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Abstract: Metabolomics can uncover physiological responses to prebiotic fibre and omega-3 fatty
acid supplements with known health benefits and identify response-specific metabolites. We profiled
534 stool and 799 serum metabolites in 64 healthy adults following a 6-week randomised trial
comparing daily omega-3 versus inulin supplementation. Elastic net regressions were used to
separately identify the serum and stool metabolites whose change in concentration discriminated
between the two types of supplementations. Random forest was used to explore the gut microbiome’s
contribution to the levels of the identified metabolites from matching stool samples. Changes
in serum 3-carboxy-4-methyl-5-propyl-2-furanpropanoate and indoleproprionate levels accurately
discriminated between fibre and omega-3 (area under the curve (AUC) = 0.87 [95% confidence interval
(CI): 0.63–0.99]), while stool eicosapentaenoate indicated omega-3 supplementation (AUC = 0.86
[95% CI: 0.64–0.98]). Univariate analysis also showed significant increases in indoleproprionate
with fibre, 3-carboxy-4-methyl-5-propyl-2-furanpropanoate, and eicosapentaenoate with omega-3.
Out of these, only the change in indoleproprionate was partly explained by changes in the gut
microbiome composition (AUC = 0.61 [95% CI: 0.58–0.64] and Rho = 0.21 [95% CI: 0.08–0.34]) and
positively correlated with the increase in the abundance of the genus Coprococcus (p = 0.005). Changes
in three metabolites discriminated between fibre and omega-3 supplementation. The increase in
indoleproprionate with fibre was partly explained by shifts in the gut microbiome, particularly
Coprococcus, previously linked to better health.

Keywords: fibre; omega-3; metabolomics; machine learning; indoleproprionate; gut microbiome

1. Introduction

Nutritional supplementation provides a convenient and effective means to address
specific dietary deficiencies, optimise nutrient intake, and support overall health, ensuring
individuals have access to a well-rounded spectrum of essential vitamins, minerals, and
bioactive compounds for enhanced well-being [1].

A number of nutritional supplements are widely available which claim to reduce
inflammation [2]. However, the mechanisms by which many supplements act are poorly
understood [3], which may hinder the development of evidence-based nutritional rec-
ommendations and the ability of dietitians and clinicians to promote health and prevent
disease through targeted nutrition.
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Understanding the specific small molecules or metabolites altered by a nutritional
supplement during controlled interventions can help provide valuable insights into the
mechanistic pathways through which the supplement influences biochemical processes
within the body, elucidating the molecular basis of its effects. Moreover, identifying
altered metabolites offers potential biomarkers that can be used to monitor the efficacy and
individual responsiveness to the supplement. Consequently, these biomarkers could serve
as screening tools in future trials and provide information on the interplay between diet
and metabolism, potentially informing personalized nutrition strategies that align with an
individual’s specific metabolic profile [4].

Omega-3 polyunsaturated fatty acids are essential nutrients for humans and are
a promising nutritional therapeutic for many disorders, as demonstrated in a vast ar-
ray of studies [5], showing efficacy on improving cardiometabolic and mental health
outcomes [6,7] via the effects of these fatty acids on reducing systemic inflammation [8].

Inulin is a form of dietary fibre classified as a fructan (a carbohydrate composed of
fructose molecules linked together by glycosidic bonds) [9]. As a prebiotic fibre, inulin
serves as a substrate for beneficial bacteria in the colon, encouraging their growth and
activity. This fermentation process produces short-chain fatty acids (SCFAs) which have
been widely documented [10]. Among its health benefits are reductions in inflammation
and improvements in cardiometabolic parameters [10]. Furthermore, inulin shows potential
for the improvement of various clinical outcomes. For example, inulin demonstrated
potential for improving the glycaemic index in individuals with type 2 diabetes [11,12] and
reducing serum uric acid levels, which are independently linked to higher mortality in
renal failure patients [13].

We have previously reported the effects of both omega-3 (500 mg/day) and inulin
fibre (20 g/day) supplementation on SCFAs and inflammatory markers [14]. However, a
systematic analysis of the stool and circulating metabolites altered by these interventions
has not yet been performed. Such characterisation could enhance our understanding
of the underlying metabolic responses to these supplements and enable us to identify
discriminating panels of metabolites that may contribute to their potential clinical benefits.
In this study, we performed a secondary analysis of a two-arm nutritional supplementation
intervention study that was designed to compare the effects of omega-3 and inulin fibre
in healthy middle-aged and elderly volunteers over a six-week period. We used a large
and broad commercial metabolite panel to investigate how changes in serum and stool
metabolites map to the two different types of supplements and used a machine learning
approach to identify the metabolites with discriminative value between the two types of
nutritional supplementation.

2. Materials and Methods
2.1. Study Aim and Design

We aim to uncover the physiological metabolic responses to daily omega-3 vs. inulin
supplementation and identify key metabolites that are response specific. The study design
and the specific research questions are presented in Figure 1.

2.2. Study Population

We included 64 participants from the TwinsUK registry who participated in the
omega-3 and fibre intervention study and had concurrent stool and serum samples at
baseline and follow-up. The omega-3 and fibre intervention study was a 6-week parallel
randomised intervention trial designed to explore the influence of dietary omega-3 or fibre
supplementation on gut microbial composition, as previously described [14]. Participants
were randomised to one of two intervention arms, the first arm were administered 20 g of
oral inulin fibre, while the second arm were given 500 mg of omega-3 supplements (165 mg
of eicosapentaenoic acid (EPA), 110 mg docosahexaenoic acid (DHA) in gelatin capsules)
daily for 6 weeks.
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Figure 1. Schematic diagram of the study design.

Patient selection, inclusion and exclusion criteria for the original intervention study
have been described in detail previously [14]. Here, we conducted secondary analysis of
the data from the original intervention study. Briefly, study subjects were enrolled from
the TwinsUK registry, a national register of adult twins recruited as volunteers without
selecting for any particular disease or traits. The TwinsUK cohort has been shown to be
representative of the general population [15]. A total of 69 subjects were enrolled into
the study and randomized into either the omega 3 or fiber arm. Participant eligibility
included those aged >18 y who had a body mass index (BMI) between 20 and 39.9 kg/m2

and had a low habitual fiber consumption of less than 15 g/d. The following exclusion
criteria were considered: ongoing or planned regular use of other omega-3 polyunsaturated
fatty acid or cod liver oil supplements; seafood allergy; concomitant use of non-steroidal
anti-inflammatory medications, including aspirin; current treatment for any chronic inflam-
matory condition or malignancy; previous colonic or small bowel resection; current smoker
(minimum 6 months smoking cessation) and pregnancy. Clinical visits were conducted at
the clinical research facility at St Thomas’ Hospital, London, UK. For the current secondary
analysis, we were missing 5 aliquots/samples which were excluded from analysis. A
detailed CONSORT flow diagram is included in Supplementary Figure S1.

Randomization was not stratified by gender and age and was performed using an
online software (www.sealedenvelope.co.uk, accessed on 1 April 2018). Neither partic-
ipants nor researchers were blinded to the interventions and hence allocation order as
we previously reported [14]. Generation of a randomization schedule included obtaining
the random numbers and assigning random numbers to each subject under the specific
treatment conditions (conducted by Amrita Vijay). Participants were equally allocated
between treatment arms (allocation ratio 1:1) with at least n > 32 in each arm. A power
calculation was performed for the original intervention study as previously detailed in [14].
No changes to methods were made after trial commencement. In the intervention study
data we analyzed, the majority of participants were singletons (n = 42). Eleven pairs
of twins (n = 22) were included in the analysis, all of whom were assigned to different
intervention groups.

2.3. Sample Collection

At the baseline and follow-up visits, anthropometric measurements (weight, height),
blood, and stool were collected. During each visit, blood samples were collected from
participants between 8:30 and 10 a.m. It was requested of the participants to arrive fasting,
at least from 9 p.m. the previous evening. Serum Separator Tubes were used to collect blood
samples, which were processed to separate serum and then aliquoted for storage at −80 ◦C

www.sealedenvelope.co.uk
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within 2–3 h after collection. During research visits, stool samples were provided, and they
were frozen at −80 ◦C until DNA extraction took place as soon as the study was over.

2.4. Metabolite Profiling

Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) was
performed by Metabolon Inc on serum and stool samples at two time points as previously
described [16–18]. Full details and quality control have been described previously [17–19].

2.5. Microbiota Analysis

The method for stool DNA extraction has been reported in detail elsewhere [20].
Briefly, 100 mg of the sample were used for extraction without homogenization prior to
this step. Stool samples were collected and the composition of the gut microbiome was
determined by 16 S rRNA gene sequencing carried out as previously described [21].

In short, universal primers 355 F (CCAGACTCCTACGGGAGGCAGC) and 806 R
(GGACTACHVGGGTWTCTAAT) and were used to amplify the V4 region of the 16S rRNA
gene. MiSeq (Illumina Inc., San Diego, CA, USA) was used to sequence amplified DNA.
The MYcrobiota pipeline was used to perform read filtering and clustering [22]. On the
basis of a 97% similarity, reads were grouped into operational taxonomic units (OTUs)
using closed-reference clustering against the SILVA database v132 after chimera sequences
were filtered using Mothur’s VSEARCH algorithm. The OTU table was averaged after
being rarefied 50 times to 7000 sequences per sample. These analyses were carried out in
QIIME 2 (v2018.11).

2.6. Data Analysis

Statistical analysis was conducted using R (version 4.3.2), while we used GraphPad
PRISM 10 for the illustrations.

2.6.1. Metabolite QC

We included serum and stool metabolites present in at least 20% of the sample, which
were day median normalised and inverse normalised. Missing values were imputed to
the minimum.

2.6.2. Elastic Net for Identifying Changes in Metabolites Reflecting Supplementation with
Inulin or Omega-3

Elastic net models with five-fold cross-validation and repeated 5 times were performed
separately on the serum and stool metabolites to determine if participants on fibre supple-
mentation could be discriminated from participants on the omega-3 based on the changes
in their serum and stool metabolite levels following supplementation. Covariates, age,
sex, and BMI were included as independent variables in the model to assess whether they
would influence the performance of the model. Repeated cross-validation was performed
to identify the optimal model, based on an 80/20 random split into training and testing
folds. Area under the curve (AUC) of the receiver operating characteristic (ROC) curve was
used to select the optimal model using the largest value. Paired t-tests run separately for
the fibre and omega-3 arms were used to illustrate at a univariate level the extent to which
the metabolites identified changed with the dietary interventions. The most discriminating
metabolites were selected based on whether they had non-zero regression coefficient from
the elastic net.

2.6.3. Sensitivity Analyses and Cross-Validation Using Random Forest and
Logistic Regression

Sensitivity analyses and cross-validation were conducted on the elastic net results
to assess by other methods the discriminating power of the metabolites identified in the
previous section. We did this using Random forest classification and logistic regression
models as described below, thus obtaining a distribution of AUC and Spearman’s Rho
values on cross-validated data.
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Logistic regression: The change in the most important metabolites was modelled using
logistic regression with 5-fold cross validation and repeated 100 times to obtain robust
estimates of the predictive performance of the models. Age, sex, and BMI were included as
covariates and the base logistic regression model with only the covariates was computed
to determine their significance. The data were randomly split into training and test sets
(80/20). Mean AUC values across the 100 repeats and 5 folds were calculated to compare
the performance of the elastic net models to the logistic regression models and p-values
were computed for each metabolite to verify their significance.

Random forest (RF) classification: The change in the most important metabolites
were modelled with 5-fold cross validated RF classification repeated 3 times to get an
additional quantitative estimate of the discriminating value of these metabolites (random-
Forest function in R). The dataset was split into training set and testing set (80/20 random
split). In the training set, recursive feature elimination was performed to identify the best
number of features (i.e., the lowest number of features with the lowest error rate), and
adaptive resampling used to tune mtry (number of predictors to sample at each split)
and min_node_size (number of observations needed to keep splitting nodes). The mean
AUC and the Spearman’s Rho (similarity between predicted and real values) across the
cross validated repeated folds were calculated to compare the performance to the elastic
net models and to get a measure of the strength of the association between the change in
metabolites and supplementation.

2.6.4. Associations of Differentiating Metabolites with SCFAs and Gut
Microbiome Composition

RF regression and classification: In order to identify how much of the change in
the levels of the most discriminating metabolites is explained by the changes in the gut
microbiome we implemented RF regression and classification. The gut microbiome data
were inverse normalised and predictors with variance zero or near zero were removed.
A 5-fold cross-validation approach was implemented, based on an 80/20 random split
into training and testing folds. The randomForest function in R was applied for both
regressors (with parameters ntree = 1000 and mtry = one-third of the features number) and
classifiers (with parameters ntree = 1000 and mtry = the square root of the features number).
Performance was assessed using the mean of the Spearman’s and Pearson’s correlations
between the actual and predicted metabolite levels across the 5 folds used as a test set.
Change in metabolite levels was transformed into two classes by splitting the variable in
two, and their performance was measured by calculating the mean of the AUC values
obtained over the 5 folds. In secondary analysis, we also investigated whether baseline gut
microbiome composition could predict changes in metabolites levels.

Correlations with SCFAs and specific genera: We then aimed to explore correlations of
the most discriminating metabolites with SCFAs and specific genera previously identified
to increase with the intervention [14]. To that end, we performed Spearman’s correlations
between the changes in SCFAs and changes in Coprococcus and Bifidobacterium genera with
changes in the most discriminating metabolites following the intervention.

3. Results
3.1. Descriptive Characteristics of the Participants

We included 64 healthy participants with serum and stool metabolomics profiling,
who completed the 6 weeks intervention with either inulin or omega-3 and provided a
sample at baseline and following the intervention (Figure 1). Half of the participants
received inulin and the remaining half received omega-3. The mean age was 66.4 [standard
error (SE): 1.2] years, the mean BMI was 26.6 (SE: 0.5) kg/m2, and 91% were female.

Due to the previously demonstrated lack of a correlation between the stool and blood
metabolome [23], we independently examined the associations between changes in the
levels of paired serum and stool metabolites with type of supplementation.
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3.2. Changes in Serum Metabolites Differentiating between Inulin and Omega-3 Supplementation

Elastic net regression: We find that changes in circulating levels of 3-carboxy-4-methyl-
5-propyl-2-furanpropanoate (CMPF) and indolepropionate (IPA), following dietary supple-
mentation can discriminate between inulin and omega-3 supplementation with an AUC of
0.87 [95% confidence intervals (CI): 0.63–0.99] (Figure 2A). The variance importance plot
indicates that an increase in CMPF circulating levels is reflective of supplementation with
omega-3, while an increase in the levels of IPA predict supplementation with inulin fibre
(Figure 2C). Consistent with the elastic net results, in univariate analysis, we find that levels
of CMPF significantly increased from baseline to follow-up only in the omega-3 group
(p = 1.48 × 10−8) whereas levels of IPA increased only following fibre supplementation
(p = 1.90 × 10−4) (Figure 2D).
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Figure 2. Changes in serum metabolomic data in response to 6 week supplementation with inulin or
omega-3. (A) Receiver operating characteristic (ROC) curve using the selected features from the five-
fold cross-validated elastic net model repeated five times; (B) boxplots of the performance [area under
the curve (AUC) and quantitative estimate (Spearman’s correlation coefficient)] of a random forest
model incorporating the metabolites identified by elastic net. The mean and 95% confidence intervals
(CIs) of both the AUC and the Spearman’s Rho across the repeated folds are shown; (C) variance
importance plot of the elastic net coefficients of the metabolites whose changed levels in serum were
identified by elastic net regression as discriminating between the two interventions; and (D) boxplots
showing the change in the identified serum metabolites in both arms separately (univariate paired
t-test). ns: not significant, **** p < 0.0001.

Random forest and logistic regression: The differentiating metabolites, IPA and CMPF,
were included in cross-validated repeated logistic regression and random forest to further
validate their discriminating capacity in sensitivity analyses. The AUCs and Spearman’s
Rho from repeated cross-validated random forest classification are presented in Figure 2B.
Consistent with the performance of the elastic net model, the mean AUCs from the logistic
and random forest models were 0.82 [standard deviation (SD): 0.11] and 0.76 (SD: 0.09),
respectively, indicating a successful separation between the omega-3 and fibre groups. Ad-
justing the logistic and elastic net regression models for selected covariates, namely age, sex,
and body mass index, did not alter their performance, and the covariates themselves were
not found to be statistically significant in the base logistic regression model (Supplementary
Table S1, Supplementary Materials). The random forest mean Spearman’s Rho of 0.54 (SD:
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0.18) indicates a strong association between changes in the two discriminating metabolites
and the type of supplementation (please refer to Supplementary Table S2 in Supplementary
Materials for full sensitivity analysis results).

3.3. Changes in Stool Metabolites Differentiating between Inulin and Omega-3 Supplementation

Elastic net regression: Among the stool metabolites, eicosapentaenoate (EPA) was
the single and top discriminating variable between fiber and omega-3 supplementation
with high accuracy (elastic net regression AUC = 0.86 [95% CI: 0.64–0.98]) (Figure 3A).
Changes in the level of this stool metabolite following the intervention were reflective of
supplementation with omega-3 as shown from Figure 3C. Moreover, in line with this result,
we find that EPA significantly increased from baseline to follow-up only in the Omega-3
group (p = 1.69 × 10−7) (Figure 3D). None of the stool metabolites were associated with
fibre supplementation.
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Figure 3. Changes in stool metabolomic data in response to 6 week supplementation with inulin or
omega-3. (A) ROC curve using the selected feature from the five-fold cross-validated elastic net model
repeated five times; (B) boxplots of the performance (AUC) and quantitative estimate (Spearman’s
correlation coefficient) of a random forest model incorporating the metabolites identified by elastic
net. The mean and 95% CIs of both the AUC and the Spearman’s Rho across the repeated folds are
shown; (C) variance importance plot (elastic net coefficient) of the metabolites whose changed levels
in serum were identified by elastic net regression as discriminating between the two interventions;
and (D) boxplots showing the change in the identified serum metabolites in both arms (univariate
paired t-test). ns: not significant, **** p < 0.0001.

Random forest and logistic regression: We also performed sensitivity analyses using
cross-validated repeated logistic regression and random forest models to further evaluate
the discriminating capability of EPA. The AUCs and Spearman’s Rho from the cross-
validated repeated random forest classification are illustrated in Figure 3B. Aligning with
the elastic net model’s performance, the mean AUCs from the logistic and random forest
models were 0.78 (SD: 0.12) and 0.82 (SD: 0.12), respectively. This suggests that variations
in EPA levels following the intervention effectively differentiate between the omega-3
and inulin supplementation groups. Both logistic and elastic net models were adjusted to
account for the selected covariates, which were not found to be statistically significant in
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logistic regression (Supplementary Table S1, Supplementary Materials) and did not alter the
predictive performance of the models. Similar to the two discriminative serum metabolites,
there was a robust association between changes in EPA and the type of supplementation
as indicated by the random forest mean Spearman’s Rho of 0.67 (SD: 0.21) (please refer to
Supplementary Table S2 in Supplementary Materials for the full sensitivity analysis results).

3.4. Associations of Differentiating Metabolites with SCFAs and Gut Microbiome Composition

Due to the known interplay between the gut microbiome with the serum and stool
metabolome [24,25], we next explored whether changes in gut microbiome composition
and its metabolites (SCFAs) can explain some of the variation in the levels of differentiat-
ing metabolites.

SCFAs: We explored associations between change in the differentiating serum and
stool metabolites, CMPF, IPA and EPA, with changes in SCFAs following the intervention.
No associations were found to be significant after adjusting for multiple testing (FDR < 0.05)
(Figure 4A).
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Figure 4. Associations of differentiating metabolites with SCFAs and gut microbiome composition.
(A) Lack of association between the change in discriminating metabolites and change in circulating
SCFA levels; (B) Random forest model showing to what extent can changes in gut microbiome
composition in response to the intervention explain changes in the metabolites that can discriminate
between the two interventions; and (C) Spearman’s correlations between change in circulating IPA
and changes in two key taxa which increased with the intervention (Coprococcus and Bifidobacterium).

Gut microbiome composition: RF classification and regression analysis revealed that
out of the three differentiating metabolites, only change in IPA was sufficiently explained
(AUC > 60%) by changes in the gut microbiome (AUC = 0.61 [95% CI = 0.58–0.64] and Spear-
man’s Rho = 0.21 [95% CI = 0.08–0.34]). Changes in CMPF and EPA were not sufficiently
explained by changes in the gut microbiome (Figure 4B). Furthermore, we conducted RF to
explore whether the baseline gut microbiome could predict baseline levels of CMPF, IPA,
and EPA, as well as changes in these metabolites following the intervention (Supplementary
Table S3, Supplementary Materials). Our findings indicate that the baseline gut microbiome
has a minimal predictive effect on changes in IPA, while it can sufficiently predict baseline
levels of both serum metabolites.
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Gut microbiome and IPA: Lastly, to illustrate the links between IPA and SCFA pro-
ducers we show IPA’s association with two SCFA-producing genera, Bifidobacterium and
Coprococcus, which we previously reported to increase with the intervention [14]. We fo-
cused on the taxa Coprococcus and Bifidobacterium as these were also classed as the first and
second most important variables (taxa) from the random forest model partly explaining
variation in change in IPA. Out of the two, only change in Coprococcus was positively
correlated with a change in IPA (p = 0.005). (Figure 4C).

4. Discussion

In the first study to compare changes in serum and stool metabolomics profiles follow-
ing dietary supplementation with inulin and omega-3, we find two serum and one stool
metabolites that reliably distinguish between inulin (fiber) and omega-3 supplementation,
respectively. Specifically, we find that (i) fibre supplementation is accurately reflected by ele-
vated IPA in serum, while omega-3 supplementation is reflected by increased serum CMPF,
(ii) higher levels of stool EPA accurately indicate supplementation with omega-3, whereas
no stool metabolites reflect supplementation with fibre, and (iii) the increase in IPA is partly
explained by shifts in the whole of the gut microbiome, and specifically by an increase in the
genus Coprococcus, whereas the increases in CMPF and EPA indicative of supplementation
with omega-3 cannot be reliably explained by the changes in the gut microbiome.

Wide-scale metabolomics analysis integrated with other omics including the gut
microbiome and machine learning broadens the possibility of novel discoveries and can
validate previous findings. Inulin appears to act via the tryptophan metabolism pathway
apart from its well-established SCFA mechanism of action [10] whereas omega-3 seems
to exert its effect via the production of resolvins and protectins but also by changing
the membrane composition of cells which affects production proinflammatory peptide
mediators such as cytokines or adhesion molecules.

IPA: The finding that supplementation with inulin can be accurately predicted by
increased IPA in serum confirms previous findings from observational studies that observed
a significant link between IPA and both dietary total carbohydrate and fibre intakes [26–29].
IPA is a tryptophan derivative of the microbiota pathway [30] and is associated with
reduced likelihood of type 2 diabetes [26]. Furthermore, IPA might play a role in the
pathophysiology of liver and cardiovascular disease as it was found to be decreased in
alcoholic hepatitis and cirrhosis patients compared to controls [31] and was linked to
advanced cardiovascular disease over and above traditional atherosclerosis risk factors [32].
Our results showed for the first time that changes in IPA following fibre supplementation
are explained by shifts in the gut microbiome whereas baseline gut microbiome was
minimally predictive of changes in IPA. Consistent with our previous work [27], baseline
levels of IPA were substantially explained by the baseline gut microbiome reinforcing
the idea that IPA is correlated with the gut microbiome as a whole. Here we also show
that supplementation with inulin for 6-weeks can induce changes in the levels of serum
IPA coupled by changes in the gut microbiome which may offer actionable targets easily
modifiable through diet interventions for the prevention of various metabolic diseases.
Furthermore, we show that an increase in IPA was strongly correlated with an increase
in Coprococcus which agrees with previous findings from our group [14,27]. None of the
strains previously identified in vitro as IPA producers mainly Peptostreptococcus spp. and
Clostridium spp. [33] showed correlation with IPA most likely due to the limited resolution
of the 16S data. However, we do find an increase in a genus within the Clostridiales order,
commonly associated with IPA production, showed a strong correlation with elevated
IPA levels.

CMPF: Elevated CMPF in serum strongly and accurately reflects omega-3 supple-
mentation. This aligns with previous findings from a targeted metabolomic analysis in
a cohort of 7 to 12 healthy volunteers using higher omega-3 doses [34]. Our untargeted
metabolomics approach on a cohort of 64 healthy adults validates this association at a much
lower dose of 165 mg EPA and 110 mg DHA. When mice were given CMPF before or after
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being fed a high-fat diet, it enhanced overall lipid metabolism, improved insulin sensitivity,
increased beta-oxidation, lowered lipogenic gene expression, and mitigated steatosis [34].
In humans, patients with type 2 diabetes serum CMPF exhibited an inverse correlation
with serum triglycerides, a risk factor for diabetes and cardiovascular diseases [35,36].
Furthermore, a recent Mendelian Randomisation study found that CMPF was associated
with a lower risk of sepsis [37] and reduced risk of infection in childhood [38]. Taken
together these results suggest that CMPF might play a role in the enhanced metabolic and
other health benefits associated with omega-3 supplementation.

EPA: The variation in EPA levels in faeces, predicting omega-3 supplementation, may
reflect levels of unabsorbed EPA, the primary ingredient of the omega-3 supplement [39,40].
It appears that circulating serum metabolites, more directly linked to metabolic health [14],
are effective at elucidating differences in metabolic pathways between the two types
of supplements.

There was a lack of association between changes in circulating SCFAs and alterations
in the distinctive metabolites—IPA, CMPF, and EPA—and between the change in IPA and
the change in Bifidobacterium. This lack of association is unsurprising, as although these
metabolites can have similar effects on the host, they operate through different mechanisms.
For instance, even though both IPA and acetate can be produced by Clostridium spp.,
they follow distinct pathways [41]. Additionally, Bifidobacterium appears to be engaged
in pathways related to IPA, but this effect does not seem to be mediated by fibre [29] and
while there no evidence that it can produce IPA, it is suggested to be able to produce IPA’s
substrate, indolelactate [29].

There are several strengths with this study. These include the extensive metabolite
panels and machine learning techniques used, the interventional nature of the study and the
incorporation of multi-omics, namely metabolomics and the gut microbiome. In addition
to these strengths, it is important to highlight the novelty of the present study compared
to our prior research that focused on inflammatory cytokines and cardiovascular risk
factors in response to either inulin or omega-3 intervention [14], or solely examined IPA
cross-sectionally [27]. Here instead, we have comprehensively investigated a wide range
of serum and fecal small molecules in response to these interventions. Furthermore, prior
investigations were targeted or observational and examined these interventions in isolation
as highlighted throughout this Discussion. In contrast, our study used an untargeted
approach within the same randomized controlled trial, uncovering differences in metabolite
profiles following supplementation with either inulin or omega-3. This design is optimal
for identifying variations in metabolic responses to these supplements, potentially serving
as biomarkers for comparing efficacy and individual responsiveness.

We also note some limitations. First, although we used cross-validation and we
validated our results using different statistical methods, the study lacked an independent
validation cohort, which would have further reinforced our results. However, our results
are consistent with previous findings, highlighting the robustness of our approach. Second,
we used 16s RNA sequencing data. Shotgun metagenomic data would have added more
in-depth information about the species and strains related to the differentiating metabolites
identified in our study. Third, we acknowledge that a larger sample size could potentially
reveal additional metabolite-intervention relationships. However, we performed elastic
net regression as it has been demonstrated to perform well and achieve high predictive
accuracy in situations where there are many predictors relative to the sample size [42]. In
addition, we conducted post-hoc power analysis for each metabolite to further validate
that our results are not false positives: for IPA, where the mean was 0.73 (SD = 0.83) for
inulin and 0.003 (SD = 1.08) for omega-3, we achieved 85% power to detect differences
between the two groups at alpha level 0.05. For CMPF, with mean values of 0.27 (SD = 1.01)
for inulin and 1.46 (SD = 0.58) omega-3, we achieved 99% power to detect differences
between the two groups at alpha level 0.001. Similarly, for EPA, with a mean of 0.10
(SD = 0.83) for inulin and 1.43 (SD = 0.97) omega-3, we obtained 99% power to detect
differences between the two groups at alpha level 0.001. Fourth, we acknowledge that
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an AUC = 0.61 [95% CI: 0.58–0.64] and Rho = 0.21 [95% CI: 0.08–0.34] do not provide a
solid basis for prediction. However, with regards to the study of the gut microbiome, our
primary focus was to explore whether changes in its composition as a whole explained
some of the variation in the change in the levels of discriminating metabolites. As the
AUC is above 0.60 (i.e., the prediction is not completely at random) and Rho = 0.21, we can
infer that the gut microbiome is correlated with the metabolite even weakly, and that shifts
in gut microbiome composition partly explain some of the variation in the change in the
level of IPA. Finally, the dietary intervention was conducted in healthy volunteers. Given
the role of these supplements and their metabolite signatures in metabolic health, future
wide-scale metabolomic analysis of intervention studies in diseased cohorts would verify
the beneficial roles of these supplements and their metabolic pathways of action.

5. Conclusions

These findings contribute to our understanding of the differential host metabolic
responses to inulin and omega-3. Two key serum metabolites were reflective of which type
of dietary intervention was performed, IPA for inulin and CMPF for omega-3. This insight
may shed light on the mechanisms underlying the relevance of these metabolites to human
metabolic health and disease as well as provide practical, targeted dietary interventions
tailored to individuals based on their circulating metabolite profiles.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/metabo14060311/s1, Figure S1. CONSORT diagram illustrating
both the original intervention study and the samples used in the current secondary analyses, detailing
the numbers of participants assigned randomly to each group, those who underwent interventions,
and those included in the analysis for the outcomes of interest; Table S1: Results from the base
logistic regression model including only the selected covariates, age, sex, and body mass index (BMI);
Table S2: Sensitivity analysis to validate the serum and stool metabolites with predictive value for
discrimination between the omega-3 and inulin fiber nutritional supplementation by 5-fold cross
validated logistic regression models repeated 100 times (using AUC and p-values) and 5-fold cross
validated Random Forest classification (using AUC and Spearman’s correlations) models repeated
3 times adjusted for age, sex and body mass index. The mean AUC and the Spearman’s Rho across the
repeated folds are shown; Table S3: Influence of the baseline gut microbiota composition in baseline
levels of serum and faecal metabolites, as well as changes in these metabolites estimated by Random
Forest regression (using Spearman’s correlations). The mean values and the 95% confidence intervals
of the Spearman’s correlation between the real value of each component and the value predicted by
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