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A B S T R A C T

The Set-Union Knapsack Problem (SUKP) is a complex combinatorial optimisation problem with applications
in resource allocation, portfolio selection, and logistics. This paper presents a parallel local search algorithm
for solving SUKP on the Compute Unified Device Architecture (CUDA) platform in Graphics Processing Units
(GPUs). The proposed method employs a compact algorithm that divides the search space into smaller regions.
For diversity, each thread in a GPU block starts the search process from a different location in a region using
a different initial solution. Each thread then searches the local optimum by utilising communication between
individuals through a crossover operator exploiting the best solution within the GPU block. Through extensive
experiments on a set of SUKP benchmark instances ranging in size from small to large, we demonstrate
the effectiveness of the proposed algorithm in finding high-quality solutions within comparable time frames.
Furthermore, a comparative performance analysis with the current state-of-the-art SUKP algorithms reveals the
competitive advantage of the proposed method. The GPU-based parallel local search algorithm using uniform
crossover is a valuable addition to the repertoire of algorithms addressing SUKP, highlighting its potential for
practical applications in real-world decision-making scenarios.
1. Introduction

The Set-Union Knapsack Problem (SUKP) [1], an extension of the
0–1 Knapsack Problem, finds applications in various domains such as
flexible manufacturing [1], database partitioning [2], financial decision
making [3,4], smart cities [5], and practical scenarios such as applied
cryptography [6] and the key pose caching problem [7]. In SUKP, items
have profits but no weights. The goal is to detect the items maximising
the total profit subject to a capacity constraint. SUKP differs from the
0–1 KP because an item is a subset of elements with weights, and the
total weight, calculated by considering each of the elements obtained
via uniting all selected items, is not allowed to exceed the maximum
knapsack capacity.

𝑈 = {𝑢𝑖|𝑖 = 1,… , 𝑛} represents a set of 𝑛 elements with cor-
responding weights in 𝑊 = {𝑤𝑖 > 0|𝑖 = 1,… , 𝑛}. Similarly,  =
{𝑈𝑗 |𝑗 = 1,… , 𝑚} represents a set of 𝑚 items with corresponding profits
in  = {𝑝𝑗 > 0|𝑗 = 1,… , 𝑚}. Each item is a subset 𝑈𝑗 ⊆ 𝑈 . The objective
is to find a subset 𝐴 ⊆  that maximises profit while ensuring that the
sum of the weights of the selected items does not exceed the capacity
constraint, 𝐶. Formally, SUKP can be written as follows [8]:

max 𝑓 (𝐴) =
∑

𝑗∈𝐴
𝑝𝑗 (1)
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s.t. 𝑊 (𝐴) =
∑

𝑖∈
⋃

𝑗∈𝐴 𝑈𝑗

𝑤𝑖 ≤ 𝐶, 𝐴 ⊆  (2)

Fig. 1 illustrates a small-scale problem instance of SUKP consisting
of four items, six elements and with a knapsack capacity 𝐶 = 14.
In this figure, 𝑈 = {𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5, 𝑢6}, 𝑤 = {3, 2, 4, 3, 5, 1}, 𝑆 =
{𝑈1, 𝑈2, 𝑈3, 𝑈4} and 𝑝 = {12, 7, 13, 9}. Each item is a subset of the
element set, so 𝑈1 contains two elements which are 𝑢1 and 𝑢4, 𝑈1 =
{𝑢1, 𝑢4}. For other items, 𝑈2 = {𝑢1, 𝑢2, 𝑢6}, 𝑈3 = {𝑢2, 𝑢5}, 𝑈4 =
{𝑢3, 𝑢4, 𝑢6}. The optimal solution for this problem is 𝐴 = {𝑈1, 𝑈2, 𝑈3},
where the total profit is 𝑝1+𝑝2+𝑝3 = 32 and total weight of the elements
𝑢1, 𝑢2, 𝑢4, 𝑢5 and 𝑢6 is 14. Each element’s weight is calculated only once.

SUKP is classified as NP-hard [1], signifying that no known al-
gorithm can solve all instances of the problem in polynomial time.
Some exact and approximate algorithms are presented for SUKP, but
they are not sufficient to solve NP-hard problems. For this purpose,
population-based optimisation algorithms (i.e. metaheuristics) are al-
ways attractive to solve this and similar problems in such a way that
they can obtain promising solutions in a reasonable time [9]. Recent
studies into solving SUKP has focused on designing and improving
of various metaheuristics [10,11]. Early approaches explored indi-
vidual generation techniques, repair operators and transfer functions
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Fig. 1. Illustration of the SUKP.
nd obtained promising results. Further investigation has improved
hese techniques by integrating adaptive features, multiple initiali-
ation strategies and Q-learning frameworks, achieving even better
erformance and outperforming previous benchmarks [12]. This ongo-
ng effort shows the significant progress made in tackling SUKP and the
otential for further development in this area.

To the best of our knowledge, this is one of the initial studies on the
se of parallel metaheuristics to solve SUKP. The main contributions of
his work are summarised as follows.

First, each thread in a block starts its search from a unique starting
oint. This strategy is used by all threads simultaneously, ensuring
more comprehensive exploration of the solution space. Starting the

earch from different points helps to discover unvisited regions during
he search process. The threads in each block on the Graphics Process-
ng Unit (GPU) then cooperate to find the local optimum. The search
rocess is more efficient when many threads work together.

Second, since SUKP is a computationally hard constrained optimi-
ation problem, a large amount of computational power is required to
mprove a given solution or even obtain a feasible solution, hence the
eed for using the GPU.

Third, the study conducts extensive experiments on a number of
UKP benchmark instances of varying size and complexity. These ex-
eriments demonstrate the effectiveness and scalability of the pro-
osed algorithm in efficiently finding high quality solutions within
ompetitive time frames. Furthermore, the comparative performance
nalysis with existing state-of-the-art SUKP algorithms highlights the
ompetitiveness of the proposed method.

The paper is structured as follows: In Section 2, we review the state-
f-the-art methods for SUKP. Section 3 explains the general framework
f our proposed approach, including its components. In Section 4, we
eport the computational results and performance of our approach,
long with insightful discussions. Finally, the last section summarises
2

he present study and suggests directions for future work.
2. Related work

Since SUKP is a constrained optimisation problem, it is crucial
that how a method handles an infeasible solution. In this context,
the related literature handles SUKP with three different approaches. A
repair operator converts a infeasible solution into a feasible solution
by removing items from the knapsack [8]. A penalty function punishes
an infeasible solution by adding a penalty score and makes the search
focus on the feasible solution space [13]. Another approach is to search
only on the boundary of the feasible solution space and eliminate
infeasible solutions directly [14].

He et al. [8] introduced a mathematical model for SUKP and
new benchmark problem sets were presented to test the performance
of metaheuristics on solving SUKP. This problem set is a popular
benchmark that has been frequently used in experiments over the last
few years. Genetic algorithm, differential evolution, and artificial bee
colony are tested on this problem set and the results demonstrate that
the artificial bee colony approach outperforms the other algorithms.
Additionally, A-SUKP which is an approximation algorithm based on
a greedy strategy proposed by Arulselvan [3] is tested on the problem
instances. Feng et al. [15] explored various transfer functions to map
solutions from the continuous to the binary domain, achieving improve-
ments in several problem instances compared to previous best-known
results. Ozsoydan and Baykasoglu [16] proposed a novel approach to
generate a new solution by randomly copying bits from three solutions:
the individual’s current solution, its most optimal solution thus far,
and the best solution among the entire population. This technique
is combined with mutation, wherein the probability of mutation is
progressively reduced across iterations to encourage exploration. He
and Wang [17] proposed a novel repair operator that generates a
new solution by incorporating multiple solutions. Lin et al. [13] in-

troduced a penalty function to adaptively explore the boundary of the
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search space, intensifying promising solution regions and improving
results. Ozsoydan [18] proposed a hybrid approach that employs search
characteristics specific to individuals to effectively explore the search
space. The probabilities of crossover and mutation are dynamically
adjusted to exploit distinct areas of the solution space. Feng et al.
[19] enhanced a previous research conducted by Feng et al. [15] by
adding a differential mutation and interaction operator to balance
between exploration and exploitation. Liu and He [20] introduced a
novel repair operator that uses the estimation of distribution method to
attain better exploration in the search space. This procedure generates
initial solutions through a standard distribution and then employs the
Levy flight approach to enhance the solution quality within promising
solution regions. Wei and Hao [14] solved six problems optimally
using the CPLEX solver. Their method explores neighbouring regions
to create a new solution, which increases the probability of finding a
local optimum in the search space.

Wu and He [21] presented an improved repair operator, based on
the approach proposed by He et al. [8]. The method uses a mutation
operator with a Cauchy distribution function for exploration and the
crossover mechanism for exploitation.Wei and Hao [22] proposed a
method that strategically combines dynamic initialisation with greedy
techniques for diversity and tabu search for optimising local search via
neighbourhood exploration. Additionally, a non-kernel search strategy
generates a new solution randomly to try different areas in the search
space. Gölcük and Ozsoydan [23] employed a multi-parent crossover
and an adaptive mutation mechanism to achieve an optimal balance
between exploration and exploitation. García et al. [24] introduced a
novel approach to generate initial solutions using a greedy method.
In order to search for solutions in the binary domain, a K-means
mapping technique is employed, followed by a local search operator
that adds or removes items from the sets to obtain local optima. Durgut
et al. [25] investigated how different selection strategies affect the
adaptive selection of three binary operators in the search process. Wei
and Hao [26] followed Wei and Hao [22] to improve the results
using a multi-start strategy. Tabu list manages the solutions in a local
region for intensification. Then the proposed method employs a new
tabu list to escape from local optima. Results shows a significant per-
formance improvement compared to previous approaches [13,14,21,
22]. Dahmani et al. [27] introduced an iterative rounding search-based
algorithm utilising partial initial solutions, a local greedy procedure
based on profit per potential weight, an exploration method and a
diversified strategy by dropping random items. Ozsoydan and Gölcük
[28] presented a framework with a Q-learning algorithm serves as a
reinforcement method, evaluating optimisation algorithms. To improve
the performance of the algorithm, initial solutions are generated based
on profit/weight ratios and a random immigrants mechanism is utilised
to diversify the population.

Although a method that searches for a feasible solution in the
search space achieves more promising results than other methods, it
requires many computations and a few parameter adjustments [29].
These methods may be effective because they use a search strategy
based on the characteristics of SUKP compared to other methods. While
other methods use more general neighbourhood operators, they are
also designed for solving other problems except for SUKP. Table 1
summarises an overview of stochastic methods presented for solving
SUKP. Many population-based algorithms have been applied to the
SUKP. In addition, single-based approaches that incorporate problem-
specific knowledge are effective in solving SUKP. It can clearly be
observed from the rightmost column of the table, titled ‘‘Limits’’ that
it is still needed to develop robust methods and investigate different
approaches for handling infeasible solutions.

3. The proposed method

3.1. Main framework: GPU implementation

GPU programming tools have evolved dramatically over the past
3

few years. Compute Unified Device Architecture (CUDA) technology
was developed by NVIDIA and has been an essential step in developing
GPU computing. This development environment, which is presented
with a structure similar to C programming, allows the implementation
of parallel algorithms [30,31].

In CUDA architecture, threads are located in blocks. The blocks are
in the Grid (see Fig. 2). CUDA executes the instructions on the GPU
by calling the kernel, which contains a set of functions. The number
of threads and blocks in the kernel is set on the CPU before calling. In
CUDA, each thread block can be synchronised by calling __syncthreads()
function. All blocks can be synchronised by finalising the kernel or with
Cooperative Groups offered with CUDA 9.0 [32].

In CUDA technology, memory usage is one of the main factors
affecting performance. Each thread has a unique local memory. Each
thread block has shared memory with the same lifetime as the block,
which is visible to all threads of the block. All threads access the same
global memory. CUDA architecture has two different memory spaces
called host and device located on CPU and GPU, respectively. Unified
memory provides a managed memory that bridges the memory space
of the host and device. Unified memory is accessible from all CPUs and
GPUs in the system as shown in Fig. 3. It allows device memory over-
subscription and can significantly simplify the tasks on applications by
eliminating the need to copy data on the host and device.

We use unified memory to design our framework on CUDA, as
shown in Fig. 4. Our approach designed as collaborative island model
[33], which runs in a CUDA kernel. A block represents a subpopula-
tion, i.e. local population, because each thread deals with only one
individual in a block [34].

The framework begins by reading the problem instance and con-
figuring the required settings on the host CPU. Then it continues by
initialising the GPU device and allocating unified memory to enable
seamless data management between the CPU and GPU. The core of the
method is a CUDA kernel launched on the GPU. Each thread operates
independently and generates unique random seeds through the cu-
RAND library to create initial solutions. The repair operator then checks
whether the solutions are feasible. If not, the solution is repaired.
A thread within a block generates a candidate solution through the
amalgamation of its individual solution with the best solution achieved
so far within its specific block using a crossover operator. Applying
crossover operator to two feasible solutions might still produce an in-
feasible new (child) solution. Hence, after crossover, the repair operator
is always used to fix any infeasibility that might occur. Iteratively,
each thread compares candidate solutions against their current best
solution. If the candidate solution is better, it is accepted; otherwise
the current solution is retained. This approach encourages collaborative
exploration within the search space, with the aim of identifying local
optima. This iterative process is synchronised across all threads within
a block, ensuring consistency in the search process. After a predefined
number of iterations, the algorithm determines the best solution within
each block. After this process, kernel is finalised. These block-based
solutions are then aggregated to determine the overall best solution
across the entire GPU.

3.2. Solution representation and handling infeasibility

We use binary encoding to represent a solution to a given SUKP
instance. The number of items in a problem instance is denoted by
𝑚. Therefore, an 𝑚-dimensional binary vector is used as the solution
vector, where 1s and 0s represent the selected and unselected items.

SUKP is a constrained optimisation problem that requires a feasibil-
ity check when generating a new solution. The new solutions generated
by the operators may become infeasible. This can be handled either to
by enforcing with penalty functions or by repairing for feasibility with
some functions. To repair infeasible solutions or to optimise feasible
solutions, we use S-GROA, which was suggested by He et al. [8] and
was integrated into many approaches [17,25,28]. This approach is

designed to operate in two distinct phases to improve the selection of
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Table 1
Summary of the related work.

Reference Year Search paradigm Handling
infeasibility

Limits

He et al. [8] 2017 Population-based Repair operator Since the method obtains the results in a wide range for most
problem instances, it is not effective.

Feng et al. [15] 2018 Population-based Repair operator Although best-known values are improved for some problem
instances, the results are poor for others.

Ozsoydan and Baykasoglu [16] 2018 Population-based Repair operator The method is not robust because it has a wide range between the
best and the mean scores compared to other methods.

He and Wang [17] 2018 Population-based Repair operator The method is not robust enough with respect to average scores.

Lin et al. [13] 2019 Population-based Penalty function The method stucks in local optima for several small-scale instances.

Ozsoydan [18] 2019 Population-based Repair operator The method obtains poor results in several trials according to the
standard deviations.

Feng et al. [19] 2019 Population-based Repair operator The method stucks in local optima for some problems, and its
performance is poor in terms of average scores.

Liu and He [20] 2019 Population-based Repair operator The method stucks in local optima for some small-scale instances,
and its results are poor for large-scale instances.

Wei and Hao [14] 2019 Single-based Focus only on
feasible solutions

Despite a long computational process, it could not reach the
best-known values for some small-scale instances.

Wu and He [21] 2019 Population-based Repair operator The method is not robust because it has a wide range between the
best and the worst scores on several problem instances.

Wei and Hao [22] 2020 Single-based Focus only on
feasible solutions

The method needs more effort to solve SUKP, since three
parameters should be configured.

Gölcük and Ozsoydan [23] 2020 Population-based Repair operator The method is not robust enough with respect to average scores.

García et al. [24] 2021 Population-based Repair operator Although the method achieves promising results, it misses the
best-known values in trials, even for small-scale instances.

Durgut et al. [25] 2021 Population-based Repair operator The method misses the best-known values in trials, even for
small-scale instances.

Wei and Hao [26] 2021 Single-based Focus only on
feasible solutions

The method misses the best-known values in trials, even for
small-scale instances.

Dahmani et al. [27] 2022 Single-based Repair operator Although the method is effective in solving SUKP, two parameters
require fine-tuning.

Ozsoydan and Gölcük [28] 2023 Population-based Repair operator The method misses the best-known values for small-scale instances
and is not effective for larger ones.
Fig. 2. Grid of thread blocks on CUDA [32].
items for a knapsack. First, it performs a sorting procedure based on
the profit and unit resource consumption values assigned to each item.
Then, using this ordered data, the algorithm attempts to fix infeasible
solutions by eliminating certain items that violate the constraints.
Furthermore, after the elimination stage, the method checks whether
or not some profitable items can be added to the unused/remaining
capacity. Thus, S-GROA tackles the infeasibilities in a solution and
attempts to further improve the resultant feasible solution through
an additional optimisation process. The steps of S-GROA can more
formally be summarised as follows:
4

1. Calculate the frequency 𝑑𝑗 of the element 𝑗 (𝑗 = 1, 2,… , 𝑛) in the
subsets 𝑈1, 𝑈2,… , 𝑈𝑚, where 𝑈𝑚 is the number of items in which
the element 𝑢𝑗 is present.

2. Calculate the unit weight 𝑅𝑖 =
∑

𝑗∈𝑈𝑖
(𝑤𝑗∕𝑑𝑗) of the item 𝑖 in 𝑈

(𝑖 = 1, 2,… , 𝑚).
3. Calculate the profit density 𝑃𝐷𝑖 = 𝑝𝑖∕𝑅𝑖 of the item 𝑖 in 𝑆

(𝑖 = 1, 2,… , 𝑚).
4. Sort all items in 𝑆 in descending order according to the met-

ric 𝑃𝐷, and the index of each item is then stored in a one-
dimensional array 𝐻[1...𝑚] according to the sorted order.

5. 𝐴𝑌 = {𝑖 ∣ 𝑦𝑖 ∈ 𝑌 and 𝑦𝑖 = 1, 1 ⩽ 𝑖 ⩽ 𝑚} is defined for any binary
vector 𝑌 = [𝑦 , 𝑦 ,… , 𝑦 ] ∈ {0, 1}𝑚.
1 2 𝑚
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Fig. 3. Illustration of the unified memory.

Using the same instance in Fig. 1, applying S-GROA, the first step yields
𝑑𝑗 as {2, 2, 1, 2, 1, 2}. Following the second and third steps 𝑃𝐷 is found
as {4.00, 2.33, 2.17, 1.50}. Then the sorted items are placed in the array of
𝐻 as [0, 1, 2, 3]. Suppose that our solution is [0,1,1,1] yielding a total
weight of 18 and a profit of 29. This is infeasible since the capacity
of the knapsack is exceeded, requiring a repair. Based on array 𝐻 in
S-GROA, the last item in the knapsack is removed and the solution is
fixed. After this modification, the resulting solution is [0,1,1,0] with
a total weight of 11 and a profit of 20, confirming its feasibility. To
improve this solution, S-GROA attempts to include more items. 𝑌 =
[1,1,1,0] becomes the final feasible solution after this last process with
a total weight of 14 and a profit of 32.

3.3. Initial solutions for diversification

In this study, a feasible solution for SUKP is represented by a binary
vector with a length of m. Each item in the vector is valued either 1 or
0, indicating if it is in the knapsack or not. We use randomly generated
initial solutions to diversify the possible regions. Therefore, each thread
starts with a different random solution to explore the search space.
A Bernoulli process is followed to create a random number between
zero and one, and if it is greater than or equal to 0.5, it is assigned
1, otherwise 0. After completing this process, the threads are ready to
generate a candidate solution to exploit their region.

We have used the CUDA random number generation library (cu-
RAND) to generate random numbers. 𝑐𝑢𝑟𝑎𝑛𝑑_𝑖𝑛𝑖𝑡(𝑡ℎ𝑟𝑒𝑎𝑑_𝑖𝑑, 0, 0,
&𝑟𝑛𝑑𝑠𝑡𝑎𝑡𝑒) initialises the RNG (Random Number Generator) state.
𝑡ℎ𝑟𝑒𝑎𝑑_𝑖𝑑 is used to provide a unique seed for each thread in a CUDA
kernel. It helps to ensure that each thread generates different sequences
of random numbers. The second and third parameters are used to set
the seed for RNG. In this example, both are set to 0, meaning that
the seed is generated internally by the cuRAND library based on the
𝑡ℎ𝑟𝑒𝑎𝑑_𝑖𝑑. &𝑟𝑛𝑑𝑠𝑡𝑎𝑡𝑒 is a pointer to the 𝑐𝑢𝑟𝑎𝑛𝑑𝑆𝑡𝑎𝑡𝑒 variable 𝑟𝑛𝑑𝑠𝑡𝑎𝑡𝑒.
After the 𝑐𝑢𝑟𝑎𝑛𝑑_𝑖𝑛𝑖𝑡() function is called, 𝑟𝑛𝑑𝑠𝑡𝑎𝑡𝑒 is initialised with the
appropriate state for generating random numbers. This state is used by
subsequent calls to the cuRAND random number generator functions.
S-GROA then carries out the necessary repair and optimisation steps to
provide the initial feasible solutions.

3.4. Neighbourhood operator for intensification

To generate a new solution (offspring) for each thread in a block, we
apply crossover operator to two ‘parent’ solutions. Our method outputs
only a single new solution instead of two solutions as in the traditional
crossovers. A thread in a block (thread X) builds a new solution by
applying crossover to

its own solution and the best solution achieved so far within its re-
spective block (thread Y ). After applying crossover, the repair operator
5

Table 2
GPU specifications of Nvidia Titan V.

Architecture Volta

# CUDA cores 5120
# Streaming multiprocessors 80
Clock 1200 MHz
Memory size/type 12 GB/HBM2
Memory bandwidth 652.8 GB/s
Memory bus width 3072 bit
FP32 (float) performance 14.90 TFLOPS

processes this solution handling infeasibilities if there are any. If the
new candidate solution is better than the current one, it is accepted;
otherwise rejected and the current solution is kept for the following
iteration.

In this study, we have utilised traditional crossover operators of
one-point, two-point and uniform crossover operators. In single-point
crossover, a randomly chosen point serves as the pivot. Elements before
and after this point are swapped between the two solutions. On the
other hand, the two-point crossover involves the selection of two dif-
ferent random points, and then the elements between these points are
swapped between two solutions. An example illustrating the one-point
and two-point crossovers is shown in Fig. 5.

In uniform crossover, if the allele values at a given locus are the
same in the parent solutions, it is directly copied into the new solution.
If they are not the same, then the allele value of the gene of the thread
X is copied into the candidate solution if the uniform random number is
less than 0.5, otherwise, the gene of thread Y is copied. An illustration
of the uniform crossover operation in a block is shown in Fig. 6.

4. Computational experiments

4.1. Experimental environment and SUKP instances

Experiments of the proposed method are carried out on Nvidia Titan
V GPU. Table 2 shows the specifications of the GPU used in our experi-
ments. The proposed algorithm is implemented in C++ with the CUDA
library (version 11.2).1 We use cuRAND library to generate pseudo-
random numbers. The algorithm seeds that pseudo-random number
using the unique thread ID in each thread to ensure diversity across the
search region. The proposed algorithm resembles to a genetic algorithm
in which we use a population with a large size and carry out one
run [35]. We set the number of both blocks and threads to 1024 and
the number of iterations to 100 for all tests.

The SUKP instances used in this study are taken from [8], denoted
as Set I, and [22], denoted as Set II. In both sets, there are 30 instances
categorised into three groups. In the first groups, the number of items
is greater than the number of elements, while in the second groups
they are equal. In the last groups, the number of items is less than the
number of elements. Set I instances contain between 85 and 500 items
and elements, while Set II instances contain between 585 and 1000
items and elements. All instances are represented using the notation
𝑚_𝑛_𝛼_𝛽, where 𝑚, 𝑛, 𝛼 and 𝛽 represent the number of items, the number
of elements, the density of the elements and the ratio of the knapsack
capacity to the total weight of the elements, respectively.

4.2. Performance comparison of crossover operators

We first conducted experiments to evaluate three crossover oper-
ators: uniform, one-point, and two-point. The performance of each
crossover operator is tested on Set I instances. Table 3 shows the
objective function values and the execution time in seconds of the

1 The source code of the proposed method is available at: https://github.
com/3mrullah/CuPLS.

https://github.com/3mrullah/CuPLS
https://github.com/3mrullah/CuPLS
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Fig. 4. The framework of our proposed approach.
Fig. 5. Graphical illustrations of one-point (on the left) and two-point (on the right) crossovers in a GPU block.
roposed approach with different crossover operators for the first
roup of instances. The BKS column shows the best-known solutions
o far for the problem instances, taken from [26]. For each prob-
em instance, the best value of the crossover in the Obj column is
ighlighted in bold, and the one that hits the BKS is underlined. It
an be seen from the table, the uniform crossover obtained the BKS
or instances 100_85_0.10_0.75, 100_85_0.15_0.85, 200_185_0.10_0.75,
00_185_0.15_0.85 and 400_385_0.10_0.75. For the other instances
here is a slight difference with the BKS. Two-point crossover has also
btained the BKS for the instances 100_85_0.10_0.75, 100_85_0.15_0.85
6

and 200_185_0.15_0.85 but shows variation for the others. Unlike
the uniform crossover, it cannot obtain the BKS for the instance
200_185_0.10_0.75. The one-point crossover obtained the BKS for only
100_85_0.10_0.75 and 100_85_0.15_0.85. It is the worst method among
others since it shows larger deviations for many instances such as
300_285_0.10_0.75 and 500_485_0.15_0.85.

In terms of execution times, the uniform crossover ranged from
10.82 s for 100_85_0.10_0.75 to 389.41 s for 500_485_0.15_0.85, in-
dicating that the time increases with the complexity of the problem
instance. The two-point crossover are consistently higher compared to
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Fig. 6. Graphical illustration of uniform crossover in a GPU block.
Table 3
Computational results of crossover operators on the first group of Set I instances.

Instance BKS Uniform Two-point One-point

Obj Time (s) Obj Time (s) Obj Time (s)

100_85_0.10_0.75* 13 283 13283 10.82 13283 14.20 13283 9.80
100_85_0.15_0.85* 12 479 12479 14.11 12479 20.57 12479 12.33
200_185_0.10_0.75 13 521 13521 47.76 13 441 65.54 13 402 54.52
200_185_0.15_0.85 14 215 14215 58.83 14215 81.46 13 949 58.41
300_285_0.10_0.75 11 563 11430 116.41 11430 188.98 11 106 178.43
300_285_0.15_0.85 12 607 12500 139.29 12 402 217.67 12 245 204.01
400_385_0.10_0.75 11 484 11484 209.10 11 443 316.23 11 321 227.27
400_385_0.15_0.85 11 209 10757 245.78 10 756 351.09 10 497 329.92
500_485_0.10_0.75 11 771 11722 329.88 11722 509.10 11 582 504.01
500_485_0.15_0.85 10 238 10194 389.41 10 059 553.42 9613 472.09
Table 4
Computational results of crossover operators on the second group of Set I instances.

Instance BKS Uniform Two-point One-point

Obj Time (s) Obj Time (s) Obj Time (s)

100_100_0.10_0.75* 14 044 14044 11.89 14044 18.10 14044 13.87
100_100_0.15_0.85* 13 508 13508 15.17 13508 26.00 13508 21.39
200_200_0.10_0.75 12 522 12522 51.19 12522 79.50 12522 65.44
200_200_0.15_0.85 12 317 12317 64.83 12317 99.43 12 238 80.81
300_300_0.10_0.75 12 817 12 736 115.35 12784 179.00 12 596 146.11
300_300_0.15_0.85 11 585 11585 137.25 11 425 203.48 11 410 193.65
400_400_0.10_0.75 11 665 11658 216.32 11658 333.64 11 211 328.51
400_400_0.15_0.85 11 325 10915 251.31 10915 388.46 10 355 305.51
500_500_0.10_0.75 11 249 10924 341.07 10 921 468.62 10 664 466.70
500_500_0.15_0.85 10 381 10381 391.13 10 194 538.01 9601 497.20
the uniform crossover, ranging from 14.20 s for 100_85_0.10_0.75 to
553.42 s for 500_485_0.15_0.85. The execution times for the one-point
crossover are generally lower than the two-point crossover, but higher
than the uniform crossover for most instances. Execution times range
from 9.80 s for 100_85_0.10_0.75 to 472.09 s for 500_485_0.15_0.85.

The results for a second group of instances (100_100_0.10_0.75 to
500_500_0.15_0.85) are reported in Table 4 and show that the uniform
crossover continues to be effective in finding or closely approximating
the BKS for most instances, indicating its robustness across different
problem instances. Besides, it finds the BKS of the 500_485_0.15_0.85
instance, which is one of the most difficult problems in this group, in
less time than other crossover operators. The two-point crossover is less
effective at finding the BKS in this group. Furthermore, its execution
time indicates that it may not be the best choice for these instances. The
one-point crossover has slightly worse performance than the two-point
crossover. However, the execution times are generally shorter.

The results for the third group instances are shown in Table 5. It can
be seen that the uniform crossover once again shows its effectiveness,
offering the best compromise between solution quality and execution
time in most instances. The two-point crossover suffers from solution
quality problems in many cases and also takes longer, which calls into
question its effectiveness for this group. The one-point crossover also
suffers from solution quality problems, especially in 385_400_0.10_0.75,
385_400_0.15_0.85 and 485_500_0.15_0.85, and does not offer signifi-
7

cant time savings compared to the two-point crossover. The execution
times for all crossover operators generally increase with problem com-
plexity, with uniform crossover consistently shorter than the other two
methods in this group, as well as in other groups.

Table 6 shows the average rankings calculated by Friedman’s test
using the objective value for each instance. Uniform crossover is in
the first place and two-point crossover is in second place with a slight
difference. As a result, the uniform crossover is the most reliable
method for all instances on Set I as it consistently achieves the BKS
and has the lowest execution times. The two-point crossover does
not offer a clear advantage over the uniform crossover in terms of
solution quality or time efficiency. Although the one-point crossover
occasionally offers slightly better time than the two-point crossover, it
does not consistently produce solutions close to the BKS, which may
limit its usefulness. The uniform crossover is the most efficient method
in terms of both time and solution quality.

4.3. Performance comparison of the proposed approach to sequential algo-
rithms

The comparative results of the proposed method, denoted as CuPLS
(CUDA-based parallel local search based on a uniform crossover) from
now on, and the state-of-the-art algorithms on the SUKP instances are
reported in Tables 7 and 8. The first columns of the tables list the names
of each instance, with an asterisk (*) denoting those instances for which
CPLEX has verified the optimal value [14]. The performance evaluation
of CuPLS is conducted by comparing its mean values with those of state-

of-the-art methods, which are shown in individual columns of the table.
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Table 5
Computational results of crossover operators on the third group of Set I instances.

Instance BKS Uniform Two-point One-point

Obj Time (s) Obj Time (s) Obj Time (s)

85_100_0.10_0.75* 12 045 12045 9.77 12045 17.35 12 020 13.92
85_100_0.15_0.85* 12 369 12369 12.43 12369 21.63 12369 17.27
185_200_0.10_0.75 13 696 13696 46.16 13696 69.27 13 647 56.64
185_200_0.15_0.85 11 298 11298 54.42 11298 76.78 11298 65.98
285_300_0.10_0.75 11 568 11568 110.30 11568 175.84 11 383 169.25
285_300_0.15_0.85 11 802 11 590 131.12 11610 178.13 11 285 146.71
385_400_0.10_0.75 10 600 10 483 206.42 10600 306.73 10 113 287.97
385_400_0.15_0.85 10 506 10302 238.35 10302 366.85 9832 291.52
485_500_0.10_0.75 11 321 11260 329.62 11 070 490.29 10 848 461.95
485_500_0.15_0.85 10 220 10117 385.97 10117 568.07 9608 529.90
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Table 6
Average rankings of crossover operators on Set I instances.

Order Crossover Rank score

1 Uniform 2.48
2 Two-point 2.28
3 One-point 1.23

Consistent with previous tables, the best value among the methods
is indicated in bold within its respective column, while the one that
hits the BKS is underlined. Since there is no parallel method proposed
for SUKP, we focused the state-of-the-art algorithms: DHJaya [21],
HBPSO/TS [13], I2PLS [14], KBTS [22], and MSBTS [26]. DHJaya
is a hybrid evolutionary algorithm, HBPSO/TS is a hybrid of particle
swarm optimisation and tabu search, I2PLS is an iterated two-phase
local search algorithm, KBTS is based on a kernel-based tabu search
framework, and MSBTS is a multi-start based tabu search approach. The
stopping criterion of these algorithms was 500 s for the Set I instances
and 1000 s for the Set II instances and their computational results were
taken directly from [26].

CuPLS differs from other serial methods for solving SUKP because of
several important advantages. Firstly, CuPLS provides a more efficient
parameter tuning procedure as it does not require adjustment of sensi-
tive parameters beyond the number of threads. Furthermore, the deter-
mination of the number of threads is facilitated by an evaluation of its
performance within the given time constraints. In addition, unlike other
algorithms, CuPLS operates only once on a single instance, using an effi-
cient explore-first, exploit-later approach. This strategy increases com-
putational efficiency and simplifies the optimisation process, making
CuPLS an efficient solution for tackling SUKP.

After comparing the results on the first group of instances (𝑚 > 𝑛)
n Table 7, the following observations can be made: DHJaya and I2PLS
chieved BKS in 3 out of 10 instances, CuPLS achieved BKS in 5 out
f 10 instances, while HBPSO/TS, KBTS and MSBTS achieved BKS in
out of 10 instances. Although HBPSO/TS and MSBTS achieve the

KS value in large-scale instances, they fail to reach it for instance
00_85_0.15_0.85. Similarly, HBPSO/TS, KBTS, and MSBTS also strug-
le to reach the BKS value for instance 200_185_0.15_0.85. CuPLS has a
ompetitive performance and is equal to the BKS in half of the instances
n this group. However, there is some variance in its performance
cross different instances. For example, CuPLS falls short of BKS on the
nstances 300_285_0.10_0.75 and 400_385_0.15_0.85, and the scores for
hese instances indicate that the results are not as consistent as those
f HBPSO/TS.

According to the experimental results on the second group of in-
tances (𝑚 = 𝑛), KBTS demonstrates superior performance by achieving
he BKS in 7 out of 10 instances. Both HBPSO/TS and CuPLS are the
est methods and show similar performance, achieving the BKS in 6 out
f 10 instances. While I2PLS misses the BKS for the 100_100_0.15_0.85
nstance, it performs well, achieving the highest scores for some of the
argest instances in this group (e.g. 300_300_0.10_0.75 and 400_400_
8

.10_0.75). MSBTS performs poorly on small-scale instances such as
00_200_0.10_0.75 and 200_200_0.15_0.85 and misses the BKS in some
rials. DHJaya only performs well on small-scale instances, and tends
o fall slightly behind the best performers on large-scale instances
especially at 500_500). Although CuPLS performs poorly on instances
00_400_0.15_0.85 and 500_500_0.10_0.75 instances, its scores are very
lose to BKS on instances 300_300_0.10_0.75 and 400_400_0.10_0.75.
urthermore, when comparing the results for instance 500_500_0.15_
.85, it is clear that all the methods, except CuPLS, fall short of BKS.
herefore, CuPLS remains highly competitive compared to the other
lgorithms.

The results on the third group of instances (𝑚 < 𝑛) show that
BTS performs better than the other methods. MSBTS is slightly better

han HBPSO/TS and it is the only method that achieves the BKS
or instance 485_500_0.10_0.75 in the experiments. While I2PLS and
HJaya have similar overall performance, I2PLS outperforms DH-
aya on large-scale instances. HBPSO/TS shows competitive results,
specially for medium-sized instances. Its performance drops slightly
or larger problem sizes, but it remains effective. CuPLS achieves
he BKS for half of the instances in this group. However, instances
85_300_0.15_0.85 and 385_400_0.10_0.75 show slight deviations from
he BKS, while instances 385_400_0.15_0.85, 485_500_0.10_0.75 and
85_500_0.15_0.85 show more significant differences. The scores for
nstances 85_100_0.10_0.75 to 385_400_0.10_0.75 are generally close
o the BKS, indicating a consistent level of performance. On the other
and, the scores for instances 385_400_0.15_0.85 to 485_500_0.15_0.85
re significantly lower than the BKS. For this group, the two-point
rossover is slightly better than the uniform crossover as it can be seen
rom the Table 5. However, if the performance of the algorithm falls
hort between instances 385_400_0.15_0.85 to 485_500_0.15_0.85, it
an be improved by improving the crossover mechanism or hybridising
t with other methods to increase robustness.

Table 8 shows the results on Set II instances which has large-
cale instances than the Set I. MSBTS algorithm outperforms the other
lgorithms on this set of instances. KBTS and CuPLS have good perfor-
ance and are very competitive. DHJaya and HBPSO/TS are generally

ffective on small to medium scale instances such as 600_585_0.15_0.85
nd 800_800_0.15_0.85, where they are close to or competitive with
he best results. However, as problem size and complexity increase,
heir performances become poorer; for example, on large-scale and
otentially more complex instances such as 900_900_0.10_0.75, it per-
orms significantly worse than other methods. This suggests that while
HJaya and HBPSO/TS are capable of performing on small-scale in-

tances, it is difficult for them to maintain this level of efficiency
n large-scale and more complex instances. I2PLS consistently out-
erforms both DHJaya and HBPSO/TS on a variety of instances. In
mall-scale instances such as 600_585 and 600_600, I2PLS shows a
lear advantage over both DHJaya and HBPSO/TS. However, I2PLS,
HJaya and HBPSO/TS show similar performance on large-scale in-

tances. For example, DHJaya performs better on 1000_985_0.10_0.75
nstances, while HBPSO/TS performs better on 1000_1000_0.10_0.75
nstances and 1000_1000_0.15_0.85 instances. However, it can be seen
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Table 7
A comparison with the reference algorithms on the instances of Set I.

Instance CuPLS DHJaya HBPSO/TS I2PLS KBTS MSBTS

100_85_0.10_0.75* 13283 13283 13283 13283 13283 13283
100_85_0.15_0.85* 12479 12479 12 403.15 12 335.13 12479 12 413.78
200_185_0.10_0.75 13521 13 498.22 13521 13521 13521 13521
200_185_0.15_0.85 14215 14215 14 177.38 14 031.28 14 209.87 13 946.15
300_285_0.10_0.75 11 430 11 167.77 11563 11 562.02 11563 11563
300_285_0.15_0.85 12 500 12 248.42 12607 12 364.55 12 536.02 12 430.51
400_385_0.10_0.75 11484 11 325.88 11484 11484 11484 11484
400_385_0.15_0.85 10 757 10 293.96 11209 11 157.26 11209 11209
500_485_0.10_0.75 11 722 11 675.51 11 746.19 11 729.76 11 755.47 11771
500_485_0.15_0.85 10 194 9703.56 10 163.76 10 133.94 10 202.90 10205.62
100_100_0.10_0.75* 14044 14044 14044 14044 14044 14044
100_100_0.15_0.85* 13508 13508 13508 13 451.50 13508 13508
200_200_0.10_0.75 12522 12 480.62 12522 12522 12522 12 518.28
200_200_0.15_0.85 12317 12 217.81 12317 12 280.07 12317 12 316.21
300_300_0.10_0.75 12 736 12 676.78 12 806.44 12817 12817 12 813.70
300_300_0.15_0.85 11585 11 260.25 11585 11 512.18 11 584.17 11585
400_400_0.10_0.75 11 658 11 301.56 11 484.20 11665 11665 11 657.08
400_400_0.15_0.85 10 915 10 721.45 11325 11325 11325 11 309.20
500_500_0.10_0.75 10 924 10 871.22 11 026.24 11 243.40 11 248.96 11249
500_500_0.15_0.85 10381 10 069.33 10 213.25 10 293.89 10 362.63 10 365.52
85_100_0.10_0.75* 12045 12045 12045 12045 12045 12045
85_100_0.15_0.85* 12369 12369 12369 12 315.53 12369 12369
185_200_0.10_0.75 13696 13 667.63 13696 13 695.60 13696 13696
185_200_0.15_0.85 11298 11298 11298 11 276.17 11298 11298
285_300_0.10_0.75 11568 11 563.80 11568 11568 11568 11 567.70
285_300_0.15_0.85 11 590 11 436.93 11802 11 790.43 11 799.27 11 798.88
385_400_0.10_0.75 10 483 10 287.36 10 552.73 10 536.53 10600 10 599.70
385_400_0.15_0.85 10 302 10 184.09 10 472.40 10 502.64 10506 10 504.23
485_500_0.10_0.75 11 260 10 883.19 11 142.27 11 306.47 11 318.81 11321
485_500_0.15_0.85 10 117 9665.70 10 208.96 10 179.45 10219.76 10 219.04
Table 8
A comparison with the reference algorithms on the instances of Set II.

Instance CuPLS DHJaya HBPSO/TS I2PLS KBTS MSBTS

600_585_0.10_0.75 9699 9449.97 9724.60 9734.74 9914 9914
600_585_0.15_0.85 9275 8998.45 9174.16 9324.62 9354.52 9357
700_685_0.10_0.75 9801 9602 9792.23 9819.24 9844.96 9881
700_685_0.15_0.85 9106 8894.09 8940.65 9135.27 9138.36 9163
800_785_0.10_0.75 9700 9540.08 9736.89 9678.89 9808.86 9937
800_785_0.15_0.85 8803 8649 8872.84 8780.32 8955.29 8986.25
900_885_0.10_0.75 9538 9249.53 9560.93 9537.61 9616.70 9725
900_885_0.15_0.85 8481 8244.47 8208.22 8426.36 8526.55 8566.71
1000_985_0.10_0.75 9485 9306.86 9278.50 9221.23 9496.63 9632.59
1000_985_0.15_0.85 8448 8280.52 8129.08 8268.18 8448.05 8453.36
600_600_0.10_0.75 10 507 10 504.25 10 517.89 10 520.70 10 521.72 10524
600_600_0.15_0.85 8995 8785.64 8902.33 9022.97 9061.16 9062
700_700_0.10_0.75 9648 9409.01 9679.56 9742.73 9786 9786
700_700_0.15_0.85 9177 8985.51 9003.15 9155.79 9187.55 9229
800_800_0.10_0.75 9884 9656.38 9823.17 9685.79 9930.56 9932
800_800_0.15_0.85 8907 8774.18 8732.94 8909.50 8936.12 9101
900_900_0.10_0.75 9651 9462.86 9639.60 9660.12 9729.51 9745
900_900_0.15_0.85 8990 8492.88 8617.20 8916 8918.96 8990
1000_1000_0.10_0.75 9348 9250.80 9273.64 9255.73 9431.47 9551
1000_1000_0.15_0.85 8472 8037.92 7872.84 8206.49 8376.20 8497.39
585_600_0.10_0.75 10 304 10 161.45 10 191.01 10 366.15 10393 10393
585_600_0.15_0.85 9256 8944.22 9256 9256 9256 9256
685_700_0.10_0.75 10 070 9953.55 9909.00 9979.70 10 114.96 10121
685_700_0.15_0.85 9134 8860.79 8936.47 9139.18 9176 9176
785_800_0.10_0.75 9277 8885.09 9163.90 9236.10 9384 9382.68
785_800_0.15_0.85 8556 8482.33 8322.17 8558.51 8643.93 8684.58
885_900_0.10_0.75 9205 9079.09 9121.24 9106.31 9236.16 9318
885_900_0.15_0.85 8217 7881.44 7900.57 8268 8311.68 8411.72
985_1000_0.10_0.75 9234 8994.48 8938.38 8917.48 9105.84 9193.15
985_1000_0.15_0.85 8528 8425.27 7958.24 8233.05 8488.13 8578.20
that DHJaya performs slightly better than I2PLS and HBPSO/TS on
large-scale instances. CuPLS consistently achieves competitive results in
all instances. It often achieves the highest or close to the highest scores,
demonstrating its effectiveness. Specifically, only CuPLS obtained the
best value for the one of the largest instance (985_1000_0.10_0.75).
This demonstrates the superior performance of CuPLS in handling
large-scale and potentially more complex instances, effectively using
its parallel processing capabilities to optimise solutions.
9

As a result on the instances of Set I, CuPLS, unlike the other meth-
ods, achieves the BKS for small-scale instances in all groups, indicating
a good exploitation capability. Although it achieves values close to
the BKS for large-scale instances in this set, it is the only method
that achieves the BKS according to the results for 500_500_0.15_0.85,
demonstrating the potential and competitiveness of CuPLS. Although
CuPLS outperforms KBTS and MSBTS in terms of mean scores for
several instances, it is not always able to achieve the BKS. KBTS and
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Fig. 7. Speedup and efficiency values for Set I instances.
MSBTS algorithms demonstrate the effectiveness of the tabu search
based methods on SUKP. Although these methods perform well on
both problem sets, it is observed that MSBTS fails to achieve optimal
results on some small-scale instances of Set I, while KBTS shows a worse
performance on Set II instances as compared to Set I. It is the fact that
only CuPLS can achieve the best values in problem instances such as
200_200_0.15_0.85 and 985_1000_0.10_0.75, and competitive results in
other problem instances, indicates that it is an alternative method to
SUKP. This suggests that CuPLS has potential and may be more efficient
in some instances due to GPU acceleration.

Fig. 7 shows the speedup and efficiency values of CuPLS compared
to the sequential implementation running on a single CPU. Each block
in CUDA is designed as a population in the serial implementation. The
population carries out search on the CPU for a number of iterations
equal to the number of blocks times the number of iterations in a
block. The computational tests of the method were performed on a
computer with a dual-core processor (Intel(R) Xeon(R) CPU E5-2630
v3 @ 2.40 GHz), with 16 GB of RAM, running the Windows 10 64-
bit operating system. Speedup is the ratio of the execution time of the
parallel algorithm to that of the sequential algorithm. This measures
how much faster the parallel algorithm runs compared to the sequential
algorithm. Efficiency can be defined as the ratio of speedup and the
number of threads executing a parallel algorithm. This measures how
well the GPU’s parallelism is used. Because the sequential algorithm
takes a long time to run on the CPU, it is not efficient and not
applicable to SUKP. For this reason, we ran it once to demonstrate
the acceleration of CuPLS. Moreover, the experimental results were
unsatisfactory as the BKS was not achieved in all instances except
100_100_0.15_0.85. Therefore, due to these limitations, an evaluation
based on the objective function value was not performed.

In Fig. 7, the efficiency values range from 0.12 to 0.20 and the
speedup values range from 125 to 209. The main reason for various
speedup values across different instances of the problem, despite their
similar size, may be due to the large number of infeasible solutions
generated for these instances. This situation requires frequent use of
the repair operator, which affects the overall efficiency and speed of the
process. The figure indicates that while our algorithm runs significantly
faster on GPU, it seems that we are not exploiting its parallel processing
capabilities to the fullest extent possible considering the efficiency
indicators for given instances are lower than 1. Synchronising threads
and managing their execution can introduce overhead that reduces
efficiency. Furthermore, threads within the same block need to execute
repair operator, GPU have to serialise these operations, leading to
inefficiencies. In summary, although the speedups demonstrate that the
GPU offers a significant performance advantage over the CPU for this
algorithm, the efficiencies suggest that there is room for optimisation
to better utilise the GPU’s parallel processing capabilities.
10
5. Conclusion

This study represents a significant innovation in the field of parallel
computational approaches to SUKP. We propose a compact paral-
lel local search algorithm for solving SUKP using high performance
computing. By exploiting the parallel processing capabilities of the
CUDA architecture, the algorithm achieves remarkable advances in
computational efficiency, allowing solution spaces to be explored with
unprecedented speed and scalability. Each thread starts the search
with different initial solutions. The threads in the blocks then work
cooperatively to exploit their region to find the local optima during
the iterative search process. In this cooperative stage, the threads
generate a candidate solution by using a uniform crossover, amalga-
mating their respective solutions with the best-solution-found-so-far
within their block. During the iterative process, the best solution within
each block is maintained. The search process ends by finding the best
solution across all blocks. The integration of local search heuristics
within a parallel framework represents a novel approach to balancing
exploration and exploitation in solution refinement, thereby increasing
the effectiveness of the algorithm in achieving near-optimal solutions
within a reasonable time frame.

The experimental results from well-known benchmark instances
show the effectiveness of the proposed method in detecting high-quality
solutions within competitive time frames. Our algorithm achieved com-
petitive performance compared to recent heuristics, making it a viable
alternative for SUKP. Furthermore, focusing on acceleration and ef-
ficiency, our analysis reveals significant performance gains from our
GPU-based algorithm. Not only does it accelerate the search process,
but it also enables a thorough exploration of the solution space com-
pared to the sequential CPU implementation.

The CUDA-based parallel local search algorithm shows remarkable
effectiveness in solving the SUKP; however, it is crucial to recognise
certain inherent limitations. The reliance on local search methods can
occasionally lead to suboptimal solutions, especially in cases where
the solution space presents irregularities or multimodal characteristics.
While our approach attempts to overcome this with multi-threading,
the sensitivity of the algorithm to the number of blocks and threads
can be a challenge in ensuring consistently superior performance across
different problem scenarios.

In summary, our method has certain strengths in terms of con-
sistency and solution quality for the majority of SUKP benchmark
instances. The experimental results show that the GPU-accelerated
parallel local search algorithm exemplified by our method for solving
SUKP shows potential for application to a wider range of problems.

Hence, as a trivial future work, we will apply our approach to various
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other computationally hard binary-encoded optimisation problems. Our
empirical results show that although uniform crossover performs the
best in overall, there are cases when two point crossover outperforms
uniform crossover on some instances. Hence, the choice of operator
is still open for improvement and so studying online and offline in-
telligent (adaptive) operator selection methods controlling multiple
operators [36,37] would be a good future research direction. In our
implementation, we have used a generic repair operator since the
standard objective function can only be applied to feasible solutions.
Another future research direction would be to investigate other objec-
tive functions embedding various penalty functions taking the amount
of infeasibilities into account to guide the search process. Furthermore,
the number of threads or GPU blocks can be dynamically adjusted
based on the size or complexity of the problem, potentially improving
resource utilisation efficiency and reducing the time required to find
optimal solutions.
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