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Lameness in sheep is the biggest cause of concern regarding poor
health and welfare among sheep-producing countries. Best
practice for lameness relies on rapid treatment, yet there are no
objective measures of lameness detection. Accelerometers and
gyroscopes have been widely used in human activity studies and
their use is becoming increasingly common in livestock. In this
study, we used 23 datasets (10 non-lame and 13 lame sheep)
from an accelerometer- and gyroscope-based ear sensor with a
sampling frequency of 16 Hz to develop and compare
algorithms that can differentiate lameness within three different
activities (walking, standing and lying). We show for the first
time that features extracted from accelerometer and gyroscope
signals can differentiate between lame and non-lame sheep while
standing, walking and lying. The random forest algorithm
performed best for classifying lameness with an accuracy of
84.91% within lying, 81.15% within standing and 76.83% within
walking and overall correctly classified over 80% sheep within
activities. Both accelerometer- and gyroscope-based features
ranked among the top 10 features for classification. Our results
suggest that novel behavioural differences between lame and
non-lame sheep across all three activities could be used to
develop an automated system for lameness detection.
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1. Introduction

Sheep production plays an important role in the future of food security as it provides both food (meat
and milk) and fibre (wool) around the world [1]. Due to rising population level and consumer
preferences, meat demand is expected to increase from 334 million tonnes in 2015 to 498 million tonnes
in 2050 (https://www2.deloitte.com/content/dam/Deloitte/de/Documents/operations/Smart-livestock-
farming_Deloitte.pdf). This means that farms need to increase productivity while maintaining highest
standards of health and welfare. Health, welfare and production performance on farms can be improved
by early detection and prompt treatment of diseased animals. Change in animal behaviour is often an
early indicator of disease [2].

Lameness in sheep is the biggest health and welfare issue in most sheep-producing countries.
In the UK, it costs between £24 and £80 million per annum [3] and in New Zealand costs excess of
NZ$ 11 million (=£5.41 million approx.) annually [4] (significantly impacting on sheep, causing pain,
discomfort, weight loss and therefore a reduction in production). Lameness in sheep is mainly a result of
footrot (80%) [5], an infectious disease caused by an anaerobic bacteria Dichelobacter nodosus. Being an
infectious disease, best practice regarding lameness in sheep relies on rapid treatment [6] based on early
inspection and detection, followed by treatment with an injection of oxytetracycline or a similar antibiotic [6].

Detection of lame sheep is typicallymade based on visually identifying a change in locomotion by farmers
that include particular features when walking such as nodding of the head and excessive flicking of head
among others [5]. However, there are key challenges with this, as firstly, with the current global trend of
large livestock farms [7] and large animal to staff ratio, visual observation of subtle and even more
substantial behavioural signs might be impractical and sometimes impossible to detect; secondly, sheep are
prey animals, they tend to mask signs of lameness in the presence of humans; and thirdly, walking (when
typical visual lameness identification is done) only constitutes 2% [8] of the total activity of the day, so that
makes the detection of lameness difficult. There are no studies so far that have explored if there are any
behavioural features across activities that can differentiate lame and non-lame sheep.

Accelerometers and gyroscopes have been used widely in various livestock species, especially cattle,
to automatically detect lameness. Despite this, no commercial solutions are available and the automatic
classification of lameness in cattle is largely based on differences in the amount of activities in lame
versus non-lame [9] animals, rather than on novel features in accelerometer and gyroscope signals that
discriminate lameness. In comparison to cattle, there is limited work in sheep [10–12], with almost all
studies focused on only classifying basic activities, such as standing, grazing and lying, without
identifying different features that classify lameness. A recent study by Barwick et al. [12] using five
sheep investigated the classification of lame walking activity in sheep; however, as mentioned above,
walking only constitutes a very limited part of daily activity budget of sheep which limits its overall
utility and does not give insight into the whole behaviour of a lame sheep.

In this study, we extend our previous algorithmic approach [11] to classify sheep activity, using an ear-
based accelerometer and gyroscope sensor to investigate for the first time (i) if we could detect lameness
in sheep using both accelerometer and gyroscope signals, (ii) which machine learning algorithms perform
best at classifying lameness and what are the most important features for lameness classification and (iii) if
we can classify lameness in sheep across a range of daily activities (walking, standing and lying).
2. Material and methods
For this study, a two-phase approach was developed, aiming at classifying sheep lameness. The first
phase classified sheep activity, distinguished between walking, standing and lying. Once a sheep’s
activity was identified, a second classifier was applied in order to classify if a sheep is lame or not.
Figure 1 illustrates this process. The first phase classification was performed using our previously
published algorithms in Walton et al. [11], where we focused on the development of classification
algorithms for standing, walking and lying in sheep, while the second phase classification was
developed in the current study where we explicitly focus on discriminating between lame and non-
lame samples within each of the different behaviours.

2.1. Study site and animals
Before starting the main trial, a pilot study for 2 days was conducted to check the research protocols
described below and to give sheep some time to habituate to the sensor. Ethical permission was

https://www2.deloitte.com/content/dam/Deloitte/de/Documents/operations/Smart-livestock-farming_Deloitte.pdf
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Figure 1. Two-phase classification approach.
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obtained from the School of Veterinary Medicine and Science, University of Nottingham under unique
number 1481 150603. During the trial, the Code of Research Conduct and Research Ethics from the
University of Nottingham was followed. For the main trial in this study, data were collected in two
periods: the first period was for 8 days in October 2016 and the second one was 4 days in October
2017. A total of 18 sheep (mixed breeds) for the whole study was selected for data collection, with
12 sheep selected in 2016 and 6 sheep selected in 2017. The selection was performed via stratified
random sampling (age) from a flock of 140 animals at the University of Nottingham.

The breeds of sheep were Texel cross (n = 10), Suffolk cross (n = 3) and Mule (n = 5). The selected sheep
had body condition scores ranging from 2.5 to 4, lameness scores ranging from 0 to 3 and age ranging from
1 to 4 years. Assessment of body condition score, age and breedwas done at day 1 of each collection period.
Body condition score (the degree of fatness of the living animal) was obtained using UK industry
guidelines [13,14]. Sheep were kept on a pasture, a rectangular 0.3 acre field with 179.3 m perimeter in
2016 and in a rectangular 0.74 acre field with a 270 m perimeter in 2017. In both the fields, sheep had
free access to water. In both periods of collection, sheep were sprayed with coloured livestock spray on
either side of the sheep’s body with a number to facilitate individual identification.

2.2. Data collection
Sensor data were collected using a custom-made wearable device based on the Intel® Quark™ SE
microcontroller C1000. The device was designed to be used for data collection and classification and
encompassed flash memory, a low-power-wide-area radio module and a Bosch BMI160 (Bosch-
sensortec.com, 2016) low-power inertial measurement unit (IMU), featuring a 16-bit triaxial gyroscope
and a 16-bit triaxial accelerometer. The optimal sampling rate, established in our previous work [11],
was set at 16 Hz. The printed circuit board of the device had dimensions of 31.6 × 35 × 9 mm (with
parts mounted) and weighed 4 g. Sensors were attached to a 270mAh Li-ion battery. The devices
were attached to the sheep by fixing to the existing electronic identification ear tag using tape and
lightweight plastic tie/Velcro. Devices were mounted on sheep at the beginning of each trial day at
approximately 9.00 and removed the following morning at 9.00. Each day, sensors were prepared by
annotating the switching time, and a time reference. The detailed procedure is described in [11]. Time
synchronization for the solution was ultimately achieved using the radio to set the clock to the same
as the host receiver.

2.3. Behavioural observations
Behaviours of interest for this study were three activities (walking, standing and lying) which were
defined based on an ethogram in Walton et al. [11]. In this ethogram, walking was described as sheep
moving forward in a four-beat motion for 2 s or more with head up and oriented in the direction of
the movement, standing was described as when sheep was standing on their four legs with or
without jaw movement, and lying as when sheep was lying on the ground in sternal or lateral
recumbency with or without jaw movement. Lameness was scored visually by a trained observer
based on a validated 0–6 locomotion score scale as described in Kaler et al. [15]. Ground truth
behaviour observations were obtained from video recordings in 2016. Video footage of sheep
behaviours was recorded using a handheld Panasonic HC-V380 video camera set to record time-
stamped videos in an MP4 50 M format with 1080p (1920 × 1080 pixels) quality. Time-stamped video
recordings of the sheep were processed using Noldus Observer XT 11(Noldus) (www.noldus.com)

http://www.noldus.com
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software to label the different behavioural categories. A total of 31.49 h of footage was observed in 2016.

In 2017, ground truth observations were obtained from annotations made by NB (direct visual
observation) using a digital stopwatch which was synchronized with devices using radio-based time
synchronization. A total of 7.59 h of data were observed in 2017.

Lameness scoreswere grouped into two different classes: non-lame aggregating scores 0 and 1; and a lame
group aggregating scores 2 and above based on best practice of classifying lameness 2 or above as lame [6].
These newly form groups (lame and non-lame) were used to obtain a binary classification of lameness.

2.4. Datasets
During the study, a total of 23 datasets (10 non-lame and 13 lame) with a sampling frequency of 16 Hz
were collected from 18 different sheep. In total, there were 20 104 samples, each 7 s in duration. Of these
samples, 31.57% (46.88% non-lame and 53.12% lame) of the samples included walking, 36.87% (51.56%
non-lame and 48.44% lame) included standing and 31.56% (35.78% non-lame and 64.72% lame) included
lying activity.

2.5. Data processing and features selection
Processing of the data was performed using custom-made scripts written in Python 3.5 [16]. First, the raw
sensor data (accelerometer and gyroscope) and the ground truth behaviour information from both the
video transcripts (2016 data) and manual recordings (2017 data) were aligned using the time stamps.
Afterwards, each file was discretized into windows of 7 s with a 50% overlap between two
consecutive windows [17]. Windows that had erroneous data (e.g. acceleration values of 0 for the
whole window) were removed from the dataset. Lame status of the sheep was added as ground truth
to the dataset.

For each time window, a set of feature characteristics [18] was extracted from the magnitude of the

acceleration and the magnitude of the gyroscope which are defined by �A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

x þ A2
y þ A2

z

q
and

�G ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2

x þ G2
y þ G2

z

q
, where Ax, Ay, Az, Gx, Gy, Gz represent the acceleration and gyroscope signals at the

axes x, y, z, respectively. The dynamic component of the acceleration and gyroscope sensors was
removed by calculating the rate of change for both acceleration magnitude and gyroscope magnitude [19].

Table 1 shows the description of the 16 feature characteristics computed using both the acceleration
magnitude difference and the gyroscope magnitude difference providing a total of 32 feature
characteristics. In this study, we applied a feature selection process to order and rank features
according to their importance. Feature selection in this study was carried out using a filter-based
approach using ReliefF [20].

2.6. Lameness classification approach
Classification algorithms for lameness used in this study included random forest (RF), neural network
(NN), support vector machine (SVM), AdaBoost and k-nearest neighbour (KNN). All algorithms were
implemented using the ‘scikit-learn’ package [21] using the set of 32 previously described feature
characteristics as input variables and the corresponding ground truth lameness and behaviour for
each of the window samples as labels. The description of algorithms is provided in the electronic
supplementary material. In the RF algorithm, the number of trees was set to 250, with a minimum
sample count set for leaf nodes equal to 1, and with the number of features to consider when looking
for the best split equal to the square root of the n features. Kernel selection for the SVM was a radial
basis function. For the NN algorithm, there was one layer with 100 nodes with a rectified linear unit
function f(x) = max(0,x) as the activation function, and a learning rate of 0.0001. For the AdaBoost
algorithm, the base learner was a decision tree with depth 1, the number of base learners was set to
100 with a learning rate of 1. For the KNN algorithm, K was set to 5, the distance metric was
Euclidean and no normalization was adopted during the training as it did not significantly improve
overall performance.

An individual classifier model was developed within each of the different activities (walking,
standing and lying). Classification performance was evaluated using 10-fold cross-validation, a
commonly used methodology that provides a robust evaluation in classification model performance
[22]. This technique split the original dataset into 10 subsets of equal size. Stratification was applied



Table 1. Feature characteristics computed using the change in the magnitude of the accelerometer and the magnitude of the
gyroscope for each individual window. Here, f represents the signal.

features description/formula

time-domain features

standard statistical

features

mean, standard deviation, minimum, maximum, skewness, kurtosis and interquantile range

zero crossings number of zero crossings in a window after subtracting the window mean value

signal area
SA ¼ P

Mag � 1
fs

where Mag is either accelerometer or gyroscope magnitude and fs is the sampling frequency

frequency-domain features

spectral entropy SE ¼ �P
PSDnorm(f ) � log (PSDnorm(f ))

where PSD is the power spectral density computed from the discrete Fourier transform

dominant frequency frequency at which the Fourier-transformed signal has its highest power

spectral area
SpA ¼ 2

PN
n¼1

S( fn) � Df
S( fn): power spectral density at frequency n

harmonic frequency

(2nd and 3rd)

frequencies at which the signal has its second and third highest power values

harmonic ratio ratio of the sum of the even amplitudes (n = 2, 4, 6,…) to the sum of the amplitudes of the

odd harmonics (n = 1, 3, 5,…) from the discrete Fourier transform

HR ¼
P

i¼1 f2iP
i¼1 f2iþ1

Table 2. Overview of the number of samples per behaviour, number of samples and ratios for non-lame and lame sheep in
each of the behaviour classes.

WSL lameness number of samples sample ratio within behaviour (in %)

walking non-lame 2974 46.88

lame 3370 53.12

standing non-lame 3822 51.56

lame 3591 48.44

lying non-lame 2271 35.78

lame 4076 64.22
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during the splitting to ensure that class representations in each of the subsets were equal to the original
dataset [23]. Stratification was based on the lameness class only. Then, over a total of 10 iterations (folds)
are performed, and at each iteration, nine of the subsets were used to train a classification model, while
the remaining one was held back as a test set. In each fold, the performance of the model built on the
training set was evaluated using the test sets. After the 10 folds, every one of the 10 subsets had been
used once as a test set, resulting in 10 sets of performance values, one for each fold. The average of
these performance values represented the cross-validated classification performance. During the
training of the data, no extra procedures were applied to balance the dataset as this was relatively
well balanced for both activities and ratios for non-lame and lame samples in the three different
activities, as shown in table 2.

The proportion of the data used for training and testing within each of the different models (walking,
standing and lying) and for each individual sheep is reported in electronic supplementary material,
tables S2–S4. In these tables, the average and standard deviation of the percentage of data are used



r
6
for each individual sheep. Scripts for the classification algorithm are provided in the electronic

supplementary material.
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2.7. Performance of the classification
The performance of the best performing algorithms out of all was evaluated using the metrics overall
accuracy, precision, recall (also known as sensitivity), F-score and specificity as follows:

overall accuracy ¼ TPþ TN
TPþ TNþ FPþ FN

,

precision ¼ TP
TPþ FP

,

recall ¼ TP
TPþ FN

,

F-score ¼ 2� precision� recall
precisionþ recall

and specificity ¼ TN
TNþ FP

,

where TP (true positives) represents the number of instances where lameness was correctly classified by
the algorithm and visually observed. FN (false negatives) represents the number of instances where
lameness was visually observed, but was incorrectly classified as non-lame by the algorithm. FP (false
positives) is the number of instances predicted as lame by the algorithm but observed as non-lame.
TN (true negative) is the number of instances where the algorithm correctly classified a sample as
non-lame when it was actually observed as non-lame. The F-score gives a measure of a test’s accuracy
and is the harmonic mean of precision and recall.
2.8. Individual sheep level σ-differences
In addition to the performance metrics described above, we computed an individual sheep level
σ-difference using the ratio of samples classified as lame per individual sheep in the dataset. The
σ-difference can be computed as follows:

Ds ¼ (mlame � slame)� (mnon-lame þ snon-lame),

where ðmlame, slameÞ represents the mean and standard deviation of the per-sheep ratio of samples
predicted as lame in the lame group and ðmnon-lame,snon-lameÞ represents the mean and standard
deviation of the per-sheep ratios of individual windows predicted as lame in the non-lame group.
A significant difference ( p-value less than or equal to 0.05) for the ratios of lameness between lame
and non-lame was investigated using a Mann–Whitney U test. When considering results at sheep
level, an individual threshold for each of the activities was computed from the distribution of the
percentage of lame samples. The threshold was computed by ðmlame þ mnon-lameÞ=2 which provided the
maximum level of separation between the two groups.
3. Results
3.1. Lameness classification comparing algorithms
Figures 2 and 3 illustrate an example time series of the accelerometer and gyroscope magnitude
differences (respectively) output for observed periods of lying, standing and walking among lame and
non-lame sheep.

A comparison of classification accuracy for all the different algorithms and within the three different
behaviours is shown in figure 4 for an unconstrained compute scenario.

When classifying lameness in walking, RF obtained the highest overall accuracies, followed by
AdaBoost followed by KNN, when considering all activities. Besides RF and AdaBoost, other
algorithms performed worse in terms of overall accuracy and their performance deteriorated as more
features were added to the classification. The best accuracy, in an unconstrained scenario, was
obtained using RF and 17 features, yielding an overall accuracy of 76.83%. In terms of overall
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accuracy, the RF algorithm started to plateau when more than eight feature characteristics were used,
yielding overall accuracies between 74 and 76%.

Overall accuracies in standing were generally higher than the ones in walking. Once again,
RF consistently outperformed the other algorithm types with accuracy peaking at 81.15% when using
22 features. Accuracy started to plateau between 80 and 81% once 15 or more features were used.

Classification of lameness within lying provided the highest accuracies compared to the other two
behaviours, with RF yielding the best accuracy at 27 features with a value of 84.91%. Apart from the
global maximum at 27 features, RF accuracy plateaued after 17 features between 83 and 84%. The
difference between RF and AdaBoost performances overall was larger than those seen for walking
and standing.

3.2. RF algorithm performance across activities
Detailed assessment of the performance of the classification, again in an unconstrained scenario, using
the RF algorithm is shown in figure 5. For walking, all the different performance metrics of the
classification increased with an increased number of features between 1 and 8 at which point all
plateaued. After an initial increase, performance metrics did not show any significant changes. For
standing, similarly all the different performance metrics of the classification increased with an
increased number of features between 1 and 9 at which point all plateaued. For lying, precision recall
and F-score metrics of the classification increased with an increased numbers of features between
1 and 5 at which point all of them plateaued with a small increase. Maximum performance values were
obtained when using features 22, 32, 22 and 22 for precision, recall, F-score and specificity, respectively.

Of all the performance metrics, specificity was the lowest and recall was the highest across all activities.

3.3. Feature selection
Feature rankings were obtained using the ReliefF feature selection algorithm within each of the different
behaviours (walking, standing and lying). The results of the top 10 feature ranking are shown in table 3.
A table with the full 32 ranked features is provided in the electronic supplementary material, table S1.

For walking, 8 out the first 10 features were accelerometer based and 5 out of the first 10 are frequency-
domain features. For standing, 6 out the first 10 were accelerometer-based features and 8 out of the first 10
were frequency-domain feature characteristics. For lying, out of the first 10 feature characteristics, 6 were
accelerometer-based features and 5 were frequency-domain features.

3.4. Sheep level differences
The individual sheep level σ-differences obtained for walking, standing and lying using RF classifier
with an increasing number of feature characteristics are shown in figure 6. Overall within lying, the



Table 3. Top 10 ranked features using the ReliefF algorithm for walking, standing and lying. Light blue and dark blue colours
represent acceleration magnitude difference-based features with frequency domain and time domain, respectively. Light and dark
green colours represent gyroscope magnitude difference-based features with frequency domain and time domain, respectively.

rank walking standing lying

1 spectral entropy signal area dominant frequency

2 zero crossings interquartile range spectral entropy

3 dominant frequency spectral area dominant frequency

4 dominant frequency standard deviation maximum

5 spectral entropy zero crossings standard deviation

6 2nd harmonic frequency dominant frequency minimum

7 interquartile range 2nd harmonic frequency spectral entropy

8 signal area spectral entropy signal area

9 standard deviation 3rd harmonic frequency zero crossings

10 minimum interquartile range 2nd harmonic frequency
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large σ-differences were obtained with a 24.94% when using 28 features. A significant positive
σ-difference was obtained using more than five features in lying, whereas in standing, a positive
σ-difference was obtained for more than nine features, and for walking was obtained when using
more than eight features.

Electronic supplementary material, tables S2–S4 show that the percentage of data used for each
individual sheep ranged between 9 and 11% within walking and standing, and 10 and 13% within
lying. As different numbers of samples were retrieved for each individual sheep, training and testing
datasets contained more samples for some sheep than others. The cross-validation procedure applied
ensured that no individual 7 s samples were used in both training and testing datasets, but since the
data split was only stratified with regard to the lameness class, training and testing datasets in each
cross-validation fold contained samples from the same sheep, causing data leakage at the sheep level.
However, due to the random nature of how cross-validation folds are created, data leakage at the
sheep level should not be biased towards a set of specific animals. The percentage of misclassified
samples for each individual sheep within each of the activities (walking, standing and lying) is
reported in the electronic supplementary material, tables S5–S7. The individual threshold for walking,
standing and lying was when more than 54.93% were classified as lame for walking, more than 50%
of the samples were classified as lame for standing and more than 73.45% were classified as lame for
lying. Based on this, individual sheep classification led to

(i) 16 out of 18 were correctly classified providing a sheep level accuracy of 88.89% within walking.
(ii) 12 out of 15 were correctly classified providing a sheep level accuracy of 80.00% within standing.
(iii) 11 out of 12 were correctly classified providing a sheep level accuracy of 91.67% within lying.
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4. Discussion

To the author’s knowledge, this is the first study to demonstrate automated detection of lameness in sheep
within three relevant activities (standing, lying and walking). For all of these activities, the study identified
features that discriminated between lame and non-lame sheep. The novelty being that the study of signals
within unobvious behaviours (i.e. non-walking activities) can identify lameness. This goes beyond the
current knowledge that suggests that lameness can influence the activity budget of animals [9] (i.e. how
much time they spend lying, etc.); as the results of this study suggest that lame sheep carry out
activities differently leading to change in acceleration and rotational motion. In contrast to only
detecting lameness within walking, as in [12], the ability to also detect lameness within lying and
standing translates directly into a significantly higher sensitivity of detection since walking constitutes a
small percentage of the total activity of the day [8]. In addition, the algorithm accuracy for classification
of lameness within lying (85%) and standing (81%) was higher than those obtained with walking (76%).
This could be possibly due to the level of noise in the signal while walking, which could be caused by
dynamic movement (e.g. changing ground surface conditions in the field).

In the current study, detecting features that significantly differentiate lame from non-lame while
walking was not a surprising result because of visual differences previously reported between the gait
pattern of lame and non-lame sheep [24]. Within walking, five out of the six top feature characteristics
were frequency-domain features which are linked to the rhythm and pace at which the walking
movement is performed. Differences in frequency-domain features within walking might be the result
of locomotion being limited by the disease in lame sheep compared to non-lame sheep, resulting in
differences in the regularity and frequency of head movements. Spectral entropy, for example,
represents the level of complexity of the behaviour and hence it translates into differences in the
regularity of the movement. Lame sheep show alteration in gait with peculiar head nodding in line
with stride compared to non-lame sheep which have a smoother stride pattern. In addition,
differences in the dominant frequency can be translated to more or less head peak movements and
rotations, which is again consistent with the head nod movements [15].

More interestingly, results for classification of lameness have higher accuracy within lying and
standing activities. The top features included a mixture of frequency (e.g. dominant frequency, spectral
entropy) and time-domain features (e.g. standard deviation, interquartile range). This suggests
differences in the variability and smoothness of movements for both standing and lying between lame
and non-lame sheep. For lame sheep, this could be an attempt to reduce discomfort as lameness can
lead to significant pain [13], whereby lame sheep redirect their body weight to the unaffected leg
leading to postural changes while standing; this has been noted in cows before [13], although no
algorithms, to our knowledge, have been identified. For lying, existing research in cattle suggests that
lame cows lie down for more time compared to non-lame cows; whereas our results suggest that lame
sheep possibly lie differently than non-lame ones, and once again this could be due to animal’s
attempt to alleviate pain as mentioned above.

Considering implementation, relying solely on activity length (e.g. time lying above or below a
threshold) as an indicator of lameness has inherent problems. For example, there could be a lot of
confounding factors that affect the amount of activity, e.g. environmental conditions have shown to
impact the amount of lying activity in non-lame cows [14]. The solution proposed by our study
addresses the latter issue by enabling lameness detection via the classification of signals within an
activity, not using activity length as a proxy. This approach also improves sensitivity given that a
broader range of activities can be classified. Additionally, this offers more flexibility in terms of trade-
offs between energy consumption versus classification accuracy as it is event based and readily lends to
thresholding, i.e. one has degrees of freedom regarding sleep/energy consumption strategies for the
overall device.

On a commercial device, other practicalities need to be considered, including the one on memory and
energy consumption due to a solution based on activity length which log activities continuously. The
central processing unit, which is an energy-expensive component, in such a scenario would be highly
active thus offering less opportunity for setting the device on a sleeping mode. That said, the use of
IMU thresholding could help mitigate the impact specifically if tied solely to one activity, e.g. walking.

Aside from acceptable classification accuracy, any proposed commercial implementation would need
to consider the choice of algorithm, as well as the number and type of features used, because these factors
significantly impact computational complexity and hence battery life leading to a shorter deployable life
cycle of an offering. RF algorithms had the best accuracy in the off-line analysis and are relatively
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computationally inexpensive when compared to NN, SVM and Bayes point machine. In the current

study, using the ReliefF feature selection method, we determined that using the 10 highest ranked
features is sufficient to detect lameness within the different activities without a significant impact on
accuracy. Having less features could be advantageous for battery optimization as it can reduce
computational complexity. However, it should be noted that at this point the study did not apply
compute constraints and the type of feature is as important, if not more important, than the number
of features given a constrained battery-powered deployment scenario. For example, frequency-domain
features are more computationally expensive than time-domain features [25], and in the presented
analysis, frequency-domain features ranked highly among the top 10 discriminative features. In short,
with respect to a commercially deployable solution, further research is required to understand the
performance of features and algorithms applied to a computationally and energy-constrained context.

Another key result from this study was that both accelerometer and gyroscope features were ranked
among the top features. Most of the work for activity recognition in livestock has only used acceleration-
based features, our study suggests that gyroscope features add value in improving the accuracy of the
algorithms. This has also been reported in human activity recognition where gyroscope-based features
have increased the accuracy of the algorithms for certain complex behaviours [26].

When comparing the different performance metrics of lameness detection across the different activities,
although overall accuracy was relatively high with good precision, algorithms had relatively low specificity
values (64.86–77.34%) suggesting a degree of false positives. This could be possibly due to confusion of
classification of lameness with other possible behaviours such as grazing which can produce relatively
high acceleration values. However, lameness classification in the current study was based on a 7 s
sample window level, and results show that when comparing the ratio of lame and non-lame ratios at
individual sheep level, the algorithm significantly differentiated lame and non-lame sheep. By
aggregating the algorithms’ results over multiple windows over the course of the day, one can enhance
the sensitivity or specificity based on parallel or serial combination. In addition, this might be better for
a deployable solution as it will reduce energy consumption related to data transmission [27].

One limitation of the current algorithm as presented in this study is that it only classifies between
lame and non-lame sheep as a binary classification. Extension of the current lameness classification
can be obtained to include all the different levels of lameness (scores 1–5) by incorporating more
samples for each sheep in the correspondent levels of lameness severity. However, the classification
between certain scores (e.g. 0 and 1) could be difficult to obtain with high accuracy due to subtle gait
differences between them. Current ‘best practice’ in the UK recommends catching lame sheep at
score 2 or above (the lameness classification was set to this in the current study). Thus, there might
not be a need to differentiate lameness scores above 2 from lameness control purposes; however,
algorithms able to differentiate more severe scores could be useful welfare indicators on the farm.
Another possible limitation of the current algorithm is the existing data leakage at the individual
sheep level, as in our algorithm design data were stratified only based on the lameness score and not
sheep ID. However, the selection of the samples was not weighted towards a specific set of animals,
and hence data leakage at the individual level should not affect the generalization of the algorithm.
Moreover, at the individual sheep level, the algorithm shows very good levels with 88.89, 80 and
91.67% accuracy for walking, standing and lying, respectively.

Although our results fit in with epidemiology of lameness and provide novel insights, there is a need to
validate these algorithms over an extended time periodwith larger group sizes, different breeds and fields/
terrains to demonstrate the consistency of the detection within the three different activities both at the
general and individual level [28]. Moreover, by monitoring over longer periods of time, it should be
possible to investigate the evolution in the behavioural changes within the different activities as the
lameness progresses in severity or when sheep start to show signs of recovery. This can then also be
used to provide an assessment tool for the recovery or improved welfare under the different treatment
practices. Given high animal welfare is on the agenda for all sheep-producing countries and there are no
objective tools to measure lameness, we believe our study provides an important step towards this and
our results could be incorporated to develop an automated and early-warning lameness detection system.
5. Conclusion
The results from this study show for the first time that there are novel behavioural differences between
lame and non-lame sheep across three key behaviours: walking, standing and lying. These behavioural
differences when captured via features generated from accelerometer and gyroscope signals could
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differentiate between lame and non-lame sheep across all these three activities. The RF algorithm yielded
the highest accuracy in the classification of lameness. These results could help in further development of
an automatic system for lameness detection and help improve sheep health and welfare on farms.
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