= (&) Taylor & Francis
AN Optimization Methods and Software
Optimization
Methods & Software

() Taror & francis

ISSN: (Print) (Online) Journal homepage: www.tandfonline.com/journals/goms20

Approximating Hessian matrices using Bayesian
inference: a new approach for quasi-Newton
methods in stochastic optimization

André Gustavo Carlon, Luis Espath & Raul Tempone

To cite this article: André Gustavo Carlon, Luis Espath & Raul Tempone (29 Apr 2024):
Approximating Hessian matrices using Bayesian inference: a new approach for quasi-
Newton methods in stochastic optimization, Optimization Methods and Software, DOI:
10.1080/10556788.2024.2339226

To link to this article: https://doi.org/10.1080/10556788.2024.2339226

8 © 2024 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group.

@ Published online: 29 Apr 2024.

\J
CA/ Submit your article to this journal &

||I| Article views: 159

A
& View related articles '

(&) view Crossmark data

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalinformation?journalCode=goms20

https://www.tandfonline.com/action/journalInformation?journalCode=goms20
https://www.tandfonline.com/journals/goms20?src=pdf
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/10556788.2024.2339226
https://doi.org/10.1080/10556788.2024.2339226
https://www.tandfonline.com/action/authorSubmission?journalCode=goms20&show=instructions&src=pdf
https://www.tandfonline.com/action/authorSubmission?journalCode=goms20&show=instructions&src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/10556788.2024.2339226?src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/10556788.2024.2339226?src=pdf
http://crossmark.crossref.org/dialog/?doi=10.1080/10556788.2024.2339226&domain=pdf&date_stamp=29 Apr 2024
http://crossmark.crossref.org/dialog/?doi=10.1080/10556788.2024.2339226&domain=pdf&date_stamp=29 Apr 2024

OPTIMIZATION METHODS & SOFTWARE
https://doi.org/10.1080/10556788.2024.2339226

Taylor & Francis
Taylor & Francis Group

8 OPEN ACCESS [l Checkforupdates‘

Approximating Hessian matrices using Bayesian inference:
a new approach for quasi-Newton methods in stochastic
optimization

André Gustavo Carlon?, Luis Espath? and Raul Tempone?:<d

3Computer, Electrical and Mathematical Sciences & Engineering Division (CEMSE), King Abdullah University
of Science & Technology (KAUST), Thuwal, Saudi Arabia; bSchool of Mathematical Sciences, University of
Nottingham, Nottingham, UK; ‘Department of Mathematics, RWTH Aachen University, Aachen, Germany;
dAlexander von Humboldt Professor in Mathematics for Uncertainty Quantification, RWTH Aachen University,
Aachen, Germany

ABSTRACT

Using quasi-Newton methods in stochastic optimization is not a
trivial task given the difficulty of extracting curvature information
from the noisy gradients. Moreover, pre-conditioning noisy gradi-

ARTICLE HISTORY
Received 8 September 2022
Accepted 13 March 2024

KEYWORDS

ent observations tend to amplify the noise. We propose a Bayesian
approach to obtain a Hessian matrix approximation for stochas-
tic optimization that minimizes the secant equations residue while
retaining the extreme eigenvalues between a specified range. Thus,
the proposed approach assists stochastic gradient descent to con-
verge to local minima without augmenting gradient noise. We pro-

Stochastic optimization;
quasi-Newton; Monte Carlo;
variance reduction; control
variates; machine learning

AMS SUBJECT
CLASSIFICATIONS

pose maximizing the log posterior using the Newton-CG method.
Numerical results on a stochastic quadratic function and an ¢5-
regularized logistic regression problem are presented. In all the cases
tested, our approach improves the convergence of stochastic gradi-
ent descent, compensating for the overhead of solving the log poste-
rior maximization. In particular, pre-conditioning the stochastic gra-
dient with the inverse of our Hessian approximation becomes more
advantageous the larger the condition number of the problem is.

65K10; 90C15; 62F15; 90C53

1. Introduction

First-order optimization methods are a common choice for performing local search when
gradients are available. In the strongly convex case, the gradient descent method con-
verges linearly, requiring a number of iterations proportional to the condition number [21,
Theorem 2.1.15], that is, the ratio between the upper and lower bounds of the eigenvalues
of the Hessian matrix in the search domain. However, first-order methods may not be a
practical choice when the condition number for a problem is large, advancing little towards
the optimum each iteration. One way to mitigate this dependency is to use quasi-Newton
methods, which use the secant equation to obtain an approximation of the Hessian matrix

CONTACT André Gustavo Carlon @ agcarlon@gmail.com @ Computer, Electrical and Mathematical Sciences &
Engineering Division (CEMSE), King Abdullah University of Science & Technology (KAUST), Thuwal 23955-6900, Saudi
Arabia

© 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License
(http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium,
provided the original work is properly cited, and is not altered, transformed, or built upon in any way. The terms on which this article has been
published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/10556788.2024.2339226&domain=pdf&date_stamp=2024-04-29
mailto:agcarlon@gmail.com
http://creativecommons.org/licenses/by-nc-nd/4.0/

2 (& A.G.CARLONETAL.

of the objective function from subsequent gradient evaluations. Then, one may precondi-
tion the gradient with the inverse of the Hessian approximation, furnishing a Newton-like
method without the cost of computing the true Hessian or using a finite differences type
of approximation [10].

In the case of stochastic optimization, the stochastic gradient descent method (SGD)
is the canonical first-order method. The asymptotic convergence of SGD is dominated by
noise in gradient evaluations (cf. [24, Theorem 3]), thus controlling the condition number
for the problem does not improve convergence. However, controlling the relative statis-
tical error of gradient estimates using a uniform bound recovers linear convergence per
iteration for the minimization of strongly convex functions [8,24]. In this case, the conver-
gence rate depends on the condition number of the problem; hence preconditioning the
gradient with the Hessian inverse might be desirable. The natural approach is to use quasi-
Newton methods to approximate the Hessian matrix, but devising quasi-Newton methods
for stochastic optimization is challenging due to its noisy gradient observations. Naively fit-
ting the secant equations on noisy gradient observations often leads to catastrophic errors
in Hessian approximations [24, Section 4.3.3].

There are many works addressing the development of quasi-Newton methods in
stochastic optimization. One of the first attempts is that of Schraudolph, Yu, and Giinther
[26] where they adapt the L-BFGS method to the stochastic setting by adding damp-
ing parameters that control the effect of noise, furnishing the oL-BFGS method. Their
approach is empirical, and not much can be said about the quality of the Hessian approxi-
mation. Bordes and Pierre [3] propose a diagonal rescaling matrix for linear support vector
machines based on oL-BFGS, providing an analysis of their approach. In their numeri-
cal tests, their method matched oL-BFGS in convergence per epoch but with a significant
improvement in terms of runtimes. Hennig [15] uses a Bayesian approach to learn about
an objective function from noisy gradient evaluations. Byrd et al. [6] use a sample aver-
age approximation to compute the search direction in Newton-CG and L-BFGS. As a
consequence, they do not have a statistical error on their estimates but a bias. Hennig
[15] models the prior distribution of the objective function as a Gaussian process with a
squared exponential kernel and, using the linearity of Gaussian processes, derives prior
distributions for the gradient and the Hessian of the objective function. Then, assum-
ing Gaussian likelihoods for both the gradient and the Hessian of the objective function,
Hennig [15] deduces closed-form equations for the mean of the (also Gaussian) posterior
distribution. Sohl-Dickstein, Poole, and Ganguli [28] develop a quasi-Newton method for
sums of functions where they keep a quadratic approximation for each of these functions,
subsampling them at each iteration and updating the respective quadratic approximation
with new gradient information. They use a shared, low-dimensional subspace to avoid
the cost of storing a Hessian matrix for each function. Byrd et al. [7] propose a stochas-
tic quasi-Newton method comprising a two-loop scheme where the outer loop updates the
curvature pairs in an L-BFGS scheme (with large sample sizes), and the inner loop performs
preconditioned stochastic gradient descent (with lower sample sizes). Thus, the method
proposed by Byrd et al. [7] does not incorporate the information from the noisy gradi-
ents of the inner loops in the Hessian approximation. Moritz, Nishihara, and Jordan [20]
improve the stochastic quasi-Newton method proposed by Byrd et al. [7] by combining it
with a control variate method to estimate the gradient at each iteration, achieving linear
convergence.

OPTIMIZATION METHODS & SOFTWARE . 3

Gower, Goldfarb, and Richtarik [13] introduce a block BEGS method to update the
Hessian approximation each iteration using a sample independent of the sample used to
compute the gradient. The proposed block update fits the Hessian inverse to a sketched
Hessian computed from a sub-sample of the data, but requires a Cholesky decomposition
each iteration. Wang et al. [30] propose a damped quasi-Newton method for stochastic
optimization that uses all noisy gradient evaluations to approximate the Hessian inverse.
They provide a convergence proof for nonconvex problems, provided the Hessian eigen-
values have uniform lower bound. Li [18] preconditions the stochastic gradient estimates
using a matrix computed to fit the secant equation while avoiding amplifying gradient
estimate noise. Bollapragada et al. [2] use standard L-BFGS equations in stochastic opti-
mization by increasing sample sizes to keep the relative error for the gradients uniformly
bounded. Bollapragada et al. [2] recommend a stochastic line-search procedure to be used
with their method. Goldfarb, Ren, and Bahamou [12] develop a quasi-Newton method for
deep neural networks that approximates Hessian inverses as block matrices such that each
block is decomposed as the kronecker products of smaller matrices. Lately, Shi et al. [27]
build on top of their analysis in [31] to build a quasi-Newton method for stochastic opti-
mization with a noise-resilient Wolfe- Armijo line search. Their method, however, requires
the gradient estimate to be bounded above in norm by a known constant, which they
use in their line search. We refer the interested reader to [4,19] for extensive reviews of
quasi-Newton methods for stochastic optimization.

Most approaches to tackle the condition number issue in stochastic optimization use
equations from deterministic quasi-Newton methods and somehow circumvent the ran-
domness. Here, we propose a Bayesian framework to build a posterior distribution for
the Hessian matrix from noisy gradient observations. In Bayesian inference, a posterior
distribution is built from prior and likelihood distributions. We model the prior distri-
bution for the Hessian matrix with a probability density function (pdf) that decreases
exponentially as the Hessian moves farther away (in the Frobenius norm sense) from the
initial Hessian estimate. This approach is motivated by classic deterministic quasi-Newton
methods, where a Frobenius norm regularizer centred at the current Hessian is used to
circumvent ill-posedness [10]. Moreover, we impose constraints on the Hessian matrix
eigenvalues extremes, enforcing positive-definiteness and gradient smoothness. We model
the likelihood using the secant equation, i.e. how likely it is to obtain the observed gradient
differences for a given Hessian. The Hessian that maximizes the posterior distribution, i.e.
the Maximum a Posteriori (MAP), is defined as the Hessian approximation.

The choice of prior and likelihood distributions guarantees that the negative log poste-
rior is strongly-convex. Therefore, we opt to use the Newton-CG method to find the MAP.
Although it is possible to compute the second-order derivatives of the negative log poste-
rior of the Hessian directly, it could be expensive and memory intensive. Keep in mind that,
for a d-dimensional problem, the Hessian matrix is a d x d matrix, thus, the second-order
derivatives of the log posterior must be gathered in a fourth-order tensor with d* compo-
nents. Instead of assembling this tensor, we compute its action over any symmetric matrix
of adequate dimensions and then use the conjugate gradient method to find the Newton
direction. Moreover, to enforce the stability of Newton-CG, we use the central-path interior
point method to impose the prior conditions on the eigenvalues of the Hessian approxi-
mation, i.e. we start with a large penalization parameter and decrease it in steps, keeping
the problem well-conditioned. If properly tuned, our approach not only guarantees that

4 (& AG.CARLONETAL.

Newton-CG converges to the MAP as it also results in a slow decay for the Hessian approxi-
mation’s smallest eigenvalue, thus improving the stability for the SGD preconditioned with
our Hessian approximation.

Other works address the problem of approximating a Hessian from noisy gradient obser-
vations. Hennig [15] also uses Bayesian inference; however, to build a posterior distribution
of the objective function as a Gaussian process. The main difference between the proposed
approach and that of Hennig [15] is in the way he models the prior and likelihood dis-
tributions. Moreover, Hennig [15] assumes independence between the components of the
gradient noise in his analysis, and also that they have the same variance. In the same spirit
of the present work, Li [18] also solves an optimization sub-problem each iteration to find
a Hessian approximation from noisy gradients. His approach differs from ours in the way
he uses the available information to estimate the preconditioning matrix; here, we use a
Bayesian approach to build a posterior distribution of the Hessian matrix while [18] obtains
a point estimate by minimizing a different objective function.

To illustrate the effectiveness of our approach, we solve two stochastic optimization
problems. The first is minimizing a quadratic function, and the second is training an ¢,
regularized logistic regression model. In all cases, we start with SGD preconditioned with
a diagonal matrix and update the preconditioning matrix in intervals using the proposed
Bayesian approach. We study cases with up to 300 design variables and condition numbers
of orders up to 10°. We present results combining the proposed Bayesian Hessian approach
with different variations of SGD, namely, vanilla SGD, SGD-MICE [8], SVRG [16], and
SARAH [22].

1.1. Problem definition

The stochastic optimization problem is stated as follows. Let & be the design variable in
dimension dg¢ and 6 be a vector-valued random variable in dimension dy equipped with
a probability density function p: R% — Rt. Here, E[-|£] and V[-|€] are the expecta-
tion and variance operators conditioned on &, respectively. Aiming at minimizing the
expectations conditioned on &, we state the problem as

§" = argmin E[f(§,0)|£], (1)

EeE

where £ C R% is a feasible set and f: = x R% — R. Through what follows, let F(§) :=
E[f(&,0)|&] where F: E — R.

In minimizing (1) with respect to the design variable & € E, vanilla SGD is constructed
with the update rule

Eir1 = &k — MV (2)

where 7y is the step size at iteration k, and vk is an unbiased estimator of the gradient of F
at &;. For instance, an unbiased estimator vy of the gradient of F at &, may be constructed
using a Monte Carlo estimator,

b
VF(E) = Elf 6 O8] ~ v = 3 > Vef (61000,)
i=1

OPTIMIZATION METHODS & SOFTWARE . 5

with b independent and identically distributed (iid) random variables #; ~ p. The estima-
tor (3) is a random variable and its use in optimization algorithms gives rise to the so-called
Stochastic Optimizers.

First-order methods are the most popular choice in stochastic optimization due to their
robustness to noise. However, these methods might suffer from slow convergence when
the condition number of the problem is large. Here, we are interested in finding a matrix
By that approximates V2F(§;) so that its inverse can be used as a preconditioner for the
stochastic gradient,

Er = £ — By vk (4)
thus diminishing the effect of the condition number on the optimization convergence.
In the deterministic setting, quasi-Newton methods circumvent the sensibility to the
condition number by using the gradient observations to construct the Hessian matrix
approximation at the current iterate. However, in the stochastic optimization setting, we
first have to address the following questions:

Q1: How does one obtain a Hessian approximation from noisy gradient observations?

Q2: How do we avoid amplifying the noise in gradient estimates with our preconditioner
matrix 1A3k_ e

Q3: To mitigate the effect of the condition number, is it enough to have an accurate
Hessian approximation, however, acting on noisy gradient estimates?

To address Q1, consider the curvature pair y, := V¢F(§;) — Ve F(§_) and sy := §; —
&,_,. Thus, we first aim to find the Hessian approximation that minimizes the residue of
the secant equation, that is,

k

. _ 2
min > [[Bsc — y,I* (5)

BeR“ xR% =1

However, we do not have access to y; := E[Vef(&x,0)|6,] — E[Vef(§x—1,0)I6k—1]
instead, we may sample finitely many times y.(0) := Vef(&;,0) — Vef(§,_1,0). In
Section 2, we discuss how to use Bayesian inference to find a matrix By given the noisy
curvature pairs y and s.

One of the main problems faced by preconditioning in stochastic optimization is the
amplification of the noise in gradient estimates. This amplification is proportional to the
smallest eigenvalue of matrix Ek,

A1

"o 5o 5] < 35 s3], 0

by the matrix-norm compatibility. Thus, to tackle Q2, we impose a lower bound constraint
on the eigenvalues of Bk, ie. fik = ul

To address Q3 in a numerical fashion, we investigate and compare stochastic gradients
preconditioned with our Hessian inverse approximation with and without control in the
relative statistical error.

6 (& A.G.CARLONETAL.

Regarding notation, in this work, we use bold-face lower-case letters as vectors and bold-
face upper-case letters as matrices. Moreover, we refer to first-order derivatives of functions
with respect to matrices as gradients, even though they are also matrices.

2. Approximating the Hessian and its inverse using Bayesian inference
Important to what follows is the Monte Carlo estimator of y;

1 &
Fi= P ACHY %
i=1

with by iid random variables 8; ~ p.

2.1. Bayesian formulation of the Hessian inference problem

For the pair of sets Y := {5’5}]2:1 and S := {Sg}lg:l, we employ the Bayes’ formula to build
a posterior distribution of the Hessian B given Y and S,

7 (B|S,Y) x p(S, Y|B)x (B), (8)

where the likelihood distribution p(S, Y|B) and the prior distribution 7 (B) will be dis-
cussed in Sections 2.1.1 and 2.1.2, respectively. We opt to use as a Hessian approximation
the matrix that minimizes the negative log posterior subject to the eigenvalues constraints

arg min (Lk(B) := —log(z (BIS, Y)))

v

subjectto Amin(B) > i)
Amax(B) < L
B - BT)

BZ =

where Amin and Apmax are operators that return the minimum and maximum eigenvalues,
respectively; L is the smoothness constant of F; and i > 0 is an arbitrary parameter. If F is
[t-convex, i can be chosen as i, however, a larger i might be desirable to avoid amplifying
the noise in the search direction. Since computing B}, is not possible in general, we use an

approximation By, obtained numerically, as a Hessian approximation.

2.1.1. Likelihood of observing curvature pairs given a Hessian
We use the secant equations to derive the likelihood of observing the curvature pairs (S,)
given a Hessian B. Let the difference in gradients be as in (7). From the observations y,,
we build a sample covariance matrix X . Then, the covariance matrix of the estimator y,
is given by

X

Xy = Covly,] = B (10)

We are interested in the inverse of Xj. However, to avoid singularity issues, we use a
. . o . <1 _
precision matrix approximation P, instead of X, ~ for each y, € Y. We define P, as

Pri= (3¢ + op(max(E)ly) (11)

OPTIMIZATION METHODS & SOFTWARE . 7

where op is a regularization parameter and I ;. is the identity matrix of size dz. Then, we
define the negative log likelihood of curvature pair s; and y, given a matrix B as

- 1 _
—log(p(s. 74IB)) = —-I1Bsk = Fillp, + Cio (12)

thus, for S and Y generated by a first-order stochastic gradient descent method,

k

1 -
—log(p(S, YIB)) = > IBsc = 35, + C. (13)
=1

In the above equations, C = Zf: ¢ C¢ are constants and v is used to normalize the negative
log likelihood,

k
v =D |IPeBr_1sc — 7)lllIsell, (14)
(=1

being By._; a Hessian approximation at iteration k—1.

2.1.2. Prior distribution of the Hessian matrix

The prior distribution must encode the knowledge available about the Hessian before the
observations of S and Y. In spirit of quasi-Newton methods, we want to discourage a
Hessian that differs much from the current estimate. For this reason, we adopt a nega-
tive log prior of B as the squared weighted Frobenius norm of the difference between B
and By_1,

1 ~ 1 ~
SIB =By 1w = L WY2(B — Bi_)) W2, (15)

for a nonsingular symmetric matrix of weights W. Another information available about the
matrix B is that its eigenvalues must lay between z and L, as described in the constraints
of (9). To enforce these eigenvalue constraints on B, we define the prior distribution from
its negative logarithm as

3IB=Bioillfgy +C if ily. < B <L,

—log(z (B)) = {—I—oo (16)

otherwise,

where again C is a normalizing constant. Here, we opt to impose the eigenvalues constraints
on the negative log prior as logarithmic barriers of form

—log (det (B — ﬁldg)) — log (det (ildi — B)) , (17)
where

, L:=La, (18)

8 (& A.G.CARLONETAL.

and a > 1is a relaxation parameter. Hence, we propose a family of priors with logarithmic
barriers with hyperparameter § as

—log(z (B; §)) = §||B — Bi—1llf,w — Blog (det (B — il4,))
— Blog (det (i1, — B)) + G, (19)

being supported on the set of symmetric positive-definite matrices with eigenvalues
between £ and L.

The parameter p > 0 weights the Frobenius regularization term and § > 0 weights the
logarithmic barrier terms. Note that log(z (B; f)) — log(z (B)) as f | 0 with p = 1.

A—1
Some options for W are I ;. and Bk_/lz . According to [10], the Frobenius norm as in (15)
A—1 A
with weights Bk—/12 measures the relative error of B with respect to Bi_;. In practice,

. T2 . .
estimating By, can be expensive. In these cases, we recommend using W = I ;..

2.1.3. Posterior distribution of the Hessian matrix
Substituting (13) and (19) in (8), we obtain the posterior distribution of the Hessian matrix
B given curvature pairs S and Y. The negative log posterior with parameter f is

k
1 _ p N ~
Lk(B) := = D> I1Bsc = Jllp, + 1B = Bioallfw = flog (det (B — ilg,))
t=1

— plog (det (ildg — B)) + C. (20)

The Equation (20) can be interpreted as the sum of the secant equation residues for each
curvature pair (in the metrics induced by Py), subject to the logarithmic barrier terms that
impose the eigenvalues constraints, and a Frobenius norm regularization term.

Since we are interested in minimizing the negative log posterior in (20), it is our interest
to know if it is strongly convex. The negative log-likelihood is convex but not strictly-
convex until enough linearly independent curvature pairs (s¢, y,) are observed. Regarding
the logarithmic barrier terms of the prior, the negative logarithm of the determinant
defined on symmetric positive-definite matrices is a convex function [5, Section 3.1.5];
however, not a strictly-convex one. The Frobenius norm regularization term with W = I 5,
is p-convex, therefore the negative log posterior is strongly convex with parameter p. Here,
the regularization term works as a Tikhonov regularization term (||A||r = ||vec(4)ll2),
guaranteeing uniqueness of solution. Properly tuning § and p guarantees that the prob-
lem of minimizing (20) is well-conditioned. A discussion on how to choose § is presented
in Section 2.2.

2.2. Finding the posterior maximizer

Finding the B}, that solves the problem in (9) is not a trivial task. Since the negative log pos-
terior is p-convex, local search methods like the Newton method can be used to find its
minimizer. However, the Newton method requires assembling the fourth-order tensor of
second-order derivatives of the negative log posterior, which can be expensive in terms of

OPTIMIZATION METHODS & SOFTWARE . 9

processing and memory allocation. Instead, we opt to derive the action of this fourth-order
tensor of second-order derivatives over any given matrix and use the conjugate gradient
method to find the Newton direction, a procedure known as the Newton-CG method.
Since we have a constraint in (9) that B should be symmetric, the first-order optimality
condition is

sym (VpLi(B; f)) = 0, (21)

where the sym (-) operator returns the symmetric part of its argument, e.g. sym(A) =
%(A + AT). Thus, to use the Newton-CG method to solve this problem, every iteration
we need to find the direction D that satisfies

sym (op VBL(B; B)) = —sym (VBLr(B; f)), (22)

where Jp is the directional derivative with respect to B in the direction of D,

gB+vYD)— g(B).

3 (23)

opg(B) = };%

To avoid ill-conditioning, we need a large enough regularization parameter p, but not too
large since it introduces bias in the posterior maximizer. Also, the bias given by the log-
barriers grows with £, the logarithmic barrier parameter; but a small S negatively impacts
the smoothness of the posterior distribution. We opt to keep p fixed and use an interior-
point central-path method [5, Section 11.2.2] to decrease the parameter £; the solution
Bi(p) of the approximated problem

Bi(p) = arg min (L (B; p)) (24)

converges to the solution B; of (9) as # | 0. Thus, we start with a large # and a large tol-
erance tol and perform optimization until the norm of the gradient of the log posterior is
below fol. Then, we decrease both f and tol by a factor y and repeat the process. This pro-
cedure is repeated until the desired tolerance is achieved with the desired f. To minimize
the negative log posterior for a given 5, we use the Newton-CG method with backtracking-
Armijo line search; we use the conjugate gradient method to find the Newton direction and
then the backtracking- Armijo to find a step size. Therefore, to use the Newton-CG, we need
the gradient of £ with respect to B and the directional derivative of the gradient of Ly
with respect to B in the direction of any arbitrary symmetric matrix V € R% x R%. The
pseudo-code for the minimization of the negative log posterior is presented in Algorithm 1.
We use the central-path method to decrease f and tol every step outer loop, indexed as i
in Algorithm 1. In lines 6 to 10, we have the Newton-CG method, where, each iteration,
the conjugate gradient method is used to find the approximate Newton direction D and a
backtracking-Armijo line-search is used to find the step size.

Next, we will present how to compute Vp Ly (Bk; S)and oy VgL (f}k; p) for any symmet-
ric V € R% x R%. Note that, since B is a matrix, VgL and oy VpLy are also symmetric
matrices of the same dimensions of B.

10 (& A G.CARLONETAL.

Algorithm 1 Pseudocode of the procedure to find the maximum a posteriori of the Hessian
matrix of the objective function given noisy curvature pair observations.

1: procedure FINDMAP(S, Y, f}k_l,ﬁo,tolo,y =2,c4 = 107%)

2 E’k — Ek—l

3 fori=1,2,...do

4 Bi = Bi-1/y

5 tol; = toli_1/y

6 while || Vg Li(Bi; Bi)|IF > tol; do

7 use the conjugate gradient method to find a symmetric D such that

5 sym (0pVLi(Big 1)) = —sym (VLy(Bis 1)

9: find ¢ such that Lx(Bx + ¢D; ;) < Li(Bi; i) + cac VBL(Bi; fi): D
using backtracking-Armijo

10: Bk «— Bk +¢D

11: end while

12: end for

13: return 1§k

14: end procedure

2.3. Gradient of the negative log posterior

To compute VL, we need to compute the gradients of the log prior and of the log
likelihood,

VBLi(B; f) = —Vplog(p(S, Y|B)) — Vplog(w (B; £)). (25)

The gradient of the negative log likelihood can be calculated from (13) as

k
1 -
—~Vilog(p(S, YIB)) = > VallBs: = ylI3, (26)
(=1
1 k
= - Py(Bsy — y . 27
v; ¢(Bsc — y,) @ st (27)

The gradient of the negative log prior can be derived from (19) as
P 1 A 1 5 N
— Vi log(x (B) = 2 Val| W3 (B — Bioy) W3} — Valog (det (B — L))
— fVglog (det (il,if - B)) . (28)
The gradient of the Frobenius norm regularizer is
1 1 A 1 A
S VBIW2 (B — Bi)W? ;= W(B — B W, (29)

whereas the gradients of the logarithmic barrier terms are derived using the Jacobi formula,

—Vplog (det (B — iily.)) = —(B — iily)™" (30)

OPTIMIZATION METHODS & SOFTWARE . 1

~Vglog (det (14, — B)) = L1y — B, (31)
Substituting (29), (30), and (31) in (28),
—Vglog(z (B;) = pW(B — Bro))W — (B — lg.)™" + p(Lls. —B)™". (32)

Finally, substituting the gradient of the negative log likelihood (27) and the gradient of the
negative log prior (32) in (25), we obtain the gradient of the negative log posterior

k

VBLk(B) = D Pu(Bs —5) @ s+ pW(B — B)W
=1
~ BB = flg) ™" + p(lls. —B)~. (33)

2.4. Directional derivative of the gradient of the negative log posterior

Asdiscussed in Section 2.2, to find the posterior distribution maximizer using Newton-CG,
we need to compute the directional derivative of the gradient of the negative log posterior
in a given direction. Thus, for any symmetric matrix V e R% x R%, we derive dy VgL as

5VvBﬁk(B;ﬁ) = —5Vv3 log(p(S, YIB)) - SVVB log(n (B,ﬁ)) (34)
Following from (27),

— 5VVB log(p(S, Y|B))
i VBl0gP(S, YIB + 9V) — Vplog(p(S, Y|B))
910 0

L S Po(BAOV)s =5, ® s = 3 PBsc —§) @ st
V900)

(35)

(36)

k
1
= ; ZP{;VSg R s¢. (37)
(=1

The directional derivative of the gradient of the negative log prior is derived from (32),
—5yVglog(z (B; f)) = p oy (W(B - i;k_l)w)
— Bov(B — iily) ™" + pov(Lly — B)~. (38)

The Frobenius regularizer term from (38) is derived as

. . W(B+9V —B_)W—W(B—B_))W
5V(W(B_Bk—1)w)=}9liré (kl)ﬁ (k—1)

= WVW. (39)

12 A.G.CARLON ET AL.

Following the same rationale for the log-barrier terms,
ov(B — fulg)™"
(B+9IV)— :&Idg)_l - (B- ,&Idg)_l

=1
210 9
— im ((B— ilg,)Ig; +9 (B~ iilg)~' V)~ — (B~ fulg,) ™"
o 700 9
— lim (Idg + 19(B - ﬁldg)_lv)_l(B - /&Id,f)_l - (B - :&Idg)_l
T 0l0 9
— lim (Idg —J(B— /A‘Idg)_lv + 0(192))(3 - ,&Idg)_l - (B- ,&Idg)_l
910 v,
=—(B—alg.)"'VB - iil;) ", (40)

and,

ov(ity— Byt = lim (L = B+ IV~ — (L — B)”!

910 ¥
iy (U= BYUg 9 (AL =BV - L - B
910 9
i Lt =00l - BTV AL - B — (L= B)”!
900 %
. (4. +9(@I; — B)~'V + O@W?) (LI — B~ — (LI; — B) ™!
910 %]
= ({1;-B)~'v(iIl; - B~ (41)

Substituting (39), (40), and (41) back into (38), we get the directional derivative of the
gradient of the negative log prior,
— 0vVplog(w (B;) = pWVW + B(B — jilg,) ™ V(B — jil.) ™"
+pd1;. - B)~'V(LI; — B (42)
Finally, substituting (37) and (42) into (34), we obtain the directional derivative of the
gradient of the negative log posterior,

k
1
ovVBLr(Bs f) = = D PVs @sp+ pWVW
=1

+ BB — lg)'V(B— ilg) " + f(Lly. — B)T'V(LIg —B)'. (43)

2.5. Hessian approximation inverse

To use the Newton’s method to solve (9), one needs to either solve the linear system
Bydy = V¢F(§)), or find the inverse of the Hessian approximation Hy = Bk_l, thus dy =

H V¢F(§)).

OPTIMIZATION METHODS & SOFTWARE . 13

To avoid inverting By, we propose to use the Newton-Raphson method to find an
approximation Hj such that || B Hy — I4.|lF < tolg; we can start the Newton-Raphson
from the previous Hessian inverse approximation, thus saving a significant computational
time. The Newton-Raphson method for this problem is given by

A = B - (R R, (44)

where R(H) = BxH — I, and R'(H) = By, thus,

i, = @I, — HBYH,. (45)

The recursive procedure is repeated until ||R(I:I;() g < tolg. Then, we set Hy := I:I;(as an
approximation of Hy in optimization. The convergence of the Newton-Raphson method

s . 0 .
depends on the initial guess of the inverse, H; the method converges if the spectral norm
~O,
of R(H}) is less than one [23]. We start from the inverse estimate in the previous iteration,

A0 ~ ~
H,; = Hj._;.Ifthe method does not converge, that is, if the residue increases, we reset H ;(=
2/(L + 1) I;. This starting point is similar to the one suggested by [23] for Hermitian

positive definite Bk, IAI;C = 2/(Amax + Amin) 1., where Ayqx and A,y are, respectively, the
largest and the smallest eigenvalues of By.

3. Preconditioned stochastic gradient descent methods

Instead of the common update of SGD as presented in (2), we investigate the case where the
stochastic gradient estimate is preconditioned with our Hessian inverse approximation,

Eryr = & — mcivr. (46)

If the function to be minimized is strongly convex, SGD with fixed step size converges
linearly to a neighbourhood of the optimum [14].

Here, we expect the preconditioned SGD to converge to a neighbourhood of the opti-
mum faster than vanilla SGD. One possible side effect of the preconditioning of the
stochastic gradient estimate is that the noise in the gradient might be amplified [18]. There-
fore, it is fundamental to control the error in the gradient estimates using variance control
techniques, e.g. MICE [8], SVRG [16], SARAH [22]. Note that the variance control meth-
ods mentioned before are specializations of (2), only differing in the way that they compute
Uk. Moreover, acknowledging the possibly prohibitive cost of updating the Hessian esti-
mate every iteration, we update the Hessian after a given number of iterations or gradient
evaluations.

Some variance control methods are based on computing differences between gradients
at known points and are thus well-suited to be combined with our approach. The MICE
algorithm [8] builds a hierarchy of iterates, then progressively computes gradient differ-
ences between subsequent iterates in this hierarchy to control the gradient estimator error.
Since both the differences between the iterates and between the gradients are available,
curvature pairs s and y can be obtained without any extra cost in terms of memory or
gradient evaluations. If we refer to the algorithm in (2) using MICE to obtain vy as SGD-
MICE, preconditioning the gradient estimates by our inverse Hessian approximation as in

14 (& A G.CARLONETAL.

(46) furnishes the SGD-MICE-Bay method. For the finite sum case, other control variates
methods are available, e.g. SVRG [16], SARAH [22], SAGA [9], SAG [25]. However, SVRG
and SARAH have an advantage over SAGA and SAG here in that curvature pairs can be
obtained directly from the algorithms without extra memory or processing costs. We refer
to SVRG and SARAH preconditioned by our inverse Hessian approximation as SVRG-Bay
and SARAH-Bay, respectively.

3.1. Convergence of preconditioned stochastic gradient descent

Assume that the relative statistical error of the gradient estimator is uniformly bounded
above by a constant € and that an arbitrary lower-bound # is imposed on the eigenvalues
of the Hessian approximation, i.e. i = ¢u with ¢ > 1. On the one hand, a large value of ¢
decreases the noise amplification, as previously discussed, and at the same time improves
the stability of the preconditioned stochastic gradient descent. On the other hand, if x
is indeed the smallest eigenvalue of the true Hessian matrix of F, imposing the constraint
that the Hessian approximation must have a smallest eigenvalue & > p causes the Hessian
approximation to differ from the true Hessian. In our analysis, we seek to consider the effect
of the choice of parameters ¢, €, and the step size 7.

Assumption 3.1 (Regularity and convexity of the objective function): The objective
function F has Lipschitz continuous second-order derivatives and is x-convex. Namely,

forallx,y € E
IV2F(x) = VEF@)Il < M |x =y (47)

FO) = Fx) + V@) - (=0 + 5 |y = [, (48)

Assumption 3.2 (Unbiasedness and bounded statistical error of gradient estimator):

The gradient estimator vy, is an unbiased estimator of VF (&) with an upper bound € on
its relative statistical error,

2 2
E[ok —E vl &]°|&:] = €| VF@o|. (50)
Assumption 3.3 (Bounded error of Hessian approximation): The approximation By of
V2F(&;) has a lower-bound /i := ey on its eigenvalues with & > 1 and the product of the

true Hessian by the approximation inverse Hy results in the identity matrix added by an
error that is bounded above in norm by a linear function of ¢,

B, - gy =ep, & > 1, (51)
VPF(EYH =1+ &, (52)
€Il < Cele — 1), (53)

where C, > 0 1is a constant.

OPTIMIZATION METHODS & SOFTWARE . 15

Theorem 3.1 (Convergence of preconditioned stochastic gradient descent): If Assump-
tions 3.1, 3.2, and 3.3 are satisfied and
262 (1—e = C,(1+€)(e — 1) — %)

Mn(1+ €?) (54)

[VEGO] <

holds for all k > 0, then the gradients of the iterates generated by the preconditioned stochastic
gradient descent as described in (46) converge linearly wirh rate 1—t,

IVEE)| < Q=" | VRG] - (55)

Proof: From Assumption 3.1, we obtain an upper bound for the norm of the gradient at

Erv1>

[VEED] < [VFED + V2FED Errr — 80| + % €0 - & 6)

Using the preconditioned SGD update in (46), one can further develop the equation
above as

VEE | < [VPE0 - 172 Fen @iwo] + 2 |t
< | V& - nVFEDHVFE|
+ | nvrEn = vEE |+ 2 o 67)
< |1ay = V2 FEOH [VFE|
+7 Hvzp(gk)ﬁkH lvk — VEED | + MT”Z HHk H2 loel?. (58
Taking the expectation conditioned on & and using Assumption 3.2,
E[[VEE 18] < |1 —nVF@OH] [VEED)]

o Mn? .12
+ne | VEEOHL| |[VFE0 | + S+ B[vEe]’ . 69

Using Assumption 3.3,
E[[VFEl 6] < (|1 — 1 + €| + ne 1o, + &) [VFE0)
M 2
+ ﬁ”zu +e) | VEEY|?
< (=) + 7 1N + ne@ + 11EID) | VFED |
M 2
e) | VG|

<(1=nA—e)+n(l+e)C:le — 1)) |VEE|

16 (&) A G.CARLONETAL.

Quadratic function, dim.: 10, cond. number: 103

q —-8= B Hessian update

\

\ =TT ou

\

\
\
\
N\
102 \
\
\
N
g \
= \
: \
= o :
~
~
~
~
~
~
~
N
~
~
~
~
~
- -
-——
10°
0 5 10 15 20 25 30
Iteration

Figure 1. Value of i versus iteration for SGD-MICE preconditioned with our Hessian inverse approxima-
tion applied to the minimization of the quadratic problem in example in Section 4.1.

M;72
+ W(l +é) |VRED | (60)

Letting the right hand side of the above inequality be strictly less than (1 — r) H VE(&)) ||
results in (54). Taking expectation and unrolling the recursion complete the proof. |

Theorem 3.1 shows that increasing the parameter ¢ that controls the smallest eigen-
value of the Hessian approximation improves the stability of preconditioned stochastic
gradient descent. Moreover, controlling ¢ and the step size # to satisfy (54) for a given r
guarantees global convergence. By letting € = 0, thus resulting in deterministic gradient
observations; ¢ = 1, meaning that 27 = y; and unitary step size # = 1, one recovers the
quadratic convergence of the Newton method with the condition that || VE(&)) || <2u*/M
(see (60)).

Since our analysis depends on quantities that are hard to characterize in practice, we
do not use it to control ¢ and #. Instead, we start optimization with ¢ = (L + u)/(2u)
and control the parameter p of the Frobenius regularization of the prior; the regulariza-
tion term penalizes large changes in the Hessian approximation. Thus, at every Hessian
approximation update, ¢ progressively decays. Figure 1 illustrates this behaviour for the
Example in Section 4.1.

3.2. Time complexity

Given that the interval between Hessian updates is set to be O (dg), then the extra cost of

finding the Hessian approximation using our Bayesian approach is O (dg) The number

OPTIMIZATION METHODS & SOFTWARE . 17

of Newton iterations and conjugate gradient iterations do not depend on the problem’s
dimensionality but on the tolerance set for each algorithm. The cost of each conjugate

gradient iteration is the cost of evaluating oy VgL (B, f) in (43), which is O (dg) due
to matrix multiplications. If, instead of using the conjugate gradient method to compute
the Newton direction, one builds the fourth-order tensor of second-order derivatives of
the log posterior with respect to the Hessian, the time complexity increases to O (dg).

In each iteration, we have to compute Py, the precision matrix for each curvature pair.
If a full matrix is computed, we have a complexity of O (dg) each iteration. If, however,

we opt to ignore the off-diagonal terms, this complexity is improved to O (dg). We can
further decrease the memory overhead of our method by storing only a scalar, the trace of
the covariance matrix, for each curvature pair. The reasoning behind this approach is that
the trace of the covariance matrix works as a weight for the curvature pairs; in the curva-
ture pairs where the gradient difference is better estimated, the respective curvature pair
has a larger weight when computing the likelihood. When our Bayesian Hessian approx-
imation is used with the MICE gradient estimator, the trace of the covariance matrix is
available without any extra cost. In numerical tests, we observed that keeping the trace of
the covariance matrix resulted in the best option regarding the balance between accuracy
and computational time.

We do not discuss here the cost to compute vy satisfying condition (50), as it depends
on the method used to estimate it. For example, if vy is a Monte Carlo estimator with

adaptive batch sizes, the cost of evaluating vy is O (6_2 H VF(&,) H _2). If the conditions of
Theorem 1 are satisfied, the gradient sampling cost is O (e 7*(1 — r)_Zk).

4. Numerical examples

In this section, we solve some numerical examples with and without our Bayesian approach
to validate its performance. In all cases, we present the convergence of the optimality gap,
F(&;) — F(£"), and in some cases, the convergence of the central-path Newton-CG used
to find the Hessian approximations. The parameters of the Bayesian approach are kept
fixed for all the numerical examples, namely, the logarithmic barrier parameter, f = 1072;
the Frobenius norm regularizer parameter, p = 10~2; the tolerance on the norm of the
gradient of the negative log posterior, tol = 10~%; the constraint on the lower bound of the
eigenvalues of B, i, is set as the strong-convexity parameter u; the relaxation parameter,
a = 1.05; the number of central-path steps is six; and the factor of decrease of both tol;
and p; for each ith central-path step is y = 2. Moreover, to keep our Bayesian approach
competitive in terms of computational time and memory allocation, we do not compute the
full matrix Py for each curvature pair, using the inverse of the trace of the covariance matrix
instead. Note that the trace of the covariance matrix of the difference between gradients is
available from MICE since it is used to control the relative error of the gradient [8].

The results presented in this section are obtained using a python implementation of the
proposed method whose source code can be found at GitHub.! Moreover, the source code
of the MICE gradient estimator, also used in this section, can be found at Bitbucket.2 A
repository with all the code necessary to reproduce the results presented in this section is
available at GitHub.?

18 (&) A G.CARLONETAL.

Table 1. Step sizes and batch sizes used for Example 4.1.

Method Step size Batch size
SGD f? 1
SGD-MICE [T e=1
SGD-Bay (decr.) ﬁ 10
SGD-Bay (fixed) 1 1000
SGD-MICE-Bay 1/(1 4 €2) €=05

Notes: Here, L is the Lipschitz constant of Vf, u is the strong-convexity constant, k is the iteration,
and e is the tolerance on the relative statistical error.

4.1. Quadratic function

The first numerical test is a quadratic function with noise added to its gradient. We want
to minimize Eq [f (&, 0)]&] with

fE&.0) = 8- AE—b E+8-VT0, (61

where A is a square symmetric positive-definite matrix with 1 < A < x, X is a symmetric
and positive definite covariance matrix, 6 is a vector of independent standard normal dis-
tributed random variables, and the vector b is defined as b = L4, where 14 is a vector of
ones of dimension d. The eigenvalues of A are sampled uniformly between 1 and x, with
necessarily one eigenvalue being 1 and another being x. The gradient of f with respect
to & is

Vi(£,0) =AE —b+VX0, (62)

thus, the covariance matrix of Vf is X.

We solve this problem for two different values of the condition number x, namely 10
and 10, and for a fixed number of dimensions dg = 10. We compare the performances
of different methods in the solution of this problem: SGD, SGD-MICE, SGD-Bay with
decreasing step size, SGD-Bay with fixed step size, and SGD-MICE-Bay. In all cases, we
run the optimization until 107 gradients are evaluated. For SGD-Bay, since the number of
gradient evaluations per iteration is fixed, we know the number of iterations a priori and
thus choose the interval between Hessian updates to have 15 equally distributed updates.
For SGD-MICE-Bay, we opt to have an update every d; iterations. The step sizes and batch
sizes used for each method are presented in Table 1, where, for the cases when MICE is
used, we show the tolerance € on the relative statistical error of the gradient.

In Figure 2, we present the optimality gap versus iteration for both x = 10° (left) and
x = 10° (right) for the previously mentioned methods. In the cases where our Bayesian
approach is used, the Hessian updates are illustrated as coloured squares with black edges.
For the case where x = 1000, SGD-MICE-Bay achieved, in 39 iterations, a lower optimality
gap than SGD in 107 iterations. Moreover, SGD presents oscillations around the optimum,
making it difficult to have a reliable optimum estimate. In the case of SGD-Bay, with and
without the decreasing step size, we observe oscillations of larger amplitude due to the
preconditioning with our Hessian approach. This behaviour is due to the lack of variance
control of SGD; not even the decreasing step size is enough to avoid the oscillations. In
the case of an even larger condition number, ¥ = 100, SGD-MICE-Bay far outperforms

OPTIMIZATION METHODS & SOFTWARE ‘ 19

Quadratic function, dim.: 10, cond. number: 1000 Quadratic function, dim.: 10, cond. number: 10°
— SGD SGD-MICE — SGD SGD-MICE
—— SGD-Bay decr. step SGD-MICE-Bay 3 —— SGD-Bay decr. step SGD-MICE-Bay
10 4 —— SGD-Bay fixed step ~~ © Hessian update 10% 47 —— SGD-Bay fixed step @ Hessian update
—_——— 10! \
] ?W\T\ . .
g 10 = 10-! T T
80 0
& | B \
? E 1072
£ 107 g
S S 100
1077
107° T
1070
107 - — - 101 : ‘ - ;
10! 10° 10° 107 10! 10% 10° 107

Iteration Iteration

Figure 2. Convergence of the optimality gap versus iteration with x = 1000 (left) and « = 108 (right)
for Example 4.1. The Hessian updates are marked with coloured squares with black edges. In both cases,
SGD-MICE-Bay reduced the optimality gap more than the other methods and in a much smaller number
of iterations. Moreover, SGD-MICE-Bay did not oscillate around the optimum like both SGD-Bay cases.

the other methods while requiring 178 iterations. Both SGD and SGD-MICE, being first-
order methods, cannot improve the optimality gap significantly once close to the optimum.
As for SGD-Bay, the same oscillating behaviour is observed for both the fixed and decreas-
ing step cases. From these results, it is clear that, in large condition numbers cases, using
second-order information is necessary for an efficient convergence. Moreover, we observe
that controlling the variance of the gradient estimator is of central importance to main-
taining convergence in the stochastic setting, avoiding the amplification of noise due to
the preconditioning.

One crucial aspect of our method is the cost to update the Hessian approximation, i.e.
the cost of the Newton-CG method in this setting. For SGD-MICE-Bay in the x = 1000
case, we present in Figure 3 the Newton-CG convergence of the gradient norm || VgL|| per
Newton iteration. The black numbers on top of each update denote the number of conju-
gate gradient steps needed to find the Newton direction. Each colour represents a different
central-path step, i.e. at each colour change, both f and tol are decreased by a factor y = 2,
with each tol denoted by a dash-dotted line. For this problem, the runtime of each of the
Hessian updates is at fractions of seconds. Given that d¢ = 10, the Hessian matrix has 100
components. Still, in the worst case, 51 conjugate gradient iterations were needed to find the
Newton direction, showing that the problem of finding B is well-conditioned. Moreover,
the total number of Newton iterations in the three cases did not exceed 25.

Controlling the eigenvalues maxima and minima is essential to keep the stability and
efficiency of preconditioned SGD. To motivate why our approach is better suited to stochas-
tic optimization than using the BFGS formulae to approximate the Hessian, we, for every
Hessian update of SGD-MICE-Bay, also compute a Hessian approximation using BFGS.
In Figure 4, we present, for both x = 1000 (left) and x = 10® (right), the extreme eigen-
values for our Bayesian approach, for BFGS, and the true extremes. The same curvature
pairs are used for both our Bayesian approach and BFGS. For both condition number

20 A.G.CARLON ET AL.

Iteration: 11, curvature pairs: 10, time spent: 0.16s

10!
4
J 6 5 5 . —-— Tolerance for central-path step
3 102 10 13 l()flr 11 11 5 20
-% 13 | 018 18 @&_ 20 29 .\18
& 10-5 20 23 27 A1
10 \. 41
D
|

0 5 10 15 20 25
Newton iteration

Tteration: 21, curvature pairs: 20, time spent: 0.12s

P
10° 13

1073

Residue

1076

Newton iteration

Tteration: 31, curvature pairs: 30, time spent: 0.22s

10!

1072

Residue

0 5 10 15 20 25
Newton iteration

Figure 3. For each of the three Hessian updates of SGD-MICE-Bay with x = 1000 in Example 4.1, we
present the convergence of the gradient norm for the Newton-CG method. The number of curvature
pairs available and the time taken are presented for each Hessian update. Each colour represents a dif-
ferent step of the central-path method with a different logarithmic barrier parameter £ and a different
residue tolerance. The tolerance for each central-path step is presented as a dash-dotted line. The num-
ber above each Newton iteration represents the number of conjugate gradient iterations needed to find
the Newton direction.

cases, the BFGS method can keep the minimum eigenvalue above the actual value; how-
ever, the largest eigenvalue far exceeds the true largest eigenvalue. In contrast, our Bayesian
approach keeps the eigenvalues of the Hessian approximation between the extreme values
due to the logarithmic barrier constraints.

As motivated in (6) and Theorem 3.1, increasing /i decreases the noise amplification of
preconditioning the gradients by our Bayesian Hessian approximation. Figure 5 presents
a comparison between SGD-Bay with a fixed step size for different values of ji. One thing
to notice is the reduction of the amplitude of the oscillations as i increases. Moreover, we
observe a clear linear convergence for the more conservative cases of £ = 1000 and & =
10,000. Comparing these results with the ones presented in Figure 2 for the same condition
number x = 10%, it is clear that increasing /i improves the performance of SGD-Bay even

OPTIMIZATION METHODS & SOFTWARE . 21

Quadratic function, dim.: 10, cond. number: 1000 «107 Quadratic function, dim.: 10, cond. number: 10°
60004 === Largest ei 1 o =1 —=--- Largest eigenvalue II.
—-— Smallest eigenvalue - - 1.0 —-= Smallest eigenvalue ,’
50004 —— SGD-MICE-Bay //"’ —— SGD-MICE-Bay /
—— BFGS L 084 —— BFGS !
2 4000 7 g !
E ‘ E]]
el) 206 f
26000 7 §a ’,'
& 5] :
2000 04 !
/
1000 0.2 !
U S e y
R 2 g g e — b e o e —e—b.e— ek
0 — 0.0 e E—— =
10 15 20 25 30 0 25 50 5 100 125 150 175
Iterations

0 5
Iterations
Figure 4. Maximum and minimum eigenvalues for both our Bayesian approach and BFGS for Exam-
ple4.1withx = 1000 (left) and x = 108 (right). We use the same curvature pairs for both cases, obtained

from SGD-MICE-Bay. The true extremes of the eigenvalues are presented as black lines. Dashed lines rep-
resent the largest eigenvalues, and dash-dotted lines represent the smallest eigenvalues. It is clear that
our approach gets closer to the actual extreme eigenvalues than BFGS, which is farther from the smallest

eigenvalue than our method and exceeds the value of the largest eigenvalue.

Quadratic function, dim.: 10, cond. number: 108

— =1 — [1=1000
— 4=10 A = 10000
10 — =100 o Hessian update -
10!
o
<
e 107t
Z
.Té
Z 1073
o
o
1075
10-7
109 i : i : a
10000 20000 30000 40000 50000

0
Iteration

Figure 5. Optimality gap versus iteration for SGD-Bay with fixed step size on Example 4.1 for different
values of /1. The coloured squares with black edges represent the Hessian updates of each method. The
different values of & result in different amplitudes for the oscillations around the optimum of SGD-Bay;

larger values of z result in smaller amplitudes of oscillations (cf. (6)).

without controlling the gradient statistical error or decreasing the step size. However, in
the general convex case, SGD-Bay with a fixed step size will converge to a neighbourhood
of the optimum and oscillate around it with a fixed amplitude; increasing /i or decreasing
the step size may reduce the amplitude of the oscillations but not circumvent them.

22 A.G.CARLON ET AL.

Table 2. For each of the datasets used in Example 4.2, we present its data size, number of features, and
condition number of the optimization problem.

dataset size num. of features K

mushrooms 8124 112 525 x 10°
ijicnn1 49,990 22 3.76 x 10*
w8a 49,749 300 291 x 10°
cod-rna 59,535 8 6.48 x 10°
HIGGS 11,000,000 28 2.50 x 10*

4.2. Logistic regression

Training logistic regression models for classification of finite data is an empirical risk min-
imization problem, thus a problem of minimizing a sum of functions. When training a
model on a large dataset, it is common to use SGD to reduce the iteration cost by subsam-
pling the data points used in each iteration. Since inexact information about the gradient is
used in each iteration, deterministic quasi-Newton methods usually fail to recover the Hes-
sian and its inverse. Here, we use our Bayesian framework to recover the Hessian from noisy
gradient observations and precondition the gradient estimates with the Hessian inverse.
We compare plain SGD, SGD-MICE, SGD-MICE-Bay, SVRG, SVRG-Bay, SARAH, and
SARAH-Bay on the task of training a binary classification logistic regression model with
¢, regularization on five different datasets, mushrooms, ijcnnl, w8a [17], cod-rna [29], and
HIGGS [1].4
The £,-regularized log loss function we seek to minimize is

F§) = — Zfs01—<x,,yl = Zlog(1+exp(—y,s xl>)+—||f,=||2 (63)

where each data point (x;, y;) is such that x; € R% and yi € {—1,1}. For all datasets, we use
a regularization parameter 1 = 107°.

Logistic regression, mushrooms dataset Logistic regression, mushrooms dataset
10477 10°
— SGD ——- SVRG-Bay 1 =
SGD-MICE —— SARAH ‘\\
) SGD-MICE-Bay ~ —=- SARAH-Bay . Ase
10™ ‘&— SVRG o Hessian update | 107 ~=
Sso
— ST
L N
L —— - 3l
L0 AN 10 3
5 :-‘\:\ . T g i--a
& NN iy
= - =, = 1
=103 SR = = 1073 N
E ‘1_ Sees § B
= N T L = # \
[I e N . s} .
104 & 104 .
a a
] — sep -—-- SVRG-Bay
1072 R 10774 SGD-MICE —— SARAH
SGD-MICE-Bay ~ —=-- SARAH-Bay
—— SVRG o Hessian update
1076 T T 1076 T T T
0 200000 400000 600000 800000 107! 10° 10! 10
Number of gradient evaluations Runtime (s)

Figure 6. Convergence of the optimality gap versus iteration (left) and runtime (right) for Example 4.2,
mushrooms dataset. The Hessian updates are marked with coloured squares with black edges.

OPTIMIZATION METHODS & SOFTWARE ‘ 23

Iteration: 5770, curvature pairs: 1120, time spent: 17.20s

2
100 2 9 1
4 o 6
w 4 N
< 107 \, g 9 11
e X > D \ 14 \\‘16
1070 1+
—-— Tolerance for central-path step \.
0 5 10 15 20
Newton iteration
Iteration: 11964, curvature pairs: 1120, time spent: 24.24s
9 g ;
0] @@ 7 3 3 6
10 7 5 6 5 e 8 O s
] 6
5] 10 15 17
= 10-¢ \. - \ \
0 5 10 15 20
Newton iteration
Tteration: 19476, curvature pairs: 1120, time spent: 23.98s
76 -
10° “*—6’.,3\ .
) 8 .\.6\
:éj 103 11 14
n
= 13 18
1076
0 b) 10 15 20 25

Newton iteration

Figure 7. Convergence of the Newton-CG method for each of the Hessian updates of SGD-MICE-Bay
in Example 4.2, mushrooms dataset. The number of curvature pairs available and the time taken are
presented for each Hessian update. Each colour represents a different step of the central-path method
with a different logarithmic barrier parameter 5 and a different residue tolerance. The tolerance for each
central-path step is presented as a dash-dotted line. The number above each Newton iteration represents
the number of conjugate gradient iterations needed to find the Newton direction.

For SGD, only a singleton sample is used, i.e. the minibatch size is set to 1. Also, as in
the example in Section 4.1, a decreasing schedule is used for the step size. For SGD-MICE,
the sample size is adaptively controlled to keep the relative error of the gradient estimates
below € = 0.5 with a step size of 7 = 2/((L 4 u)(1 + €2)) [8]. For the HIGGS dataset, the
choice of € = 0.5 was too conservative, thus we used € = 0.8. As for SGD-MICE-Bay, we
used the same values of €, however, since we precondition the gradient estimates with the
inverse of the Hessian, we use a step size of n = (1 + 62)_1. Therefore, with the initial
Hessian guess with diagonal entries B;; = L—‘;ﬁ, SGD-MICE-Bay recovers exactly SGD-
MICE with the optimal step size. Similarly, for SVRG and SARAH, we use a fixed step
size of 7 = 0.1/L, whereas for SVRG-Bay and SARAH-Bay we use 7, = 0.1. For SVRG,
SVRG-Bay, SARAH, and SARAH-Bay, we start with a full batch, iterate using a mini-batch
size of five, and restart every two epochs.

24 A.G.CARLON ET AL.

Logistic regression, #jcnnl dataset Logistic regression, ijennl dataset

™\ 2
\\\
v \k . \\
-
102 N 102 \“\\Z\'-\
o * S
|=] \ N =]
= . \ ~ E \
Z 107 B\ 3N Z 107 N
B 5 S g “
= \ N 2 W\
=3 J—— ~ .
o AN © 4 \
1071 10 \
\\ \
\ \
N \
| — sep --- SVRGBay Jo-s] — sop ——- SVRG-Bay
10774 SGD-MICE — SARAH L SGD-MICE —— SARAIH
SGD-MICE-Bay ——-- SARAH-Bay SGD-MICE-Bay ~ —-- SARAH-Bay
—— SVRG o Hessian update —— SVRG o Hessian update
10-° 1 ; : ; ; 1076 4— : :
0 100000 200000 300000 400000 500000 107! 100 10"

Number of gradient evaluations Runtime (s)

Figure 8. Convergence of the optimality gap versus iteration (left) and runtime (right) for Example 4.2,
ijcnnT dataset. The Hessian updates are marked with coloured squares with black edges.

In Table 2, we present the sizes, number of features, and condition numbers of the result-
ing optimization problems for the five datasets. The used datasets differ significantly in
their characteristics.

In Figure 6, we present the convergence for the optimality gap versus iterations (left) and
versus runtime in seconds (right) for the mushrooms dataset. For SGD, SGD-MICE, SVRG,
and SARAH, we present their convergences as solid lines and their respective precondi-
tioned cases as dashed lines. For all the methods, preconditioning the gradient estimates
using our Bayesian approach improved the final optimality gap in at least one order of
magnitude. In terms of convergence of the optimality gap versus runtime, we observe
that computing the Hessian approximation adds an overhead to the optimization pro-
cess; however, the improvement in convergence compensates for this overhead. In this
example, SGD-MICE-Bay achieved an optimality gap ten times smaller than that found by
SGD-MICE and more than two orders of magnitude smaller than the one found by SGD.
Preconditioning the gradient estimates of SVRG and SARAH with our Bayesian Hessian
inverse approximation reduced the final optimality gap found by more than one order of
magnitude.

In Figure 7, the convergence of the Newton-CG method is presented for each of the
Hessian updates of SGD-MICE-Bay for the mushrooms dataset. Note that a relatively small
number of Newton steps are needed for each central-path step; 8 in the worst case. More-
over, the number of conjugate gradient steps does not exceed 18, which is a remarkably
small number of iterations considering that we have a problem with 112 x 112 variables.
This result indicates that the problem is well-conditioned.

Figure 8 presents the convergence for the ijcnnl dataset. Here, as in the case of the mush-
rooms dataset, our Bayesian approach improved the convergence in all cases. However,
the most remarkable improvement is the one of SVRG-Bay, which achieved an optimal-
ity gap of more than two orders of magnitude smaller than the vanilla SVRG with just
one Hessian update. Both SVRG-Bay and SGD-MICE-Bay achieved very similar values of
optimality gap, with SVRG-Bay requiring less runtime than SGD-MICE-Bay. In Figure 9,

OPTIMIZATION METHODS & SOFTWARE ‘ 25

Iteration: 1184, curvature pairs: 220, time spent: 0.33s

100 2 9 5 —-— Tolerance for central-path step

EAVA VA W VIE ¥
A A

10 4\
® ¥ \

Residue

t

\

5.0 7.5 10.0 12.5 15.0 17.5 20.0
Newton iteration

0.0 2.

ot

Figure 9. Convergence of the Newton-CG method for each of the Hessian updates of SGD-MICE-Bay in
Example 4.2, ijcnn1 dataset. The number of curvature pairs available and the time taken are presented for
each Hessian update. Each colour represents a different step of the central-path method with a different
logarithmic barrier parameter £ and a different residue tolerance. The tolerance for each central-path
step is presented as a dash-dotted line. The number above each Newton iteration represents the number
of conjugate gradient iterations needed to find the Newton direction.

Logistic regression, w8a dataset Logistic regression, w8a dataset
—— SGD === SVRG-Bay M\
SGD-MICE —— SARAH R\
SGD-MICE-Bay ~ —-- SARAH-Bay
—— SVRG o Hessian update
107 4| 107!
|
. \1\\\ =
&0 A — 5
= [N T =
Lf ikt =
é “““““ - \\ g
=] N ~~—e =
B N A
S - e S
1072 = 1072
a a
— SGD -==- SVRG-Bay
SGD-MICE —— SARAH
SGD-MICE-Bay ~ —=-- SARAH-Bay
—— SVRG o Hessian update
1073 - - - 1073 - - -
0.0 0.5 1.0 L5 2.0 2.5 10° 10! 10
Number of gradient evaluations %106 Runtime (s)

Figure 10. Convergence of the optimality gap versus iteration (left) and runtime (right) for Example 4.2,
w8a dataset. The Hessian updates are marked with coloured squares with black edges.

we present the convergence of Newton-CG for the one Hessian update of SGD-MICE-Bay
for the jjcnnl dataset. Note that the time spent computing the Hessian approximation is
0.33 seconds; for comparison, computing the true Hessian took 0.54 seconds in an average
of 100 evaluations.

The w8a dataset is the case with the largest number of features, 300, meaning that the
Hessian to be approximated by our Bayesian approach has 300 x 300 components. The
convergence for the w8a dataset is presented in Figure 10. Coupling SVRG, SARAH, and
SGD-MICE with our Bayesian approach improved the convergence in all cases, but it was
more significant for SVRG and SARAH. However, in terms of runtime, SGD-MICE was
able to perform better than its competitors, and SGD-MICE-Bay had a small edge over
SGD-MICE. Figure 11 presents the convergence of Newton-CG for SGD-MICE-Bay on

26 (&) A.G.CARLONETAL

Iteration: 6649, curvature pairs: 64, time spent: 7.32s

10° : 3 4 4
9 3 o«
(<]
= 10— 4
£ 107° 14
%
st
1076 % '
—-— Tolerance for central-path step
i | 1 L4
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Newton iteration
Iteration: 9320, curvature pairs: 79, time spent: 15.90s
10! 10 f
o/ 6 4 5 7 6 10
8
21072 9 9 .\'\ .\'\
=
5 .
13
= 100
\
0 b) 10

Newton iteration

Figure 11. Convergence of the Newton-CG method for each of the Hessian updates of SGD-MICE-Bay in
Example 4.2, w8a dataset. The number of curvature pairs available and the time taken are presented for
each Hessian update. Each colour represents a different step of the central-path method with a different
logarithmic barrier parameter £ and a different residue tolerance. The tolerance for each central-path
step is presented as a dash-dotted line. The number above each Newton iteration represents the number
of conjugate gradient iterations needed to find the Newton direction.

Logistic regression, cod-rna dataset Logistic regression, cod-rna dataset

— sGD ——- SVRG-Bay
SGD-MICE —— SARAH ﬂ\
SGD-MICE-Bay === SARAH-Bay
—— SVRG o Hessian update
NS
\&7-—“
N
=% e =9
f"b 1 \\ ﬁ; —1 [
> 10 N 5 10 [
= AAN = 1
< NN <
E ° N K Vol
: . ! o,
o o
a 1
—— SGD === SVRG-Bay
SGD-MICE —— SARAH
SGD-MICE-Bay ~ —=-- SARAH-Bay
—— SVRG o Hessian update
1072 T T 102 T T T -
0.0 0.2 0.4 0.6 0.8 1.0 1.2 10° 10! 10? 10°
%107 Runtime (s)

Number of gradient evaluations

Figure 12. Convergence of the optimality gap versus iteration (left) and runtime (right) for Example 4.2,
cod-rna dataset. The Hessian updates are marked with coloured squares with black edges.

the w8a dataset. As in the case of the mushrooms dataset, a small number of Newton steps
(a maximum of 24) and conjugate gradient steps (a maximum of 34) were needed despite
the large dimensionality of the problem at 90,000 variables. Even with the large Hessian,

OPTIMIZATION METHODS & SOFTWARE ‘ 27

Iteration: 67147, curvature pairs: 1000, time spent: 0.82s

T ‘ ‘
10° . —— Tolerance for central-path step -
] 1 1
5 1073 ’\.\ 2 ,,,,, 1 3 ‘1
Cd -
1076
0 2 4 6 8 10 12 14
Newton iteration
Iteration: 104816, curvature pairs: 1000, time spent: 1.89s
10!
[
1 1
—% 10~2 1 @ 1 e 1 1 1 1 1
2 3 3333333‘333333‘\}.\3\
) . 0-0-0-0 .'Q
Qﬁ 10*0 \ \ \ \

10 15 20 25 30
Newton iteration

Tteration: 136859, curvature pairs: 1000, time spent: 1.80s

G3 3 3 3 3
10-1 o O 5 5
0 5
3 . 3
S 3
7 :
107 \\ R

Newton iteration

Residue

Iteration: 194678, curvature pairs: 1000, time spent: 1.42s

2
100 S 19 4 1)
. 3 1, 1
é 1073 4 5 S ‘.\.3 .\.3 L 3,,,,,,,,,.1\\‘?
DAY

1076 1 N NN \’_

0 5 10 15 20
Newton iteration

Figure 13. Convergence of the Newton-CG method for each of the Hessian updates of SGD-MICE-Bay in
Example 4.2, cod-rna dataset. The number of curvature pairs available and the time taken are presented
for each Hessian update. Each colour represents a different step of the central-path method with a differ-
entlogarithmic barrier parameter § and a different residue tolerance. The tolerance for each central-path
step is presented as a dash-dotted line. The number above each Newton iteration represents the number
of conjugate gradient iterations needed to find the Newton direction.

the time spent to find an approximation (7.32 s in the first update and 15.9 s in the second)
is competitive with the time of computing the true Hessian, of 8.52 s in an average of 100
evaluations. Remember that our approach has stability advantages over using the true Hes-
sian inverse as a preconditioner due to the control of the noise amplification given by the
logarithmic barrier on the smallest eigenvalue.

28 (&) A.G.CARLONETAL

Logistic regression, HIGGS dataset Logistic regression, HIGGS dataset

1073

9

Optimality gap
S S
8 !
};
T
<
=

Optimality gap

—7
10 o I”<
a, a
10~9 4 —— sGD ——=~ SVRG-Bay 1094 —— SGD -=- SVRG-Bay _
SGD-MICE —— SARAH" 4 a SGD-MICE —— SARAH
SGD-MICE-Bay === SARAH-Bay SGD-MICE-Bay === SARAH-Bay
—— SVRG 8 Hessian update —— SVRG 8 Hessian update
10~ 4 : : ; ; 101 - -
0.0 0.2 0.4 0.6 0.8 1.0 10? 103
Number of gradient evaluations %108 Runtime (s)

Figure 14. Convergence of the optimality gap versus iteration (left) and runtime (right) for Example 4.2,
HIGGS dataset. The Hessian updates are marked with coloured squares with black edges.

Training the logistic regression model to the cod-rna dataset is the problem with the
largest condition number of those studied here, at 6.48 x 10°. We expect our Bayesian
approach to be able to assist the optimization methods in converging to the true solution
despite the large condition number of the problem. The convergence of the optimality gap
for the cod-rna dataset is presented in Figure 12. Note that SVRG, SARAH, and SGD-MICE
get stuck after some iterations, improving very little for most of the optimization process.
Their preconditioned counterparts, however, perform much better, being able to decrease
the optimality gap continuously. When looking at the convergence of the optimality gap
versus runtime for SGD-MICE-Bay, we observe a sharp decrease after the first Hessian
update that follows until its stop. Figure 13 presents the convergence of Newton-CG for
the four Hessian updates of SGD-MICE-Bay. In the second Hessian update, the third
central-path step, the Newton-CG method got temporarily stuck for 12 iterations, lead-
ing us to believe that the parameters and/or p were not properly set for this example.
Still, the Newton-CG method could resume the Hessian approximation in a reasonable
time, at 1.89 s, showing the robustness of our approach.

The HIGGS dataset contains 11 x 10° data points, being the largest studied here. Thus,
since our Hessian approximation is independent of the data size, we expect to have a time
advantage compared to computing the true Hessian. Figure 14 presents the convergence of
the optimality gap for the HIGGS dataset. Here we observe that, in contrast to the previ-
ous results, our Bayesian approach worsened the performance of SARAH and SVRG. For
SGD-MICE, however, our method improved the final optimality gap by more than one
order of magnitude. Also, concerning runtime, SGD-MICE-Bay performed better than the
other methods, despite doing 9 Hessian updates. The longest Hessian update was the last
one, lasting 2.36 s. In comparison, the average time taken to compute a Hessian for this
example is 130.58 s. One possible interpretation for the bad performance of SVRG-Bay
and SARAH-Bay is that, contrary to SGD-MICE, SVRG and SARAH do not control the
relative statistical error in the gradient estimates.

OPTIMIZATION METHODS & SOFTWARE . 29

5. Conclusion

We presented a Bayesian approach to approximate Hessians of functions given noisy obser-
vations of their gradients. This problem is of great importance in stochastic optimization,
where pre-conditioning gradient estimates with the inverse of the Hessian matrix can
improve the convergence of stochastic gradient descent methods. The proposed Bayesian
approach takes into consideration not only the secant equations as in deterministic quasi-
Newton methods but also the noise in the gradients. To mitigate the known effect of
amplification of the gradient noise, we control the smallest eigenvalue of the Hessian
approximation. To maximize the log-posterior of the Hessian matrix, we use a Newton-
CG method with a central-path approach to impose the eigenvalue constraints. The
numerical results presented show that our approach is not only interesting from the the-
oretical perspective but also results in practical advantage. In both a stochastic quadratic
equation and in the training of a logistic regression model with ¢, regularization, using
our Bayesian approximation of the Hessian matrix resulted in better convergence rates
without a significant increase in runtime. For future research, we suggest using low-rank
or diagonal approximations of the Hessians.

Notes

. https://github.com/agcarlon/bayhess

. https://bitbucket.org/agcarlon/mice

. https://github.com/agcarlon/bayhess_numerics

. Obtained from LibSVM datasets at https://www.csie.ntu.edu.tw/cjlin/libsvmtools/datasets/
binary.html, except for the HIGGS dataset that was obtained from https://archive.ics.uci.edu
[11].

B W N =

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This work was partially supported by the KAUST Office of Sponsored Research (OSR) under Award
number OSR-2019-CRG8-4033 in the KAUST Competitive Research Grants Program Round 8, the
Alexander von Humboldt Foundation, and the Flexible Interdisciplinary Research Collaboration
Fund at the University of Nottingham Project ID 7466664.

Notes on contributors

Dr André Gustavo Carlon completed his Bachelor’s degree in Civil Engineering at the Universidade
Federal de Santa Catarina (UFSC) in Brazil in 2013. He then pursued his Master’s and PhD degrees at
the same institution, defending his Master’s thesis on structural optimization in 2015 and his Ph.D.
dissertation on uncertainty quantification in 2019. Dr. Carlon has since been a postdoctoral fellow
in the stochastic numerics group at King Abdullah University of Science and Technology (KAUST)
in Saudi Arabia. His research focuses on stochastic optimization, structural optimization, reliability
engineering, and optimal experimental design.

Dr Luis Espath obtained his Engineering Diploma from the Pontifical Catholic University of Rio
Grande do Sul (PUCRS) in Brazil in 2007. He then completed both his Master’s and Doctoral

https://github.com/agcarlon/bayhess
https://bitbucket.org/agcarlon/mice
https://github.com/agcarlon/bayhess_numerics
https://www.csie.ntu.edu.tw/cjlin/libsvmtools/datasets/binary.html
https://archive.ics.uci.edu

30 A.G.CARLON ET AL.

degrees at the Federal University of Rio Grande do Sul (UFRGS) in Brazil, concluding his stud-
ies in 2013. Dr Espath served as a postdoctoral fellow at King Abdullah University of Science
and Technology (KAUST) until 2019. He then joined RWTH Aachen University in Germany as
a Research Scientist, where he defended his Habilitation thesis in Mathematics in the field of Theo-
retical Mechanics in 2022. His research interests include theoretical and computational mechanics,
uncertainty quantification, stochastic optimization, and machine learning.

Dr Ratil Tempone received his PhD from the Royal Institute of Technology in Stockholm, Sweden,
in 2002. He subsequently held postdoctoral positions at the Institute for Computational Engineer-
ing and Sciences (ICES) at the University of Texas at Austin and served as an Assistant Professor
at Florida State University in Tallahassee. Since 2009, Dr. Tempone has been a Full Professor at
King Abdullah University of Science and Technology (KAUST) in Thuwal, Saudi Arabia. In 2018, he
was awarded the Alexander von Humboldt Professorship at RWTH Aachen University in Germany.
Dr. Tempone’s research focuses on numerical analysis, specifically the development and analysis of
efficient and robust numerical methods for problems involving stochastic models and differential
equations in various fields, including computational mechanics, quantitative finance, biological and
chemical modeling, and wireless communications.

References

[1] P. Baldi, P. Sadowski, and D. Whiteson, Searching for exotic particles in high-energy physics with
deep learning, Nat. Commun. 5 (2014), pp. 1-9.

[2] R. Bollapragada, J. Nocedal, D. Mudigere, H.J. Shi, and P.T.P. Tang, A progressive batching L-
BFGS method for machine learning, in International Conference on Machine Learning, PMLR,
2018, pp. 620-629.

[3] A.Bordes, L. Bottou, and P. Gallinari, Sgd-gn: Careful quasi-Newton stochastic gradient descent,
J. Mach. Learn. Res. 10 (2009), pp. 1737-1754.

[4] L. Bottou, EE. Curtis, and J. Nocedal, Optimization methods for large-scale machine learning,
SIAM Rev. 60 (2018), pp. 223-311.

[5] S.Boyd, S.P. Boyd, and L. Vandenberghe, Convex Optimization, Cambridge University Press,
Cambridge, 2004.

[6] R.H. Byrd, G.M. Chin, W. Neveitt, and J. Nocedal, On the use of stochastic hessian information
in optimization methods for machine learning, SIAM. J. Optim. 21 (2011), pp. 977-995.

[7] R.H. Byrd, S.L. Hansen, J. Nocedal, and Y. Singer, A stochastic quasi-Newton method for large-
scale optimization, SIAM. J. Optim. 26 (2016), pp. 1008-1031.

[8] A. Carlon, L. Espath, R. Lopez, and R. Tempone, Multi-iteration stochastic optimizers, preprint
(2020). Available at arXiv.

[9] A. Defazio, F. Bach, and S. Lacoste-Julien, SAGA: A fast incremental gradient method with sup-
port for non-strongly convex composite objectives, in Advances in Neural Information Processing
Systems, Montreal, QC, Canada, 2014, pp. 1646-1654.

[10] J.E. Dennis Jr and J.J. Moré, Quasi-Newton methods, motivation and theory, SIAM Rev.
19 (1977), pp. 46-89.

[11] D.Dua and C. Graff, UCI machine learning repository (2022). Available at http://archive.ics.uci.
edu/ml

[12] D. Goldfarb, Y. Ren, and A. Bahamou, Practical quasi-Newton methods for training deep neural
networks, Adv. Neural. Inf. Process. Syst. 33 (2020), pp. 2386-2396.

[13] R. Gower, D. Goldfarb, and P. Richtarik, Stochastic block BFGS: Squeezing more curvature out
of data, in International Conference on Machine Learning, PMLR, 2016, pp. 1869-1878.

[14] R.M. Gower, N. Loizou, X. Qian, A. Sailanbayev, E. Shulgin, and P. Richtarik, SGD: General
analysis and improved rates, in International Conference on Machine Learning, PMLR, 2019,
pp. 5200-5209.

[15] P. Hennig, Fast probabilistic optimization from noisy gradients, in International Conference on
Machine Learning, PMLR, 2013, pp. 62-70.

http://archive.ics.uci.edu/ml

(16]
(17]
(18]
(19]
(20]
(21]

(22]

(23]
(24]
(25]
(26]
(27]

(28]

(29]

(30]

(31]

OPTIMIZATION METHODS & SOFTWARE . 31

R. Johnson and T. Zhang, Accelerating stochastic gradient descent using predictive variance
reduction, Adv. Neural. Inf. Process. Syst. 26 (2013), pp. 315-323.

R. Kohavi, Scaling up the accuracy of naive-bayes classifiers: A decision-tree hybrid, in KDD,
Portland, OR, USA, Vol. 96, 1996, pp. 202-207.

X.L. Li, Preconditioned stochastic gradient descent, IEEE. Trans. Neural. Netw. Learn. Syst.
29 (2017), pp. 1454-1466.

A. Mokhtari and A. Ribeiro, Stochastic quasi-Newton methods, Proc. IEEE 108 (2020),
pp. 1906-1922.

P. Moritz, R. Nishihara, and M. Jordan, A linearly-convergent stochastic L-BFGS algorithm, in
Artificial Intelligence and Statistics, Cadiz, Spain, 2016, pp. 249-258.

Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic Course, Vol. 87, Springer
Science & Business Media, Cham, Switzerland, 2013.

L.M. Nguyen, J. Liu, K. Scheinberg, and M. Taka¢, SARAH: A novel method for machine learning
problems using stochastic recursive gradient, in International Conference on Machine Learning,
PMLR, 2017, pp. 2613-2621.

V. Pan and J. Reif, Efficient parallel solution of linear systems, in Proceedings of the Seventeenth
Annual ACM Symposium on Theory of Computing, Providence, RI, USA, 1985, pp. 143-152.
B.T. Polyak, Introduction to Optimization. Optimization Software, Vol. 1, Inc., Publications
Division, New York, 1987.

M. Schmidt, N. Le Roux, and E Bach, Minimizing finite sums with the stochastic average
gradient, Math. Program. 162 (2017), pp. 83-112.

N.N. Schraudolph, J. Yu, and S. Giinter, A stochastic quasi-Newton method for online convex
optimization, in Artificial Intelligence and Statistics, PMLR, 2007, pp. 436-443.

H.J.M. Shi, Y. Xie, R. Byrd, and J. Nocedal, A noise-tolerant quasi-Newton algorithm for
unconstrained optimization, SIAM. J. Optim. 32 (2022), pp. 29-55.

J. Sohl-Dickstein, B. Poole, and S. Ganguli, Fast large-scale optimization by unifying stochastic
gradient and quasi-Newton methods, in International Conference on Machine Learning, Beijing,
China, 2014, pp. 604-612.

A.V. Uzilov,].M. Keegan, and D.H. Mathews, Detection of non-coding rnas on the basis of
predicted secondary structure formation free energy change, BMC. Bioinformatics. 7 (2006),
pp. 1-30.

X. Wang, S. Ma, D. Goldfarb, and W. Liu, Stochastic quasi-Newton methods for nonconvex
stochastic optimization, SIAM. J. Optim. 27 (2017), pp. 927-956.

Y. Xie, R. Byrd, and J. Nocedal, Analysis of the BFGS method with errors, preprint (2019).
Available at arXiv, arXiv:1901.09063.

	1. Introduction
	1.1. Problem definition

	2. Approximating the Hessian and its inverse using Bayesian inference
	2.1. Bayesian formulation of the Hessian inference problem
	2.1.1. Likelihood of observing curvature pairs given a Hessian
	2.1.2. Prior distribution of the Hessian matrix
	2.1.3. Posterior distribution of the Hessian matrix

	2.2. Finding the posterior maximizer
	2.3. Gradient of the negative log posterior
	2.4. Directional derivative of the gradient of the negative log posterior
	2.5. Hessian approximation inverse

	3. Preconditioned stochastic gradient descent methods
	3.1. Convergence of preconditioned stochastic gradient descent
	3.2. Time complexity

	4. Numerical examples
	4.1. Quadratic function
	4.2. Logistic regression

	5. Conclusion
	Notes
	Disclosure statement
	Funding
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.5
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [493.483 703.304]
>> setpagedevice

