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Abstract
We introduce the multi-width of a lattice polytope and use this to classify and count all
lattice tetrahedrawithmulti-width (1, w2, w3). The approach used in this classification
can be extended into a computer algorithm to classify lattice tetrahedra of any given
multi-width. We use this to classify tetrahedra with multi-width (2, w2, w3) for small
w2 and w3 and make conjectures about the function counting lattice tetrahedra of any
multi-width.
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1 Introduction

A lattice polytope P ⊆ R
d is the convex hull of finitely many lattice points, that

is, points in Z
d . We consider lattice polytopes as being defined only up to affine

unimodular equivalence. Two lattice polytopes are said to be (affine) equivalent if
one can be mapped to the other by a change of basis of Zd followed by an integral
translation. A lattice simplex is the convex hull of affinely independent lattice points.
For example, in dimensions 2 and 3 these are triangles and tetrahedra respectively.

Lattice simplices are recurring objects of study with multiple applications. Via toric
geometry they are relevant to algebraic geometry and are closely related to toric Q-
factorial singularities. The toric Fano three-folds with at most terminal singularities
were classified by finding all the three-dimensional lattice polytopeswhose only lattice
points were the origin and their vertices [7]. A key step towards this was classifying
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all such tetrahedra. Simplices whose only lattice points are their vertices can give
terminal quotient singularities by placing one vertex at the origin and considering the
cone they generate. These are called empty simplices and were classified in dimension
3 and 4 in [9] and [5] respectively. There are also applications of lattice simplices in
mixed-integer and integer optimisation, see for example [2] and [1].

An important affine invariant of a polytope is its width. Recall that for a lattice
polytope P ⊆ R

d and a primitive dual vector u ∈ (Zd)∗ the width of P with respect
to u, written widthu(P), is the length of the interval obtained by projecting P along the
hyperplane with normal vector u; that is, widthu(P):=maxx∈P {u ·x}−minx∈P {u ·x}.
Then the (first) width of P , writtenwidth1(P), is theminimumwidth along all non-zero
dual vectors u, i.e. width1(P):=minu∈(Zd )∗\{0}{widthu(P)}. Width plays a role in the
proofs of both [5] and [2] mentioned above which motivates seeking an understanding
of the simplices of a given width. However, in dimension at least 2, there are infinitely
many simplices of a given width. We would like to record enough information about
the widths of a polytope so that there are only finitely many polytopes satisfying
these conditions. To do this we consider the width of a lattice polytope in multiple
directions. For a linearly independent collection of dual vectors u1, . . . , ud ∈ (Zd)∗
we can consider the tuple whose entries are widthui (P). By applying lexicographical
order toZd≥0 we find theminimum such tuple.We call this themulti-width of P written

mwidth(P) and the i-th entry of this tuple is the i-th width of P written widthi (P).
Since widthi (P) is always greater than or equal to widthi−1(P) from now on, unless
otherwise specified, let w1, w2 and w3 be integers satisfying 0 < w1 ≤ w2 ≤ w3.

This author completely classified lattice triangles by their multi-widths in [3]. The
result is surprisingly simple and it produces a normal form for triangles from which
both their width and automorphism groups can be easily read. Additionally, it shows
that the sequence counting lattice triangleswith secondwidth atmostw2 has generating
function equal to the Hilbert series of a degree 8 hypersurface in P(1, 1, 1, 2, 2, 2).
Here we investigate howmuch of this can be extended to the three dimensions. Ideally,
we would describe the finite sets Tw1,w2,w3 defined as follows.

Definition 1.1 For integers 0 < w1 ≤ w2 ≤ w3 the set of tetrahedra with multi-width
(w1, w2, w3) up to affine equivalence (denoted by ∼) is

Tw1,w2,w3 :={T = conv(v1, v2, v3, v4) : vi ∈ Z
3,mwidth(T ) = (w1, w2, w3)}/ ∼ .

Theorem 1.4 achieves this when the first width is 1 by establishing a bijection between
T1,w2,w3 and a set of tetrahedra S1,w2,w3 . To define S1,w2,w3 we must first recall the
classification of lattice triangles by their multi-width, then define the four types of
tetrahedron which our new classification will include.

Definition 1.2 Let Sw1,w2 be the set of lattice triangles

• conv((0, 0), (w1, y1), (0, w2)) where 0 ≤ y1 ≤ (w2 − y1 mod w1),
• conv((0, 0), (w1, y1), (x2, w2)) where 0 < x2 ≤ w1

2 and 0 ≤ y1 ≤ w1 − x2
(and y1 ≥ x2 if w1 = w2)

• and if w1 < w2, conv((0, y0), (w1, 0), (x2, w2)) where 1 < x2 < w1
2 and 0 <

y0 < x2.
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As shown in [3, Thm. 1.1] the map taking a lattice triangle to its affine equivalence
class is a bijection from Sw1,w2 to the set of lattice triangles with multi-width (w1, w2)

up to affine equivalence.
We now define S1,w2,w3 , the main classification result of the paper:

Definition 1.3 The four types of tetrahedron which will appear in S1,w2,w3 are

1. conv({0} × t, (1, 0, 0)) where t ∈ Sw2,w3 ,
2. conv((0, 0, 0), (0, w2, z1), (1, 0, 0), (1, 0, w3)) where 0 ≤ z1 ≤ w2

2 ,
3. conv((0, 0, 0), (0, w2, z1), (1, 0, w3), (1, y1, 0)) where 0 < y1 ≤ w2 and w3 −

w2 ≤ z1 ≤ w3 and
4. conv((0, 0, 0), (0, w2, w3), (1, 0, w3), (1, y1, z1)) where 0 < z1 < y1 < w2.

For examples of these see Fig. 1.
If w3 > w2 > 1 let S1,w2,w3 be the set containing all tetrahedra of type 1–4.
If w3 = w2 > 1 then S1,w2,w2 is the set of all type 1 and 2 tetrahedra as well as

type 3 tetrahedra satisfying y1 ≤ z1 and type 4 tetrahedra satisfying z1 ≤ w2 − y1.
If w3 > w2 = 1 then

S1,1,w3 :={ conv((0, 0, 0), (0, 1, 0), (0, 0, w3), (1, 0, 0)),

conv((0, 0, 0), (0, 1, w3 − 1), (1, 0, w3), (1, 1, 0)),

conv((0, 0, 0), (0, 1, w3), (1, 0, w3), (1, 1, 0))}.

If w3 = w2 = 1 then

S1,1,1:={ conv((0, 0, 0), (0, 1, 0), (0, 0, 1), (1, 0, 0)),
conv((0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0))}.

These last two cases have elements of type 1 and 3.

We can now state the main theorem of this paper.

Theorem 1.4 There is a bijection from S1,w2,w3 to T1,w2,w3 given by the map taking a
tetrahedron to its affine equivalence class. In particular,

• when w3 > w2 > 1 the cardinality of T1,w2,w3 is

∗ 2w2
2 + 4 if w2 and w3 even,

∗ 2w2
2 + 3 if w2 even and w3 odd,

∗ 2w2
2 + 2 if w2 odd

• when w2 > 1 the cardinality of T1,w2,w2 is

∗ w2
2 + w2 + 2 if w2 even,

∗ w2
2 + w2 + 1 if w2 odd

• when w3 > 1 the cardinality of T1,1,w3 is 3
• and the cardinality of T1,1,1 is 2.
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(0,0,0)

(0,6,3)

(0,2,7)

(1,0,0)

(a) Type 1

(0,0,0)

(0,6,3)

(1,0,7)

(1,0,0)

(b) Type 2

(0,0,0)

(0,6,5)

(1,0,7)

(1,3,0)

(c) Type 3

(0,0,0)

(0,6,7)

(1,0,7)

(1,4,2)

(d) Type 4

Fig. 1 Examples of tetrahedra of type 1–4 when w2 = 6 and w3 = 7. Black vertices are fixed for a given
type while white vertices are variable

Table 1 The number of lattice tetrahedra with multi-width (1, w2, w3) up to affine equivalence for small
w2 and w3

w3

w2 1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 3 3 3 3 3 3 3 3 3 3

2 0 8 11 12 11 12 11 12 11 12 11 12

3 0 0 13 20 20 20 20 20 20 20 20 20

4 0 0 0 22 35 36 35 36 35 36 35 36

5 0 0 0 0 31 52 52 52 52 52 52 52

6 0 0 0 0 0 44 75 76 75 76 75 76

Table 1 gives the cardinality of T1,w2,w3 when w2 ≤ 6 and w3 ≤ 12 described by
Theorem 1.4. The idea of the proof is to first show that a tetrahedron with multi-width
(1, w2, w3) is equivalent to a subset of [0, 1]×[0, w2]×[0, w3]. We then successively
classify the possible x-, y- and z-coordinates of the vertices of the tetrahedra. At each
step we remove cases which have too small a width in some direction or are equivalent
to other cases. Two distinct vertices of a tetrahedron may have the same x- and y-
coordinates so we need to consider multi-sets of lattice points. In an abuse of notation
we will write {v1, . . . , vn} for the n-point multi-set containing lattice points vi ∈ Z

d
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Table 2 The number of lattice tetrahedra with multi-width (2, w2, w3) up to affine equivalence for small
w2 and w3

w3

w2 2 3 4 5 6 7 8 9 10 11 12

2 17 45 47 45 47 45 47 45 47 45 47

3 0 87 178 175 178 175 178 175 178 175 178

4 0 0 161 320 325 320 325 320 325 320 325

5 0 0 0 244 493 490 493 490 493 490 493

6 0 0 0 0 358 716 721 716 721 716 721

7 0 0 0 0 0 482 970 967 970 967 970

8 0 0 0 0 0 0 636 1274 1279 1274 1279

9 0 0 0 0 0 0 0 801 1609 1606 1609

10 0 0 0 0 0 0 0 0 995 1994 1999

even when the vi are not distinct. We extend the notion of widths to these sets by
saying the width of a set is the width of its convex hull.

We can completely classify the four-point sets in Z with width w1. These can
represent the possible x-coordinates of all four-point sets in Z

2 with multi-width
(w1, w2). The second width gives bounds on their possible y-coordinates and we can
completely classify the four-point sets in the planewithmulti-width (1, w2). Similarly,
these represent the possible first two coordinates of the vertices of tetrahedra of multi-
width (1, w2, w3). By considering the possible z-coordinates we can assign to each
point we obtain the classification above.

When w1 > 1 the number of cases which needs to be checked for this proof style
increases dramatically. However, the method can be used to create an algorithm which
classifies the tetrahedra of a given multi-width. In this way we begin classifying the
width 2 case for small multi-width. The number of tetrahedra classified can be found
in Table 2. We take this classification only far enough to obtain and test Conjecture 5.3
on the number of multi-width (2, w2, w3) tetrahedra. The extent to which we can
extend the two-dimensional results to the three-dimensional case remains open, but
the similarities in the results we have found so far seem hopeful.

In Sect. 2 we formally define themulti-width.We prove some facts about a polytope
of given multi-width. In particular a 3-dimensional lattice polytope with multi-width
(w1, w2, w3) is equivalent to a subset of [0, w1] × [0, w2] × [0, w] where w is the
smallest out ofw1+w3−1 andmax{w1+w2, w3}. In Sect. 3we classify the four-point
sets in Z with multi-width w1 and the four-point sets in Z2 with multi-width (w1, w2)

which have x-coordinates {0, 0, 0, w1} or {0, 0, w1, w1}. A corollary of this is the
classification of multi-width (1, w2) four-point sets. In Sect. 4 we prove Theorem 1.4.
Propositions 4.2, 4.3 and 4.5 show that the map taking a lattice tetrahedron to its
equivalence class is a well-defined bijection from S1,w2,w3 to T1,w2,w3 . In Sect. 5 we
describe the computational extension of this classification.We classify themulti-width
(w1, w2) four-point sets in the plane and the multi-width (2, w2, w3) tetrahedra for
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small w1, w2 and w3. Based on these classifications we make conjectures about the
functions counting such sets and tetrahedra in general.

2 Width and Parallelepipeds

Let N ∼= Z
d be a lattice, N∗:=Hom(N ,Z) ∼= Z

d its dual lattice and NR:=R⊗Z N ∼=
R
d the real vector space containing N . For two tuples of integers w = (w1, . . . , wd)

and w′ = (w′
1, . . . , w

′
d) we say that w <lex w′ when there is some 1 ≤ i ≤ d such

that wi < w′
i and w j = w′

j for all j < i . This defines the lexicographic order on Zd .

Definition 2.1 Let P be a lattice polytope and u ∈ N∗ a dual vector. We define the
width of P with respect to u to be

widthu(P):=max
x∈P

{u · x} − min
x∈P

{u · x}.

Since the widths are non-negative it is possible to define

mwidth(P):= min
u1,...,ud∈N∗(widthu1(P), . . . ,widthud (P))

where the minimum is taken with respect to lexicographic order and u1, . . . , ud are
required to be linearly independent. We call this tuple the multi-width of P and call
widthui (P) the i-th width of P written widthi (P).

We now define a polytope WP :=(P − P)∗ which is the dual of the Minkowski sum
of P and−P . Notice thatWP is a rational polytope but need not be a lattice polytope.
This polytope encodes the widths of P in the following sense.

Lemma 2.2 For a dual lattice point u, widthu(P) ≤ w if and only if u ∈ wWP .

Proof By definition, the dual polytope WP is the set of rational points u such that
u · x ≤ 1 for all x ∈ P − P . For a fixed lattice point u, widthu(P) ≤ w if and only if
u · (x1 − x2) ≤ w for all pairs of points x1 and x2 in P . This is equivalent to saying
that 1

w
u · x ≤ 1 for all points x of P − P , or in other words u ∈ wWP . 
�

Note that this is equivalent to saying that the i th width of P is the i th successive
minimum of WP . For a definition of the successive minima of a polytope see [6, p.
581]. We use Lemma 2.2 to prove the following result.

Proposition 2.3 Let d ≥ 2 and P ⊂ NR be a lattice polytope. If P has widths w1
and w2 with respect to two linearly independent, primitive dual vectors, then P is
equivalent to a subset of [0, w1] × [0, w2] × R

d−2.

Proof Relabeling if necessary we may assume w1 ≤ w2. Pick linearly independent,
primitive dual vectors u1 and u2 which realise the stated widths of P . We know that
u1, u2 ∈ w2WP . As real vectors, u1 and u2 generate a two-dimensional vector space
containing a sublattice of N∗. The triangle conv(0, u1, u2) ⊆ w2WP contains a lattice
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point u′
2 such that {u1, u′

2} is a basis for this sublattice. Since u′
2 ∈ w2WP we know

that widthu′
2
(P) ≤ w2. After a change of basis, we may assume that u1 and u′

2 are the
first two standard basis vectors. This change of basis and a translation are sufficient to
map P to a subset of [0, w1] × [0, w2] × R

d−2. 
�

Notice that this is an artefact of the first two dimensions since it relies on Pick’s
theorem to assume that all empty lattice triangles are equivalent. In dimensions 3 and
higher we may no longer assume that all empty simplices are equivalent.

Proposition 2.4 Let Q be a lattice polytopewithwidthsw1,w2 andw3 in three linearly
independent directions. Assume that 0 < w1 ≤ w2 ≤ w3 then Q is equivalent to a
subset of [0, w1]×[0, w2]×[0, w1+w3−1]. Furthermore, if (w1, w2, w3) is themulti-
width of Q then Q is equivalent to a subset of [0, w1]×[0, w2]×[0,max{w1+w2, w3}].

Proof By Proposition 2.3 we may assume that Q is a subset of the parallelepiped

P:={v ∈ R
3 : (1, 0, 0) · v ∈ [0, w1], (0, 1, 0) · v ∈ [0, w2], u · v ∈ [a, a + w3]}

for some integera and somedual vectoru linearly independent to (1, 0, 0) and (0, 1, 0).
Say u = (ux , uy, uz) then uz 
= 0. In fact we may assume uz > 0, otherwise replace
u with −u and adjust a so this does not change P . Therefore, we may pick integers
kx and ky such that 0 ≤ kiuz − ui < uz . Now let ϕ be the shear described by

(x, y, z) �→ (x, y, kx x + ky y + z).

By inspecting the z-coordinates of the vertices of ϕ(P) we can show that

width(0,0,1)(ϕ(Q)) ≤w1(kxuz − ux ) + w2(kyuz − uy) + w3

uz

≤w1

(
1 − 1

uz

)
+ w2

(
1 − 1

uz

)
+ w3

1

uz
.

Since w2 ≤ w3 this is less that w1 + w3. After a translation this shows that Q is
equivalent to a subset of [0, w1] × [0, w2] × [0, w1 + w3 − 1]. This uses the fact that
Q is a lattice polytope so has integral widths.

Now suppose the multi-width of Q is (w1, w2, w3) then we show that Q is equiva-
lent to a subset of [0, w1]×[0, w2]×[0,max{w1+w2, w3}]. In the above inequalities
if uz = 1 thenwidth(0,0,1)(ϕ(Q)) ≤ w3 sowe are done. If uz ≥ 2 consider the fact that
width(0,0,1)(ϕ(Q)) ≤ w1+w2+w3−w1−w2

uz
. Ifw3 > w1+w2 thenw1+w2+w3−w1−w2

uz
is at most w1+w2+w3

2 which is less thanw3. Ifw3 ≤ w1+w2 thenw1+w2+ w3−w2−w1
uz

is at most w1 + w2. Since the third width of ϕ(Q) is w3 and its first two widths are
realised by (1, 0, 0) and (0, 1, 0) it cannot have width less that w3 with respect to
(0, 0, 1). This eliminates the case uz ≥ 2 and w3 > w1 + w2 and so, after a transla-
tion, ϕ(Q) is a subset of the desired box. 
�
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Fig. 2 All 4-point sets in Z
2 with multi-width (1, 4) up to affine equivalence and their convex hulls. Two

points with the same coordinates are denoted by a circled dot. See [4] for the full list of tetrahedra

This shows that any 3-dimensional lattice polytope with multi-width (w1, w2, w3) is
equivalent to a subset of [0, w1] × [0, w2] × [0, w] where

w:=min{w1 + w3 − 1,max{w1 + w2, w3}}.

This bound may not be sharp in general.

3 Four-Point Sets in the Plane

Themain aimof this section is to classify the four-point sets in the planewith firstwidth
1. The four-point sets with multi-width (1, 1) are just {(0, 0), (1, 0), (0, 1), (1, 1)}
and {(0, 0), (0, 0), (1, 0), (0, 1)}. When w2 > 1 the four-point sets with multi-width
(1, w2) are {(0, 0), (0, w2), (0, y0), (1, 0)} where y0 ∈ [0, w2

2 ] and {(0, 0), (0, w2),

(1, 0), (1, y1)}where y1 ∈ [0, w2] (for example, seeFig. 2). This canbeprovendirectly
but here we will prove a more general result. We will classify all four-point sets S in
the plane with multi-width (w1, w2) where w2 > w1 and if widthu1(S) = w1 then all
points of S are contained in the two hyperplanes with normal vector u1 bounding S.
This is sufficient to classify the width 1 four-point sets in the plane while being the
most general classification which is practical to obtain with this method. We do this
because it may be useful towards a future extension of the tetrahedron classification.

First we classify all four-point sets in Z of width w1.

Proposition 3.1 There is a bijection from the collection of lattice points in the triangle
Qw1 := conv((0, 0), (0, w1), (

w1
2 , w1

2 )) to the set of the equivalence classes of the four-
point sets in Z with width w1. It is given by the map taking (x1, x2) to {0, x1, x2, w1}.
In particular, the number of such sets up to equivalence is

⎧⎨
⎩

w2
1
4 + w1 + 1 if w1 is even

w2
1
4 + w1 + 3

4 if w1 is odd.

Proof The map (x1, x2) �→ {0, x1, x2, w1} is a well-defined map taking a lattice point
of Qw1 to a four-point set of width w1. For surjectivity notice that the convex hull
of any four-point set of width w1 is equivalent to conv(0, w1). Therefore, we may
assume that 0 and w1 are points in such a set and that x1, x2 ∈ [0, w1] are the two
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remaining points. By relabeling of the xi we may assume that x1 ≤ x2. A reflection
takes {0, x1, x2, w1} to {0, w1−x2, w1−x1, w1} so wemay assume that x1 ≤ w1−x2.
This shows that (x1, x2) ∈ Qw1 .

For injectivity let (x1, x2) and (x ′
1, x

′
2) be lattice points in Qw1 such that

{0, x1, x2, w1} is equivalent to {0, x ′
1, x

′
2, w1}. The only non-trivial affine automor-

phism of a line segment in Z is the reflection about its midpoint so either (x1, x2) =
(x ′

1, x
′
2) or (x1, x2) = (w1 − x ′

2, w1 − x ′
1). In the first case we are done. In the second

case notice that x1 = w1 − x ′
2 ≥ x ′

1 and x ′
1 = w1 − x2 ≥ x1 so x1 = x ′

1. Similarly
x2 = x ′

2 which proves the result.
The counting can be seen by counting points in vertical lines of lattice points in

Qw1 . Thus there are (w1 + 1) + (w1 − 1) + · · · + 1 points in total if w1 is even and
(w1 + 1) + (w1 − 1) + · · · + 2 if w1 is odd. These simplify to the given formulas.


�
We now move on to four-point sets in Z2 with multi-width (w1, w2). If a multi-width
(w1, . . . , wd) polytope is a subset of a w1 × · · · × wd box it must have a vertex
in each facet of this box otherwise it would have smaller multi-width. Therefore, a
multi-width (w1, w2) four-point set which is a subset of [0, w1] × [0, w2] has x-
coordinates equivalent to one of the above classified sets. We restrict to the case where
the corresponding point of Qw1 is either (0, 0) or (0, w1) since this is sufficient to
classify all multi-width (1, w2) four-point sets in Z

2. We additionally assume that
w1 < w2, since the four-point sets with multi-width (1, 1) are easy to identify and
for w1 > 1 classifying the multi-width (w1, w1) four-point sets adds unnecessary
complexity to the proofs.

Proposition 3.2 Let S be a four-point set in the plane with multi-width (w1, w2)where
0 < w1 < w2. There is a dual vector u1 such that widthu1(S) = w1 and u1 · S is
equivalent to {0, 0, 0, w1} if and only if S is equivalent to exactly one of the following
four-point sets:

• {(0, 0), (0, w2), (0, y0), (w1, y1)} where 0 ≤ y0 < w2
2 and 0 ≤ y1 < w1,

• {(0, 0), (0, w2), (0,
w2
2 ), (w1, y1)} where 0 ≤ y1 ≤ (w2 − y1 mod w1) and w2

is even.

Proof First we show that the listed four-point sets have multi-width (w1, w2). It is
enough to notice that in either case if u = (ux , uy) is a dual vector with uy 
= 0, then

widthu(S) ≥ |u · (0, w2) − u · (0, 0)| = |uyw2| ≥ w2.

The image of these sets under u1 = (1, 0) is {0, 0, 0, w1}which proves the implication
in one direction.

Next we show that all four-point sets S with multi-width (w1, w2) and a dual vector
u1 such that u1 · S is equivalent to {0, 0, 0, w1} are equivalent to one of the two given
cases. Let S be such a set, then by Proposition 2.3 we may assume it is a subset of
[0, w1]×[0, w2]. Sincew1 < w2 the direction in which S has widthw1 is unique up to
sign so u1 = ±(1, 0). Under u1 points of S are mapped to (possibly−1 times) their x-
coordinates so the only way for these to map to something equivalent to {0, 0, 0, w1} is
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to have three points of S on one vertical edge of the rectangle and the fourth point on the
other vertical edge. Therefore, possibly after the reflection (x, y) �→ (w1 − x, y), we
may assume that S contains three points with x-coordinate 0 and onewith x-coordinate
w1. Also, Smust contain (0, 0) and (0, w2) otherwise, by a shear (x, y) �→ (x, y−kx)
for some integer k, S is equivalent a subset of a smaller rectangle which contradicts
the widths. Therefore, we assume that S = {(0, 0), (0, w2), (0, y0), (w1, y1)}.

By the reflection (x, y) �→ (x, w2 − y) we may assume that 0 ≤ y0 ≤ w2
2 . By a

shear (x, y) �→ (x, y − kx) for some integer k we may assume that 0 ≤ y1 < w1.
If y0 = w2

2 and y1 > (w2 − y1 mod w1) then we can make the y-coordinate of the
vertex on x = w1 smaller by a reflection in the line y = w2

2 followed by a shear. In
more precise terms, pick k such that w2 − y1 − kx = (w2 − y1 mod w1) then the
reflection and shear (x, y) �→ (x, w2 − y − kx) takes S to one of the given four-point
sets. This proves that S is equivalent to a set of one of the given forms.

Finally we show that the four-points sets in the two cases are unique. Suppose

S = {(0, 0), (0, w2), (0, y0), (w1, y1)} ∼ {(0, 0), (0, w2), (0, y
′
0), (w1, y

′
1)} = S′

where S and S′ are each of either of the forms from the proposition. We will show
that S and S′ are equal. We can think of these sets as their convex hulls, which are
triangles, with a marked point. Since w2 > w1, considering the lattice length of line
segments (i.e. the number of lattice points they contain minus 1) in [0, w1] × [0, w2],
we see that the edge from (0, 0) to (0, w2) is the only edge of each triangle with lattice
length w2. Therefore, an affine map taking S to S′ must map this edge back to itself.
This reduces us to shears (x, y) �→ (x, y − kx) and the reflection followed by a shear
(x, y) �→ (w2 − y − kx) where k is an integer. The images of S under such maps are

{(0, 0), (0, w2), (0, y0), (w1, y1 − kw1)}, and

{(0, 0), (0, w2), (0, w2 − y0), (w1, w2 − y1 − kw1)}.

Since 0 ≤ y0, y′
0 ≤ w2

2 this shows that y0 = y′
0. The y-coordinate of the fourth points

of these images must equal y′
1 so, since 0 ≤ y′

1 < w1, we must always choose k so
that this y-coordinate is reduced modulo w1. Since 0 ≤ y1 < w1 if the shear takes S
to S′ this means that y1 = y′

1 and S = S′. If instead the reflection followed by a shear
takes S to S′ then y′

0 = w2 − y0 and since y0 = y′
0 we have y0 = w2

2 . This means that
y1 ≤ (w2 − y1 mod w1) = y′

1 and by the symmetric argument exchanging S and S′
we have y′

1 ≤ (w2 − y′
1 mod w1) = y1 so y1 = y′

1 and S = S′. 
�
Proposition 3.3 Let S be a four-point set in the plane with multi-width (w1, w2)where
0 < w1 < w2. There is a dual vector u1 such that widthu1(S) = w1 and u1 · S is
equivalent to {0, 0, w1, w1} if and only if S is equivalent to exactly one of the following
four-point sets:

• {(0, 0), (0, w2), (w1, y1), (w1, y2)} where 0 ≤ y1 ≤ y2 ≤ w2 and y1 ≤ (w2 − y2
mod w1),

• {(0, 0), (0, y0), (w1, y1), (w1, w2)} wheremax{w2− y1, w2− (w1− y1)} ≤ y0 <

w2.
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Proof First we show that the listed four-point sets have multi-width (w1, w2). The
first case follows by the same proof as that in Proposition 3.2 since it still contains
(0, 0) and (0, w2). In the second case, it suffices to show that for any dual vector
u = (ux , uy) with uy > 0, widthu(S) ≥ w2. The image of S under u is

u · S = {0, uy y0, uxw1 + uy y1, uxw1 + uyw2}.

Suppose for contradiction that the width of S with respect to u is less than w2. This
means that the difference of any two elements in u · S must be less than w2 so then
uxw1 + uyw2 < w2 which implies ux < 0. Also, uy y0 − uxw1 − uy y1 < w2 which
we rearrange to show

ux > (uy y0 − w2 − uy y1)/w1. (1)

By the conditions on y0 and y1 we have y0− y1 ≥ w2−w1 so uy(y0− y1) ≥ w2−w1.
Combining this with (1) shows that ux > −1 which is the desired contradiction.
Under (1, 0) these sets are taken to {0, 0, w1, w1} which shows the implication in one
direction.

Let S be a four-point set with multi-width (w1, w2) with a dual vector u1 such
that u1 · S is equivalent to {0, 0, w1, w1}. We will show that S is equivalent to one
of the sets listed in the proposition. By Proposition 2.3 we may assume this is a
subset of [0, w1] × [0, w2]. Since w1 < w2 the direction in which the first width is
realised is unique up to sign so u1 = ±(1, 0). This shows that S contains two points
with x-coordinate 0 and two with x-coordinate w1. Also, S must contain points with
y-coordinates 0 and w2 or it would have smaller multi-width. This means (0, 0) or
(w1, 0) is in S and (0, w2) or (w1, w2) is in S. Possibly after applying the reflection
(x, y) �→ (w1 − x, y) we may assume that (0, 0) ∈ S. We may assume one of the
following two possibilities:

A. S = {(0, 0), (0, w2), (w1, y1), (w1, y2)} where 0 ≤ y1 ≤ y2 ≤ w2,
B. S = {(0, 0), (0, y0), (w1, y1), (w1, w2)} where 0 ≤ y0 < w2 and 0 < y1 ≤ w2

where the additional inequalities come from relabeling the yi and removing overlap
between the cases.

In Appendix A we aim to minimise the y-coordinates of vertices on the line x =
w1 and can do so either by a shear about the y-axis or by a reflection in the line
y = w2

2 followed by such a shear. We may assume by a shear that 0 ≤ y1 < w1.
Consider the map given by (x, y) �→ (x, w2 − y − kx) for the integer k such that
w2 − y2 − kw1 = (w2 − y2 mod w1). This map is self inverse and takes S to
{(0, 0), (0, w2), (w1, y′

1), (w1, y′
2)} which is also of the form A and y′

1 < w1. Either
y1 ≤ (w2 − y2 mod w1) = y′

1 or y
′
1 ≤ (w2 − y′

2 mod w1) = y1. In either case S is
equivalent to one of the sets listed in the proposition.

In Appendix B we can get a set of the same form by applying the map (x, y) �→
(w1 − x, w2 − y) which replaces y0 and y1 with w2 − y1 and w2 − y0 respectively.
Therefore, we may assume that y0 ≥ w2 − y1. Now consider the image (−1, 1) · S =
{0, y0, y1 − w1, w2 − w1}. To prevent the width of S with respect to (−1, 1) being
less that w2 the difference between some pair of elements of (−1, 1) · S must be at
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least w2. However, checking these differences case by case only y0 − (w2 − w1)

and y0 − (y1 − w1) can be at least w2. If y0 − (w2 − w1) ≥ w2 then definitely
y0 − (y1 − w1) ≥ w2 so we may assume the latter holds. Therefore, S is equivalent
to one of the sets listed in the proposition.

Now we show that the sets listed in the proposition are distinct up to equivalence.
The two cases are distinct since the convex hull of the first case has an edge of lattice
length w2 and the second does not. Let S and S′ be of the first form and suppose

S = {(0, 0), (0, w2), (w1, y1), (w1, y2)} ∼ {(0, 0), (0, w2), (w1, y
′
1), (w1, y

′
2)} = S′.

Either these are both equal to the vertices of [0, w1]×[0, w2] or their convex hulls each
have exactly one edge of lattice length w2. If they are equal we are done, otherwise
the map taking S to S′ must preserve the line segment from (0, 0) to (0, w2). This
reduces us to shears (x, y) �→ (x, y − kx) and the reflection followed by a shear
(x, y) �→ (x, w2 − y − kx) for integers k. Since 0 ≤ y1, y′

1 < w1 if a shear maps S to
S′ then S = S′. If the reflection followed by a shear maps S to S′ then y′

1 = (w2 − y2
mod w1) ≥ y1 and symmetrically y1 ≥ y′

1 so y1 = y′
1. Since the volume of the convex

hulls of S and S′ must be equal this shows that y2 = y′
2 and S = S′.

Now let S and S′ be of the second form listed in the proposition and suppose

S = {(0, 0), (0, y0), (w1, y1), (w1, w2)} ∼ {(0, 0), (0, y′
0), (w1, y

′
1), (w1, w2)} = S′.

By the multi-width of these we know that ±(1, 0) are the only dual vectors under
which they have width w1. Therefore, a map taking the convex hull of S to the convex
hull of S′ must take edges with normal (1, 0) to edges with normal (1, 0). Thus it
suffices to consider the lengths of the vertical edges of the convex hulls of S and S′.
By the conditions on S and S′ their left-most vertical edge is at least as long as their
right most vertical edge so y0 = y′

0, y1 = y′
1 and S = S′. 
�

We use these propositions to classify the four-point sets with multi-width (1, w2).

Corollary 3.4 Let S be a four-point set in Z
2 with multi-width (1, w2) then if w2 > 1

either S is equivalent to

• {(0, 0), (0, w2), (0, y0), (1, 0)} with y0 ∈ [0, w2
2 ] or

• {(0, 0), (0, w2), (1, 0), (1, y1)} with y1 ∈ [0, w2].
Counting the possible integers y0 and y1 shows that these are counted by

{
3w2
2 + 2 if w2 even,

3w2
2 + 3

2 if w2 odd.

If instead w2 = 1 then S is equivalent to

• {(0, 0), (0, 1), (1, 0), (1, 1)} or
• {(0, 0), (0, 0), (1, 0), (0, 1)}.
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4 Proof of Theorem 1.4

In this section we prove Theorem 1.4, that is we show that themap taking a tetrahedron
to its affine equivalence class defines a bijection from the set of tetrahedra S1,w2,w3 to
the set T1,w2,w3 of tetrahedra of multi-width (1, w2, w3) up to affine equivalence.

We begin with a preparatory lemma towards surjectivity.

Lemma 4.1 Let T be a lattice tetrahedron with multi-width (1, w2, w3). Then there
exists a tetrahedron T ′ of type 1, 2, 3 or 4, as in Definition 1.3, which is equivalent to
T .

Proof ByProposition 2.4wemay assume that T is a subset of [0, 1]×[0, w2]×[0, w3].
The vertices of T can only be in the planes x = 0 and x = 1 so, possibly after a
reflection, we may assume the x-coordinates of the vertices of T are either {0, 0, 0, 1}
or {0, 0, 1, 1}. We will show that

• If the x-coordinates of T are {0, 0, 0, 1} then T is equivalent to a type 1 tetrahedron,
• If the x-coordinates of T are {0, 0, 1, 1} then T is equivalent to a type 2, 3 or 4
tetrahedron.

If the x-coordinates are {0, 0, 0, 1} then T is the convex hull of a triangle embedded
in the plane x = 0 and a point with x-coordinate 1. For integers k1 and k2, the shears
(x, y, z) �→ (x, y+k1x, z+k2x), can take the vertex with x-coordinate 1 to any lattice
point with x-coordinate 1 without changing the triangle in the plane x = 0. Therefore,
we may assume that, under the projection onto the last two coordinates, T is mapped
to the triangle. The triangle is a subset of a w2 × w3 rectangle so its multi-width is
at most (w2, w3). If it had multi-width lexicographically smaller than (w2, w3) there
would be dual vectors u′

2 and u′
3 linearly independent from u1 = (1, 0, 0) such that

(1,widthu′
2
(T ),widthu′

3
(T )) <lex (1, w2, w3) which is a contradiction. Therefore,

this triangle has multi-width (w2, w3). By [3, Thm. 1.1] we can assume the triangle
is in Sw2,w3 . Then by another shear of the same form we can move the fourth vertex
to (1, 0, 0) which proves that T is equivalent to a tetrahedron of the form 1.

If the x-coordinates are {0, 0, 1, 1} we need to consider the four-point set we get by
projecting the vertices of T onto the first two coordinates. This must have multi-width
(1, w2) otherwise T has smaller multi-width. By Corollary 3.4 the set is equivalent
to one of the sets {(0, 0), (0, w2), (1, 0), (1, y1)} for an integer y1 ∈ [0, w2] and by
an affine map on T we may assume they are equal. It remains to determine the z-
coordinates of the vertices of T . These are integers in [0, w3]. At least one of them
must equal 0 and one w3 otherwise T has width less than w3 with respect to (0, 0, 1)
contradicting the multi-width.

There are 12 ways to assign 0 and w3 to two of the vertices. See Fig. 3 for the full
list. By a reflection in the plane z = w3

2 , as depicted in Fig. 4, we may swap which
vertices are assigned 0 and w3. In this way we see that (g)-(l) are equivalent to (a)-(f)
so we disregard the last 6 cases.

We are left with cases (a)-(f). By a reflection in the plane y = w2
2 followed by

the shear (x, y, z) �→ (x, y − (w2 − y1)x, z), as depicted in Fig. 4, we can swap the
z-coordinates assigned to the lower two vertices with those assigned to the upper two
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Fig. 3 Image conv((0, 0), (0, w2), (1, 0), (1, y1)) of a tetrahedron under projection onto the first two coor-
dinates. Labels denote the z-coordinates at each vertex. Numbers z1 and z2 are integers in the range [0, w3]
and these twelve cases include all affine equivalence classes of tetrahedra with multi-width (1, w2, w3) and
x-coordinates {0, 0, 1, 1} in [0, 1] × [0, w2] × [0, w3]

z1

z2

z3

z4

w3 − z1

w3 − z2

w3 − z3

w3 − z4

z2

z1

z4

z3

Fig. 4 Image of T = conv((0, 0, z1), (0, w2, z2), (1, 0, z3), (1, y1, z4)) and two equivalent tetrahedra
under projection onto the first two coordinates. Labels denote the z-coordinates at each vertex. The second
tetrahedron is obtained from the first by a reflection in the plane z = w3

2 . The third is obtained from the
first by a reflection in the plane y = w2

2 followed by the shear (x, y, z) �→ (x, y − (w2 − y1)x, z)

vertices. In this way we see that (d) and (e) are equivalent to (c) and (b) respectively
so we may disregard (d) and (e) also.

We are left with cases (a), (b), (c) and (f). In case (a), after a shear about the plane
x = 0, we may assume that z1 = w3 or z2 = w3. Therefore, (a) is included in case
(b) or (c) and we may disregard (a). Similarly, in case (f), after a shear about the plane
x = 1 we may assume that z1 = 0 or z2 = 0. Therefore, (f) is included in case (c) or
case (e) and thus (b). We disregard (f) as a result.

We are left with only cases (b) and (c). We will show that we can also disregard
case (c) by showing that its width is incorrect unless it is also equivalent to a type (b)
tetrahedron. In case (c), if y1 = 0, z1 = 0 or z2 = w3 then these tetrahedra would be
included in case (b) (or (e) and thus (b)) so we assume these three equalities are false.

The images of the vertices of (c) under (−z2, 0, 1), (0,−1, 1) and (w3− y1, 1,−1)
are

{0, z1, z2, w3 − z2}, {0, z1 − w2, z2, w3 − y1} and {0, w2 − z1, w3 − y1 − z2, 0}
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respectively. If any of these is a subset of [0, w3) then T would have width less
than w3 in some direction linearly independent to (1, 0, 0) and (0, 1, 0) which is a
contradiction. To prevent this all three of the following points must be true.

• z1 = w3 or z2 = w3 or z2 = 0,
• z1 < w2 or z2 = w3 or y1 = 0,
• (w2 = w3 and z1 = 0) or z1 > w2 or y1 = z2 = 0 or y1 + z2 > w3.

Eliminating options we have assumed are not true we see that it is impossible to satisfy
all of these conditions at once. Therefore, we may discard (c) entirely and assume that
when the x-coordinates of our tetrahedron are {0, 0, 1, 1} then it is equivalent to

T = conv((0, 0, 0), (0, w2, z1), (1, 0, w3), (1, y1, z2))

for some integers z1 and z2 in [0, w3]. We will now refine this general tetrahedron into
a type 2, 3 or 4 tetrahedron considering the cases y1 = 0 and y1 > 0 separately.

If y1 = 0 then the image of the vertices of T under (−z2, 0, 1) and (−z2,−1, 1)
are

{0, z1, w3 − z2, 0},
and {0, z1 − w2, w3 − z2, 0},

respectively. Neither of these can be a subset of [0, w3) as this would contradict the
widths of T . Therefore, z2 = 0 since otherwise we would need both z1 = w3 and
z1 < w2 which is false.By a shear (x, y, z) �→ (x, y, z−ky) andpossibly the reflection
in the plane y = w2

2 we may assume z1 ≤ (−z1 mod w2) and so 0 ≤ z1 ≤ w2
2 . This

shows that T is of the form 2.
If instead y1 > 0 consider the images of the vertices of T under (−z2, 0, 1),

(−1, 1, 1) and (−1,−1, 1) which are

{0, z1, w3 − z2, 0}, {0, w2 + z1, w3 − 1, y1 + z2 − 1},
and {0, z1 − w2, w3 − 1, z2 − y1 − 1}

respectively. Again, none of these can be a subset of [0, w3) so all three of the following
points must be true:

• z1 = w3 or z2 = 0,
• w2 + z1 ≥ w3 or y1 + z2 − 1 ≥ w3,
• z1 < w2 or z2 < y1 + 1.

To satisfy these wemust have either z1 = w3 and z2 ≤ y1 or z2 = 0 and z1 ≥ w3−w2.
The tetrahedron when z1 = w3 and z2 = y1 is equivalent but not equal to that when
z2 = 0 and z1 = w3 − w2 by the shear (x, y, z) �→ (x, y, z − y). Therefore, we may
also assume that z2 < y1 to avoid duplicates. This proves that T is of the form 3 or 4.


�
The following shows that the map taking a tetrahedron to its affine equivalence

class gives a surjective map from S1,w2,w3 to T1,w2,w3 (see Definitions 1.3 and 1.1).
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Proposition 4.2 Let T be a lattice tetrahedron with multi-width (1, w2, w3). Then
there exists some T ′ ∈ S1,w2,w3 which is equivalent to T .

Proof By Lemma 4.1 and the definition of S1,w2,w3 , if 1 < w2 < w3 then we are
done.

Now we consider the special cases. If w2 = w3 and T is a tetrahedron of the form
3 then the image of T under the map (x, y, z) �→ (1 − x, z1 − z + x(w2 − z1), y) is

conv((0, 0, 0), (0, w2, y1), (1, 0, w2), (1, z1, 0)).

If y1 > z1 this is also of the form 3 but with the roles of y1 and z1 swapped. Therefore,
to remove duplicates we may assume that y1 ≤ z1. If w2 = w3 and T is a tetrahedron
of the form 4 then the image of T under the map (x, y, z) �→ (x, w2 − z, w2 − y) is

conv((0, 0, 0), (0, w2, w2), (1, 0, w2), (1, w2 − z1, w2 − y1)).

This is also of the form 4 and the map is self inverse so unless T is equal to its image
we need to eliminate one of these tetrahedra to remove duplicates. Our T is equal to
its image only when z1 + y1 = w2 so we may assume that z1 ≤ w2 − y1.

When w2 = 1 substituting into tetrahedra 1–4 and simplifying reduces us to the
following cases:

• conv((0, 0, 0), (0, 0, w3), (0, 1, 0), (1, 0, 0)),
• conv((0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 0, w3)),
• conv((0, 0, 0), (0, 1, z1), (1, 0, w3), (1, 1, 0)) where z1 = w3 − 1 or z1 = w3.

Under (x, y, z) �→ (1 − x − y, y, z) the second of these maps to the first so we are
left with the three tetrahedra appearing in S1,1,w3 . Finally, when w3 = 1 two of these
are equivalent to the convex hull of the empty triangle embedded in the plane x = 0
and the point (1, 0, 0) so it reduces to the two cases in S1,1,1. 
�
The following proves that the map taking a tetrahedron to its affine equivalence class
gives a map from S1,w2,w3 to T1,w2,w3 (see Definitions 1.3 and 1.1).

Proposition 4.3 Let T ∈ S1,w2,w3 , then the multi-width of T is (1, w2, w3).

Proof By definition, the tetrahedra in S1,w2,w3 are always of one of the forms 1–4.
Therefore, it suffices to show that a tetrahedron satisfying one of these conditions has
multi-width (1, w2, w3) for any w3 ≥ w2 ≥ 1. Let T be in one of these forms. Lattice
polytopes have integral widths and only have width zero in some direction if their
dimension is less than that of the space they are in. Since width(1,0,0)(T ) = 1 and T
has non-zero volume its first width is 1. Furthermore, T has widthsw2 andw3 realised
by the dual vectors (0, 1, 0) and (0, 0, 1) respectively.

There are two ways in which the remaining two widths can fail. Either there is a
dual vector u linearly independent to (1, 0, 0) such that widthu(T ) < w2 or there is a
dual vector u linearly independent to {(1, 0, 0), (0, 1, 0)} such that widthu(T ) < w3.
To prove these do not occur it suffices to show that for all u = (ux , uy, 0)with uy 
= 0
widthu(T ) ≥ w2 and for all u = (ux , uy, uz) with uz 
= 0 widthu(T ) ≥ w3.
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Let π be the projection onto the first two coordinates then

width(ux ,uy ,0)(T ) = width(ux ,uy)(π(T )).

However, the four-point set which is the image of the vertices of T under π has multi-
width (1, w2) by Corollary 3.4. The first width of this set is realised by (1, 0) therefore,
for all u = (ux , uy, 0) with uy 
= 0, we have widthu(T ) = width(ux ,uy)(π(T )) ≥ w2.

Nowsuppose for contradiction there exists dual vectoru = (ux , uy, uz)withuz 
= 0
is such that widthu(T ) < w3. Without loss of generality we may assume that uz > 0.
Thenby the proof of Proposition 2.4 amapof the form (x, y, z) �→ (x, y, k1x+k2y+z)
takes T to a subset of a 1 × w2 × widthu(T ) box for some integers k1 and k2. The
image of T under this map is one of the following corresponding to the form of T .

1. conv({0} × ( 1 0
k2 1

)
t, (1, 0, k1)) where t ∈ Sw2,w3

2. conv((0, 0, 0), (0, w2, z1 + k2w2), (1, 0, k1), (1, 0, w3 + k1)) where 0 ≤ z1 ≤ w2
2

3. conv((0, 0, 0), (0, w2, z1 + k2w2), (1, 0, w3 + k1), (1, y1, k1 + k2y1)) where 0 <

y1 ≤ w2 and w3 − w2 ≤ z1 ≤ w3,
4. conv((0, 0, 0), (0, w2, w3+k2w2), (1, 0, w3+k1), (1, y1, z1+k1+k2y1))where

0 < y1 < w2 and 0 < z1 < y1.

We will show that it is impossible for any of these to have width less than w3 with
respect to (0, 0, 1).

1. Let π be the projection onto the last two coordinates then for a polytope P we
have

width(0,0,1)(P) = width(0,1)(π(P)).

This means that conv({0} × ( 1 0
k2 1

)
t, (1, 0, k1)) where t ∈ Sw2,w3 never has width

less than w3 with respect to (0, 0, 1) thanks to the widths of t .
2. The tetrahedron of the form 2 has width at least w3 with respect to (0, 0, 1) due

to the vertices (1, 0, k1) and (1, 0, w3 + k1).
3. In a tetrahedron of the form 3 if the width with respect to (0, 0, 1) was less than

w3 the difference between every pair of z-coordinates must be less than w3. In
particular we would need to have w3 + k1 − k1 − k2y1 < w3 and z1 + k2w2 < w3.
The first of these implies that k2 > 0 which combines with the second to show
that z1 + w2 < w3. However, z1 ≥ w3 − w2 which is a contradiction.

4. Similarly, in a tetrahedron of the form 4 we would need w3 + k2w2 < w3 and
w3 + k1 − z1 − k1 − k2y1 < w3. The first of these implies that k2 < 0 and the
second implies that k2 > −z1/y1 > −1 which is a contradiction. 
�
In Proposition 4.5 we will show that if any two tetrahedra in S1,w2,w3 are affine

equivalent then they are equal. To prove this we will need the following extra result
about the tetrahedra whose x-coordinates are {0, 0, 1, 1}.
Lemma 4.4 Let 1 < w2 ≤ w3 and let T be a tetrahedron in S1,w2,w3 whose x-
coordinates are {0, 0, 1, 1}. Suppose the projection of T onto the first two coordinates
is conv((0, 0), (0, w2), (1, 0), (1, y1)). Then, for any surjective lattice homomorphism
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π : Z3 → Z
2, if π(T ) is equivalent to conv((0, 0), (0, w2), (1, 0), (1, y′

1)) for some
integer y′

1 ∈ [0, w2] then y′
1 ≥ y1. In other words, y1 is minimal.

Proof For tetrahedra of the form 2 this is immediate since y1 = 0.
Let T be of the form 3 or 4. Let π : Z3 → Z

2 be a surjective lattice homomorphism
such that π(T ) is equivalent to conv((0, 0), (0, w2), (1, 0), (1, y′

1)) for an integer y
′
1 ∈

[0, w2]. Let P = (pi j ) be the 2 × 3 integral matrix defining π . By Proposition 2.3
there are dual vectors u1 and u2 ∈ (Z2)∗ which form a basis of (Z2)∗ andwhich realise
the first two widths of π(T ). This means that widthui (π(T )) = widthui◦π (T ) = wi

for i = 1 and 2. Since w2 > 1 the direction in which P has width 1 is unique so,
possibly after changing the sign of u1, we have u1P = (1, 0, 0). Let U be the matrix
with rows u1 and u2 then replace P with U P and change π accordingly. In this way
we can assume that the first row of P is (1, 0, 0). This does not alter our previous
assumptions about π since this operation is a unimodular map in Z

2.
Ifw2 < w3 a vector realising the second width of P must be of the form (ux , uy, 0)

so the final entry of u2P is 0. This allows us to assume p23 = 0. Now we have image

π(T ) = conv((0, 0), (0, p22w2), (1, p21), (1, p21 + p22y1)).

This has an edge of lattice length |p22w2| so p22 must be 0 or ±1. If p22 = 0 then
π(T ) is just a line segment, contradicting our assumptions on π . If p22 = ±1 then
y′
1 = |p22y1 + p21 − p21| = y1 so y′

1 ≥ y1 as desired.
It remains to consider the case w3 = w2 > 1. By replacing P with

( 1 0−p21 1
)
P we

may assume p21 = 0. This leaves us with the following two cases corresponding to 3
and 4

π(T ) = conv((0, 0), (0, p22w2 + p23z1), (1, p23w2), (1, p22y1) or

π(T ) = conv((0, 0), (0, p22w2 + p23w2), (1, p23w2), (1, p22y1 + p23z1)).

The dual vector (1, 0) is the unique dual vector realising the first width of both π(T )

and conv((0, 0), (0, w2), (1, 0), (1, y′
1)). These quadrilaterals each have (at most) two

facets with normal vector (1, 0) so these facets must be equivalent. This means that
one of the vertical edges of π(T ) must have length w2 and the other must have length
in [0, w2]. Therefore, to complete the proof it suffices to show that for each choice of
vertical edge to be length w2 the other vertical edge must have length at least y1.

First consider the quadrilateral associated to case 3. If |p22w2 + p23z1| = w2
then, after a possible change of sign of the second line of P , we may assume that
p23 = w2(1− p22)/z1. Then |p23w2 − p22y1| = |w2

2/z1 − p22(w2
2/z1 + y1)|. This is

the modulus of a linear function in p22 so to find the smallest values it takes we notice
that it is zero when p22 = w2

2/(w
2
2 + y1z1) ∈ [0, 1]. Since p22 is an integer the length

is smallest when either p22 = 0 or 1 which gives values w2
2/z1 and y1 respectively.

Both of these are at least y1 given the conditions on a tetrahedron of the form 3 when
w2 = w3.

On the other hand, if |p23w2 − p22y1| = w2 then as above we may assume that
p22 = w2(p23−1)/y1. Then |p22w2+ p23z1| = |−w2

2/y1+ p23(w2
2/y1+ z1)|which
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is zero when p23 = w2
2/(w

2
2 + z1y1) ∈ [0, 1]. Since p23 is an integer it is actually

smallest at either w2
2/z1 or z1 both of which are at least y1 given our assumptions.

Now for the quadrilateral associated to case 4. If |p22w2 + p23w2| = w2 then
as above we may assume that p22 + p23 = 1. Then |p23(w3 − z1) − p22y1| =
|p23(w2 − z1 + y1) − y1| which is zero when p23 = y1/(w2 − z1 + y1) ∈ [0, 1].
Since p23 is an integer it is actually smallest at either w2 − z1 or y1 both of which are
at least y1 given our assumptions.

On the other hand, if |p23(w2 − z1) − p22y1| = w2 then notice that |p22w2 +
p23w2| = |p22 + p23|w2. Since these are all integers this is at least y1 unless p23 =
−p22. However, then we would have w2 = |p23|(w2 − z1 + y1). We can’t let both
p22 and p23 be zero so then w2 ≥ w2 − z1 + y1 > w2 which is a contradiction. 
�

The following shows injectivity of the map taking a tetrahedron to its affine equiv-
alence class from S1,w2,w3 to T1,w2,w3 (see Definitions 1.3 and 1.1).

Proposition 4.5 Tetrahedra in S1,w2,w3 are distinct under affine unimodular maps.

Proof The two tetrahedra in S1,1,1 have normalised volumes 1 and 2. Since volume is
an affine invariant they must be distinct. If w3 > 1 the three tetrahedra in S1,1,w3 have
normalised volumes w3, 2w3 − 1 and 2w3 so must also be distinct.

In the remaining cases our goal is to show that if T and T ′ are equivalent tetrahedra
in S1,w2,w3 then either T = T ′ or this leads to a contradiction. We have w2 > 1 so
up to sign u1 = (1, 0, 0) is the unique vector such that each tetrahedron has width 1
with respect to u1. Let T and T ′ be equivalent tetrahedra in S1,w2,w3 then the image
of the vertices of T and T ′ under u1 must be equivalent. In other words, the set of
x-coordinates of two equivalent tetrahedra in S1,w2,w3 is also equivalent. Therefore,
tetrahedra of the form 1 are always distinct from the others. Furthermore, if T and T ′
are equivalent tetrahedra of the form 1 then they each have a unique facet with normal
u1, so these facets must be equivalent too. These facets were triangles in Sw2,w3 so by
[3, Thm. 1.1] this means T = T ′.

Now let T and T ′ be equivalent tetrahedra in S1,w2,w3 of the forms 2, 3 or 4. By
Lemma 4.4 if we project the sets of vertices of T and T ′ onto the first two coordinates
we get the same set. That is the x- and y-coordinates of T and T ′ are the same. This
immediately tells us that tetrahedra of the form 2 are distinct from those of the forms 3
and 4. For the rest we will show the following four facts:

A. If both T and T ′ are of the form 2 then T = T ′,
B. If both T and T ′ are of the form 3 then T = T ′,
C. If both T and T ′ are of the form 4 then T = T ′,
D. If T is of the form 3 and T ′ is of the form 4 then we get a contradiction.

A. Unless w2 = w3 and z1 = z′1 = 0 the only edge of T or T ′ with lattice
length w3 is the one from (1, 0, 0) to (1, 0, w3). Therefore, either T = T ′ or the
affine map taking T to T ′ preserves this edge. There are only four ways to map
vertices of T to T ′ satisfying this. Define the map θ by (x, y, z) �→ (x, y, z, 1) and let
π : Z4 → Z

3 be the projection onto the first three coordinates. Affine maps in Z3 are
exactly the maps (x, y, z) �→ π(θ(x, y, z)U ) where U is a unimodular matrix with
last column (0, 0, 0, 1)T . Let M and M ′ be the matrices whose rows are the vertices
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of θ(T ) and θ(T ′) respectively. Let σM denote the matrix obtained by permuting the
rows of M according to σ . At least one of M−1M ′, ((12)M)−1M ′, ((34)M)−1M ′ or
((12)(34)M)−1M ′ is unimodular. These matrices are

⎛
⎜⎜⎝
1 0 0 0
0 1 0 0
0 (z′1 − z1)/w2 1 0
0 0 0 1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

1 0 0 0
−w2 −1 0 w2
−z′1 −(z1 + z′1)/w2 1 z′1
0 0 0 1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
w3 (z1 + z′1)/w2 −1 0
0 0 0 1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

1 0 0 0
−w2 −1 0 w2

w3 − z′1 (z1 − z′1)/w2 −1 z2
0 0 0 1

⎞
⎟⎟⎠ .

Therefore, either (z1 − z′1)/w2 or (z1 + z′1)/w2 is an integer. In either case, the fact
that 0 ≤ z1, z′1 ≤ w2

2 forces T = T ′.
B. The normalised volume of T and T ′ is w2w3 + z1y1 = w2w3 + z′1y1, therefore

z1 = z′1 and T = T ′.
C. The normalised volume of T and T ′ isw2w3 −w2z1 + y1w3 = w2w3 −w2z′1 +

y1w3, therefore z1 = z′1 and T = T ′.
D. Let P and P ′ be the parallelograms obtained by intersecting 2T and 2T ′ with

the plane x = 1. These are:

P = conv((0, w3), (y1, 0), (w2, w3 + z1), (w2 + y1, z1)),

P ′ = conv((0, w3), (y1, z
′
1), (w2, 2w3), (w2 + y1, w3 + z′1)).

Since T and T ′ are equivalent so are P and P ′. We will show that this leads to a
contradiction. By the symmetries of a parallelogram, P − (0, w3)must be unimodular
equivalent to either P ′ − (0, w3) or P ′ − (y1, z′1). Consider three matrices M, M1 and
M2 whose rows are the following vertices of P−(0, w3), P ′−(0, w3) and P ′−(y1, z′1)
adjacent to the origin:

M =
(
y1 −w3
w2 z1

)
, M1 =

(
y1 z′1 − w3
w2 w3

)
, M2 =

(−y1 w3 − z′1
w2 w3

)
.

One of M−1
1 M, ((12)M1)

−1M, M−1
2 M and ((12)M2)

−1M must be a unimodular
matrix. The necessary inverses are

M−1
1 = 1

V

(
w3 w3 − z′1−w2 y1

)
, M−1

2 = 1

V

(−w3 w3 − z′1
w2 y1

)

((12)M1)
−1 = 1

V

(
w3 − z′1 w3

y1 −w2

)
, ((12)M2)

−1 = 1

V

(
w3 − z′1 −w3

y1 w2

)
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where V = w2w3 − w2z′1 + w3y1. Using these we know that either

U = M−1
1 M = 1

V

(
w2w3 − w2z′1 + w3y1 −w2

3 + w3z1 − z1z′1
0 w2w3 + z1y1

)

is a unimodular matrix or one of the following is an integer

w2w3 − y1z′1 + w3y1
V

,
z1y1 − w2w3

V
,

−w2w3 + w3y1 − z′1y1
V

.

These are entries (1, 1), (2, 2) and (1, 1) of ((12)M1)
−1M, M−1

2 M and ((12)M2)
−1M

respectively. Since the diagonal entries ofU are positive they must both be 1 forU to
be unimodular. From this notice that

(
y1 z′1 − w3
w2 w3

) (
1 a
0 1

)
= M1U = M =

(
y1 −w3
w2 z1

)

for some integer a. From this we show that z′1−w3−ay1 = −w3 andw3−aw2 = z1.
Since w3 − w2 ≤ z1 ≤ w3 either a = 0 or 1. Therefore, z′1 = 0 or y1 both of which
are contradictory so U cannot be unimodular.

Notice that −z′1y1 > −w2z′1 so the first of the fractions is at least 2. From this we
show that 2w2z′1 ≥ w2w3 + w3y1 + z′1y1 which is a contradiction since w2w3 and
w3y1 are both greater thanw2z′1 and z′1y1 is non-negative. Since y1 < w2 and z1 ≤ w3
the second fraction is at most −1 from which we show w2z′1 ≥ z1y1 + w3y1. This is
contradictory since w3 ≥ w2 and y1 > z′1. Finally, since y1 < w2 the third fraction is
also at most −1 so z′1(w2 + y1) ≥ 2w3y1. This is a contradiction since z′1 < y1 and
w2 + y1 < 2w2 ≤ 2w3. 
�

We now complete the proof of Theorem 1.4. That is, we show the map taking a
tetrahedron to its affine equivalence class defines a bijection from S1,w2,w3 to T1,w2,w3 .

Proof of Theorem 1.4 Proposition 4.3 shows that the map taking a tetrahedron to its
equivalence class is a well-defined map from S1,w2,w3 to T1,w2,w3 . Propositions 4.2
and 4.5 show that it is bijective. It remains to find the cardinality of S1,w2,w3 . When
w2 = 1 this is immediate. When w2 > 1 we combine the triangles classification with
the new tetrahedra to get the desired counts. 
�

The generating function of the sequence counting lattice triangles with second
widthw2 was the Hilbert series of a hypersurface in a weighted projective space so we
investigate the generating function of the cardinality of T1,w2,w3 denoted |T1,w2,w3 |.
Corollary 4.6 The generating function of |T1,w2,w3 | is

∞∑
w2=1

∞∑
w3=w2

tw2sw3 |T1,w2,w3 | = f (s, t)

2(1 − s2)(1 − ts)3(1 + ts)
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where f (s, t) is the polynomial

t5s7 + 5t5s6 + 4t5s5 − 2t4s7 − 5t4s6 − 9t4s5 − 4t4s4 + 4t3s6 + 13t3s5 + 7t3s4

− 6t3s3 − 5t2s4 − 3t2s3 + 4t2s2 − 4ts4 − 10ts3 − 4ts2

− +2ts + 2s3 + 14s2 + 20s + 8.

Sketch of proof This can be shown using Theorem 1.4. First note that
∑∞

w3=w2
sw3

|T1,w2,w3 | is
s(s + 2)

1 − s

when w2 = 1 and

sw2
w2
2(s + 1)2 + w2(1 − s2) + ( 32 s

2 + 5
2 s + 3

2 ) + 1
2 (−1)w2(s2 + s + 1)

1 − s2
.

otherwise. Combining these we get the desired result. This can all be done by hand
using facts about the generating functions of polynomials or with the assistance of
computer algebra. 
�
To instead count lattice tetrahedra with first width 1 and third width w3 we let t = 1
in the above generating function resulting in

−s7 + 4s6 + 8s5 − 6s4 − 3s3 + 22s + 8

2(1 − s)4(1 + s)2
.

Neither of these generating functions share any of the properties of the one from
triangles. However, this does not prevent a function counting lattice tetrahedra of a
given multi-width in general from doing so.

5 Computational and Conjectural Results

The above method can be extended into a computer algorithm which classifies four-
point sets and tetrahedra of a given multi-width. We implement all algorithms using
Magma V2.27. Algorithm 1 classifies four-point sets of multi-width (w1, w2). It
takes the list of four-point sets in the line of width w1 and assigns a y-coordinate in
the range [0, w2] to each point of each set in every possible way. The resulting sets
in the plane include all four-point sets of multi-width (w1, w2). We eliminate any
which do not have the correct widths. Let P be the convex hull of such a set then
we use the polytope WP to check its multi-width. The i th width of P is w if and
only if the dimension of conv((w − 1)WP ∩ Z

d) is less than i and the dimension of
conv(wWP ∩Z

d) is at least i . This allows us to check if the multi-width of a polytope
is equal to (w1, w2) without necessarily calculating its multi-width. We also discard
repeated sets using an affine unimodular normal form. Kreuzer and Skarke introduced
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a unimodular normal form for lattice polytopes in their Palp software [8]. This can be
extended to an affine normal form by translating each vertex of a polytope to the origin
in turn and finding the minimum unimodular normal form among these possibilities.
If the convex hull of a four-point set is a quadrilateral we can use this normal form
without adjustment. If the convex hull is a triangle we find the normal form of this
triangle then consider the possible places the fourth point can be mapped to in this
normal form. We choose the minimum such point and call the set of vertices of the
triangle and this point the normal form of the four-point set denoted NF(S). Note that
we keep the normal forms of each set as well as the set itself as we need the four-point
sets written as a subset of [0, w1] × [0, w2] for the tetrahedra classification.

Algorithm 1: Classifying the four-point sets in Z
2 with multi-width (w1, w2).

Data: The set P of all lattice points in Qw1 = conv((0, 0), (0, w1), (
w1
2 ,

w1
2 ).

Result: The set A containing all four-point sets in the plane with multi-width (w1, w2) written as a
subset of [0, w1] × [0, w2].

A ←− ∅
NormalForms ←− ∅
for (x1, x2) ∈ P do

for h1, h2, h3, h4 ∈ [0, w2] ∩ Z such that hi = 0 and h j = w2 for some i < j do
S ←− {(0, h1), (x2, h2), (x3, h3), (w1, h4)}
if mwidth(S) = (w1, w2) and NF(S) /∈ NormalForms then

A ←− A ∪ {S}
NormalForms ←− NormalForms ∪ {NF(S)}

Running Algorithm 1 for small widths produces Table 3. We use this data to give
estimates for a function counting the width (w1, w2) four-point sets in the plane. To
decide how much data to compute we use the following.

Proposition 5.1 There are at most (
w2
1
4 +w1+c)(6w2

2 +1) four-point sets in the plane
with multi-width (w1, w2) where c = 1 if w1 is even and c = 3

4 if w1 is odd.

Proof By Proposition 3.1 we know that there are

⎧⎨
⎩

w2
1
4 + w1 + 1 if w1 even

w2
1
4 + w1 + 3

4 if w1 odd

four-point sets in the line with width w1. Let (y1, . . . , y4) ∈ [0, w2]4 be a lattice point
representing the y-coordinates we give to each point. We know that there exist indices
i0 and i1 such that yi0 = 0 and yi1 = w2. By a reflection we may assume that i0 < i1.
We also assume these are as small as possible. Counting the possibilities in each of
the six cases we show that there are at most 6w2

2 + 1 ways to assign y-coordinates to
a four-point set in the line. 
�

A quasi-polynomial is a polynomial whose coefficients are periodic functions with
integral period. By Theorem 1.4 and [3, Thm. 1.1] the functions counting lattice
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Table 3 The number of four-point sets with multi-width (w1, w2) up to affine equivalence

w2

w1 1 2 3 4 5 6 7 8 9 10 11 12

1 2 5 6 8 9 11 12 14 15 17 18 20

2 0 13 31 42 49 60 67 78 85 96 103 114

3 0 0 39 101 123 148 170 195 217 242 264 289

4 0 0 0 114 282 342 394 454 506 566 618 678

5 0 0 0 0 254 624 727 835 938 1046 1149 1257

6 0 0 0 0 0 520 1239 1428 1605 1794 1971 2160

7 0 0 0 0 0 0 937 2206 2490 2781 3065 3356

8 0 0 0 0 0 0 0 1595 3682 4120 4542 4980

9 0 0 0 0 0 0 0 0 2527 5775 6380 6994

10 0 0 0 0 0 0 0 0 0 3851 8687 9534

11 0 0 0 0 0 0 0 0 0 0 5610 12555

12 0 0 0 0 0 0 0 0 0 0 0 7949

triangles and width 1 lattice tetrahedra are piecewise quasi-polynomials whose coef-
ficients have period 2 so we may expect a function counting four-point sets in the
plane to be similar. By Proposition 5.1, if there is a quasi-polynomial counting four-
point sets of multi-width (w1, w2) we expect it to be at most quadratic in w2. We
expect the case when w1 = w2 to be distinct due to the increased symmetry. Also
we expect the cases when w2 is odd and even to be distinct so consider them sepa-
rately. By fitting a quadratic to the results for (w1, w1 + 1), . . . , (w1, w1 + 5) and
(w1, w1 +2), . . . , (w1, w1+6)we obtain the following conjecture which agrees with
the entries of Table 3.

Conjecture 5.2 The number of four-point sets of multi-width (w1, w2) if w1 < w2 is

{
9w2 + 6 if w2 even,

9w2 + 4 if w2 odd

when w1 = 2,

{
47
2 w2 + 7 if w2 even,
47
2 w2 + 11

2 if w2 odd

when w1 = 3,

{
56w2 + 6 if w2 even,

56w2 + 2 if w2 odd
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when w1 = 4,

{
211
2 w2 − 9 if w2 even,
211
2 w2 − 23

2 if w2 odd

when w1 = 5

{
183w2 − 36 if w2 even,

183w2 − 42 if w2 odd

when w1 = 6

{
575
2 w2 − 94 if w2 even,
575
2 w2 − 195

2 if w2 odd

when w1 = 7 and

{
430w2 − 180 if w2 even,

430w2 − 188 if w2 odd

when w1 = 8.

It is tempting to fit cubics in w1 to the coefficients of these polynomials to get a
quasi-polynomial counting four-point sets whenever w1 < w2. However, the result is

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

( 56w
3
1 + 1

6w1 + 2)w2 − 5
4w

3
1 + 39

4 w2
1 − 47

2 w1 + 24 if w1, w2 even,

( 56w
3
1 + 1

6w1 + 2)w2 − 5
4w

3
1 + 39

4 w2
1 − 49

2 w1 + 24 if w1 even and w2 odd,

( 56w
3
1 + 1

6w1 + 1
2 )w2 − w3

1 + 51
8 w2

1 − 10w1 + 53
8 if w1 odd and w2 even,

( 56w
3
1 + 1

6w1 + 1
2 )w2 − w3

1 + 51
8 w2

1 − 21
2 w1 + 53

8 if w1, w2 odd,

which disagrees with Table 3 whenever w1 ≥ 9. This suggests that either there is
no such quasi-polynomial or that for small values of w1 we have special cases and
so cannot predict it from this data. Taking successive differences of a sequence can
help to identify when it is given by a quasi-polynomial since higher order terms
cancel making the pattern more obvious. Considering successive differences (and
successive differences of these differences etc.) of the sequence counting multi-width
(w1, w1 + 1) four-point sets, it seems that if such a quasi-polynomial exists we would
need significantly more data-points to estimate it. Therefore, we do not attempt to
classify enough four-point sets to make such a conjecture.

Using the classification of four-point sets, we move on to classify tetrahedra. This
uses a similar algorithm to the four-point set case (see Algorithm 2) with two main
differences. We may no longer assume that all the tetrahedra we want to classify are
contained in a w1 × w2 × w3 box so must allow more z-coordinates to be assigned to
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Algorithm 2: Classifying the tetrahedra with multi-width (w1, w2, w3).
Data: The set A containing all four-point sets in the plane with multi-width (w1, w2) written as a

subset of [0, w1] × [0, w2].
Result: The set T containing all tetrahedra with multi-width (w1, w2, w3).
T ←− ∅
for {v1, v2, v3, v4} ∈ A do

for h1, h2, h3, h4 ∈ [0,max{w1 + w2, w3}] ∩ Z such that hi = 0 and h j ≥ w3 for some i < j
do

T ←− conv(vi × {hi } : i = 1, 2, 3, 4)
if mwidth(T ) = (w1, w2, w3) then

T ←− T ∪ {NF(T )}

each point. Also, since we are not extending this classification to a higher dimension,
we need only store the normal form of each tetrahedron in order to count them.

Based on Theorem 1.4 we may hope that the tetrahedra of multi-width (2, w2, w3)

are counted by some quadratic functions in w2. Since we can fit a quadratic to any
three points we would like at least 4 points in each subsequence of |T2,w2,w3 | to make
a reasonable conjecture. Including the case w2 = 2 makes the resulting polynomials
higher degree so we need to classify at least multi-width (2, w2, w2), (2, w2, w2 + 1)
and (2, w2, w2 + 2) tetrahedra for w2 = 3, . . . , 10 to get enough data points. The
classification of lattice tetrahedron with width 2, second width up to 10 and third
width up to 12 can be found in the database [4] and they are counted in Table 2. Fitting
polynomials to the sequences displayed in Table 2 produces the following.

Conjecture 5.3 • When w3 > w2 > 2 the cardinality of T2,w2,w3 is

∗ 1
4 (81w

2
2 − 18w2 + 76) if w2 and w3 even,

∗ 1
4 (81w

2
2 − 18w2 + 56) if w2 even and w3 odd,

∗ 1
4 (81w

2
2 − 18w2 + 37) if w2 odd and w3 even,

∗ 1
4 (81w

2
2 − 18w2 + 25) if w2 and w3 odd

• when w2 > 2 the cardinality of T2,w2,w2 is

∗ 1
8 (81w

2
2 − 22w2 + 80) if w2 is even,

∗ 1
8 (81w

2
2 − 20w2 + 27) if w2 is odd

• when w3 > 2 the cardinality of T2,2,w3 is

∗ 47 if w3 is even,
∗ 45 if w3 is odd

• and the cardinality of T2,2,2 is 17.

More generally we may also guess that the following pattern will continue to hold.

Conjecture 5.4 There is a piecewise quasi-polynomial with 4 components counting
lattice tetrahedra of multi-width (w1, w2, w3). There is a component for each com-
bination of equalities in w3 ≥ w2 ≥ w1 > 0. The leading coefficient in the case
w3 > w2 > w1 > 0 is double the leading coefficient in the case w3 = w2 > w1 > 0.
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For fixedw1 andw2 there are at most three values which |Tw1,w2,w3 | can take depend-
ing of whether w3 is odd, even or equal to w2.
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