algebra). Recall from Example 2.11 that B is also a left
B-comodule algebra, denoted by BV, with respect to the trivial coaction. In this case, we
denote B™Y x ©PC' by B ®g-1 C, which indices that this is a braided tensor product algebra,
with product given by

(3.26) MBR, 1C = (mp ®me)(Idp ®\Il(j‘,lB ®Ide).
Hence, in B ®g-1 C' x H, the multiplication is given by
(3.27) bhe - WH'c = b(hayR™W =) hgyhip (S~ (i) R =)',
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3.4. Comodule Algebras over Braided Drinfeld Doubles. We now generalize the results
of Theorem 2.3 and 2.4 to Dring(C, B)-comodule algebra structures on certain cross product
algebras, for B = H-Mod.

Corollary 3.12. Let C, B be weakly dual bialgebras in B. Let A be a left B-comodule algebra in
B = H-Mod. Then A x “PC x H is a left Dring (C, B)-comodule algebra (with A x “PC as a
comodule subalgebra). The coaction dpyin is given by

(3.28) Sonin(a) = al"VR® @ (R = o),
(3.29) 0prin(c) = B~ Weg @ (R =),
(3.30) Oprin(h) = h(1y ® h(2),

forae A, ce C, he H, and 6(a) = a=Y ®a® denoting the B-coaction on A.

Proof. First, the monoidal functor @gpc from Lemma 3.4 applied to the B-coaction gives a
functor

®4: A-Mod(B-CoMod) — A-Mod(“’C-Mod).
Recall that by Proposition 3.6, there is a monoidal functor V¥: gYD — OBYD.

Let V € BYD and W € A-Mod(B-CoMod). By Theorem 2.3, V = W is an object in
A-Mod(B-CoMod). As a left “PC-module, ®4(V = W) is isomorphic to ¥(V) & ®4(W).
If we define the A-action on ¥(V) ® ®4(W) by the same formula as in Eq. (2.11), then
these objects become isomorphic in A-Mod(“°C-Mod). More generally, for any object V
of ©“BYD and A-Mod(“P?C-Mod), the tensor product “PC-module V ® W becomes an object
in A-Mod(“?C-Mod) again with the same A-action as in Eq. (2.11).

The result now follows under the equivalences A-Mod(“°?C-Mod) ~ A x “°PC x H-Mod
and “PYD ~ Dring (C, B)-Mod, using a reconstruction statement as for example found in
[Laulb, Proposition 3.8.4]. O

Ezample 3.13 (Braided Heisenberg double). The algebra Heisy (C, B) from Example 3.10 is a
Dring (C, B)-comodule algebra with coaction given by

(3.31) 6(b) = byRP @ (R =bg)), (c) = R Ve @ (R™P =), 8(h) = hay ® hea,
This recovers the result from [Laul5, Corollary 3.5.8], generalizing [Lu94, Corollary 6.4].

Ezxample 3.14. For the twisted tensor product algebra B ®g-1 C x H from Example 3.11, we
find that the coaction is determined by

(3.32) §(b) = R® @ (RW =),
as well as the same formulas for d(c), d(h).

We can produce a version of Corollary 3.12 valid for right C'-comodule coalgebras. For this, we
shall assume from now on that C, B are weakly dual Hopf algebras in B. We need the following
technical lemma:

Lemma 3.15. Let C, B are weakly dual Hopf algebras in B. There is a monoidal functor
¥: YD$ — Dring (C, B)-Mod.

If the pairing ev of C and B is non-degenerate, then this functor is fully faithful.
If C, B are strongly dual, then V is part of an equivalence of braided monoidal categories.
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Proof. Using Lemma 2.7, there is an equivalence of categories YD (B) =~ copcs YD(B). Combine
this with the functor <I’§)pc from Lemma 3.4, and we obtain from the data of a right YD-module
over C, a left B-action together with a left “?C-action, such that tensor products can be formed.
It remains to verify that these induced actions satisfy the a compatibility condition equivalent to
Equation (3.14). Indeed, translating the compatibility condition of Equations (2.4), (2.5) under
<I>§.pc gives the equation

ac(Idc®eV ®CLB)(AC ) (S ®IdB)AB X Idv) = (ev@Idv)(IdC ®\I’V,B)
(Ide ®ap ®1dp)(Idcgs ®ac ®1dp)(Ide @V, @ Upv)(Ac ® (Id®S)Ap @ Idy).

Applying the antipode axioms for S twice, we see that this equations is equivalent to Equation
(3.14). Hence, there is a monoidal functor YD$ — Dring(C, B)-Mod via a Tannaka Krein
reconstruction argument as in Proposition 3.6. O

(3.33)

Given a right C-comodule algebra A, the above functors make A a right B-module algebra.
We provide a presentation for A x B using this induced B-action

(3.34) a = (IdA ®ev)(5A ®Id3)\I/B’A(S®IdA) = %

The algebra A x B is defined on A x B, with subalgebras A, B and the relation
ba = (R® =a) D (RW = b)) ev((R? =a) Y, S(RY =b) 1))
= (R(Q)(l) = a(o))(R(l)(g) = b(Q)) eV(R(z)(Q) [ a(_l), R(l)(l) = S(b(l)))

Here, we denote d4(a) = a(® @ al~1).
We can now provide a version of Theorem 2.3 working with right C'-module coalgebras.

(3.35)

Corollary 3.16. Let C, B are weakly dual Hopf algebras in B, and let A be an algebra object in
CoMod-C. Given objects (V,ay,dy) in YDE, and (W, aw, dw) in A-Mod(CoMod-C), their
tensor product V.@Q W becomes an object V =W of A-Mod(CoMod-C) with A-action aye=w
and C-coaction dy=w given by

avew = (Idw Qaw) (¥}, ® Idw)(Ida ®ay ¥, @ Idw)((1da ®S )54 ® Idvew)

(3.36) B @

(3.37) 5V|>W = (Idv®w ®mB)(IdV ®‘I’B,W ® IdB)(5V ® 5w) = ‘ \Il '

Proof. This follows under use of Lemma 2.7 from Theorem 2.3. U

Corollary 3.17. Let C, B are weakly dual Hopf algebras in B, and let A be a right C'-comodule
algebra in B = H-Mod. Then Ax B x H is a left Dring (C, B)-comodule algebra (with A x B as
a comodule subalgebra), where the left B-module structure is obtained from the right C'-comodule
structure via Equation (3.34). The coaction 0pyin 1S given by

(3.38) dprin(a) = R~ Wal Y @ (R™?) &= a0),
(3.39) 0Drin(b) = by R® @ (RY =byy)),
(3.40) Oprin(h) = h(1y ® h(2),
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forae A, ceC, he H, and 6(a) = a9 ® al1) denoting the C-coaction on A.

Proof. The proof follows the same strategy as the proof of Corollary 3.12. Note that the A-action
of Corollary 3.16 can be rewritten, using the passage from a right C-action to a left “°?C-action
from Lemma 2.7, as

(3.41) ay =W = (Idv ®aw)(\11;/’1A ® Idw)(IdA Rby ® Idw)((SA &® IdV®W).

Thus, we find the formula for dp,in(a) above. Further combine Lemma 2.7 and Lemma 3.4 to
induce a left B-action b from the right C-coaction § by the formula

b= (Idy ®ev)(0 ®S)¥p v,

showing that dpyin(b) is just giving by the coproduct of B x H. The H-actions is simply given
by Ag. O

Ezample 3.18. For a finite group G, let A be a left G-comodule algebra. Then A x k[G] becomes
a left Drin(G)-coalgebra. Here, k|G| = Homy (G, k) with coproduct

A((Sg) = 2 511 ®5b7

a,b:ab=g
for 64(h) = d4,. Further Drin(G) = k[G] ® kG with relations
g(sh = 5ghg—1gv Vg, heq,
and
Aprin(90n) = Y, 902 ® g6
a,b:ab=g
The Drin(G)-coaction on A x k[G] is given by
6Drin(a) = |a| ®a, 5Drin(5h) = A((Sh)7

where a is homogeneous of G-degree |al.
Dual to this, assume that B is a right G-module algebra. Then B becomes a right k[G]-
comodule algebra via dualizing, i.e.

5(b) = > (b<g) ®J,.
geG

Now, B x kG is a left Drin(G)-comodule algebra, with coaction given by

5Drin(b) = 2 59 ® (b< g)a 5Drin(g) =g®g.
geG

3.5. Weak Quasitriangular Structures. In order to work with quantum groups, we present
versions of the above results for B having a braiding via a weak quasitriangular pair of braided
Hopf algebras following [Maj99]. The basic idea is to generalize Definition 3.5 to a weaker context
than H being quasitriangular suitable for infinite-dimensional H.

Assume given a pair of weakly dual Hopf algebras A, H over k with pairing { , >: H® A > k
satisfying

(3.42) (A(h),a®by = (hry, b)Xhay,a),  (h®Fk,Ala)y = {h,az)){k, ag)),
(3.43) {1,a) = e(a), (h, 1)y = e(h),
(3.44) (Sh,a) = (h, Sa).
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Note that this is a different pairing than in [Maj99] (to make the connection, replace H by
COPHOP j.e. using the opposite product and coproduct).

Definition 3.19. A weak quasitriangular pair of Hopf algebras is the data of Hopf algebras A,
H with a weak pairing { , »: H® A — k, and convolution-invertible morphisms of Hopf algebra
R,R: A — H°P (that is, these morphisms are anti-algebra maps, but coalgebra maps) satisfying
the following axioms:

(3.45) (R(a),b) = (R*(b), ay,
(3.46) f(“@))h(l) ev(hy, aqy) = h(2)§(a(1)) ev(hey, a)),
(3.47) R(a))hqyev(hoy,aqy) = heyR(aq)) ev(hay, az))-

It was shown in [Maj99] that the braided Drinfeld double (i.e. the double bosonization) can
still be defined as a Hopf algebra given that H, A are a weak quasitriangular pair of Hopf algebras.
This versions is important to include Lusztig’s version of the quantum groups Uy(g) as example.

Definition 3.20. Assume given a weakly quasitriangular pair A, H, and weakly dual bialgebras
B,C in A-CoMod. We define Dring(C, B) to be the Hopf algebra generated by C, H, B as
subalgebras such that
(3.48)

(R (e ™) = b)) ey Y evlceay . bay) = B*(ey ™ )b R (b)) evie) @, by @),
e bR V) = ew) evice), bay) = B ey VebmB (bt evicyy) @, b ™),

for any b e B, ce C. Further,

(3.49) hb = (hey =b)hy, he = (hey = )hy, Vhe H.
The coproduct is given on generators by

(3.50) A(h) = hez) ® by,

(3.51) A®) = bR (b)) @by,

(3.52) A(e) = R () ey ® ey .

The counit is defined on generators using the underlying counits in C, H, and B, and extended
multiplicatively (as before).

If B, C are dually paired Hopf algebras, then Dring (C, B) is C ® H ® B as a k-vector space,
and the antipode Sp;in is given by

(3.53) Sprin(h) = S7'(h), Spein(b) = SR “ ("N S(B®),  Spuin(c) = SR™*({=1) 571 (O).

Proof (sketch). We skip the proof that the above version of the braided Drinfeld double is again
a Hopf algebra and refer the reader to [Maj99] where a slightly different version of this Hopf
algebra is presented. Note that the relations can be translated from Definition 3.5 via

(3.54) R(a) = (R® a)RW), R™*(a) =(R~® )R~
(3.55) R(a) = (R~W a)R=®), R "(a) = (RW a)R®.
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Hence, when acting by a tensor leg of a universal R-matrix in the relations of the braided Drinfeld
double, we replace

(3.56) RY @ (R? =v) = R @v®, R WeR P ev)=R*0 D),
357) R PR Vesv)=ReY)@v®, RP @ (RY =v) =R *(u")@v®,
to obtain the formulas. O

Remark 3.21. Let us motivate the notion of a weak quasitriangular pair further. The idea is
that given a weak quasitriangular pair A, H, the Hopf algebra A obtains a dual quasitriangular
structure R: A® A — k. Indeed, for all a,be A,

(3.58) R(a®b) = (R(a),b), R *(a®b) = (R(b), a).

Lemma 3.4 produces a monoidal functor A-CoMod — “°°? H-Mod. Using the weak quasitrian-
gular structure, we can define braidings not just on A-comodules, but one of the objects can be
an H-module. Indeed, let V' be a left A-comodule with coaction dy, and W a left H°P-module
with action aw, then the morphisms ¥y : W@V — V QW given by

(3.59) \I/W,V = (Idv @CLWTW,A)(TI/V,V X R) (IdW @TA,V(SV)
and
(360) \I/;/’lw. = (IdV ®aw7’W’A)(TM/’V ®E) (IdW ®7'A,V5V)

are morphisms of left A-modules (where V' is an A-module via the induced action from Lemma
3.4). Here, 7y, denotes the swap-map v ® w — w ® v making Vecty symmetric monoidal.
Further, the maps 7,y (and TIX,IV) are mutually inverse braidings provided that the A-action
on W is induced from a coaction as in Lemma 3.4.

Analogues of Corollary 3.12 and 3.17 hold in this setup. We first give presentations for the
braided cross products that appear in the statements.

Lemma 3.22. Assume given a weak quasitriangular pair of Hopf algebras A, H as above, and
B,C weakly dual bialgebras in A-CoMod. Further let D be a B-comodule algebra in B =
H-Mod. Then the relation Equation (3.22) for D x “PC' becomes

(3.61) cd = dOO(REOY) = cqy) ev(c), d=1)y
= (R™*(cy™) = dD) ey ev(cqy, dY),

for all d € D,c € C. Here, dp(d) = d=D @ d© denotes the left B-coaction on D, while
6a(d) = d=Y ®d© denotes the left A-coaction on D.

Further, for B,C weakly dual Hopf algebras and D’ a right C-comodule algebra in B, the
defining relation Equation (3.35) for D' x B becomes

(3.62)  ba = dOO(REY) = b)) ev(dOD S(RAD) =b) 1)),  Vde D',be B.
Here, 6¢(d) = 0 @d—D ¢ D'®C denotes the right C-coaction on D', and da(d) = d-Y®d
denotes the left A-coaction on D’.
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Corollary 3.23. Let D be a B-comodule algebra in B = H-Mod. Then D x “PC x H is a
Dring (C, B)-comodule algebra (with D x “PC' as a comodule subalgebra). The coaction dpyin is
given by

(3.63) Sprin(d) = dVR (@) @ a0,
(3.64) Oprin(€) = B™*(c) ™)) @ ey,
(3.65) Oprin(h) = he2) @ h(1),

forde D, ce C, he H, ép(d) = dD @ d©) denoting the left B-coaction on D, and §4(d) =
dD ®dO denoting the left A-coaction on D.

Corollary 3.24. Assume given a weak quasitriangular pair A, H and weakly dual bialgebras B, C
in A-CoMod. Let D’ be a right C-comodule algebra in B = H-Mod. Then D’ x B x H is a
Dring (C, B)-comodule algebra (with D' x B as a comodule subalgebra), where the left B-module
structure is obtained from the right C-comodule structure via Equation (3.34). The coaction dpyin
s given by

(3.66) Spein(d) = B (dOC1)gD g OO,
(3'67) 5Drin(c) = b(l)R (b(Z)( )) ®b( )( )
(3.68) 0prin(h) = h(2) ® h(1)7

forde D', ce C, he H, where 6c(d) = d©® @ d=1 denotes the right C-coaction on D', and
da(d) = d=Y ®dO the left A-coaction on D’.

3.6. Quantum Group Examples. We now explore the application of the results from Corol-
lary 2 to Lustig’s version of the quantum groups U,(g). Denote F := k(g) for a generic variable ¢
over k. Further fix a Cartan datum, i.e. an index set I together with a symmetric bilinear form
- on the free abelian group Z{I), such that i - i is even, and

Qjj 1= 2-—€ Z<o, Vi # j.

Following [Maj00, Section 4], a weak quasitriangular structure can be defined as follows. We let
A = FZ{I) be the group algebra associated to Z{I) with generators denoted by g; for i € I. The
dually paired Hopf algebra H is also a copy of the same group algebra, with F-basis denoted by
K, for pe Z{I). A Hopf algebra pairing of H and A is obtained via

(3.69) (K, g;) = q"™
A weak quasitriangular structure is now given by the maps R, R from A to H given by
R(g:) = K;", R(g) = K.

Note that the category of left A-comodules is braided via the dual R-matrix R(g;, g;) = ¢*7. We
now define E := F{e; | i € I') to be the left A-comodule where d(¢;) = ¢;®e;, and F :=F(f; | i€ I)
the left A-comodule left dual to E, i.e. 6(f;) = g; 1'® f;, and duality pairing given by

5o
<fivei> = 1,]_17
qi — 4q;

where ¢; := ¢%/2.
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Using the weak quasitriangular structure, we can induce left A-module structures on F, F via
the dual R-matrix R(g;, ;) = ¢*J. This way, E and F become dually paired Yetter-Drinfeld
modules over A. Hence, using the general theory of Nichols algebras (see e.g. [AS02, Section 2]),
we obtain dually paired braided Hopf algebras Uy(nt) := B(E) and Uy(n~) := B(F') which are
primitively generated. That is

(370) A(ez) =01 +1Qe;, A(fl) =i®1+1® f;.

The pairing ( , ) of F and E extends uniquely to a perfect pairing ev: U,(n™) ® Uy(n™) — F.
This result is due to Lustig, see [Lus10, Proposition 1.2.3].

Theorem 3.25 (Majid). There exists an isomorphism of Hopf algebras between the braided
Drinfeld double Dring (Uy(n~),Uq(n")) and Uy(g), where g denotes the semi-simple Lie algebra
obtained from the given Cartan datum.

Proof. We reprove the result here as our presentation differs slightly from [Maj00]. The relations
in Definition 3.20 show that Dring (U,(n™),Uy(n*)) is generated by e;, f; and K;™' subject to
the relations
oy S: oy
fiei—q ZJ@iij#(l—Kfz)a Kiej = ¢ ej K, Kifj =q " fiKi.
i~ 4
The coproduct is given by
AK) = K@K, Ale)=ea@l+K Qe A(f)=fi@l+K"7ef

K3 2

We can define an isomorphism of bialgebras
¢t Dring (Uy(n7), Uq(n+)) — Uy(9),

where the latter is Lustig’s version of the quantum group from [Lus10, Chapter 3|, (identifying
the parameter v with ¢) by

o(Ki) = K; p(e) = B SO(KJ-_j'jﬂfj) = Fj.

To verify this, note in particular that

2 K3

Y T L 8i i i
ei(Kj“/2fj) = q ngJJ/2eifj _ (Kj”/2fj)€i 4 qu(K' 12 _ g /2)‘

qi — g,

Further, A(Kj_]']mfj) = Kj_”ﬂfj ® Kj_”/2 +1® Kj_j'j/ij, which is the same as the coprod-
uct formula for F; in Uy(g), cf. [LuslO, Proposition 3.1.4]. It is clear that ¢ is invertible by
construction. Since the antipode is uniquely determined, we obtain an isomorphism of Hopf
algebras. ([

In the following, we shall denote Dring (Uy(n~), Uy(n™)) by U,(g) and use the presentation
with g-commutators whenever using lower case letter e;, f; to denote the primitive generators.

Ezample 3.26. Consider the ¢g-Weyl algebra, which is the braided Heisenberg double D,(g) :=
Heisy (Uy(n™), Uy(n™)). It is the algebra generated by e;, fi, K; for i € I subject to the relations
Si o
fie; —q7ejfi = P _z’;,l, Kiej = q"7¢; K, Kifj = ¢ fi K.
i~ 4;
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Similarly to Dring (Uy(n~), Us(n™)), it also has a triangular decomposition as the F-vector space
Us(n") ® H®Ugy(n™). This algebra contains as a subalgebra the quantum Weyl algebra Ac of
[Jos95, Section 3.1].

Corollary 3.27. The quantum Weyl algebra Dy(g) is a left comodule algebra over the quantum
group Uqy(g).

Proof. This result was proved in [Laul5, Section 3] using a slightly different presentation. Corol-
lary 3.23 implies a coaction given the coproduct of U,(g) (under the isomorphism of Theorem
3.25, making the latter a U,(g)-comodule algebra. O

Example 3.28. Using the trivial Uy(n™)-coaction on itself, we obtain the algebra Uy(n")®qUq(n ™)
with defining relation

fiej = q"e;fi.
Now U, (nt) ®, Uy(n~) is a Uy(g)-comodule algebra with coaction given by
5(er) = K} @i, 5(f) = @1+ K@ i
4. A MORPHISM OF 2-COCYCLE SPACES

In this section, we provide an explicit map inducing bialgebra 2-cocycles on the braided Drin-
feld double Dring(C, B) from 2-cocycles over B and C' within the category B = H-Mod.

4.1. Preliminaries on 2-Cocycle Twists and Cleft Objects. Most of the material of this
subsection can be found in [Mas08] and reference therein. We let B be a bialgebra over k.

Definition 4.1. A right 2-cocycle of B is a convolution-invertible k-linear map o: B® B — Kk,
such that for h, k,l € B:

(4.1) o(h @ kylny)o (ke ®lwg)) = a(haykay ®@Do(he) @ kw)),
(4.2) och®1) =c(1®h)=ce(h).

See also [Maj94b, Section 6] for a general theory of cohomology of a bialgebra where the space
C?(B, k) of 2-cocycles appears naturally.

Given a convolution invertible map 3: B — k and o € C?(B, k), a new right 2-cocycle can be
given by

(4.3) o’ (h@k) = B~*(hayk))o (b, k@) Bhe) Blk))-

We say that o and 7 in C?(B, k) are cohomologous if there exists such 3 satisfying 7 = o, and
write o ~ 7 (cf. [KS97, Section 1.2.3] where left 2-cocycles are used). This defines an equivalence
relation on C?(B, k). The quotient is denoted by H?(B,k) and referred to as the second bialgebra
cohomology space. Right 2-cocycles can be used to twist a bialgebra:

Proposition 4.2. Let o be a right 2-cocycle of B. Then B obtains a new algebra structure B,
with product given for g, h € B:

(4.4) 9o b= gay - hayo(ge), he)-
Moreover, the coproduct can be viewed as a morphism of algebras
A: B, — B® By,

making B, a B-comodule algebra.
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If 0 ~ 7, then B, and B; are isomorphic as B-comodule algebras via the map
Id+3: B, — By, h — heyB(hy).
The notion of a 2-cocycle twist of a bialgebra B can also be reformulated in terms of cleft objects.

Definition 4.3. Let B be a bialgebra over k. A left B-cleft object is a left B-comodule algebra
C together with a unit-preserving! isomorphism of left B-comodules ¢: B — C which is also
invertible with respect to the convolution product. That is, there exists ¢: B — C such that

(4.5) me(Y ® ¢)Ap = me(p @ )Ap = loep.

It is shown in [D'T86] that given a left B-cleft object (C, ¢), a right 2-cocycle o can be obtained
via

(4.6) a(g®h) = d(ga1))o(hy)(9e)hz) € k.

In particular, o takes values in the B-coinvariants of C', which are given by the one-dimensional
space k as C' = B™8 as a B-comodules. Then B, = C via ¢. In fact, every 2-cocycle arises in
this way [Mas94, Proposition 1.4]. See also [Sch96] for details on cleft and Galois objects and
their relation to 2-cocycles.

Ezample 4.4. Let H be a dual quasitriangular Hopf algebra with dual R-matrix R. Then R is
a left 2-cocycle and the convolution inverse R™* is a right 2-cocycle. This can be proved in two
steps [Lu94]. First, R satisfies the dual quantum Yang-Baxter equation

(4.7) R(g(1y, h(1)) R(ge2), k(1)) B2y, k(2)) = R(hery, k) R(ge1ys k2)) R(9e2): P2y)s
using Equations (1.17)—(1.19). From which we conclude, using the same equations, that
(4.8) R(g(1), b)) R(92)hy2): k) = R(hqry, k) R(g: hia k)

the left 2-cocycle condition. Similarly, R~* (and hence also R°P) are right 2-cocycles.

4.2. Induced 2-Cocycles over the Drinfeld Double. From Theorem 2.3, we first derive two
morphisms of right 2-cocycles for weakly dual bialgebras to right 2-cocycles over their Drinfeld
double. We then define, in the Hopf algebra case, more general 2-cocycles over Dring(C, B) from
a pair of 2-cocycles, one over B and one over C.

Corollary 4.5. Let C,B be weakly dual bialgebras (respectively, Hopf algebras) over k. Then
there exist two maps

Indg: H*(B,k) — H?(Dring(C, B), k), o +— Indpo,
Indc: H?(“PC, k) — H?(Dring(C, B), k), 7+ Indo T,
where the 2-cocycle Indp o is defined by requiring that
(4.9) Indg o (b, V) = a(b, 1), Inda o(c,d) = e(c)e(d),
for any elements b,b' € B, ¢, € C. The 2-cocycle Indg 7 is defined by requiring that
(4.10) Inde 7(b,b') = e(b)e(V), Inde (e, ) = 7(c, ).

n [Mas08] this is not a requirement, but ¢ can be chosen to preserve the unit.
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If C, B are Hopf algebras, then Dring(C, B) is defined on the k-vector space B® C, on which
the 2-cocycle is given by

(4.11) Indpg o(be,b'c’) = o(b, b'(Q)) ev(c, b'(l))a(c’).
Similarly,
(4.12) Indg 7(cb, V) = 7(c, cl(l)) ev(c'(Q), S(b))e®).

Proof. This follows from Theorem 2.3, via Corollary 3.12, using [Laul5b, Proposition 3.8.4]. We
will provide detailed proofs of more general statements in Theorem 4.7, and Section 4.4. O

Note that, in the Hopf algebra case, Equation (4.12) is equivalent to
(4.13) Indg 7(be, b'c’) = e(b)7(cry, €) ev(cz), b').

We include a presentation of these induced 2-cocycles using graphical calculus. The cocycles of
Equation (4.11) and Equation (4.13) are given by
B C BZC B C BZC

Another way to present these results of this section is the following statement:

Corollary 4.6.

(i) Let A be a left B-cleft object. Then A x “PC' is a left Dring(C, B)-cleft object.
(i1) Let A’ be a right C-cleft object. Then A’ x B is a left Dring(C, B)-cleft object.

2-Cocycles of the Drinfeld double have been studied in the literature. A special case of the

general construction in [Sch02] describes the kernel of the map

HY(Q w K*) — HY(Q) x HX(K™)

where K, ) are Hopf algebras, K finite-dimensional [Sch02, Theorem 6.5.6]. Here, Q = K*
is a bicross product, which as a special case recovers the Drinfeld double [Maj90b]. Moreover,
[Sch99, Theorem 2.1] classifies all Galois objects over a twisted bicross product H »; L in terms
of Galois objects of H and L together with a Hopf pairing of H and L (called a skew-pairing
therein). Over a field k, this result gives a characterization of a cleft objects over bicross products
(including the Drinfeld double).

Later work in [BC06, Corollary 4.11] provides a description of the group of all lazy 2-cocycles
on Dring(A*, A) in terms of data for A and A* using the approach that the Drinfeld double is a
twist of the tensor product Hopf algebra. We further note that [CP07, Eq. (3.1)] gives a different
way to induce lazy 2-cocycles on the Drinfeld double.

Motivated by the above form of induced 2-cocycles, a more general statement arises:

Theorem 4.7. For C, B weakly dual Hopf algebras over k, let o € C?(B,k) and T € C?(“°PC, k)
(or, equivalently, T is a left 2-cocycle over C). Then o o T € C?(Dring(C, B),k), where

(4.14) (o oT)(be, b ) = a(b, 51(2))7'(6(1), ) ev(ce), b'(l)).
Right twist by o o T gives an algebra defined on the k-vector space B ® C with the product
(4.15) Myor(be,b'd) = mg (b, b'(z)) ® m(cry, ¢) ev(c), bl(l)).
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Proof. Condition (4.2) easily follows from the corresponding condition for o and 7. We verify
the 2-cocycle condition (4.1) explicitly.

(g 07)(be, (b'¢) 1y (V") (1)) (o 0 T)((H' ) (2, (") 2))
o (b, b/(2)b/(,3))7'(0(1)7 c’(4)c'('2))a(b’(3), bl(le))T(Cl(l)v Cl(ll))
ev(c(), b,(1)b/(,2)) ev(c’(3), S( ,(/4))) eV(Cl(f))a bl(ll)) eV(C/(Q)v b/(,5))
0 (b, by b)) T(c()s €220 (s Ui () 1)) eV (ea), by b)) ev ey By)
U(b(l)b(z (3))7'(0(1) 01(2)0(2)) (5(2)75/( )) 7(c €y (1))ev( (2)s bl(l)bl(,2))eV( /( 3)s bl(ll))
( (3))7(0(1 C(1 g b(?)a ) (2)0'(2),0 )ev(ce), 5(1)5(2))‘3"(0(3 5(1)
7 (b1)biay: bz T ey 0(1 by, biz)) T(c@)c(a), ") ev(ciay, b)) evics), b ) v(cla): (1))
( ) ) '( 1)
( )
(

)
= o(byba): )o(
| Jo
o b(l)b'@), '( 7(cq), c(l )a(b(g), (3))7T /
/,
0 b Jo(
Jo(

T

(c
(
(0(2)0 2> ") eV(C(4) b(1)) ev(c(3 0(3
o b(l)b'(2 , T(C(l c(l o b(Q),b’ )) ((c 2)C(2
)7((c

( )y € ") ev(c (3)75( ))ev((e (2)0( ))(2)75(1))
= (b1yblay: b)) T(cqrys (1)) (b(2y, b)) T((c(ay i) )1y, )
ev(e(), biyy) ev((ciycia)) @), Uhy) ev(ciay, bis)) ev(cia), S(b(y))
= (00 7)((be)(y(V' ') (1), b"") (o o T)((bc)@),( ) 2)-

Here, we first use the definition of o o 7 and the bialgebra condition applied to b’(l) ® b’(’Q),

!/
(2)
c'(2
(3)) ev

followed by application of the identity ev(c'(s),b'(’4)) ev(c’(Z), S(b’('5))) (c’(2)) ® s(b’(4)) together
with the counit axioms. In the third equality, it is used that o is a 2-cocycle over B, fol-
lowed by 7 being a 2-cocycle over “PC in the fourth equality. Next, we use ev(cs), b(l)b(lz)) =
ev(cey, b'(l)) ev(c(s), b’('Q)), followed by application of ev(c'(4), bl(/1)) ev(cs), b’('Q)) = ev(c'(3)0(4), (1)) in
the fifth equality, and the bialgebra condition applied to c(y) ®c'(2) in the sixth equality. Finally,
the equality ev(c’(3),b’(’3)) ev(c’(z),S(b’(’4))) = 5(0’(2)) ® 5(b’(3)) together with the counit axioms is
used again in the penultimate equality, followed by the definitions.

Finally, the simplified formula for the product in Equation (4.15) follows under use of the
antipode axiom. O

The cocycle o o 7 can be depicted using graphical calculus as
B C B C

a oo | QD

Note that the more general statement of Theorem 4.7 recovers Indg o as o o trivy, where
trive = ec ® ec, and Indo 7 as trivg or. We remark that the 2-cycles of the form o o 7 do in
general not give all 2-cocycles over Dring(C, B). For example, the trivial 2-cocycle is not of this
form.

Example 4.8. Let G be a finite group. We can identify H?(kG,k) we the 2nd cohomology group
H?(G,k*) of G (cf. [Maj94b, Section 6]). Moreover, H?(k[G],k) can be identified with the
second homology Ha(k[G], k) of kG, the set of left k-cycles up to boundaries. That is, elements
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c=cM®c2eckGRkG satisfying
(4.17) c§1>c§1)(1) ® ch)cgl)(Q) ® c§2> = cgl) ® cgl)cgm(l) ® 052)652)(2).
Explicitly, ¢ = 3, jeq ¢g,ng ® h and then Equation (4.17) becomes
(4.18) Cg,hCh = Cgk—1 hk—1Ckh,lh> Vg,h,k,l € G.
Theorem 4.7 now gives a morphism

H%(kG, k) x Hy(kG,k) — H?(Dring(G), k),
which maps (o, ¢) to the right 2-cocycle o o ¢* given by
(4.19) (0 0c*)(gop ®KS)) = o(g, k) g-1,-

Ezample 4.9. Let H be a finite-dimensional Hopf algebra over k. It was shown in [Lu94] that
Heisg(B*, B) is a 2-cocycle twist of Dring(B*, B). The 2-cocycle used is triv o triv, which coin-
cides with the dual of the opposite universal R-matrix R°P.

4.3. 2-Cocycles in a Braided Monoidal Category. We now need some facts about a gen-
eralization of 2-cocycles to working in a braided monoidal category B.

Definition 4.10. Let B be a bialgebra in B. A right 2-cocycle over B in B is a convolution-
invertible map o: B® B — [ in B, such that

(4.20) U(IdB ®m®0)(1d3 ®AB®B) = O’(m®0®1d3)(AB®B ®Id3),
as well as
(4.21) oc(1®1dp) = ¢, o(ldp®1) = &.

The set of all 2-cocycles over B in B is denoted by C’L%(B ,I). If B = H-Mod for a quasitriangular
Hopf algebra, we also use the notation C% (B, k).

The 2-cocycle condition Equations (4.20) and (4.21) can be visualized as

Wi J KRS

Remark 4.11. The definition of bialgebra 2-cocycles in a braided monoidal category appears in
[BD99, Definition 1.5]. The theory of 2-cocyles over cocommutative Hopf algebras in a braided
monoidal category was studied in [Fem18].

The above definition of 2-cocycles over B in B is a special case of 2-cocycles on a monoidal
category (cf. [PSVO10, Section 2] or [BB13, Section 4.2]) for a monoidal category of the form
CoMod-B(B). A right 2-cocycle over B gives rise to a natural transformation p%: ® — ®,
where

1w = (dvewege)(Idy @¥pw @ 1dp)(dv ® dw),
satisfying

(4.22) pxyez(ldx ®uy,z) = pxey,z(kx,y @1dz), px,r = prx =Idx .
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Lemma 4.12. Let 0: B® B — I be a convolution-invertible morphism in B. Then the right
twisted product

(4.23) mo 1= (M ®0o)Apgp
makes B an algebra object in B if an only if o € C3(B,I).
We denote the resulting algebra by B,. It is an algebra in B-CoMod, with coproduct given
by A viewed as a map B, > B® B,.
Proof. It follows evidently (under use of coassociativity, the bialgebra condition of B, and natu-

rality of the braiding) that given Equation (4.20), m, defines an associative product. Conversely,
considering the equation

emg(me ®1dg) = emy(Idg ®m,)

recovers condition (4.20). Equation (4.21) is equivalent to unitarity of the product. Similarly, it
follows that A: B, —» B ® B, gives a coaction. O

The following construction adapts the idea of coboundaries (see e.g. [KS97, Section 10.2.3],
or dually, [Maj94b, Proposition 6.2]) to this setup.

Lemma 4.13. Given a convolution-invertible morphism 3: B — I such that 51 = Id;. Then

@ @
*

08 =B"*"m(ldp®F®Idp RB) (AR A) =

gives a 2-cocycle over B. More generally, given o € C%(BJ), we can define a new 2-cocycle o
by

BL.®
424) =B m®)(1dp@VEE@IdE)(ARBRA®A)(ARA) =

R0

Proof. To verify Equation (4.20) for df is an exercise in graphical calculus. Note that both sides
of the equation simplify to

B*m(1d@m)(Idp @B ®1dp @3 ®1dp ®B) (AR AR A).

Similar methods are also key in checking that, more generally, o is a 2-cocycle. We include
this computation, which can be performed using graphical calculus:
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Pm®@c® ®1d)(Apgr ®1dp) = (B *m®0)(ldp®@¥p R Idp)(M@M o ® A)

(Apgs ® (1d®F)A ® (Id®B)A ® (Id®B)A)(Apgs ®1dp)

o F@m®ocIdg)(m® Apgp ®1dp)
m@Id@(Id®B)A ® (1Id®B)A ® Id®B)A)Apgses

=o(f7T"®Idp@m @ o)(m ®Idp ®ApzB)

(Idp@m ® (Id®F)A ® (Id®3)A @ (Id®B)A)ApgBeB

=B *"m®o)(Idp@®@m®Idp®@m ® o)

(ApgBes ® (Id®L)A ® (Id®L)A)(Id®L)A ® ApeB)
= ?(Idp ®@m ® 0®)(1dp ®ApgB),

where in the first equality the definition of o, the bialgebra condition and (co)commutativity,
as well as (87*m) = (fm) = epes are used. The second equality uses (co)commutativity again,
followed by application of the 2-cocycle condition (4.20) of ¢ in the third equality. The fourth
identity follows using (co)associativity, while the last one uses again that (8~*m) = (Sm) = epes,
together with the counit axioms, the bialgebra condition, and the definition of . O

Definition 4.14. We define 2-cocycles o and 7 in C3(B, I) to be cohomologous, and write o ~ T,
if there exists a convolution-invertible map 3 as in Lemma 4.13 such that 7 = ¢?. This gives an
equivalence relation ~ on C3(B, I). We denote the quotient modulo ~ by HZ(B,I) and refer to
it as the 2nd bialgebra cohomology space of B.

The space HE(B*,I) is called non-abelian cohomology of B in [Maj94b, Section 6]. In the
case where B is cocommutative, the sets CE(B,I) and H(B,I) have a group structure and
generalize Sweedler’s bialgebra cohomology with trivial coefficient algebra [Swe68].

Lemma 4.15. Let 0 and 7 be cohomologous 2-cocycles over B. Then
Idp #8: B, — B,

18 an tsomorphism of B-comodule algebras.

Proof. Note that 7 = o is equivalent to the equation

(4.25) o(Id®B)A R (Id®B)A) = (B *m @ T)ApgB-

For variation of methods, we include the proof that Idp #8 is a morphism of algebras using
graphical calculus:

- PR

Since § is convolution invertible, Id %/ is invertible, with inverse Id xG~*. If is further clear by
coassociativity that Id #f is a morphism of B-comodules for the regular B-coaction in source and
target. ]
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The following proposition explains the connection of 2-cocycles over a braided Hopf algebra
B with 2-cocycles over its bosonization (or Radford biproduct, [Rad85]) B x H . This recovers
part of [CP07, Theorem 4.4(i)], where B is a Hopf algebra object in ZYD.

Proposition 4.16. Let B be a bialgebra in H-Mod for H a quasitriangular bialgebra over k.
Then there exists an injective morphism

ox H: C%(B,k) — C*(B x H,k),

mapping o € C%(B,k) to the right 2-cocycle given by

(4.27) o X H(bh®cg) =oc(b,h>c)e(g).

This map descents to one of bialgebra cohomology spaces
ox H: H%(B,k) — H*(B x H,k).

Proof. We shall use the notation A(b) = bj;] ® byg to denote the coproduct of B x H. Hence

by @ bpay = byRY @ (RM) = b)), vbe B.
We observe that for b, c € B we have
bajepyo (. c) = by R ey B o (RYY = bio), B = c(z))

= b(1)(R§2)(1) = C(1))R§2)(2)R§)U(R§l) = by, RS &= c(2))
= by (R = c)) B B o (RVRSY = biay, B = c2))
= b(1>(R§2) > 0(1))Rg2)U(R§1)R§1)(1) > b(a), Rél)@) > C(2))
= b(l)(RgQ) I>C(1))O'(R§1) > b(2), ¢(2)) = Mo (b® c).

where the semidirect product relations are applied, followed by the R-matrix relation Equation
(1.14) splitting Ry up into Ry and R3, and next Equation (1.13) summarizing R3 and Rs into
just Ro; and in the penultimate equality we use that ¢ is a morphism of H-modules and that
5(R§1))Rg2) = 1. The last equality is the definition of the right twisted product from Lemma
4.12.

This calculation shows that the product of B, x H is in fact the product given by twisting
B x H by the map o x H which takes values o x H(b®¢c) = o(b®c) for b,c € B. We can extend
to 2-cocycles defined on all of B x H via

o X H(bh®cg) =o(b,h>c)®e(g).

Then the product of B, x H is obtained by right twist by ¢ x H. However, B, x H is an
associative product, so we conclude by Lemma 4.12 that ¢ x H is an element of C?(B x H,k).
It is clear from construction that the mapping o — o x H is injective. Further, it follows from
a similar computation as above that, mapping 5 to 8 ® ep, the construction commutes with
coboundary twist, and we thus obtain a map on the quotients H%(B,k) — H?(B x H,k). O

4.4. Induced 2-Cocycles over the Braided Drinfeld Double. With the preliminary con-
siderations from the previous sections, we can now generalize the results from the Section 4.2 to
braided Drinfeld doubles.
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Corollary 4.17. Let C, B be weakly dual bialgebras (or Hopf algebras) in B = H-Mod. Then
there exists two maps

Indg: H3(B,k) — H?*(Dring(C, B),k), o+ Indp o,
Indc: H¥(“PC, k) — H?*(Dring(C, B), k), 7+— Indc T,
where the 2-cocycle Indp o is defined by requiring that
(4.28) Indg a(b,b") = a(b,b'), Inda o(c, ') = e(c)e(d), Inda o(h, h') = e(h)e(R'),
for any elements b,b’ € B, ¢, € C, h,h' € H. The 2-cocycle Indg 7 is defined by requiring that
(4.29) Inde 7(b,0") = e(b)e(b), Inde 7(c, ) = 7(c, ), Inda o(h, h') = e(h)e(h).

If C, B are Hopf algebras, then Dring(C, B) is defined on B® H ® C, on which the 2-cocycle
s given by

(4.30) Indg o(bhe,'h'd) = o(b,h > b’(2)) ev(c, b'(l))&?(h’)a(c’).
Similarly,
(4.31) Inde 7(chb, dI'Y) = 7(c, hR®) (1) & cfy)) ev(R®) (g) & cfy, RV & S(b))e(R)e (V).
This corollary is a consequence of Corollaries 3.12 and 3.17 but also a special case of the

following Theorem.

Theorem 4.18. Let C, B be weakly dual Hopf algebras in H-Mod. Given o € C%(B,k) and
T € C%4(“°PC,k), then o o 7 € C*(Dring(C, B),k), where

ogot(bt) =o(bt), ogot(e,d) =1(c,d), oot(h,h') =¢e(hh).
That is, for all b,/ € B,h,h € H, and c,c € C,
(4.32) o or(bhe, V') = o(b,hR~V) > b'(Q)) ev(c(2)s bl(l))T(R_(2) > cay, b e ).
This construction commutes with coboundaries.

Proof. We give a more conceptual proof than in Theorem 4.7. First, define a category 7.7
consisting of objects V in B = H-Mod which are both a left B,-module with action morphism
by and a left ““PC-modules in H-Mod with action morphism ¢y satisfying the compatibility

condition
BCBC B C B C

\=

(4.33) =

This corresponds to the following equality of morphisms:
ey (Ide ®by ) (I1d ®cy ) (Id ®by)
(4.34) =by(IdpQcy) (M@ ®T@m ®Idy)(Apgs ® Apgc @ 1dy)
(@Y @1d)(Id®ev®1d)(Idp ®Ap @ Ac @ ldpgy)
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This condition is equivalent (under use of the antipode axioms) to the condition
* K
(4.35) k .

There are two things to check. First, that the product defined on B ® C' by
Moor = (MO0 QT Rm)(Apgs ® Apgc)(1d ®\IJ 5 ®Id)(Id®ev®Id)
(Idp ®Ap ® Ac ®1dp)
provides an associative algebra object. It then follows that 7.7 is a category which is equivalent
to left modules over the algebra B x] C := (B ® C,myor). Second, we check that 77 is a left
categorical module over the category ©“BYD (which was defined in the proof of Proposition 3.6).
The action is given by the tensor product structure of tensoring such Yetter—Drinfeld modules.
The theorem then follows under the equivalences “2YD ~ Dring(C, B)-Mod and 77 ~ (B x7,
C') x H-Mod using the Tannaka-Krein reconstruction argument as in [Laul5, Proposition 3.8.4].
In particular, the right 2-cocycle on Dring (C, B) is obtained as 0 o 7 = epyin,(c,B)(Moor X H).
We observe that the product of B %7 C can be written as

Moor = (M @ m,)(1d ®\11 5 ®Id)(Id®ev®Id)(Idg ®Ap ® Ac ®1dp),

(4.36)

where m; is the left 2-cocycle twist of the multiplication on C by 7. We denote m., = \@/ . We

now check that myo- is associative, by comparing mgyor (Mgor ®ldpgc) and Mmeyor (Id g @Moor)

¢ @ ) . _ &

34 Robert Laugwitz



Comodule Algebras and 2-Cocycles over the (Braided) Drinfeld Double

The first picture equals mgyor (Myor ®Idpge), and in the first equality we apply that Ag: C; —
Cr ® C makes C; a right C-comodule algebra in B. In the second equality, coassociativity of
m, and the weak Hopf algebra duality of C' and B are applied, cf. Equation (3.5). The third
equality applies properties of the braiding and (co)associativity. Finally, the forth equality uses
that Ag: B, > B® B, makes B, a left B-comodule algebra, together with Equation (3.5). The
last picture indeed equals Mmyor (Id Bgc @Mgor)-

Second, we verify that that we can tensor an object in 7.7 on the left with a Yetter-Drinfeld
module in ©“PYD using graphical calculus

In this computation, the Yetter—Drinfeld condition (3.14) is applied in the second equality, while
the defining condition (4.35) of 7.7 is applied in the last equality. The other steps use naturality
of the braiding, combined with (co)associativity.

Finally, it follows, using the description of the product on B x7 C that if 0 ~ ¢’ and 7 ~ 7/,
then Bx, C >~ B ><|;’, C. This implies that the map of 2-cocycles commutes with coboundaries,
and hence descents to a map H%(B,k) x H%(“PC,k) — H?(Dring(C, B), k). O

Ezample 4.19. The braided Heisenberg double Heisy (C, B) is obtained from Dring(C, B) via
twist with the 2-cocycle
Indp triv(bhe, b'h'c') = e(b)e(h) ev(hy = ¢, hay = b)e(h)e(d),

which is induced by the trivial 2-cocycle triv = ¢ ® € over B. This results recovers [Laulb,
Corollary 3.8.5], cf. also Example 4.9.

Remark 4.20. Theorem 4.18 gives a map
H%(B,k) x H%(*°PC,k) — H?*(Dring(C, B), k).

Note that this map is in general not surjective. For example, the trivial cocycle on Dring(C, B)
does not lay in the image unless in trivial cases, or the highly degenerate pairing ev = ec ® €p.
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Note further that there exists a map
HY(B,k) — H%(“PC,k),

where HI(B,k) denotes the set of right 2-cycles over B in H-Mod up to boundary transforma-
tions. That is, equivalence classes of elements c € B ® B such that

- s

The map is given by mapping c to ¢* = ev®?(Idcge ®c). Hence Theorem 4.18, in particular,
produces a map

H%(B,k) x Hi(B,k) — H?(Dring(C, B),k), (0,¢) —> o oc*.

We remark that [Sch99, Section 4] classifies all cleft objects over u4(g) by viewing this Hopf
algebra as a quotient of a bicross product.
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