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Abstract
The International Roughness Index is used to measure the road roughness in pavements, as pavement roughness deteriorates
over time. Despite many attempts by researchers to predict roughness in concrete pavements, there are limitations, such as
small sample size, modeling approach, or lack of robustness in the model. This study presents a novel machine-learning
approach incorporating domain knowledge to predict roughness, using a dataset obtained from the Long-Term Pavement
Performance database. Physics informed neural networks (PINNs) are popular physics-driven machine-learning approaches
that have been receiving widespread attention in the field of civil engineering. PINNs work similarly to neural networks but
are augmented with the incorporation of physics-based constraints and governing equations, enabling them to assimilate
domain knowledge and leverage physical principles while making predictions or solving problems. In this study, the popular
Mechanistic-Empirical Pavement Design Guide roughness prediction model is used along with the optimized neural networks
to calculate the physics-based loss function. The Optuna framework is used to tune the hyperparameters within the neural
network architecture. The final configuration, optimized and trained in the model, has three hidden layers with, respectively,
27, 67, and 80 neurons. The tuned model has performed well for the testing dataset, with a mean absolute error of 0.134
and a coefficient of determination of 0.90. A sensitivity analysis was also conducted and is presented to understand the influ-
ence of the variation of each variable.
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Concrete pavements play a crucial role in modern trans-

portation infrastructure, offering a strong and long-

lasting surface for vehicles to travel on. Jointed plain con-

crete pavements (JPCPs) are widely used forms of con-

crete pavement with dowels and tie bars and without

reinforcement (1). The initial cost and easy construction

practice with high durability give JPCPs an advantage

over other types of concrete pavement (2). However,

these pavements can suffer from various forms of dam-

age over time, which can affect ride quality, increase

maintenance costs, and shorten their lifespan (3). It is

always a challenge for engineers to maintain and repair

concrete pavements to ensure their continued serviceabil-

ity. The basic requirement to devise effective maintenance

strategies is to have a reliable pavement performance

model (4).

Performance metrics, such as the Pavement Condition
Index, Pavement Serviceability Index, and Roughness
Index, have been extensively utilized to evaluate the
functional condition of pavements (5). Of these, the
International Roughness Index (IRI) is an important
measure of the ride quality and smoothness of a road
surface. It is widely used in pavement maintenance plan-
ning as a way to assess the condition of a road and prior-
itize maintenance and repair activities. There are many
parameters that will lead to the progression of roughness
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over time in concrete pavements. Although there are
many studies on the prediction of roughness in asphalt
pavements (6), few researchers have attempted to predict
the roughness in concrete pavements (7). Most of the
existing models were developed using traditional
approaches for developing roughness prediction. The
Mechanistic-Empirical Pavement Design Guide
(MEPDG) IRI model for JPCPs is still widely used to
predict roughness (8).

There are also a few studies that have proved that pre-
diction models developed using regression method have

not always yielded accurate results (9, 10). The deploy-

ment of machine learning (ML) algorithms has become

increasingly prevalent in various fields, including the

analysis of JPCPs (11). The limitation of the ML method

is the black-box nature of models that use ML and deep

neural networks (DNNs), as it hinders their transparency

in decision-making. DNNs also often lack a direct con-

nection to physical laws or principles, making it challen-

ging to interpret their outputs in relation to the

underlying physical processes. Physics informed neural

networks (PINNs) are designed to incorporate known

physical constraints or equations directly into the neural

network architecture. Instead of training the network

purely on data, PINNs use underlying physics equations

as additional constraints in the form of an extra loss

function. This approach optimizes models not only by

learning from the neural network predictions but also by

adhering to the physics equations.
In this work, the potential of PINNs was explored to

overcome the limitations of ML and other existing meth-
ods in predicting roughness in JPCPs. An algorithm was
developed that combines the strengths of deep learning
with interpretability and physical constraints, based on
the MEPDG prediction model. The feature variables
used in this study were extracted from the Long-Term
Pavement Performance (LTPP) study, which includes all
the parameters used to develop the MEPDG equation.
The loss functions in the PINN architecture consist of a
combination of data fidelity loss and physics-based loss.
Specifically, the data-based loss function used in this
study is the mean squared error, estimated by predicted
and actual IRI values, while the physics loss function is
calculated as the Huber loss of predicted IRI values and
IRI values calculated from the equation. The hyperpara-
meters of the neural network were further optimized
using the Optuna method. The final architecture of the
neural networks after tuning was determined to be three
hidden layers with nodes of 27, 67, and 80 neurons,
respectively. The performance indices of both the opti-
mized and unoptimized models were calculated and pre-
sented for both the training and testing datasets. The
optimized PINN model performed excellently with the
testing dataset, having a mean absolute error of 0.134

and a coefficient of determination of 0.90. The sensitivity
analysis conducted in this study also confirmed the
robustness of the model. This study gives confidence for
adopting PINNs to make performance predictions in
pavements.

Literature Review

The IRI is the global standard for the measurement of
roughness; it is measured by the cumulative suspension
motion in a moving vehicle over the traveled distance
and is expressed in units of meters per kilometer or inches
per mile (12). Many pieces of equipment are used to mea-
sure the IRI, including the dipstick walking profilometer,
the roughometer, and the laser profilometer (13). The
roughness of a concrete pavement is a function of other
distress types, such as cracking, faulting, or spalling.
Pavement roughness has detrimental effects, such as
increased travel time, fuel consumption, and higher main-
tenance costs. There have been many advances in the pre-
diction of roughness in concrete pavements, using a wide
range of approaches. The approaches used, variables
considered, and performance of these models are sum-
marized in Table 1.

The sample size, number of variables used, and perfor-
mance of the model in these studies have been analyzed
in detail. Although most of these models have performed
well with high-performance indices, there are a few lim-
itations, as analyzed and discussed:

1. Sample size or number of data points. A ML mod-
el’s performance is highly associated with the
sample population. The larger the sample size of
the training data, the more robust and reliable
the model. The maximum number of data points
or largest sample size used in all the studies is 577
and the minimum is less than a hundred.

2. Technique or method. Most of the models shown
in Table 1 were based on simple regression or tra-
ditional ML, such as random forest, XG Boost,
or neural networks. There are very few studies
where advanced optimization methods were used
for model development.

In this study, the limitations of the previous studies dis-
cussed in this section have been addressed. First, the issue
of a smaller number of data points was overcome by
maximizing the sample size in this research. Additionally,
all the relevant feature variables that could contribute to
predicting the IRI were selected to ensure a comprehen-
sive model. A total of 920 observations were used for the
model development, of which 80% were used for training
and the rest were used for testing.
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To enhance the robustness and practicality of the
model, the research went beyond conventional ML meth-
ods by incorporating PINNs along with the Optuna
framework. This approach allowed for the incorporation
of physical principles and constraints in the ML model,
resulting in a more reliable and interpretable analysis.
The combination of physics-driven ML with novel opti-
mization techniques was intended to achieve a more
refined and accurate prediction model. The relative
importance of variables to the final IRI has been identi-
fied through sensitivity analysis.

Data Preparation

Roughness, in general, is a function of many variables in
concrete pavements. The MEPDG roughness prediction
model, as shown in Equations 1 and 2, considered eight
parameters for predicting roughness, including initial
roughness, slabs with transverse cracking (as a

percentage), joints with spalling of all severities (as a per-
centage), patching area of all severities, total joint fault-
ing accumulated, and site factor. Site factor is again a
function of pavement age, freezing index, and the per-
centage subgrade passing through a 75-mm sieve. All
these parameters were extracted from the LTPP reposi-
tory, which includes 10 states with 48 sections. The total
number of data points used in this study was 923, of
which 80% were used for training. The samples were
extracted from periods in which no maintenance or reha-
bilitation was undertaken, to ensure the unbiased nature
of the model. The LTPP repository determines pavement
roughness, using the IRI, for both left- and right-wheel
tracks. In this study, the roughness considered for each
section is the maximum value of the right- and left-wheel
track IRI. Using the maximum IRI provides a more con-
servative estimate of road roughness than using the aver-
age or minimum IRI.

The MEPDG model for calculating the IRI of a JPCP
is represented as (6)

Table 1. Existing Roughness Prediction Models for Concrete Pavements

Approach Input variables Performance Study

Empirical Total cumulative joint faulting per mile, total number
of TC, spalled joints (%)

n = NA
R2 = 0.61

(14)

Regression Initial roughness, percentage of slabs with TC,
percentage of joints spalled, joint faulting (per km),
pavement age, FI, P200

n = NA
R2 = NA

(15)

Empirical Initial roughness value, percentage of slabs with
transverse cracking, joints with spalling, patching
area, total joint faulting accumulated per km, age,
FI, P200

n = 188
R2 = 0.60

(8)

Linear regression analysis P200, minimum annual temperature, slab thickness,
base type, age, initial IRI, no. of wet days per year,
ESAL, subgrade treatment

n = 24 sections
R2 = 0.73

(16)

Artificial neural network Initial roughness value, percentage of slabs with TC,
joints with spalling, patching area, total joint
faulting accumulated per km, age, FI, P200

n = 188
R2 = 0.828

(17)

Regression model Initial roughness value, age, total faulting, percentage
of slabs with TC, joints with spalling, annual mean
precipitation, FI

n = 327
R2 = 0.81

(9)

Artificial neural network–gene
expression programming

Initial IRI value, structural number, age, ESAL n = 95
R2 training = 0.99
R2 testing = 0.99

(5)

Artificial neural network Average annual air temperature, FI, annual mean
maximum and minimum humidity, annual mean
precipitation, annual average daily traffic, annual
mean daily truck traffic

n = 10 sections
R2 training = 0.99
R2 testing = 0.99

(18)

Artificial neural network Initial IRI value, age, thickness of concrete slab,
cumulative ESAL, mean spacing of contraction
joints

n = 577
R2 training = 0.95
R2 testing = 0.69

(19)

Machine learning Initial roughness, percentage of slabs with TC,
percentage of joints spalled, joint faulting (per km),
pavement age, FI, P200

n = 188,
R2 training = 0.98
R2 testing = 0.90

(10)

Note: ESAL = equivalent single axle load; FI = freezing index; IRI = International Roughness Index; NA = not available; P200 = material passing through

75-mm sieve; TC = transverse cracking.
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IRI=IRIi + 0:013 3TC+ 0:007 3SPALL+ 0:005

3PATCH+ 0:0015 3TFAULT+ 0:45 3SF

ð1Þ

where IRIi is the initial smoothness measured as IRI,
expressed in meters per kilometer; TC is the percentage
of slabs with transverse cracking (all severities); SPALL
is the percentage of joints with spalling (all severities);
PATCH is the pavement surface area with flexible and
rigid patching (all severities), expressed as a percentage;
TFAULT is the total joint faulting cumulated per kilo-
meter, measured in millimeters; and SF is the site factor,
which is calculated as

SF=Age3 1+FIð Þ3 1+P200ð Þ=106 ð2Þ

where Age is the pavement age in years; FI is the freezing
index, measured in degrees Celsius days; and P200 is the
percentage of subgrade material passing through a 75-
mm sieve.

All the variables were statistically analyzed to derive
indicators, such as average, median, or standard devia-
tion. All these details are summarized in Table 2 for the
extracted dataset. In the table, variables IRIi, SPALL,
PATCH, FAULT, FI, P200, and IRI have positive skew-
ness values, indicating a right-skewed distribution. This
means that these variables have more data points toward
the lower end of the range and fewer points toward the
higher end. They also have positive kurtosis values, indi-
cating distributions with heavier tails and a more peaked
shape. These indicators aid in comprehending the dataset
from both qualitative and quantitative perspectives.

A correlogram of all the variables in this study is pre-
sented in Figure 1. It is used to visualize the linear rela-
tionships between different variables and identify
patterns in the data. In the figure, the higher the correla-
tion, the darker the color. A positive correlation is repre-
sented by the color red, while a negative correlation is
denoted by the color blue. This figure shows that there is
a high correlation between the initial roughness and cur-
rent roughness followed by freezing index, whereas
transverse cracking and patching show the least correla-
tion with current roughness. It can also be observed that
the proportion passing through a 75-mm sieve shows a
negative correlation with all other variables.

The MEPDG model assumes independence for the
various parameters used for predicting pavement rough-
ness. This assumption implies that the factors influencing
roughness, such as initial roughness, transverse cracking,
spalling, patching, total joint faulting, and site factors,
are considered to be independent variables. However, the
analysis, as depicted in Figure 1, reveals correlations
between these variables, suggesting a departure from the
assumed independence.

Table 2. Statistical Indicators for the Independent Variables Used in This Study

Variable Average Standard deviation Minimum Median Maximum Skewness Kurtosis

IRIi 1.53 0.49 0.82 1.49 3.19 1.17 1.64
TC 1.84 5.62 0.00 0.00 63.64 5.81 49.71
SPALL 15.87 27.91 0.00 2.08 96.15 1.95 2.52
PATCH 8.48 22.61 0.00 0.00 132.20 3.55 12.86
FAULT 15.95 27.22 0.00 6.80 153.00 3.57 13.37
AGE 10.50 6.88 0.00 9.00 31.00 0.85 0.64
FI 307.30 428.80 5.00 120.00 2037.00 1.87 3.03
P200 23.14 21.27 3.00 12.00 98.40 1.42 1.21
IRI 1.74 0.59 0.82 1.62 4.72 1.39 3.11

Note: AGE = age in years; FAULT = cumulative joint faulting; FI = freezing index; IRI = International Roughness Index; P200 = material passing through

75-mm sieve; PATCH = pavement surface area with flexible and rigid patching; SPALL = percentage of joints with spalling; TC = percentage of slabs with

transverse cracking.

Figure 1. Correlogram of all the variables used in this study.
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Figure 1 illustrates noticeable correlations between
certain variables, notably a high correlation between ini-
tial roughness and current roughness, as well as with the
freezing index. Conversely, some variables, such as trans-
verse cracking and patching, exhibit smaller correlations
with current roughness. The presence of these correla-
tions implies that the influence of certain parameters on
pavement roughness might be interconnected or influ-
enced by shared underlying factors. Such interdependen-
cies might introduce complexities not fully captured by
the MEPDG model, potentially affecting the accuracy of
roughness predictions.

Once the dataset had been extracted, it could be used
to train the model for prediction. Typically, in this study,
the dataset was divided into training and test sets, with a
split ratio of 80:20. The model was trained using the
training set, and the performance of the trained model
was evaluated using the test set. The dataset was parti-
tioned into the desired proportions and a histogram of
the target variable, faulting, for both sets, was plotted
and distributions were compared. In the split used for
this study, as shown in Figure 2, the distributions are
similar, giving confidence that the split is likely to be of
good quality.

PINNs

It is important to understand neural networks to gain
insight into PINNs. DNNs replicate the functioning of
the human brain, empowering computer programs to
recognize patterns and address fundamental challenges in
artificial intelligence (AI), ML, and deep learning (20). A
typical neural network comprises input, hidden, and out-
put layers. In a neural network’s hidden layer, each node
or neuron is connected to others, having its unique set of

weights and a threshold. When a node’s output exceeds
the threshold, it becomes activated and passes informa-
tion to the next layer. However, if the output does not
meet the threshold, no data are transmitted to the subse-
quent layer. Once the network is trained, it can make pre-
dictions based on inputs without explicitly understanding
the relationships between them. This prediction process
does not rely on specific algorithms or expertise in the
subject matter (21). Training is achieved by applying
input vectors and adjusting network weights through a
predefined process until a consistent output is obtained.

As presented in the neuron function diagram of a
DNN in Figure 3, X1 to Xn are the first to nth input vari-
ables, W1 to Wn are the weights for the input features, b
is a fixed number (the bias), and F is a transfer function.
The weights Wi and bias (b) in neurons are established
through a suitable optimization technique (22).
Activation functions (AFs) are utilized by DNNs in the

Figure 2. Histogram of the training and testing datasets.

Figure 3. Architecture of a deep neural network.
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hidden layers to perform complicated computations and
then relay the outcomes to the output layer.

The main purpose of AFs is to incorporate non-linear
characteristics in the network. They transform the linear
input signals of nodes into non-linear output signals,
allowing deep networks to learn high-order polynomials
with degrees greater than one. Additionally, AFs are dif-
ferentiable, enabling the use of backpropagation for
training. In this study, the rectified linear unit (ReLU)
function was utilized. This function is a rapid-learning
activation function that ensures robust and exceptional
performance. Compared with other AFs, the ReLU
function provides significantly superior deep learning
performance and generalization (23).

The DNN architecture focuses on predicting rough-
ness (measured in meters per kilometer) in jointed con-
crete pavements, where the output variable is roughness.
Within this architecture, several parameters are employed
to adjust the parameters of the deep learning or ML
model, including the learning rate and weights, aiming to
minimize losses. As a part of the optimization process, it
is crucial to estimate the error for the current state of the
model repeatedly. To update the weights and reduce the
loss in the next evaluation, an error function, also called
a loss function, must be selected. This function can be
used to estimate the loss of the model. The loss function
is fundamental to the training process of the neural net-
work. During training, the model iteratively adjusts its
parameters (weights and biases) to minimize the overall
loss. The mean square loss function used in this study is
generally used in regression tasks.

Neural networks have demonstrated remarkable ver-
satility in predicting various distress types within pave-
ment engineering. Researchers have leveraged the power
of these computational models to address critical chal-
lenges, such as faulting, roughness, and cracking. The
ability of neural networks to discern intricate patterns in
pavement conditions has led to significant advances in
distress prediction models. Studies focused on faulting
have explored the nuanced relationships between input
parameters and the occurrence of this specific pavement
issue (24, 25). Similarly, investigations into roughness
have utilized neural networks to unravel the complex
interplay of factors influencing pavement surface irregu-
larities (18, 26). Moreover, cracking, a common concern
in pavement degradation, has been the subject of exten-
sive research employing neural networks to capture the
underlying dynamics contributing to crack initiation and
propagation (27–29). These applications extend beyond
isolated distress predictions, as researchers have also
integrated neural network predictions in comprehensive
assessments of pavement condition, introducing such
indices as the Pavement Condition Index and the overall
condition index (30–33). This integration showcases the

broader impact of neural networks in providing holistic
evaluations of pavement performance, offering valuable
insights for maintenance and rehabilitation strategies.

Despite the undeniable advantages of DNNs, there
are some concerns about the deployment of neural net-
works. Critics often point to the inherent black-box
nature of these models, where it becomes challenging to
interpret the underlying mechanisms driving their predic-
tions. This lack of transparency can be problematic,
especially in critical applications where users require
clear explanations for a model’s decisions. To address
these concerns, researchers have been actively exploring
physics-based ML approaches. These methods aim to
incorporate domain-specific knowledge and physical
principles in the design of ML models. By integrating
human-understandable concepts in the learning process,
these ML models will provide more interpretable outputs
and build trust with users.

In pavement engineering, mechanistic or mechanistic-
empirical models have historically been dominant, owing
to their interpretability, and there is now a growing inter-
est in combining these models with the power of ML.
DNNs that adhere to fundamental physical laws have
been implemented, providing insights into the structural
behavior, material properties, and failure modes of com-
plex civil engineering systems.

While PINNs are often employed to solve partial dif-
ferential equations by incorporating physical constraints
directly into the neural network architecture, they can
also be adapted to handle other types of equation or con-
straints with domain knowledge (34). The PINN archi-
tecture consists of two main components, where the first
one is the neural network and the second one is the
physics-based loss function, as shown in Figure 4. The
additional component in the architecture, compared with
regular DNNs, is the physics-based loss function. The
data-driven terms learn the relationships between input
features and target variables from the data, while the
physics-driven terms enforce the known or approximated
physical constraints in the problem.

The MEPDG equation is widely used to predict the
roughness of JPCPs. Taking the leverage of an estab-
lished equation, and exploiting the computational per-
formance of neural networks, a PINN is designed to
compute the physics loss component by the Huber loss
of the predicted IRI and the IRI calculated using the
neural networks. The overall loss is computed as the sum
of the weighted averages of the data fidelity loss and
physics loss, as

Loss= a 3 Ldata + b 3 Lphysics ð3Þ

In Equation 3, Ldata is also known as the data fidelity
loss, and is measured as a function of mean squared
error. It measures the discrepancy between the IRI
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predicted by the neural networks and the actual mea-
sured roughness value.

The variable Lphysics is the physics-based loss function
that is used as a constraint in PINNs. The major goal is
to use neural networks to learn the solution to a physical
problem directly from data while incorporating the gov-
erning physics equations as constraints. The overall loss
is calculated as the Huber loss of the IRI predicted by
the neural networks and the IRI calculated using the
MEPDG equation.

In Equation 3, a and b are the weights assigned to
optimize the overall loss function. These parameters
allow us to control the importance of fitting the data ver-
sus adhering to the physics. In this study, after several
iterations with various combinations, 0.75 and 0.25 were
found to be optimum values for this model, for a and b,
respectively.

To optimize the weighting of the losses, a range of
combinations was explored to compute the final loss
after training. This optimization process is visualized in
Figure 5, where each data point represents a unique com-
bination of a and b, and the total loss is plotted against
a. Notably, each point is color-coded according to its
corresponding b value.

It is evident from the plot that, as b decreases, the
overall loss decreases as well. However, beyond a certain
threshold (b=0.25), the rate of decrease in loss
diminishes. To achieve a balance between optimizing the
losses and maintaining the relevance of the physics-based
loss, b was chosen to be 0.25, with a corresponding
weight of 0.75 assigned to a. These values were selected
to ensure effective loss optimization while preserving the
significance of the physics governing equation.

There have been several studies of DNN implementa-
tion in civil and pavement engineering. However, there
are limited studies where PINNs have been utilized in the
field of civil engineering. Physics-based ML was applied
in structural health monitoring of civil structures (35, 36),
materials modeling (37), and structural mechanics (38).

Optuna Framework

Optuna is an optimization framework that exploits the
concept of sequential model-based optimization to effi-
ciently search for the optimal set of hyperparameters for

Figure 4. Typical visualization of physics informed neural network (PINN) architecture.

Figure 5. Line plot depicting the losses computed after training
across various combinations of a and b.
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a ML model. This method is based on the idea of using
surrogate models to model the complex relationship
between hyperparameters and a model’s performance.
Instead of exhaustively searching the entire hyperpara-
meter space, Optuna uses probabilistic models to guide
the search more efficiently, focusing on promising regions
of the space (39). There are very few studies where
Optuna was utilized for civil engineering applications,
although in one study it was implemented to tune the
hyperparameters for lidar odometry estimation (40).

The major hyperparameters optimized in this study
are the number of hidden layers, the number of neurons
in each hidden layer, and the learning rate of the
Adaptive Moment Estimation (ADAM) optimizer. The
primary objective of the library used in this study is to
minimize the error by iteratively suggesting new hyper-
parameter configurations based on the results of previ-
ous evaluations. The objective function for each set of
hyperparameters in the initial trials records the R2 score
associated with each hyperparameter configuration.
Optuna iteratively performs the optimization loop until
a stopping criterion is met. In this study, the optimiza-
tion criterion was the maximum number of iteration
trials namely, 100. Table 3 presents the range of values
explored for each hyperparameter and the selected value
for the final configuration.

Model Development

In this section, the process of training, tuning, and
optimization of the models, and assessment of the
models against the training data, is explained. Google
Colaboratory, an online platform that provides a
Jupyter-like environment for running and executing code
was used in this study. It is particularly useful for ML
and data science tasks, as it offers access to high-
performance computing resources, such as graphics pro-
cessing units (GPUs) and tensor processing unit (TPUs).
Figure 6 is a flowchart of the model development and
validation process.

The efficacy of a ML model is contingent on the cali-
ber of the data used for its training. Therefore, it is

essential to properly pre-process the data before using
the dataset to train the model. Data pre-processing
involves transforming or encoding the dataset so that it
can be easily understood by the machine. In this study,
the data are pre-processed and transformed to ensure
that all variables are considered equally by the ML
model. This is important because variables measured at
different scales might not contribute equally to the mod-
el’s ability to fit and learn. For example, in the dataset
used in this research, the initial IRI is in the range of
0.82 to 3.19, while the freezing index ranges from 5 to
2037. If a ML algorithm based on the Euclidean distance
method is used, the initial IRI will be given less weight
than the freezing index.

To tackle this concern, a feature-wise normalization
technique known as MinMax Scaler, was implemented,
using the scikit-learn libraries, on the input features
before fitting the model. This process guarantees that all
features are transformed into the range [0,1], with 0 and
1 as the minimum and maximum values for each feature
or variable, respectively:

xscaled =
x� xmin

xmax � xmin
ð4Þ

where xscaled is the calculated normalized value, x is the
actual value, xmin is the minimum value, and xmax

denotes the maximum value of the required variable.
This leads to an improvement in the efficiency and

effectiveness of algorithm execution. Since the dataset is
already of a reduced size, the complex calculations
required to enhance the algorithms can be performed
much faster. For model training, the pre-processed data-
set is divided into training and testing datasets, with a
ratio of 80% for training and 20% for testing. This split
is accomplished using the train_test_split function from
the scikit-learn library, which randomly assigns rows of
the dataset to the respective proportions. The perfor-
mance metrics for evaluating models used in this study
were the R2 score (coefficient of determination), mean
absolute error (MAE), mean squared error (MSE), and
root mean squared error (RMSE).

The neural network architecture was initially defined
with two input layers and 16 neurons in each hidden
layer. The ReLU activation function was used in this
study, owing to its simplicity and computational effi-
ciency. To fit the model, the powerful ADAM optimizer,
with a learning rate of 0.01, was deployed. With this
architecture and physics constraint, the model was
trained with 100 epochs. Then the same model was vali-
dated using the testing dataset. The scatter plots of the
training and testing datasets were plotted for the pre-
dicted and true values of IRI, as shown in Figure 7. The
value of R2 for the testing dataset for the initial PINNs is
0.85 and the RMSE is 0.232m/km. The prediction

Table 3. Hyperparameters Selected for the Deep Neural
Network Architecture

Hyperparameter Range
Selected

value

Number of layers, excluding
input and output layers

2–5 3

Neurons per each hidden layer 10–200 Layer 1: 27
Layer 2: 67
Layer 3: 80

Learning rate (ADAM) 0.1, 0.001, 0.0001 0.001
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performance of the model will be improved by optimiz-
ing the hyperparameters.

Although the performance of the initial PINN is
good, the model can be further fine-tuned by optimizing
the hyperparameters within the neural network architec-
ture. In this study, a novel tuning method, Optuna
framework, was deployed to tune the hyperparameters.
When the tuning was performed, by aiming to find the
hyperparameters that led to the highest value of R2, indi-
cating the best model performance on the testing set, the
hyperparameters selected after 100 iterations were three
hidden layers, with the numbers of neurons being 27, 67,
and 80, respectively. The learning rate selected for the
ADAM optimizer was 0.001. These parameters were
obtained after Optuna tried different combinations of
hyperparameters and evaluated how well the model per-
formed with each combination. The goal was to maxi-
mize R2, which tells how close the predictions are to the
actual roughness values. After evaluating various

combinations, the best hyperparameters that led to the
highest value of R2 were selected. When the model was
compiled using these parameters, the performance of the
model was further enhanced. The coefficients of determi-
nation of the testing and training datasets for the opti-
mized model were 0.92 and 0.90, respectively, whereas
the RMSEs for the training and test datasets were 0.162
and 0.189m/km, respectively. This means that the opti-
mized model shows an improvement of around 18.5%
compared with the basic model, based on the RMSEs.
Scatter plots of the training and testing datasets were
produced for the predicted and measured values of IRI
when tuned using the Optuna framework, as shown in
Figure 8.

Sensitivity Analysis

To understand the deeper behavior of the model, and its
relationship with the variables used, sensitivity analysis

Figure 6. Flowchart explaining the model development of physics informed neural networks in this study.
Note: IRI = International Roughness Index; MAE = mean absolute error; RMSE = root mean squared error.
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was conducted in this study. It was conducted on all the
input factors that are most responsible for increasing
roughness, that is, initial IRI, transverse cracking, spal-
ling, faulting, and patching. In this section, the effect of
change in these features on the prediction of the final
predicted IRI is estimated. The sensitivity analysis was
conducted for the PINN model with the best performing
parameters. With a total of eight input features in use,
the analysis involved a systematic variation of each input
variable’s value, while maintaining the other variables at

their mean values across 10 rows. For example, to con-
duct the sensitivity analysis for the initial IRI, the seven
other input variables were assigned their mean values
across 10 rows while the initial IRI value was varied
from its minimum value to its maximum in 10 steps.
Subsequently, the model was employed to predict rough-
ness (IRI) at each step to produce Figure 9a. To produce
Figure 9b, transverse cracking was varied from its mini-
mum value to its maximum in 10 steps, keeping other
variables the same in each row as their average values. A

Figure 7. Predicted versus actual values of International Roughness Index (meters per kilometer) using the initial physics informed
neural network model: (a) training dataset; (b) testing dataset.

Figure 8. Predicted versus actual values of International Roughness Index (meters per kilometer) using the optimized physics informed
neural network model: (a) training dataset; (b) testing dataset.
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Figure 9. Sensitivity analysis of features used in this study: (a) initial International Roughness Index (IRI); (b) transverse cracks;
(c) spalling; (d) patching; (e) cumulative faulting.
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similar method was followed to conduct the sensitivity
analysis for spalling, patching, and faulting, as illustrated
in Figure 9, c to e.

These figures show that, with an increase in the value
of feature variables, the overall roughness increases. It
can also be observed that the rate of increment for the
initial IRI and transverse cracking is greater than that
for other variables. Sensitivity analysis demonstrates that
the model behaves consistently and that it can make reli-
able predictions with the new data.

Performance Metrics

To build and deploy a generalized model that performs
well, it is necessary to evaluate the model using various
metrics. This helps to optimize the model’s performance,
fine-tune it, and ultimately produce better results. The
evaluation performance metrics for the basic PINN and
optimized PINN models were calculated in this study.
These indices were calculated for the training and testing
data and are summarized in Table 4. The MAE in the
Optuna PINN model is smaller than that in the basic
model. Other indices have also confirmed that the opti-
mized method is the best performing, with the smallest
errors for both training and testing datasets.

Conclusions

Roughness is an important factor in assessing the ride
quality and serviceability of concrete pavements.
Therefore, it is important to accurately predict the
roughness of concrete pavement. This paper proposes a
novel method for predicting roughness by utilizing data
including spalling, transverse cracking, faulting, patch-
ing, freezing index, initial roughness, and age. A novel
approach that combines physics-driven ML with the
LTPP dataset was implemented to predict pavement
roughness. This innovative method harnesses the benefits
of scientific computing and incorporates physical con-
straints (the MEPDG equation) for improved predictive
accuracy.

Based on this study, it is understood that data pre-
processing and standardization techniques have contrib-
uted significantly to achieving good prediction results.

The basic PINN model, with two hidden layers and 16
nodes in each hidden layer, produced reasonably good
results. The coefficient of determination of this model
was 0.85 and the MAE was 0.152m/km. When optimized
using Optuna, the performance further increased to give
a coefficient of determination of 0.90 and an MAE of
0.134m/km. The hyperparameters selected after tuning
with Optuna are three hidden layers, with 27, 67, and 80
neurons, respectively. From sensitivity analysis of feature
variables, it can be understood how the prediction results
vary with the increase in the feature variables, when the
other parameters are kept constant.

By harnessing this comprehensive dataset, infrastruc-
ture managers and road agencies can gain a nuanced
understanding of the factors influencing pavement
roughness. The predictive accuracy is further strength-
ened by the incorporation of physical constraints through
the MEPDG equation, ensuring a robust and scientifi-
cally grounded methodology. Importantly, while this
study focuses on roughness prediction, its broader impli-
cations suggest that PINNs hold significant potential for
predicting various types of distress in pavements. End-
users can leverage this methodology, not only for rough-
ness assessments but also for proactive monitoring of
other critical pavement conditions.

This study demonstrates that PINNs are a reliable and
robust approach for developing accurate roughness pre-
diction models for JPCPs by combining both physical
constraints and neural networks. The study is not
intended as a sponsored effort to update the existing IRI
model but rather to showcase the potential of PINNs in
its prediction. The findings also strongly suggest that
PINNs hold immense potential for predicting other
forms of distress in pavements as well. Moreover, the
positive outcomes of this research highlight how continu-
ous advancements in PINN methodologies can effectively
address numerous challenges, leading to noteworthy
progress in the application of PINNs in the field of pave-
ment engineering.
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