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Abstract: We consider the evolution of quantum fields during inflation, and show that the
total-energy singularities appearing in the perturbative expansion of the late-time Wavefunc-
tion of the Universe are purely real when the external states are massless scalars and massless
gravitons. Our proof relies on the tree-level approximation, Bunch-Davies initial conditions,
and exact scale invariance (IR-convergence), but without any assumptions on invariance under
de Sitter boosts. We consider all n-point functions and allow for the exchange of additional
states of any mass and integer spin. Our proof makes use of a decomposition of the inflationary
bulk-bulk propagator of massive spinning fields which preserves UV-convergence and ensures
that the time-ordered contributions are purely real after we rotate to Euclidean time. We use
this reality property to show that the maximally-connected parts of wavefunction coefficients,
from which total-energy singularities originate, are purely real. In a theory where all states
are in the complementary series, this reality extends to the full wavefunction coefficient. We
then use our reality theorem to show that parity-odd correlators (correlators that are mirror
asymmetric) are factorised and do not diverge when the total-energy is conserved. We pay
special attention to the parity-odd four-point function (trispectrum) of inflationary curvature
perturbations and use our reality/factorisation theorems to show that this observable is
factorised into a product of cubic diagrams thereby enabling us to derive exact shapes. We
present examples of couplings between the inflaton and massive spin-1 and spin-2 fields, with
the parity-violation in the trispectrum driven by Chern-Simons corrections to the spinning
field two-point function, or from parity-violating cubic interactions which we build within
the Effective Field Theory of Inflation. In addition, we present a first-of-its-kind example of
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a parity-violating trispectrum, generated at tree-level, that arises in a purely scalar theory
where the inflaton mixes linearly with an additional massive scalar field.
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1 Introduction

The fundamental observables of inflationary cosmology are late-time cosmological correlators,
namely expectation values of quantum fields evaluated at the end of inflation. In the simplest
models of inflation we are interested in correlations between the two massless fields that
survive the rapid expansion of the background spacetime: the Goldstone boson of broken
time translations, and the graviton. These correlators provide the initial conditions for Hot
Big Bang cosmology, and observations of the Cosmic Microwave Background and Large Scale
Structure then allow us to in principle distinguish between different models of the very early
universe by measuring these spatial correlations. Given the very high energies that could
characterise inflation, additional massive particles can be produced from the vacuum and
decay into the light states that make it to the end of inflation. Such heavy states leave
distinctive imprints on late-time correlators that encode their masses (through time evolution)
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and spins (through kinematics), thereby leading to the tantalising prospect of using the early
universe as a very energetic cosmological collider [1–5].

Traditionally, such correlators are computed in de Sitter space perturbation theory using
the in-in/Schwinger-Keldysh formalism (see e.g. [6–8] for reviews), or the Wavefunction of
the Universe. Such computations quickly become very complicated due to the background
time dependence which, in contrast to flat-space, means that the time integrals one must
compute are very non-trivial. Further complications arise from the fact that the mode
functions of massive fields in de Sitter space are usually characterised by Hankel functions
(or similar functions) which are harder to integrate compared to the plane wave solutions
which are familiar in flat-space. Such complications provide a stumbling block in ones quest
to understand the late-time effects of massive fields during inflation, and more generally to
understand the fundamental properties of cosmological correlators.

This has motivated the cosmological bootstrap programme which aims to develop new
computational techniques from which one can compute cosmological correlators while avoiding
the unobservable time evolution of quantum fluctuations and the associated complicated
nested time integrals. The idea is to use general physical principles such as symmetries,
locality and unitarity to directly fix the structure of boundary correlators. This programme is
motivated by the highly successful S-matrix bootstrap programme where scattering amplitudes
are computed while avoiding the complications of Feynman diagrams [9–14]. Much progress on
understanding the structure of cosmological correlators has been made in recent years focusing
on correlators in exact de Sitter space [15–19], correlators arising from interactions with broken
de Sitter boosts [20, 21], the role of analyticity and unitarity in these late-time observables [22–
32], constraints from bulk locality [33], the effects of additional degrees of freedom during
inflation [34–43], loop effects [44–52], graviton correlation functions [53–56], double-copy
structures [57–59], non-linear realisations [60–63], scattering equations [64, 65], the connections
between scattering amplitudes and correlators [66–70], Mellin space representations [51, 52,
71–75], differential representations [76, 77], non-perturbative effects [78, 79], relations to
geometry [80–83], and with much more fun to be had in the coming years. For reviews
see [84–86].

In this work we focus on the Wavefunction of the Universe and the associated wavefunction
coefficients which contain the dynamical information about the evolution of quantum fields in
de Sitter space. It is now well-known that for fields that satisfy Bunch-Davies initial conditions,
i.e. for fields that have Minkowski-like behaviour in the far past, wavefunction coefficients
have a restricted set of singularities. Indeed, wavefunction coefficients are only singular
when the total-energy of the external states vanishes, or when the total-energy entering a
sub-graph vanishes.1 For physical configurations i.e. for real momenta, such singularities
cannot be reached, however much of our understanding of wavefunction coefficients and
cosmological correlators stems from analytically continuing away from real momenta in
which case energies can become negative and singularities can be probed. For example, the
leading total-energy singularity of n-point functions allows us to probe the corresponding
flat-space (boost-breaking) scattering amplitude [22, 66, 67, 70] which provides a non-trivial
link between the cosmological bootstrap and the S-matrix bootstrap, while at four-points the

1As usual in cosmology here we use the term “energy” to describe the magnitude of a spatial momentum
vector, even though strictly speaking there is no notion of energy in cosmology given that time translations
are broken.
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additional singularities are partial-energy ones on which wavefunction coefficients factorise
into a product of a lower-point wavefunction coefficient and a scattering amplitude, see
e.g. [18]. When wavefunction coefficients are rational, which is often the case for massless
scalars and gravitons [87], the residues of these partial-energy poles can be fixed by unitarity
and energy shifts [26, 33].

In general, wavefunction coefficients in momentum space are complex functions of the
external kinematics and cosmological correlators correspond to taking the real or imaginary
parts, at least at tree-level. For parity-even interactions it is the real part that contributes
to correlators, while for parity-odd interactions it is the imaginary part [38]. While it is
known that the tree-level wavefunction coefficients in simple massless theories are purely
real [34] (thereby making parity-odd correlators a neat probe of exotic inflationary physics),
in this paper we greatly extend this concept of reality. More precisely, we show that tree-level
wavefunction coefficients with massless scalar external states have purely real total-energy poles
(both leading and sub-leading) as long as the bulk interactions are IR-convergent. Our proof is
valid for all n-point functions at tree-level and we allow for Feynman diagrams corresponding
to the exchange of massive spinning fields of any mass and integer spin. More concretely,
we show that contributions to wavefunction coefficients from the maximally-connected parts
of Feynman diagrams are purely real, where “maximally-connected” corresponds to the
contributions to the integrands with the maximal number of θ-functions (and this is where
total-energy singularities come from). Our proof makes use of Wick rotations of the time
integrals that compute these wavefunction coefficients and a simple property of the bulk-bulk
propagator of massive fields in de Sitter space: the time-ordered part is purely real after the
time variables are both Wick rotated by 90◦ in the complex plane. This property follows as a
simple consequence of the differential equation that the bulk-bulk propagator must satisfy
given that it is a Green’s function. We provide more explicit and detailed proofs within
two different set-ups for describing massive spinning fields during inflation: cosmological
condensed matter physics (CCM) and cosmological collider physics (CC).

The former was introduced in [88] and requires a sizeable coupling between the new
massive degrees of freedom and the time-dependent inflaton. In this set-up fields are classified
with respect to how they transform under the unbroken group of symmetries which for
cosmology is spatial rotations. The theory should in addition have all of the symmetries of
the Effective Field Theory of Inflation (EFToI) [89] and this can be guaranteed thanks to
particular couplings with the inflaton which can be built straightforwardly using the building
blocks of the EFToI [88]. From the point of view of spontaneous symmetry breaking and
the coset construction, such new degrees of freedom are classified as matter fields which
can couple to the Goldstone boson of broken time translations. The masses of these fields
are not restricted by the Higuchi bound [90], which illustrates that they cannot exist in an
exactly de Sitter invariant theory. This set-up is somewhat similar to condensed matter
systems where linearly realised Lorentz boosts are not used to construct the effective theory
(and hence the name). The latter is perhaps more familiar to the reader and corresponds
to describing massive degrees of freedom as representations of the de Sitter group. The
masses of these fields must adhere to a lower bound in order for the theory to remain unitary,
which is the Higuchi bound [90]. The Lagrangians for such fields are known [91–93], but
quickly become very complicated due to the need to include auxiliary fields (which ultimately
enforce the transverse and traceless conditions on the fields as required by the degrees of
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freedom counting). One can instead work directly with the equations of motion which take
a simpler form [94]. Although the free theories for these new degrees of freedom are de
Sitter invariant, de Sitter boosts can be broken when we come to couple these fields to the
inflaton. This can again be done within the language of the EFToI as done in [5]. We will
review both set-ups in section 2.

In each case we consider light and heavy fields i.e. those in the complementary and
principle series, respectively. We concentrate on the reality properties of the Wick-rotated
bulk-bulk propagators which, in cosmology, are composed of the usual time-ordered Feynman
propagator and a factorised term necessitated by the boundary conditions. For light fields, we
show that the full bulk-bulk propagator is purely real after Wick rotation. For heavy fields,
we show that although the full bulk-bulk propagator is complex in general, we are able to add
and subtract factorised contributions to the full bulk-bulk propagator in such a way that we
cancel the imaginary parts of the Wick-rotated Feynman propagator. The new time-ordered
part, which enjoys reality after rotation, and which is now a sum of the Feynman propagator
and a factorised contribution, is referred to as the connected propagator. This decomposition
is diagrammatically represented in (1.1). In addition, this connected propagator enjoys the
crucial property that it vanishes in the far past, which ensures that Feynman diagrams
constructed using this propagator maintain UV convergence of the associated time integrals.
The detailed treatment of the propagator realities differs from one set-up to another. In the
CCM set-up, we allow for parity violation in the free theory of the massive spinning field
coming from a chemical potential term with a single spatial derivative in the action [39, 95–97].
This splits the helicities and changes the mode functions from Hankel functions to Whittaker
functions. The propagator realities then require cancellations once we sum over the helicities.
In the limit of a vanishing chemical potential with a parity-conserving propagator, reality
holds for each helicity mode separately with the proof for light fields already appearing
in [38]. In the CC set-up we maintain parity in the free theory of the massive spinning
field (except for spin-1 which is essentially identical to the CCM case) and again show that
for light fields the Wick-rotated propagator is purely real, for each helicity mode, while for
heavy fields it is again only the connected part that is purely real. In order to arrive at
this conclusion we use the fact that the transverse and traceless conditions for these fields
relate modes with the same helicity via differential operators that have simple properties
under Wick rotation. These proofs make up section 3.

In section 4 we then use these general properties of Wick-rotated bulk-bulk propagators
to prove that total-energy poles of wavefunction coefficients with external massless scalars
are purely real under the assumptions of IR-convergence, scale invariance and the tree-level
approximation. Our proof does not rely on de Sitter boosts and is therefore directly applicable
to inflationary correlators. We also point out that our proof applies to external gravitons,
and to wavefunction coefficients with an even number of conformally coupled scalars. Our
approach is to extract the connected part of the full bulk-bulk propagator and show that
diagrams that only involve connected propagators (maximally-connected diagrams) are purely
real, and indeed total-energy singularities come from such diagrams. This is a general result,
but if we restrict ourselves to the exchange of light fields only, then the full wavefunction
coefficient is real. In appendix C, we offer a complementary proof of the reality of total-energy
poles using the Hermitian analyticity properties of the external bulk-boundary propagators
and the internal bulk-bulk ones. This property combined with exact scale invariance allows
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Figure 1. Cosmological correlators through the looking glass.

us to draw the same conclusions we arrived at using Wick rotations. Hermitian analyticity
of bulk-bulk propagators in the context of the CCM scenario has been established in [24],
and in appendix C we extend the analysis to the CC scenario.

As a proof of the usefulness of this observation, we consider the parity-odd scalar
trispectrum (see figure 1 for a cartoon illustration) in section 5, which has recently gained
some attention [38, 98–105]. This correlator is fixed by the imaginary parts of wavefunction
coefficients and given that total-energy poles are real, they do not contribute to the parity-odd
trispectrum (unless there is some IR divergence as in [102], or if they come from loop diagrams
as in [44]). This implies that this observable is in fact factorised at tree-level, and can only
have partial-energy poles. In computing cosmological correlators the primary difficulties arise
when one computes the nested time integrals coming from the time-ordered propagators.
Since here these contributions are purely real, computing the parity-odd trispectrum due to
the exchange of massive spinning fields reduces to computing lower-order, factorised time
integrals which have known closed-form solutions. We present a number of exact parity-
odd trispectra for both the CCM and CC descriptions of massive spin-S fields focusing
primarily on S ≤ 2. We consider different sources of parity-violation: parity-violating bulk
interactions and parity violation in the free theory describing the massive field. The latter
case is usually studied in the context of cosmological chemical potentials, where it is known
that the chemical potential can assist particle production [97, 106] and boost the cosmological
collider signal [39, 42, 95, 96, 107–111]. In all cases we also allow for a general speed of sound
for both the inflaton and the exchanged field which can also boost the signal if the inflaton
moves more slowly [35]. We consider both light and heavy fields, and show that the final
correlators for these two cases can be converted into each other by analytic continuation. We
pay special attention to the spin-1 case with a parity-violating propagator (this corresponds
to taking the Proca action and adding a Chern-Simons term that mixes the massive spin-1
field with the inflaton), and compare our exact result for the corresponding parity-odd
trispectrum with that recently derived in [105] using a non-local EFT approach. We find
that the result from the non-local EFT provides a good approximation to our exact result for
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small chemical potential, but deviations start to appear as the magnitude of the chemical
potential is increased (as expected from numerics [105]). For comparison, the exact result
we present here holds for all values of the chemical potential within the perturbative regime.
As a final example, we show how a parity-odd trispectrum can be generated in a purely
scalar theory at tree-level. This can arise due to a parity-odd quartic vertex that mixes the
inflaton with another massive scalar field, in addition to a linear mixing term. We present
an exact analytic result for the corresponding trispectrum.

Our results do not just imply that parity-odd trisepctra are factorised; rather any n-point
correlator of massless scalars and massless gravitons that requires one to take the imaginary
part of wavefunction coefficients will be factorised and therefore lend itself to a simpler
computation. This includes all n-point parity-odd correlators.

We conclude and discuss further directions in section 6. We also include a number of
appendices. In appendix A we provide full details on how to realise the reality property of
the time-ordered part of the Wick-rotated propagator. In appendix B we provide a proof of
our reality theorems using the in-in formalism which might be more familiar to the reader.
Appendix C includes a complementary proof of our results using Hermitian analyticity
that we have already mentioned above, and in appendix D we extend our results to other
Friedmann-Lemaître-Robertson-Walker (FLRW) spacetimes.

Summary of main results. Before moving to the main body of the paper, let us first
summarise our main results for the convenience of the reader.

• Throughout this paper we consider the following decomposition of the wavefunction
bulk-bulk propagator G:

(1.1)

where we refer to C as the connected part and F as the factorised part. The connected
part is defined as containing the time-ordered parts of the full propagator, along with
the crucial property that it is purely real after both time variables are Wick rotated
by 90◦ in the complex plane. As we explain in detail in section 3, C is not equal to
the Feynman propagator; they differ by a factorised contribution. For fields in the
complementary series C coincides with G i.e. F = 0, however for fields in the principle
series F ̸= 0. In all cases both C and F vanish in the far past, while only the sum
satisfies the future Dirichlet boundary condition with all η0 dependence (where η0 is
the late-time cut-off) contained in F .

• Using this decomposition and the reality properties of C, we derive reality properties
of wavefunction coefficients of massless scalars and gravitons with our main results
depicted in figure 2.

• If we specialise to four-point correlators of inflationary curvature perturbations then
the relationship between such a correlator and wavefunction coefficients is depicted in
figure 3.
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(4.1)

(4.2)

(4.3)

Figure 2. Scale invariance plus a Bunch-Davies vacuum implies that the maximally-connected parts
of wavefunction coefficients are purely real where the maximally-connected part is given by replacing
all bulk-bulk propagators G with the connected propagators C. Such a maximally-connected part
is depicted as a hatched grey blob in this figure. We refer to this result as the kT -reality since all
total-energy singularities come from the maximally-connected wavefunction coefficients. This is a
general result that applies for the exchange of fields of any mass and integer spin. If the exchanged
fields are light i.e. they are in the complementary series, then the full wavefunction coefficient is
real (not just the maximally-connected part) since in this case C coincides with G. If we further
consider parity-odd correlation functions, which on general grounds must be imaginary if we consider
correlators of a massless scalar, then the wavefunction reality implies that such n-point correlators are
factorised since only the imaginary part of maximally-connected wavefunction coefficients contribute
to these observables and the imaginary parts vanish.

• We used our factorisation theorem to compute some exact parity-odd trispectra of
curvature perturbations. We consider a number of examples in section 5 but in all cases
the final trispectrum takes the following schematic form:

BPO
4 =∑ constants × kinematics × (hypergeometric function)L × (hypergeometric function)R

(1.2)

where (L,R) correspond to kinematic structures with partial-energy (EL,R) singularities.
There are no total-energy singularities. In all cases the time evolution is characterised
by a product of hypergeometric functions.

Notations and conventions. Throughout this paper, we adopt natural units c = ℏ = 1
and work with the (−+++) metric sign convention. Fourier transforms are defined by

f(x) =
∫

d3k

(2π)3 e
ik·xf(k) ≡

∫
k
eik·xf(k) . (1.3)

We will always adhere to exact translational and rotational invariance. In fact, we shall work
in the Poincaré patch of de Sitter space with the metric

ds2 = a2(η)(−dη2 + dx2) , a(η) = − 1
Hη

, (1.4)
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Figure 3. The first line is the usual relationship between (s-channel) four-point correlators and
wavefunction coefficients. In the second line we have decomposed the full bulk-bulk propagator into
the connected and factorised parts. The kT -reality tells us that the maximally-connected part is purely
real which in turn implies that the parity-odd part of the four-point function is factorised (as above).

as an approximation for an inflationary spacetime. We will mainly work with the wavefunction
formalism and define the wavefunction coefficients by the expansion

Ψ[φ] = exp
[
+

∞∑
n=2

1
n!

∫
k1···kn

ψn({k}, {k})(2π)3δ3
( n∑

a=1
ka

)
φ(k1) · · ·φ(kn)

]
, (1.5)

where φ denotes a general field with indices suppressed. The bulk-boundary and bulk-bulk
propagators in the wavefunction formalism are given by

K(η,k)= φ∗(k,η)
φ∗(k,η0)

, (1.6)

G(η1,η2,k)=P (k)
[(
K∗(η1,k)K(η2,k)θ(η1−η2)+(η1 ↔ η2)

)
−K(η1,k)K(η2,k)

]
, (1.7)

with P (k) = φ(η0, k)φ∗(η0, k) denoting the power spectrum at η = η0. When computing the
wavefunction coefficients, we adopt the amplitude Feynman rules by including a factor of
i for every vertex (our bulk-bulk propagator therefore differs from that in [22] by a factor
of i). Wick rotation turns out to be extremely crucial in this paper. Hence for clarity, we
adopt χ > 0 to denote the Wick-rotated conformal time, defined by

η = ieiϵχ , ϵ→ 0+ . (1.8)

Under this transformation, the propagators are dressed with tildes to indicate Wick rotation,

K̃(χ, k) = K(η, k) , (1.9)
G̃(χ1, χ2, k) = G(η1, η2, k) . (1.10)

We will pay much attention to the total energy of a diagram with external momenta
{k1, · · · ,kn} given by

kT = k1 + · · ·+ kn , (1.11)

where ka = |ka|, a = 1, · · · , n are the external energy variables. Note that correlators with a
prime denotes the removal of an overall momentum-conserving δ-function, e.g.

⟨φ(k1) · · ·φ(kn)⟩ = (2π)3δ3
(

n∑
a=1

ka

)
⟨φ(k1) · · ·φ(kn)⟩′ = (2π)3δ3

(
n∑

a=1
ka

)
Bφ

n (k1, · · · ,kn) .

(1.12)
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In the case of 4-point correlation functions, we evoke the Mandelstam-like variables

s = k1 + k2 , t = k1 + k3 , u = k1 + k4 ,

s = |k1 + k2| , t = |k1 + k3| , u = |k1 + k4| , (1.13)

which satisfy the non-linear relation

k2
1 + k2

2 + k2
3 + k2

4 = s2 + t2 + u2, (1.14)

by momentum conservation. We define a dimensionless curvature trispectrum T by

Bζ
4(k1,k2,k3,k4) = (2π)6∆6

ζ

(kT /4)3

(k1k2k3k4)3T (k1,k2,k3,k4) . (1.15)

For spinning fields, the CCM and CC set-ups historically chose different conventions for
polarisation tensors. We choose to respect these distinct conventions and use different fonts
to avoid confusion:

Cosmological Condensed Matter Scenario: e(h)
i1···iS

,

Cosmological Collider Scenario: e
(h)
i1···iS

. (1.16)

The different properties of these tensors will be explained in section 2. Throughout this paper,
we make use of a number of mathematical formulae for Hankel and Whittaker functions,
which can be found in chapter 10 and chapter 13 of NIST [112].

2 Massive spinning fields during inflation

As we explained in the introduction, in this work we are interested in n-point functions of
massless scalar fields (and gravitons) that can be generated at tree-level due to interactions
with massive spinning fields. In this section we introduce these massive spinning fields and
derive their mode functions. We consider the two different cases of interest, cosmological
condensed matter physics and cosmological collider physics, separately. This section does not
contain any new results, so readers familiar with these descriptions of massive spinning fields
(including parity-violating corrections from the chemical potential) can skip to section 3.

2.1 Cosmological condensed matter physics

We begin with the description of massive spinning fields during inflation advocated in [88].
The idea is to classify states with respect to the unbroken rotational symmetries, rather than
as representations of the full de Sitter group. Fields therefore only have spatial indices, and
we denote a field of spin S by Σi1···iS . For this field to carry 2S + 1 degrees of freedom, it
should be traceless but not transverse. To ensure that the symmetries of the EFToI are
respected, this field is promoted to Σµ1···µS where the new temporal components depend on
the Goldstone of broken time translation π. For example, for S = 1 we have [88]

Σ0(π,Σi) = −∂iπΣi

1 + π̇
, (2.1)
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while for S = 2 we have

Σ00(π,Σij) = ∂iπ∂jπΣij

(1 + π̇)2 , Σ0j(π,Σij) = −∂iπΣij

1 + π̇
. (2.2)

We then write down a quadratic action for Σµ1···µS which will introduce quadratic terms for
the spatial components, and interactions between the spatial components and the inflaton
with the same coefficients. This illustrates the fact that such a theory cannot exist in the
absence of the inflaton. The general action with at most two derivatives is

S2 = 1
2S!

∫
d4x

√
−g
[ (

1− c2
)
nµnλ∇µΣν1···νS∇λΣν1···νS − c2∇µΣν1···νS∇µΣν1···νS

− δc2∇µΣµν2···νS∇λΣλ
ν2···νS

−
(
m2 + Sc2H2

)
Σν1···νSΣν1···νS

− 2SκnµϵµργλΣρν2···νS ∇γΣλ
ν2···νS

]
, (2.3)

where nµnµ = −1 is a timelike unit vector that defines a preferred frame in which the spatial
rotations remain intact. Notice that in addition to the first four terms which appear in [88],
we have also included a fifth term which has a single derivative and is parity-odd. We in
principle have five free parameters but we can fix one using our freedom to normalise Σµ1···µS

which leaves us with four: c, δc,m2 and κ which respectively correspond to two speed-of-sound
parameters, the mass, and the chemical potential. The free theory for Σi1···iS is then

S2 = 1
2S!

∫
dηd3xa(η)2

[
σ′2i1···iS

− c2(∂jσi1···iS )2 − δc2(∂jσji2···iS )2

− a(η)2m2σ2
i1···iS

− 2Sa(η)κϵijkσil2···lS∂jσkl2···lS

]
, (2.4)

where we have defined σi1···iS = a−SΣi1···iS and have converted to conformal time. Here all
scale factors are manifest and indices are raised and lowered with the Kronecker symbol
δij . We see that the kinetic term for this field is the same as that of a canonical scalar
in de Sitter. If we had instead tried to directly construct the most general action with at
most two derivatives for σi1···iS that respects rotational invariance and scale invariance, we
would also have arrived at (2.4).2 For Σi1···iS to be traceless, the trace has to be taken with
respect to the induced metric on constant inflaton slices [88]. This implies that in (2.4) we
can take σi1···is to be traceless with respect to δij up to terms that are quadratic in σi1···iS

and at least quadratic in π. When discussing the free theory for this massive spinning field
we therefore take it to satisfy δijσijl3···lS = 0.

We now convert the action to momentum space and decompose the field in terms of
its helicities via

σi1···iS (η,x) =
S∑

h=−S

∫
k
σh(η, k)e(h)

i1···iS
(k)eik·x , (2.5)

2A parity-odd term with one spatial derivative and one time derivative is degenerate with the terms in (2.4)
up to a total derivative.
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where σh(η, k) are the mode functions and the traceless polarisation tensors satisfying[
e(h)

i1···iS
(k)
]∗

= e(h)
i1···iS

(−k) , (2.6)

e(h)
i1···iS

(k)e(h′)
i1···iS

(−k) = S! δhh′ , (2.7)

with the first condition following from the reality of the fields in position space, and the
second a normalisation choice. For a given helicity the polarisation tensor is a function of
k̂ and two polarisation directions ê± which are orthogonal to k̂, and satisfy (2.6) and (2.7).
More explicitly, we can construct the polarisation directions as

ê±(k̂) = n̂ − (n̂ · k̂)k̂ ± i k̂ × n̂√
2[1− (n̂ · k̂)2]

, (2.8)

where n̂ is an arbitrary unit vector not parallel to k̂. Modes with h = 0 are functions of k̂
only, modes with |h| = S are functions of ê± only, while intermediate modes are functions of
both k̂ and ê±, with |h| powers of the latter. This structure ensures that modes of different
helicity decouple in the quadratic action, while the normalisation choice ensures that each
mode has a canonical kinetic term. For example, for S = 1 we have

e(0)
i = ik̂i , e(±1)

i = ê±i , (2.9)

while for S = 2 we have

e(0)
ij =

√
3
(
k̂ik̂j −

1
3δij

)
, e(±1)

ij = i(k̂iê
±
j + k̂j ê

±
i ) , e(±2)

ij =
√
2ê±i ê±j . (2.10)

Further details on these polarisation structures can be found in e.g. [5, 24]. Using these
properties of the polarisation tensors, (2.4) becomes a decoupled action for each mode function:

S2 = 1
2

S∑
h=−S

∫
k
dηa2(η)

[
σ′2h − c2

h,Sk
2σ2

h −m2a(η)2σ2
h − 2hκka(η)σ2

h

]
, (2.11)

where

c2
h,S = c2 + S2 − h2

S(2S − 1)δc
2 . (2.12)

In deriving this expression we have used iϵijkkj ê
±
k = ±kê±i . The fact that the parity-violating

term splits the helicities is now clear given the helicity factor h in the final term. In addition
to this term, we see that each mode has the same mass but different speed of sound which
depends on the two original speed of sound parameters, the spin and the helicity. The
equation of motion for each helicity mode is then(

η2 ∂
2

∂η2 − 2η ∂
∂η

+ c2
h,Sk

2η2 + m2

H2 − 2hκ
H

kη

)
σh(η, k) = 0 . (2.13)

The solution to this equation with Bunch-Davies initial conditions i.e. the solution that has
Minkowski-like behaviour in the far past and satisfies the de Sitter Wronskian condition is

σh(η, k) = e−πκ̃/2 −Hη√
2ch,Sk

Wiκ̃,ν(2ich,Skη) , ν =

√
9
4 − m2

H2 , κ̃ = hκ

ch,SH
, (2.14)
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where Wa,b(z) is the Whittaker W -function. This solution is valid for both light (Im ν = 0)
and heavy (Re ν = 0) fields. In the limit that the chemical potential vanishes we would
expect to recover the solution of [88] corresponding to the solution of a massive scalar field
in de Sitter space. This can be verified using the relation

W0,ν(2ich,Skη) =
√
π

2
√
−ch,Skηe

iπ(ν+1/2)/2H(1)
ν (−ch,Skη) , (2.15)

where H(1)
ν (z) is the Hankel function of the first kind. We will discuss the corresponding power

spectra and propagators in section 3. Notice that in this CCM scenario, the introduction of
chemical potential κ is quite natural since it serves as a next-to-leading order correction to
the dispersion relation of massive spinning fields in the gradient expansion, and is consistent
with spatial rotations and scale invariance. More precisely, it appears as a linear term in
momentum in the dispersion relation of a massive field,

w2(k2
p,S·kp)=m2+2κS·kp+

[(
δc2+ S

2S−1δc
2
)

k2
p−

δc2

S(2S−1)(S·kp)2
]
+O

(
|kp|3

)
,

(2.16)

where kp ≡ k/a(t) and S are the physical momentum and the spin angular momentum of the
field mode, respectively. Such a linear correction to the massive field’s dispersion relation is
not sign-definite, and alters the analytic structure of its equation of motion (2.13), leading to
enhanced particle production when m ≳ κ [97]. In the case where m ≲ κ, however, modes
with a negative linear term may experience a transient tachyonic phase where w2 < 0 and
grow exponentially, i.e. σ ∼ e−iωt ∼ e|ω|t. Such a tachyonic growth is eventually halted by the
finite mass, leading to w2 ≈ m2 > 0 in the IR limit kp → 0. Nevertheless, the exponential
growth during the tachyonic period may overproduce particles and threaten perturbativity
or even the inflationary background. Therefore, in favour of theoretical control, we will
require m − κ ≳ −H throughout this paper.

2.2 Cosmological collider physics

We now turn to the more familiar description of massive spinning fields in de Sitter/inflation
where they are representations of the de Sitter group. In this section we primarily follow [5]
and the refer the reader there for further details. Such fields can certainly exist in the absence
of the inflaton, in contrast to CCM. A spin-S bosonic field in this CC set-up is described
by a symmetric rank-S tensor that satisfies:

(□−m2
S)Φµ1···µS = 0 , ∇νΦνµ2···µS = 0 , Φν

νµ2···µS = 0 , (2.17)

where the mass parameter is m2
S = m2 − (S2 − 2S − 2)H2. On-shell we therefore have a

transverse and traceless rank-S tensor that satisfies a wave equation. To solve this system
we work in a 3 + 1 decomposition where the components are of the form Φη···ηi1···in with
0 ≤ n ≤ S. We further convert to momentum space and decompose each of these components
in terms of helicities via

Φη···ηi1···in(η,k) =
n∑

h=−n

Φh
n,S(η, k)e

(h)
i1···in

(k̂) . (2.18)
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Each mode function is therefore labelled by three numbers corresponding to the spacetime
spin (S), spatial spin (n), and helicity component of the spatial spin (h). We have made a
distinction between the polarisation tensors used here (e) compared to above in the CCM
case (e). This is because a different normalisation is employed in [5] compared to what we
used above, and while discussing the CC scenario we will follow the conventions of [5] to
(hopefully) avoid confusion for the reader. The polarisation tensors here are still functions of
k̂ and two polarisation directions ê±, however rather than satisfying (2.6) and (2.7), they
are chosen to satisfy[

e
(h)
i1···in

(k̂)
]∗

= e
(−h)
i1···in

(k̂) , (2.19)

e
(h)
i1···iS

(k)[e(h)
i1···iS

(k)]∗ = (2S − 1)!!(S + |h|)!
2|h|[(2|h| − 1)!!]2S!(S − |h|)!

e
(h)
i1···i|h|

(k)[e(h)
i1···i|h|

(k)]∗ , (2.20)

where the polarisation tensor with lowest index is defined as

e
(h)
i1···i|h|

(k) = 2|h|/2êh
i1 · · · ê

h
i|h|

. (2.21)

In both cases (CCM and CC) the numerical factors that multiply the k̂ and ê± factors
can be made purely real or purely imaginary. The magnitudes of these factors are fixed
by (2.7) and (2.20) in the two cases, while in the CCM case the condition (2.6) fixes the
factors to be imaginary when there are an odd number of k̂’s, and real when there is an
even number, while (2.19) fixes the factors to be always real. This phase difference will
ultimately be inconsequential since it can be absorbed into the mode functions which are
always only fixed up to a phase.

As an illustration let us spell out the S = 1 case. If we decompose Φµ into its time and
space components Φη and Φi, then (□ −m2

1)Φµ = 0 becomes

Φ′′
η −

(
∂2

i − m2

H2η2 + 2
η2

)
Φη = 2

η
∂iΦi , (2.22)

Φ′′
i −

(
∂2

j − m2

H2η2

)
Φi =

2
η
∂iΦη , (2.23)

while the transverse constraint is

Φ′
η − 2

η
Φη = ∂iΦi . (2.24)

The Φη field carries only a h = 0 mode, while the Φi components carry both h = 0 and
h = ±1 modes. We then write

Φη = Φ0
0,1 , Φ(0)

i = Φ0
1,1e

0
i , Φ(±1)

i = Φ±1
1,1e

±1
i . (2.25)

The polarisation vectors are chosen to be

e
(0)
i = k̂i , e

(±1)
i = ê±i . (2.26)
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The equations of motion then decouple for each mode function and are given by

Φ0
0,1

′′ − 2
η
Φ0

0,1
′ +

(
k2 + m2

H2η2 + 2
η2

)
Φ0

0,1 = 0 , (2.27)

Φ0
1,1

′′ − k2η2

k2η2 +m2/H2
2
η
Φ0

1,1
′ +

(
k2 + m2

H2η2

)
Φ0

1,1 = 0 , (2.28)

Φ±1
1,1

′′ +
(
k2 + m2

H2η2

)
Φ±1

1,1 = 0 , (2.29)

subject to the transverse constraint

Φ0
1,1 = − i

k

(
Φ0

0,1
′ − 2

η
Φ0

0,1

)
. (2.30)

The equation of motion for the h = ±1 modes does not contain the Hubble friction term
since the Maxwell kinetic term is conformally invariant. The solutions to these equations
with Bunch-Davies initial conditions are

Φ0
0,1 =

√
π

2
Hk

m
eiπ(ν1+1/2)/2(−η)3/2H(1)

ν1 (−kη) , (2.31)

Φ0
1,1 = i

√
π

4
H

m
eiπ(ν1+1/2)/2(−η)1/2[kη(H(1)

ν1+1(−kη)−H
(1)
ν1−1(−kη))−H(1)

ν1 (−kη)] , (2.32)

Φ±1
1,1 =

√
π

2 eiπ(ν1+1/2)/2(−η)1/2H(1)
ν1 (−kη) , (2.33)

where

ν1 =

√
1
4 − m2

H2 , (2.34)

and the normalisation constants have been fixed by demanding that the commutation relations
are the usual ones [5]. We see here a feature that immediately distinguishes this set-up from
the CCM one: some of the mode functions in this case are given by a sum of Hankel functions
with degenerate order parameters. The dynamics in the two set-ups therefore different.

The story for spin-S is similar. Modes with helicity h can come from all components
with n ≥ |h|, and those with n = |h| satisfy [5]

Φh
|h|,S

′′− 2(1−|h|)
η

Φh
|h|,S

′+
(
k2+ m2

H2η2 −
(S+|h|−2)(S−|h|+1)

η2

)
Φh
|h|,S =0 . (2.35)

The other mode functions with the same helicity but with n > |h| are then obtained iteratively
from the transverse and traceless conditions which fix3

Φh
n+1,S = − i

k

(
Φh

n,S

′ − 2
η
Φh

n,S

)
+

n∑
m=|h|

Bm,n+1Φh
m,S , (2.36)

3As noticed in [36], there is a typo in the corresponding formula in [5], (A.70): the coefficient of the Bm,n+1

terms should be +1 rather than −1.
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where

Bm,n = 2nn!
m!(n−m)!(2n− 1)!!

Γ[1
2(1 +m+ n)]

Γ[1
2(1 +m− n)]

. (2.37)

One can also solve the recursion relation above and write the mode functions with higher
spatial spin as a linear differential operator D̂ acting on the lowest-spatial-spin one,

Φh
n,S(η, k) ≡ D̂h,n(iη, k)Φh

|h|,S(η, k) , n > |h| . (2.38)

This form of the general mode function will become useful later in section 3.2. Note that
for a given n, Bm,n is only non-zero if n and m differ by an even number. This is because
the terms proportional to Bm,n come from subtracting traces from Φη···ηi1···in . The factor of
i in this expression comes from converting to momentum space, and no additional factors
of i appear since here the coefficients of all polarisation tensors are taken to be real. The
solution to (2.35) with Bunch-Davies initial conditions is

Φh
|h|,S = eiπ(νS+1/2)/2Zh

S(−kη)3/2−|h|H(1)
νS

(−kη) , (2.39)

with(
Zh

S

)2
= π

4
1
k

(
k

H

)2S−2 [(2|h|−1)!!]2S!(S−|h|)!
(2S−1)!!(S+|h|)!

Γ(1
2+|h|+νS)Γ(1

2+|h|−νS)
Γ(1

2+S+νS)Γ(1
2+S−νS)

, (2.40)

which is again fixed by demanding that we have the usual commutation relations [5], and

νS =
√(

S − 1
2

)2
− m2

H2 . (2.41)

As we saw explicitly for S = 1, the mode functions with n > |h| will be given by a sum
of Hankel functions.

The different solutions fall into different classes depending on the mass of the field.
The principle series corresponds to heavy masses with Re νS = 0, i.e. m2 ≥ H2(S − 1/2)2.
The complementary series corresponds to light masses where Im νS = 0, however, the
Higuchi bound sets a lower bound on the mass such that the theory remains unitary.4 The
complementary series is then defined by S(S − 1) < m2/H2 < (S − 1/2)2. Finally, we have
the discrete series for which m2 = H2[S(S − 1)− T (T − 1)] for S, T = 0, 1, 2, · · · , with T ≤ S.
In these cases there is an additional gauge symmetry that reduces the number of propagating
degrees of freedom and corresponds to partial masslessness [113, 114]. We will discuss the
corresponding power spectra and propagators in the following section.

2.3 Mass parameter comparison

As emphasised in [88], in the CCM case the masses of the fields have a wider range as they are
not constrained by the Higuchi bound. For comparison, in figure 4 we show the distribution

4For S ≥ 2 the necessity of the Higuchi bound can be seen at the level of the equations of motion
once the mode functions have been decoupled where it ensures that the mass term contributions do not
become tachyonic.
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Figure 4. The dimensionless mass parameters ν/νS for light fields and heavy fields in CCM (left)
and CC (right) scenarios.

of the dimensionless mass parameter on the complex plane for light/heavy fields in both the
CCM and the CC scenarios. From (2.13) we see that for light fields in the CCM scenario ν
cannot exceed the massless boundary of ν = 3/2, while for heavy fields we can keep increasing
the mass to keep increasing the value of Im ν. Similarly, in the CC scenario we see from (2.41)
that Im νS continues to increase as we increase the mass while in the principle series. For the
complementary series the mass parameter can take values 0 < νS < 1/2, as dictated by the
Higuchi bound. The discrete series, which also lines along the real line in the complex plane
of νS , corresponds to isolated points and with masses that we will also refer to as “light”.

3 General properties of Wick-rotated propagators

We now move on to the propagators that are required to perturbatively compute wavefunction
coefficients and cosmological correlators. For each field we have a bulk-boundary propagator
for external lines in Feynman diagrams, and a bulk-bulk propagator for internal lines. In this
section we will discuss some important properties of the bulk-bulk propagators of massive
spinning fields: we will show that after Wick rotation, the time-ordered parts are always purely
real regardless of the mass and spin, while for light fields i.e. those in the complementary
series, the full bulk-bulk propagator is purely real. To derive these properties we consider the
CCM and CC cases separately since the proofs are slightly different in the two cases. For
details on the Feynman rules for wavefunction calculations we refer the reader to [22].

3.1 Cosmological condensed matter physics

We begin with the power spectrum of massive spinning fields introduced in section 2.1. The
late-time two-point function is

⟨σi1···iS (η0,k)σj1···jS (η0,−k)⟩′ =
S∑

h=−S

P (h)
σ (η0, k)e(h)

i1···iS
(k)e(h)

j1···jS
(−k) , (3.1)

where

P (h)
σ (η0, k) ≡ σh(η0, k)σ∗h(η0, k) (3.2)

= e−πκ̃ H
2η2

0
2ch,Sk

Wiκ̃,ν(2ich,Skη0)W−iκ̃,ν(−2ich,Skη0) . (3.3)
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This expression is valid for both light and heavy fields (i.e. for both purely real and
purely imaginary ν), and we have used [Wa,b(z)]∗ = Wa∗,b∗(z∗) and the symmetry prop-
erty Wa,−b(z) =Wa,b(z). The power spectrum of each helicity mode is different due to the
ch,S and κ̃ dependence. Parity violation is then encoded in the asymmetry between opposite
helicities. It can be further shown that the IR expansion of the power spectrum contains
enhanced oscillations in η0 due to particle production assisted by the chemical potential, which
leads to lifted cosmological collider signals (see, e.g. [39]). The bulk-boundary propagator
of a given helicity mode, which we will denote as K(h)

σ (η, k), should satisfy the equation of
motion (2.13) subject to the boundary conditions:

lim
η→η0

K(h)
σ (η, k) = 1, lim

η→−∞(1−iϵ)
K(h)

σ (η, k) = 0 . (3.4)

The first condition simply requires us to add an appropriate normalisation factor, while
the second condition requires the bulk-boundary propagator to be fixed by σ∗h(η, k) since
this is the negative frequency solution that vanishes in the far past and projects onto the
Bunch-Davies vacuum. We can therefore write the indexed bulk-boundary propagator

Ki1···iS j1···jS (η,k) =
1
S!

S∑
h=−S

K(h)
σ (η, k)e(h)

i1···iS
(k)e(h)

j1···jS
(−k) , (3.5)

as a linear combination of the helical bulk-boundary propagator

K(h)
σ (η, k) = σ∗h(η, k)

σ∗h(η0, k)
. (3.6)

The factor of e(h)
i1···iS

(k)e(h)
j1···jS

(−k) in (3.5) ensures that the different helicity modes remain
decoupled during propagation, and the factor of 1/S! follows from the normalisation (2.7).
The bulk-bulk propagator for each helicity mode, which we denote as the helical bulk-bulk
propagator G(h)

σ (η1, η2, k), satisfies(
η2

1
∂2

∂η2
1
− 2η1

∂

∂η1
+ c2

h,Sk
2η2

1 + m2

H2 − 2hκ
H

kη1

)
G(h)

σ (η1, η2, k) = −iH2η2
1η

2
2δ(η1 − η2) ,

(3.7)

and is subjected to the boundary conditions:

lim
η1,η2→η0

G(h)
σ (η1, η2, k) = 0 , lim

η1,η2→−∞(1−iϵ)
G(h)

σ (η1, η2, k) = 0 . (3.8)

The second condition again ensures that we project onto the vacuum in the far past while
the first ensures that this propagator takes us between two bulk points rather than from a
bulk point to the boundary. The solution to this equation is then

G(h)
σ (η1,η2,k)= [σh(η1,k)σ∗h(η2,k)θ(η1−η2)+(η1 ↔ η2)]−

σh(η0,k)
σ∗h(η0,k)

σ∗h(η1,k)σ∗h(η2,k) , (3.9)

=−2iP (h)
σ (η0,k)K(h)

σ (η2,k) ImK(h)
σ (η1,k)θ(η1−η2)+(η1 ↔ η2) . (3.10)

The manifestly time-ordered parts of this expression correspond to the usual Feynman
propagator (time-ordered two-point function), while the η0-dependent terms are required
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to satisfy the future boundary condition. We can again dress the helical propagators with
polarisation tensors and write the indexed propagator

Gi1···iS j1···jS (η1, η2,k) =
S∑

h=−S

G(h)
σ (η1, η2, k)e(h)

i1···iS
(k)e(h)

j1···jS
(−k) , (3.11)

which satisfies[(
η2

1
∂2

∂η2
1
− 2η1

∂

∂η1
+ c2η2

1k
2 + m2

H2

)
δl(i1δ|m|i2 −

2iSκη1
H

knϵnl(i1δi2|m|

+ δc2η2
1

(
klk(i1δ|m|i2 −

S − 1
2S − 1klkmδ(i1i2

)]
Gi3···iS)lmj1···jS

(η1, η2,k)

= −iH2η2
1η

2
2δ(η1 − η2)

S∑
h=−S

e(h)
i1···iS

(k)e(h)
j1···jS

(−k) , (3.12)

where we symmetrise according to e.g. S(ab) = (Sab+Sba)/2. We would now like to consider the
properties of this indexed bulk-bulk propagator after we Wick rotate both time variables by 90◦
in the complex plane. We are therefore interested in the properties of G̃(h)

σ (χ1, χ2, k), cf. (1.8).
First consider the l.h.s. of (3.12) where the differential operator that acts on the bulk-bulk

propagator is purely real after Wick rotation: the only term that is odd in η1 comes with a
factor of i which itself comes from converting to momentum space. It is scale invariance of
the quadratic action that ensures that this differential operator is real after Wick rotation.
Indeed, time derivatives are forced to appear as η ∂

∂η , while spatial derivatives yield factors of
iηk. We therefore have a real differential operator acting on the indexed propagator. Moving
to the r.h.s., we first note that the polarisation sum over all helicity modes is purely real
which follows from the reality of the fields in position space.5 After Wick rotation we also
do not have the factor of i on the r.h.s. since in this “Euclidean” picture we are computing
ψ ∼ e−S rather than ψ ∼ eiS . The r.h.s. is therefore manifestly real after Wick rotation.
We therefore conclude that the time-ordered parts of the Wick-rotated bulk-bulk propagator,
which are the parts that are fixed by (3.12), are purely real. This does not imply that the
full bulk-bulk propagator is purely real after Wick rotation as this discussion still allows
for the possibility of adding complex contributions that satisfy the homogeneous equation.
This also does not imply that the Feynman propagator i.e. the manifestly time-ordered parts
in (3.9) are purely real after Wick rotation; we may have to add factorised terms that satisfy
the homogeneous equation to make this reality property manifest (this is precisely what
happens as we will see below).6 As long as we are considering fields that are real in position
space with scale invariant free theories, this property of the bulk-bulk propagator will hold.
Let’s see this explicitly by working with (3.9).

Light fields. First consider light fields (Im ν = 0) where it was shown in [38] that when
κ̃ = 0 the manifestly time-ordered parts are not real, but once we add the factorised term

5This can be easily checked using our basis of polarisation tensors by noting that ê±(k̂) = [ê∓(k̂)]∗, cf. (2.8).
6Note that in simple massless theories the Feynman propagator is indeed real after rotation, see e.g. [15],

but for massive mode functions things are more involved.
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as required by the future boundary condition, the full bulk-bulk propagator is real. We
can check if this remains true when κ̃ ̸= 0. We first note that for light fields the bulk-bulk
propagator is independent of η0. Indeed, we have

σh(η0, k)
σ∗h(η0, k)

= Wiκ̃,ν(2ich,Skη0)
W−iκ̃,ν(−2ich,Skη0)

η0→0−−−→ −e(ν+ 1
2 )iπ

Γ
(

1
2 + ν + iκ̃

)
Γ
(

1
2 + ν − iκ̃

) . (3.13)

The bulk-bulk propagator for a given helicity mode can then be written as

G(h)
σ (η1,η2,k)=

H2η1η2
2ch,Sk

Γ
(

1
2+ν+iκ̃

)
Γ(1+2ν)

×[M−iκ̃,ν(−2ich,Skη1)W−iκ̃,ν(−2ich,Skη2)θ(η1−η2)+(η1 ↔ η2)] , (3.14)

where we have introduced the Whittaker-M function Ma,b(z) which is related to Wa,b(z) by

1
Γ(1 + 2ν)Miκ̃,ν(z) =

e±(iκ̃−ν− 1
2 )iπ

Γ
(

1
2 + ν + iκ̃

)Wiκ̃,ν(z) +
e∓πκ̃

Γ
(

1
2 + ν − iκ̃

)W−iκ̃,ν(e±iπz) . (3.15)

In order to arrive at (3.14) we have used the rotation that does not cross the branch cut
of Wa,b(z) which lies on the negative real axis. We have also used

Miκ̃,ν(ze±iπ) = ±ie±iπνM−iκ̃,ν(z) , (3.16)

to make sure that the two arguments in (3.14) have the same sign. Note that (3.13) follows
from (3.15) since for small arguments Wa,b(z) dominates over Ma,b(z) (for light fields). The
function Ma,b(z) is another solution to the Whittaker differential equation, and also satisfies
[Ma,b(z)]∗ =Ma∗,b∗(z∗). We can now consider Wick rotating (3.14), and to do so we rotate
both time variables clockwise to avoid the branch cuts on the negative real axis (recall that
η1, η2 ≤ 0). We then have

G̃(h)
σ (χ1,χ2,k)=−H2χ1χ2

2ch,Sk

Γ
(

1
2+ν+iκ̃

)
Γ(1+2ν)

×[M−iκ̃,ν(2ch,Skχ1)W−iκ̃,ν(2ch,Skχ2)θ(χ2−χ1)]+(χ1 ↔χ2) , (3.17)

with χ1, χ2 ≥ 0. The structure of the θ-functions can be understood with a simple flat-space
toy example. Consider the bulk-bulk propagator [80]

Gflat(η1, η2, k) =
1
2k
(
eik(η2−η1)θ(η1 − η2) + eik(η1−η2)θ(η2 − η1)− eik(η1+η2)

)
= 1
k
sinh(−ikη1)eikη2θ(η1 − η2) + (η1 ↔ η2) , (3.18)

where the θ-functions ensure convergence in the far past when η = −∞(1− iϵ). Now consider
the clockwise rotation we used above. Since we now integrate from 0 to +∞, we need the
exponential damping to come from the largest of the two variables. We therefore have

G̃flat(χ1, χ2, k) =
1
k
sinh(kχ1)e−kχ2θ(χ2 − χ1) + (χ1 ↔ χ2) , (3.19)
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as in [15]. This example captures the important features for our bulk-bulk propagator
given that the Whittaker functions are also exponentially damped (W )/growing (M) for
large argument.

We can now use the properties of the Whittaker functions and the Γ-functions to conclude
that taking the complex conjugate of (3.17) can be compensated for by sending κ̃ → −κ̃
which is equivalent to h → −h. We therefore conclude that the bulk-bulk propagator is
helically real i.e. [

G̃(h)
σ (χ1, χ2, k)

]∗
= G̃(−h)

σ (χ1, χ2, k) (light fields) . (3.20)

This very nice relationship between the bulk-bulk propagator of different helicity modes is
not quite enough for us to conclude that the full propagator in (3.11) is real; we also need a
relationship between the product of polarisation tensors of different helicities. The reality
of this full polarisation sum implies that

[e(h)
i1···iS

(k)e(h)
j1···jS

(−k)]∗ = e(−h)
i1···iS

(k)e(−h)
j1···jS

(−k) , (3.21)

since contributions with different |h| have a different number of k factors so cannot be related
by complex conjugation, while a single contribution from a single helicity has both real and
imaginary components. These two relationships therefore allow us to conclude that the full
indexed bulk-bulk propagator (3.11), when the field is light, is real after Wick rotation:[

G̃i1···iS j1···jS (χ1, χ2,k)
]∗

= G̃i1···iS j1···jS (χ1, χ2,k) , (light fields, CCM). (3.22)

Heavy fields. Let’s now consider heavy fields where Re ν = 0. For convenience let us
therefore write ν = iµ with µ > 0. The primary difference here compared to the light field
case is that the η0 dependence in the bulk-bulk propagator no longer cancels out. This is
perhaps easiest to see in the κ̃ = 0 limit where the mode functions are Hankel functions.
As we send η0 → 0−, each Hankel function has two comparable oscillating contributions,
in contrast to the light field case where they both have one decaying contribution and one
growing one, and this ensures that the ratio is time-dependent. For κ̃ ̸= 0 the story is the
same. Furthermore, one can easily check that the Wick-rotated time-ordered parts of G(h)

σ

do not satisfy a relation of the form of (3.20), and therefore the Wick-rotated Feynman
propagator once we sum over the helicities is not manifestly real. In contrast to the light
field case, the factorised terms we add to satisfy the future boundary condition cannot cancel
the imaginary parts of the rotated Feynman propagator since they depend on η0 while the
Feynman part does not. However, as we have already alluded to, it is possible to add and
subtract factorised contributions in such a way that we can make the time-ordered parts
of the bulk-bulk propagator manifestly real after Wick rotation.

To see how this can work let us decompose the full bulk-bulk propagator into two parts
which we will refer to as the connected part (C) and the factorised part (F ):

Gi1···iS j1···jS (η1, η2,k) = Ci1···iS j1···jS (η1, η2,k) + Fi1···iS j1···jS (η1, η2,k) , (3.23)

where for a given helicity mode these parts of the propagator are

C(h)
σ (η1, η2, k) = [σh(η1, k)σ∗h(η2, k)θ(η1 − η2) + (η1 ↔ η2)] + ∆G(h)

σ (η1, η2, k) , (3.24)

F (h)
σ (η1, η2, k) = −σh(η0, k)

σ∗h(η0, k)
σ∗h(η1, k)σ∗h(η2, k)−∆G(h)

σ (η1, η2, k) , (3.25)
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where we have added a new contribution to each, ∆G(h)
σ , in such a way that the full propagator

is unchanged. Diagrammatically, we represent this propagator decomposition as

(3.26)

This correction term must satisfy the homogeneous equation of motion and so is factorised.
We would now like to fix ∆G(h)

σ such that C(h)
σ is manifestly real after Wick rotation. Our

argument above suggests that such a ∆G(h)
σ exists. There are in principle a number of possible

structures that ∆G(h)
σ can take, but we would like each term in this decomposition of the

bulk-bulk propagator to vanish in the far past such that integrals involving G can be split
into integrals involving C and F without losing convergence in the far past. Given that
the Feynman propagator vanishes in the far past, thanks to the time ordering, ∆G(h)

σ must
also vanish. We therefore take it to depend on σ∗h rather than σh. We would also like it
to be symmetric under the exchange of η1 and η2 such that both C and F are symmetric.
We therefore take

∆G(h)
σ (η1, η2, k) = Ah σ

∗
h(η1, k)σ∗h(η2, k) , (3.27)

where Ah = Ah(κ, µ) is a η0-independent constant, and so is distinct from the terms we need
to add to satisfy the future boundary condition. We now want to fix Ah by demanding the
connected propagator is helically real after Wick rotation:[

C̃(h)
σ (χ1, χ2, k)

]∗
= C̃(−h)

σ (χ1, χ2, k) . (3.28)

This condition, along with (3.21), ensures that the connected part of the full bulk-bulk
propagator is real after Wick rotation i.e.[

C̃i1···iS j1···jS (χ1, χ2,k)
]∗

= C̃i1···iS j1···jS (χ1, χ2,k) , (heavy fields, CCM) . (3.29)

To summarise, we define the helical connected bulk-bulk propagator to satisfy the following
conditions:

1. C(h)
σ satisfies the same equation as the bulk-bulk propagator, i.e. it satisfies (3.7).

2. C(h)
σ vanishes exponentially fast in the far past under the iϵ-prescription.

3. C(h)
σ is helically real after Wick rotation i.e. it satisfies (3.28).

In order to fix Ah it is wise to first write the connected propagator in terms of Ma,b(z)
only since its analytic continuation satisfies a simple relation cf. (3.16), compared to that
of Wa,b(z) cf. (3.15). We can eliminate all copies of Wa,b(z) using

Wiκ̃,iµ(z) =
Γ(−2iµ)

Γ
(

1
2 − iκ̃− iµ

)Miκ̃,iµ(z) +
Γ(2iµ)

Γ
(

1
2 − iκ̃+ iµ

)Miκ̃,−iµ(z) , (3.30)

and use (3.16) to make sure that all arguments lie on the positive imaginary axis such that
we can rotate each time variable by 90◦ clockwise to make all arguments lie on the positive
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real axis. It is then a simple task to demand (3.28) and fix Ah. The most general solution
of Ah is derived in detail in appendix A. In short, we find

Ah(κ, µ) =
iπ sech(πκ̃)

Γ
(

1
2 − iκ̃− iµ

)
Γ
(

1
2 − iκ̃+ iµ

) . (3.31)

This now gives us a connected bulk-bulk propagator that is manifestly real after we Wick
rotate, which we will use in section 4 to prove the reality of total-energy poles, and a factorised
bulk-bulk propagator which we will use in section 5 to compute exact parity-odd trispectra.7

3.2 Cosmological collider physics

We now turn our attention back to the cosmological collider physics set-up and derive
properties of the bulk-bulk propagator. We do not find it necessary to discuss the power
spectra and bulk-boundary propagators here since they are not required for our needs and
details can be found in [5]. The full propagator with covariant indices would naturally be
written as Gµ1···µS ν1···νS (η1, η2,k) but as we did when we discussed the mode functions, we will
consider a 3+1 decomposition and consider the properties of propagators with spatial indices:

Gi1···in j1···jn(η1, η2,k) ≡ Gη···ηi1···in η···ηj1···jn(η1, η2,k) , (3.32)

where as before 0 ≤ n ≤ S. We can further decompose into helicities and write

Gi1···in j1···jn(η1, η2,k) =
n∑

h=−n

Gh
n,S(η1, η2, k)e(h)

i1···in
(k)

[
e
(h)
j1···jn

(k)
]∗
. (3.33)

For a given n, the mode functions with the same |h| are equivalent since here we do not
consider parity-violation. Then, given that the combination

e
(h)
i1···in

(k)
[
e
(h)
j1···jn

(k)
]∗

+ e
(−h)
i1···in

(k)
[
e
(−h)
j1···jn

(k)
]∗
, (3.34)

is real due to (2.19), we only need to consider the reality properties of Gh
n,S(η1, η2, k). As

we did above, we will consider light and heavy fields separately.

Light fields. First consider light fields, i.e. those in the complementary series, and the modes
with n = |h| where the solution to the homogeneous equation of motion is given by (2.39).
Given that this solution involves a single Hankel function, the properties of Gh

|h|,S(η1, η2, k)
will be very similar to what we encountered in the CCM case but with κ̃ = 0. Indeed, for
light fields we therefore already know that this propagator is purely real after Wick rotation.

7In [30] and a recent paper [48], a different decomposition of the bulk-bulk propagator is employed where it
is split into a retarded propagator and a factorised part. The retarded part enjoys the property that it is purely
imaginary (in Lorentzian time), however it does not vanish in the far past. Our connected propagator is not
imaginary in Lorentzian time (it is complex), rather it is real in Euclidean time and vanishes in the far past.
It would be interesting to understand the results we will derive in this paper using the retarded propagator
rather than the connected one. We expect the fact that the contribution to wavefunction coefficients from the
retarded propagator is an even function in the exchanged energy, as shown in [48], to play a crucial role in
such an analysis. We thank Scott Melville for discussions on these points.
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In any case let us show this explicitly, following [38], since this will allow us to easily see how
to extend the proof to the other modes with the same helicity, but with n > |h|. We have

Gh
|h|,S(η1, η2, k) =

(
Z

|h|
S

)2
k3−2|h|(η1η2)3/2−|h|H(1)

νS
(−kη1)H(2)

νS
(−kη2)θ(η1 − η2) + (η1 ↔ η2)

+
(
Z

|h|
S

)2
k3−2|h|(η1η2)3/2−|h|H(2)

νS
(−kη1)H(2)

νS
(−kη2) , (3.35)

where as usual the term on the second line is there to ensure that we satisfy the future
boundary condition of the bulk-bulk propagator, and the η0 dependence drops out of this
term since we are considering light fields. It is simple to see that the second term ensures that
we satisfy Dirichlet boundary conditions since for light fields H(1)

νS (−kη0) → −H(2)
νS (−kη0).

We can write this expression more compactly as

Gh
|h|,S(η1, η2, k) = 2

(
Z

|h|
S

)2
k3−2|h|(η1η2)3/2−|h|JνS (−kη1)H(2)

νS
(−kη2)θ(η1 − η2) + (η1 ↔ η2) ,

(3.36)

where JνS (z) is the Bessel function of the first kind. We can now make use of the following
integral representations:

H(2)
νS

(z)=−e
1
2 νSπi

πi

∫ ∞

−∞
dte−iz cosh t−νSt , JνS (z)=

21−νSzνS

√
πΓ(1

2+νS)

∫ 1

0
dt(1−t2)νS− 1

2 coszt ,

(3.37)

which are respectively valid for −π < ph z < 0 and Re νS > −1
2 , to conclude that

JνS (−ikχ1)H(2)
νS

(−ikχ2) = e−
1
2 νSπi × (Real)× i× e

1
2 νSπi × (Real) = i× (Real) , (3.38)

where we have used Im νS = 0. We also have

(−χ1χ2)3/2−|h| = i× (Real) . (3.39)

We therefore conclude that the Wick-rotated propagator is purely real i.e.[
G̃h

|h|,S(χ1, χ2, k)
]∗

= G̃h
|h|,S(χ1, χ2, k) . (3.40)

Given this result we would immediately expect this property to hold for the other modes too
since ultimately they form a single multiplet. Let’s see this explicitly by considering modes
with the same helicity but with n > |h|. The general form of the bulk-bulk propagator is

Gh
n,S(η1, η2, k) = Φh

n,S(η1, k)Φh∗
n,S(η2, k)θ(η1 − η2) + (η1 ↔ η2)

−
Φh

n,S(η0, k)
Φ∗

n,S(η0, k)
Φh∗

n,S(η1, k)Φh∗
n,S(η2, k) , (3.41)

where the mode functions Φh
n,S are related to Φh

|h|,S by (2.36). Indeed, we can use this
relationship iteratively to write

Φh
n,S(η, k) = D̂h,n(iη, k)Φh

|h|,S(η, k) , n > |h| , (3.42)
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where D̂h,n(x, k) are real differential operators in x with k-dependent coefficients. It follows
that D̂h,n(iη, k) are purely real after Wick rotation. Furthermore, they are either purely even
in x and therefore purely real when written in terms of η (if n− |h| is even) or purely odd in
x and therefore purely imaginary when written in terms of η (if n− |h| is odd). This final
property follows from the fact that the Bm,n in (2.36) are real and only non-zero when n

and m differ by an even number. We can then write

Gh
n,S(η1,η2,k)= (−1)n−|h|2

(
Z

|h|
S

)2
k3−2|h|D̂h,n(iη1,k)[(−η1)3/2−|h|JνS (−kη1)]

×D̂h,n(iη2,k)[(−η2)3/2−|h|H(2)
νS

(−kη2)]θ(η1−η2)+(η1 ↔ η2) , (3.43)

where we have used

D̂h,n(iη, k)[(−η)3/2−|h|H
(1)
νS (−kη)]

D̂∗
h,n(iη, k)[(−η)3/2−|h|H

(2)
νS (−kη)]

η→0−−−→ (−1)n+1−|h| . (3.44)

We can then use the integral representations above and the fact that D̂h,n(iη, k) is always real
after Wick rotation to conclude that this bulk-bulk propagator is real after Wick rotation.
We have therefore shown that for light fields[

G̃i1···in j1···jn(χ1, χ2,k)
]∗

= G̃i1···in j1···jn(χ1, χ2,k) , (3.45)

and since this holds for all 0 ≤ n ≤ S we conclude that[
G̃µ1···µS ν1···νS (χ1, χ2,k)

]∗
= G̃µ1···µS ν1···νS (χ1, χ2,k) , (light fields, CC) . (3.46)

It is easy to see that the same reality condition holds for partially-massless fields in the
discrete series, since the proof above is valid for arbitrary νS > 0 as long as the pure gauge
modes are excluded.

Heavy fields. Now consider heavy fields i.e. those in the principle series, with νS = iµS .
As we have seen in the CCM scenario, the full bulk-bulk propagator will not be real after
Wick rotation, so instead we add and subtract factorised terms such that the connected
part of the bulk-bulk propagator is real after rotation. As we did above, we work with
Gi1···inj1···jn(η1, η2,k) and work helicity-by-helicity. For each mode we define the following
decomposition of the bulk-bulk propagator:

Gh
n,S(η1, η2, k) = Ch

n,S(η1, η2, k) + F h
n,S(η1, η2, k) , (3.47)

where

Ch
n,S(η1,η2,k)= [Φh

n,S(η1,k)Φh∗
n,S(η2,k)θ(η1−η2)+(η1 ↔ η2)]+∆Gh

n,S(η1,η2,k) , (3.48)

F h
n,S(η1,η2,k)=−

Φh
n,S(η0,k)

Φh∗
n,S(η0,k)

Φh∗
n,S(η1,k)Φh∗

n,S(η2,k)−∆Gh
n,S(η1,η2,k) . (3.49)

As before we take ∆Gh
n,S(η1, η2, k) to be factorised, to solve the homogeneous equation of

motion, and to vanish in the far past. We therefore write

∆Gh
n,S(η1, η2, k) = Ah,nΦh∗

n,S(η1, k)Φh∗
n,S(η2, k) , (3.50)
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where Ah,n = Ah,n(µS) is independent of η0. We now want to fix Ah,n such that[
C̃h

n,S(χ1, χ2, k)
]∗

= C̃h
n,S(χ1, χ2, k) . (3.51)

For the n = |h| cases, where the mode function is given by a single Hankel function, we
can easily read off the necessary form of Ah,h since it is a special case of what we did in
the CCM scenario with κ̃ = 0. We derived the constraint that Ah,h must satisfy, and the
solution, in appendix A. The result is

Ah,|h|(µS) = i cosh πµS . (3.52)

Note that we could also add any purely real correction to Ah,|h| and still satisfy the necessary
condition so this choice is the minimal one required to make C̃h

|h|,S(χ1, χ2, k) real. With this
result in hand, it is simple to deduce what we need to add for modes with n > |h|. We have

Ch
n,S(η1, η2, k) =

{
D̂h,n(iη1, k)[Φh

|h|,S(η1, k)]D̂∗
h,n(iη2, k)[Φh∗

|h|,S(η2, k)]θ(η1 − η2) + (η1 ↔ η2)
}

+Ah,nD̂∗
h,n(iη1, k)[Φh∗

|h|,S(η1, k)]D̂∗
h,n(iη2, k)[Φh∗

|h|,S(η2, k)] , (3.53)

and by using the fact that D̂h,n(iη, k) is purely real for even n− |h|, and purely imaginary
for odd n − |h|, we can write

Ch
n,S(η1,η2,k)= (−1)n−|h|D̂h,n(iη1,k)D̂h,n(iη2,k)[Φh

|h|,S(η1,k)Φh∗
|h|,S(η2,k)

+(−1)n−|h|Ah,nΦh∗
|h|,S(η1,k)Φh∗

|h|,S(η2,k)]θ(η1−η2)+(η1 ↔ η2) . (3.54)

Given that D̂h,n(iη, k) is always real after Wick rotation, we therefore conclude that the choice

Ah,n(µS) = (−1)n−|h|i cosh πµS , (3.55)

ensures that (3.51) is satisfied. Again we can add any purely real correction to Ah,n(µS), but
this is the minimal solution that is sufficient for our purposes. We therefore conclude that[

C̃i1···inj1···jn(χ1, χ2,k)
]∗

= C̃i1···inj1···jn(χ1, χ2,k) , (3.56)

and since this holds for all 0 ≤ n ≤ S we conclude that[
C̃µ1···µS ν1···νS (χ1, χ2,k)

]∗
= C̃µ1···µS ν1···νS (χ1, χ2,k) , (heavy fields, CC) . (3.57)

We have therefore shown that for the cosmological collider physics set-up, the full bulk-
bulk propagator G̃ is real for light fields, while for heavy fields this is a property of the
connected part C̃ only. We will use these properties in the next section to prove the reality
of total-energy poles in wavefunction coefficients with massless external states, and we use
F̃ in section 5 to compute exact parity-odd trispectra.

4 Reality and factorisation

In this section we unleash the full power of the reality properties of the indexed propagators for
general massive fields that we derived in the previous section, and prove a theorem revealing
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the universal reality of the total-energy singularities in any tree diagrams with external
massless scalars (and massless gravitons) for both the CCM and the CC scenarios. More
precisely, we will see that in theories involving light fields of arbitrary mass, spin, couplings
and chemical potential, the wavefunction coefficient of external massless scalars is always real.
This property also holds for an even number of external conformally coupled scalars, and also
external massless gravitons as long as we sum over the two helicities. In more general theories
involving heavy fields, despite the fact that the full wavefunction coefficient can be complex,
the total-energy singularities remain real. Indeed, these singularities come from the maximally-
connected parts of the wavefunction coefficients (which we define below) and we prove that
these parts are purely real. Based on the universal reality of total-energy singularities, we
then prove that all parity-odd correlators are necessarily factorised at tree-level, and are free
of any total-energy singularities, under the assumption of IR-convergence.

4.1 Light fields: the wavefunction reality

Cosmological condensed matter. We start by considering the most general theory of
interacting light fields in the CCM scenario. The particle spectrum L consists of a set of
spinning fields σf

i1···iSf
labelled by their flavour f ∈ L , and each field σf

i1···iSf
is equipped with

an integer spin Sf = 0, 1, 2, · · · , a dimensionless mass parameter 0 < νf ≤ 3/2, a sound speed
cf , and a chemical potential κf . Among these fields, we will mainly pay attention to the
statistics of a “visible” massless scalar field ϕ ≡ σf=ϕ with Sϕ = 0 and νϕ = 3/2, while allowing
for exchanges of any of the other fields. For instance, in inflationary cosmology, ϕ is usually
associated with the curvature perturbation ζ (or equivalently, the Goldstone π of broken time
translation), while σf

i1···iSf
, f ̸= ϕ are associated with various isocurvature perturbations. In

position space, the most general interaction Lagrangian at a vertex v schematically reads

Lv =λv a
4−kv−lv(η)

(δij)pv (ϵijk)qv (∂η)kv (∂i)lv
∏

f∈L

{
σf

i1···iSf
(η,x)

}Nv,f


contract

≡λvDvσ
Nv ,

(4.1)

where Dv collectively denotes the scale factors and derivatives at the vertex v, and Nv =∑
f∈L Nv,f . Here kv, lv ≥ 0 are integers counting the number of derivatives and pv, qv, Nv,f ≥ 0

are integers counting the spatial indices and number of fields involved in the interaction
vertex v.8 The number of scale factors is fixed by diffeomorphism invariance (or its global
subgroup of de Sitter scale invariance). Note also that the coupling coefficients are real
constants in time i.e.

λ∗v = λv , ∂ηλv = 0 , (4.2)

as a consequence of unitarity and de Sitter scale invariance.
Let us now try to compute the wavefunction coefficient ψn for n external massless scalars

ϕ. A general tree diagram that contributes to the wavefunction coefficient ψn is obtained
via contracting the fields in adjacent vertices to form bulk-bulk propagators Gf

i1···iSf
j1···jSf

8As an aside, rotational symmetry dictates that all the spatial indices must be contracted, leading to a
constraint 2pv = 3qv + lv +

∑
f∈L

SfNv,f .

– 26 –



J
H
E
P
0
5
(
2
0
2
4
)
1
9
6

and massless bulk-boundary propagators Kϕ, before finally integrating the interaction time
ηv at the vertices. The bulk-boundary propagator for the massless scalar is

Kϕ(η, k) = (1− icϕkη)eicϕkη, (4.3)

which is crucially purely real after Wick rotation. Schematically, for a tree diagram with n

external lines, V interaction vertices and I internal lines, we have

ψn =
∫ 0

−∞(1−iϵ)

[
V∏

v=1
dηv iλv Dv

] [
n∏

e=1
Ke

] [
I∏

e′=1
Ge′

]
. (4.4)

As dictated by the Feynman rules, we have included a factor of i for each vertex. Now notice
that the whole integrand of (4.4) is analytic in the second quadrant of complex η-plane,9
which allows us to deform the integration contour by performing a Wick rotation

η = ieiϵχ , ϵ→ 0+ , (4.5)

under which the propagators become

Kϕ(η, k) = K̃ϕ(χ, k) , (4.6)
Gf

i1···iSf
j1···jSf

(η1, η2,k) = G̃f
i1···iSf

j1···jSf
(χ1, χ2,k) . (4.7)

The original integration contour along the negative real axis is thus deformed to that along
the positive imaginary axis, together with an arc at infinity. The iϵ-prescription and the
Bunch-Davies initial condition for the propagators guarantee that as |η| → ∞, the integrand
of (4.4) decays exponentially, leaving a vanishing contribution from the arc at infinity. The
only non-vanishing contribution now comes from the integral along the positive imaginary
axis where χ > 0. In momentum space, the vertex derivative operators transform as

Dv = a4−kv−lv(η)
[
(δij)pv (ϵijk)qv (∂η)kv (i ki)lv

]
partially contract

= i−4+kv+lv i−kv ilv × a4−kv−lv(χ)
[
(δij)pv (ϵijk)qv (∂χ)kv (ki)lv

]
partially contract

≡ D̃v . (4.8)

Thus the wavefunction coefficient becomes

ψn = (−1)V
∫ ∞

0

[
V∏

v=1
dχvλvD̃v

] [
n∏

e=1
K̃e

] [
I∏

e′=1
G̃e′

]
. (4.9)

Now we evoke the reality property (3.22) of the Wick-rotated bulk-bulk propagator for
light fields, namely

K̃∗
e = K̃e , (4.10)

G̃∗
e′ = G̃e′ , (4.11)

9Analyticity in the second quadrant of η-plane is crucial here, since otherwise singularities passed through
when deforming the contour would contribute non-trivially. Such analyticity is satisfied by local interactions
but can be violated by non-local interactions, in which case the contribution from these singularities becomes
important [105].
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together with the reality of the Wick-rotated derivative operator,

D̃∗
v = D̃v , (4.12)

to see that each individual factor in (4.9) is purely real. Therefore, combining (4.2), (4.12), (4.10)
and (4.11), we finally arrive at

ψ∗
n = ψn . (4.13)

More precisely speaking, however, what we have managed to prove is only the reality of
the integrand in the perturbative expression of ψn. In order to make the final logical leap
to the reality of the full-fledged ψn, we need to also ensure the convergence of the integral.
Since the propagators and the vertices are well-behaved for any finite Euclidean conformal
time 0 < χ < ∞, we only need to check the convergence at the endpoints. In particular,
the UV convergence at χ → ∞ is guaranteed by the time-ordering and the Bunch-Davies
initial condition, as mentioned above. On the other hand, the IR convergence at χ → 0 is
not automatic and is generally model-dependent. For instance, a λσ4 self-interaction for
a massless σ field can bring a logarithmic divergence ln(−η) in the IR limit, which after
Wick rotation (4.5) brings an imaginary factor of ln e−i(π/2) = −iπ/2. An odd number of
such λσ4 insertions would lead to a complex ψn in general. One can also view this as a
consequence of scale invariance spontaneously broken by the IR cutoff [38]. Therefore, we
will restrict ourselves to the case of IR-convergent interactions and perfect scale invariance.
This establishes the reality of ψn for a general tree diagram expressed by (4.9). Since the
total ψn is a sum of all possible diagrams with n external ϕ lines, the reality property extends
to the full ψn at tree-level for the CCM scenario.

Cosmological collider. This proof easily generalises to the CC scenario, where the
dimensionless mass of the spinning fields (2.41) takes 0 < νf < 1/2 for the complementary
series and νf = 1/2+ T, T ∈ N for the discrete series. The bulk-bulk propagators are labelled
with covariant indices, (e.g. Gf

µ1···µSf
,ν1···νSf

) and the vertices include contractions of all the
covariant indices including that of a time-like unit vector nµ, which allows us to break de
Sitter boosts at the level of the interactions as in [5]. The Lagrangian vertices are then

Lv =
√
−gλv

(gµν)pv (εµνρσ)qv (nµ)kv (∇ν)lv
∏

f∈L

{
Φf

µ1···µSf
(η,x)

}Nv,f


contract

=λv a
4−lv(η)

(ηµν)pv (ϵµνρσ)qv (n̄µ)kv (∂ν)lv
∏

f∈L

{
Φ̄f

µ1···µSf
(η,x)

}Nv,f


contract

+O(∂lv−1)

≡λvDvΦ̄Nv +O(∂lv−1) . (4.14)

Here, εµνρσ = √
−gϵµνρσ is the covariant Levi-Civita tensor density. For simplicity, we have

introduced rescaled quantities that are related to the original covariant ones by n̄µ = a−1nµ

and Φ̄f
µ1···µSf

= a−SfΦf
µ1···µSf

. Note that these rescaled quantities are contracted with the
flat metric tensor ηµν , and O(∂lv−1) are terms with fewer derivatives that take an analogous
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form to Dv.10 Henceforth, it suffices to consider the leading operator λvDvΦ̄Nv as a general
parametrisation of the interactions. In other words, we have expanded all the covariant
interaction operators and re-organised the expansion in powers of ordinary derivatives on fields.

The computation of ψn at tree-level is completely analogous to (4.4), with Dv and Ge′

replaced by their covariant cousins. We have shown in (3.46) that the indexed propagator
of Φf satisfies the reality condition[

G̃f
µ1···µSf

ν1···νSf
(χ1, χ2,k)

]∗
= G̃f

µ1···µSf
ν1···νSf

(χ1, χ2,k) . (4.15)

Thus the propagator of the rescaled field Φ̄f also satisfies the reality condition after Wick
rotation[
a−Sf (iχ1)a−Sf (iχ2)G̃f

µ1···µSf
ν1···νSf

(χ1,χ2,k)
]∗

= a−Sf (iχ1)a−Sf (iχ2)G̃f
µ1···µSf

ν1···νSf
(χ1,χ2,k) .

(4.16)

In addition, the vertex derivative operators transforms as

Dv = a4−lv(η)
[
(ηµν)pv (ϵµνρσ)qv (n̄µ)kv (∂η, i ki)lv

]
partially contract

= i−4+lv i−lv × a4−lv(χ)
[
(ηµν)pv (ϵµνρσ)qv (n̄µ)kv (∂χ,−ki)lv

]
partially contract

≡ D̃v , (4.17)

with the same reality property as in (4.12) i.e.

D̃∗
v = D̃v . (4.18)

Thus all the ingredients in the perturbative computation of ψn transform identically as in
the CCM scenario, leading to the same conclusion:

Theorem 4.1. (ψn-reality) The tree-level wavefunction coefficient of massless scalar fields
is purely real, i.e. Imψn = 0, in theories containing an arbitrary number of fields of any light
mass, spin, coupling, sound speed and chemical potential, under the assumption of locality,
unitarity, scale invariance, IR convergence and a Bunch-Davies vacuum.

Discussion. Before we move on to the inclusion of heavy fields, let us make a few remarks:

• Although we have chosen a specific massless scalar field f = ϕ as the visible sector, and
focused on its wavefunction coefficient ψn, the same proof straightforwardly generalises
to multiple massless scalar fields with different flavours,

Imψf1···fn = 0 , with νf1 = · · · = νfn = 3/2 , (4.19)

since their bulk-boundary propagators are all real after Wick rotation, and we did not
use any Bose symmetry properties in the proof.

10Expanding the covariant derivative in terms of ordinary derivatives generates new terms proportional to
de Sitter connections and curvature tensors, which enjoy simple forms due to the conformal flatness of de
Sitter. By spatial diffeomorphism invariance, these terms must also take the form of λvDvΦ̄Nv with a different
Dv with fewer derivatives.
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• Apart from massless scalar external lines, the particle spectrum may include massless
spinning fields such as the graviton. Since the external polarisation tensors are complex,
the helical wavefunction coefficients are in general complex. Thus it is more convenient
to work with the indexed wavefunction coefficients where the helicities are added
together. The indexed bulk-boundary propagator of the massless graviton is

Kγ
i1i2 j1j2

(η,k) = 1
2
∑

h=±2
Kγ(η, k)e(h)

i1i2
(k)e(h)

j1j2
(−k) , (4.20)

where

Kγ(η, k) = (1− ikη)eikη . (4.21)

This indexed bulk-boundary propagator is purely real after Wick-rotating η. Thus
after going through the same argument as above, we can further extend the ψn-reality
theorem to the indexed wavefunction coefficients with m massless scalars and n−m

massless gravitons:

Imψm;(i1i2)···(j1j2)︸ ︷︷ ︸
n−m

= 0 , 0 ≤ m ≤ n . (4.22)

• We can also consider conformally-coupled scalars φ on the external lines where the
bulk-boundary propagators are

Kφ(η, k) =
η

η0
eik(η−η0) , (4.23)

where the η0-dependence ensures that we satisfy the future boundary condition. Clearly
this propagator is not real after Wick rotation, instead it is purely imaginary. Our
reality theorem then extends to these fields if we have an even number of them on
external lines.

• The ψn-reality automatically implies the reality of the total-energy kT -singularities
within. As we shall see in the next subsection, after including heavy fields, the
wavefunction coefficient can become complex, but the kT -reality remains true.

4.2 Adding heavy fields: the total-energy reality

Now let us move on to the case with heavy fields included. We again label the heavy fields
by their flavor f ∈ H , with a dimensionless mass µf = −iνf > 0. In the CCM scenario, the
most general interaction vertex straightforwardly generalises to

Lv =λv a
4−kv−lv(η)

(δij)pv (ϵijk)qv (∂η)kv (∂i)lv
∏

f∈L∪H

{
σf

i1···iSf
(η,x)

}Nv,f


contract

≡λvDvσ
Nv .

(4.24)

In contrast to light fields, the Wick-rotated bulk-bulk propagator of heavy fields does not
enjoy the reality property by itself. However, as we showed in section 3, we can always
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achieve reality for the connected part of the propagator by adding appropriate solutions of
the homogeneous equation of motion, regardless of the mass of the propagating field. This
leads us to a decomposition of the indexed bulk-bulk propagator of any mass,

Gf
i1···iSf

j1···jSf
(η1, η2,k) = Cf

i1···iSf
j1···jSf

(η1, η2,k) + F f
i1···iSf

j1···jSf
(η1, η2,k) , (4.25)

and as shown in (3.29), after Wick rotation, the connected part

Cf
i1···iSf

j1···jSf
(η1, η2,k) = C̃f

i1···iSf
j1···jSf

(χ1, χ2,k) (4.26)

enjoys the reality property[
C̃f

i1···iSf
j1···jSf

(χ1, χ2,k)
]∗

= C̃f
i1···iSf

j1···jSf
(χ1, χ2,k) . (4.27)

Now the key insight is that the time-ordering θ-functions only appear in the connected part
C, and the factorised part F is a sum of products of functions of the vertex times. Therefore,
in a general tree diagram, one can extract the maximally-connected contribution by isolating
the all-C piece after the decomposition (4.25),

ψn =
∫ 0

−∞(1−iϵ)

[
V∏

v=0
dηv iλv Dv

] [
n∏

e=1
Ke

] [
I∏

e′=1
Ge′

]

=
∫ 0

−∞(1−iϵ)

[
V∏

v=0
dηv iλv Dv

] [
n∏

e=1
Ke

] [
I∏

e′=1
(Ce′ + Fe′)

]

=
∫ 0

−∞(1−iϵ)

[
V∏

v=0
dηv iλv Dv

] [
n∏

e=1
Ke

] [
I∏

e′=1
Ce′

]
+ factorised

≡ ψC
n (kT , · · · ) + factorised , (4.28)

where we have explicitly spelled out the kT dependence in ψC
n , with (· · · ) denoting other

kinematic variables. For n = 4 (where we only have a single bulk-bulk propagator) the
factorised part here is completely factorised in the sense that there are no θ-functions, while
for higher-point coefficients the factorised part can still contain θ-functions but crucially
fewer than those contained in the all-C (maximally-connected) piece. The total-energy
singularities only arise from this maximally-connected part, whereas the factorised piece
can only have functional dependence on kT that is analytic at kT → 0. In particular, all
the total-energy poles are contained in ψC

n ,

Res
kT →0

(
km

T ψn

)
= Res

kT →0

(
km

T ψC
n

)
, m, n ∈ N. (4.29)

Now given that the connected part of the propagator C enjoys the reality property for both
light and heavy fields regardless of their mass, spin, sound speed and chemical potential, we
can go through the same proof in the previous subsection, and conclude that the maximally-
connected piece must be real:

ImψC
n (kT , · · · ) = 0 , (4.30)
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which immediately implies the reality of all the total-energy poles:

Im Res
kT →0

(
km

T ψn

)
= 0 , m, n ∈ N . (4.31)

The proof in the CC scenario is analogous to that above after doing the same decomposition
and utilizing the reality property of the covariant indexed connected propagator of Φ̄f based
on (3.57),[
a−Sf (iχ1)a−Sf (iχ2) C̃f

µ1···µSf
ν1···νSf

(χ1,χ2,k)
]∗

= a−Sf (iχ1)a−Sf (iχ2) C̃f
µ1···µSf

ν1···νSf
(χ1,χ2,k) .

(4.32)

Therefore, we conclude with a reality theorem on the kT -poles of tree-level wavefunction
coefficients:

Theorem 4.2. (kT -reality) The maximally-connected piece of a tree-level wavefunction
coefficient for massless scalar fields, along with all the total-energy poles therein, is purely real,
i.e. ImψC

n (kT , · · · ) = Im Res
kT →0

(
km

T ψn

)
= 0 , m, n ∈ N, in theories containing an arbitrary

number of fields of any mass, spin, non-linear couplings, sound speed and chemical potential,
under the assumption of locality, unitarity, scale invariance, IR convergence and a Bunch-
Davies vacuum.

Discussion. Notice the kT -reality is concretely established only for kT > 0. For kT -poles
inside ψn, the reality of their residues automatically follows from the reality along the positive
real axis. However, in a general tree diagram, the kT → 0 limit may possess singularities
other than just poles. For instance, a 4-point exchange diagram with a massive field could
contain a logarithmic singularity [16, 24],

lim
kT →0

ψ4 ∼ cp × kp
T ln kT , p ∈ N , (4.33)

which comes with a branch cut with the branching point kT = 0. More generally, one
may expect other types of singularities to occur at kT = 0, but none of them can lie along
the positive real axis which is physically accessible. Then what we can say is that if such
singularities are part of a function analytic along a strip kT > ϵ > 0, then the coefficient of
such a function must be real. To illustrate the idea, suppose we have a branch-cut singularity
and an essential singularity at kT = 0,

lim
kT →0+

ψn ∼ cα × kα
T ln kT + cβγ × exp

(
− γ

kβ
T

)
+ · · · , (4.34)

then the kT -reality states that α, β, γ ∈ R and Im cα = Im cβγ = 0. Notice that the full
analytic structure at kT → 0 should be completely fixed by the perturbative structure at
tree-level and the analytic property of the mode functions, and there could be a constraint on
the type of allowed total-energy singularities. Hence some of the singularities (for instance, an
essential singularity) may not exist at least at tree-level. However, the study of the analytic
structure of singularities in the cosmological wavefunction is still in its infancy, and we leave
a more detailed analysis to future work.
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Figure 5. In diagrams with a linear-mixing vertex on the external line, the partial-energy singularities
(in light green) and the total-energy singularities (in grey) become indistinguishable because momentum
conservation s = kn enforces s = kn and thus EL = kT .

In the above kT -reality theorem (4.2) we specified that the couplings should be non-linear.
This is because the notion of total-energy poles is more subtle in a theory with linear mixings
between different fields. Indeed, with linear mixings momentum conservation can turn a
partial-energy pole into a total-energy one. This is illustrated in figure 5. Due to momentum
conservation at the linear-mixing vertex, we have s = kn and therefore EL =∑n−1

a=1 ka+s = kT

i.e. the energy flowing into the left-hand sub-diagram is indistinguishable from the energy
flowing into the whole diagram, thus the EL-pole is camouflaged into a kT -pole. Since partial-
energy poles are not contained in the maximally connected piece, these fake total-energy
poles can be complex in general. We therefore stress that it is only the maximally connected
piece and the genuine total-energy poles therein that are purely real by our reality theorem.

The reality of the kT -singularities (or equivalently, the maximally-connected component
ψC

n ) can be physically understood in a few different ways:

• First, from the large-mass EFT perspective, one can choose to integrate out the
heavy degrees of freedom in the theory and be left with an EFT of light fields only.
This procedure is equivalent to performing a large-mass expansion of the heavy field
propagators in a given Feynman diagram. After such an expansion, the heavy field
propagators are contracted to contact interactions with a tower of derivative couplings
that respect scale invariance. Then by the ψn-reality theorem 4.1, each contracted
diagram is purely real since they only involve light fields. On the other hand, the
large-mass expansion preserves part of the maximally-connected wavefunction ψC

n .
This preserved part is free of any partial-energy singularities involving momenta of
the expanded heavy field propagators, but includes part of the original total-energy
singularities. Hence the reality of these preserved total-energy singularities can be
derived from the ψn-reality after the large-mass expansion, and is consistent with the
full kT -reality.

• Second, from the amplitude perspective, the kT -singularities are generated by the time
integral of the connected diagram in the past infinity where η → −∞. Namely, we have

lim
kT →0

ψn = lim
kT →0

ψC
n ∼

∫
−∞

dη ηpeikT η ∼ An

kp+1
T

. (4.35)
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In the infinite past, the physical momenta of different modes are much larger than
their mass scale as well as the Hubble scale, thus all the fields are effectively massless
and interacting in a flat spacetime. The limit kT → 0 therefore probes the energy-
conserving scattering processes in the analytically continued sense [80]. In a de Sitter-
invariant theory, the residue of the leading kT -pole is expected to recover the on-shell
(Lorentz-invariant) scattering amplitude of massless particles An in flat spacetime [80–
82]. However, it is known that a Lorentz-invariant tree amplitude of scalars in flat
spacetime is manifestly real unless one of the internal lines hit the mass shell and
become disconnected.11 This implies that the leading total-energy pole is real. Here
we have also shown that sub-leading ones are also real, which can be argued for given
the Manifestly Local Test (MLT) of [33] which states that wavefunction coefficients of
massless scalars satisfy

∂ψn

∂ka

∣∣∣
ka=0

= 0, (4.36)

where the derivative with respect to an external energy is taken while holding all
other variables fixed. This equation should be satisfied by both contact and exchange
diagrams, and is oblivious to the type of state that is being exchanged. The MLT
follows from the simple observation that the bulk-boundary propagator of a massless
scalar in de Sitter does not contain a term linear in k:

Kϕ(η, k) = (1− ikη)eikη = 1 +O(k2). (4.37)

This constraint relates sub-leading total-energy poles to leading ones, and given that it
is a real constraint, it implies that sub-leading poles are real once the leading ones are.
It can be the case that there are sub-leading total-energy poles that are not tied to the
leading ones by this constraint. However, in those cases we expect that the leading pole
of such terms also has an amplitude interpretation, coming from an interaction with
fewer derivatives, since it has a lower-order pole, and then the argument can be run
again.12

We end this subsection by pointing out the kT -reality also applies to external massless
gravitons and an even number of conformally coupled scalars, with the argument mirroring
that of light fields which we gave above.

4.3 Factorising parity-odd correlators

The universal reality of kT -singularities is not only of theoretical interest, but also provides a
powerful tool for the computation of phenomenologically interesting parity-odd correlators.
We will show in this subsection that all parity-odd correlators of massless fields must be
factorised at tree-level and cannot contain kT -singularities as a consequence of the reality

11To see this fact, one simply counts the factors of i in a tree diagram: iV from vertices, (−i)I from off-shell
internal lines, i2n from 2n vertex derivatives, and an overall i from convention. This leads to iI−V +1 = 1 for a
tree topology with 0 = I − V + 1. The imaginary part can only come from Im (p2 +m2 − iϵ)−1 = πδ(p2 +m2),
where the diagram is factorised on-shell.

12We thank Austin Joyce for discussions on these points.
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theorems we have just derived. The reason why parity is relevant is simple: for any boundary
Hermitian operator ϕ†(x) = ϕ(x), its Hermitian conjugate in momentum space is equivalent
to a spatial reversal,

ϕ†(k) =
(∫

d3xe−ik·xϕ(x)
)†

=
∫
d3xeik·xϕ(x) = ϕ(−k) . (4.38)

If in addition, ϕ(x) is a parity-even scalar (such as the CMB temperature fluctuations),
a spatial reversal is equivalent to a parity transformation. Therefore, n-point correlation
functions in momentum space can always be decomposed into a parity-even part and a
parity-odd part:

⟨ϕ(k1) · · ·ϕ(kn)⟩ = ⟨ϕ(k1) · · ·ϕ(kn)⟩PE + ⟨ϕ(k1) · · ·ϕ(kn)⟩PO , (4.39)

with

⟨ϕ(k1) · · ·ϕ(kn)⟩PE = 1
2 [⟨ϕ(k1) · · ·ϕ(kn)⟩+ ⟨ϕ(−k1) · · ·ϕ(−kn)⟩] , (4.40)

⟨ϕ(k1) · · ·ϕ(kn)⟩PO = 1
2 [⟨ϕ(k1) · · ·ϕ(kn)⟩ − ⟨ϕ(−k1) · · ·ϕ(−kn)⟩] . (4.41)

The Hermiticity of ϕ(x) implies the parity-even part is always real while the parity-odd
part is always imaginary,

⟨ϕ(k1) · · ·ϕ(kn)⟩PE = Re ⟨ϕ(k1) · · ·ϕ(kn)⟩PE , (4.42)
⟨ϕ(k1) · · ·ϕ(kn)⟩PO = i Im ⟨ϕ(k1) · · ·ϕ(kn)⟩PO . (4.43)

These boundary correlators are computed by a functional integral of the modulus square
of the wavefunction,

⟨ϕ(k1) · · ·ϕ(kn)⟩ =
∫

Dσ
∣∣∣Ψ[σ, η0]

∣∣∣2ϕ(k1) · · ·ϕ(kn) , (4.44)

where σ = {σf
i1,···iSf

|f ∈ L ∪H}|η=η0 collectively denotes all the bulk fields evaluated at the
future boundary. The wavefunction exponent is organised as a sum over field products13

Ψ[σ, η0] = exp
[ ∞∑

n=2

1
n!

∫
k1···kn

ψf1···fn({k}, {k})(2π)3δ3
( n∑

a=1
ka

)
σf1(k1) · · ·σfn(kn)

]

= exp
[ ∞∑

n=2

1
n!

∫
k1···kn

ψn({k}, {k})(2π)3δ3
( n∑

a=1
ka

)
ϕ(k1) · · ·ϕ(kn) + (· · · )

]
,

(4.45)

where (· · · ) in the second row denotes terms including fields other than the massless scalar ϕ.
Due to the modulus square, the phase information of the wavefunction Ψ[σ, η0] is washed
out in correlators, which solely depend on the combination

ρf1···fn({k}, {k}) ≡ ψf1···fn({k}, {k}) + ψ∗
f1···fn

({k}, {−k}), (4.46)
13We will adopt the notation that ψn−m;f1···fm represents the wavefunction coefficient before the term with

at least n−m factors of ϕ and m factors of other fields (including ϕ) labelled by the flavor indices. Note that
we also abbreviate ψn = ψn; and ψf1···fn = ψ0;f1···fn . The same notation will be used for the density matrix
diagonals below.
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in the probability distribution functional

∣∣∣Ψ[σ, η0]
∣∣∣2 = exp

[ ∞∑
n=2

1
n!

∫
k1···kn

ρf1···fn({k}, {k})(2π)3δ3
( n∑

a=1
ka

)
σf1(k1) · · ·σfn(kn)

]
.

(4.47)

The final correlator receives contributions from various partitions of all possible diagrams
at tree-level,

⟨ϕ(k1) · · ·ϕ(kn)⟩′ =
1
ρn

2

(
ρn +

∑
m;f

qnm ρn−m;f
1
ρf
ρm;f

+
∑

m,l;f1,f2

qnml ρn−m−l;f1
1
ρf1

ρl;f1,f2
1
ρf2

ρm;f2 + · · ·
)
, (4.48)

where qnm, qnml, · · · are real rational numbers counting the combinatorics of partitions, and
momentum conservation is implicit in the individual ρ’s. Notice that except the first term,
all the other contributions in (4.48) are factorised in the sense that they do not contain any
kT -singularities. The only non-factorisable contribution that contains kT -singularities comes
from the maximally-connected part of the first term,

ρn = ρC
n + factorised , (4.49)

with

ρC
n ({k}, {k}) = ψC

n ({k}, {k}) + ψC∗
n ({k}, {−k}) . (4.50)

The kT -reality theorem 4.2 tells us that the maximally-connected massless wavefunction is
always real, i.e. ψC∗

n = ψC
n . This implies

ρC
n ({k}, {k}) = ψC

n ({k}, {k}) + ψC
n ({k}, {−k}) , (4.51)

i.e. the maximally-connected density matrix is parity-even. We can then check what the
consequence of this is for parity-odd n-point correlators. We have

⟨ϕ(k1) · · ·ϕ(kn)⟩′PO ≡ ⟨ϕ(k1) · · ·ϕ(kn)⟩′ − ⟨ϕ(−k1) · · ·ϕ(−kn)⟩′

2

= 1
ρn

2

ρC
n ({k}, {k})− ρC

n ({k}, {−k})
2 + factorised

= 0 + factorised . (4.52)

We therefore see that parity-odd correlators of massless scalars are factorised and therefore
cannot have genuine total-energy singularities,

lim
kT →0+

dm

dkm
T

⟨ϕ(k1) · · ·ϕ(kn)⟩′PO = finite , m ∈ N . (4.53)

This also ensures that parity-odd correlators admit a well-defined Taylor expansion around
kT = 0 (this holds where there are no linear-mixings i.e. when partial-energy singularities
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can be distinguished from total-energy ones). The proof straightforwardly generalises to
the CC scenario, and provides an understanding of why the final parity-odd trispectrum
of [105], computed in a non-local EFT with the massive spinning field integrated out, is
manifestly factorised (we will discuss this further in section 5.1). Thus we conclude with
the following theorem,

Theorem 4.3. (Parity-odd factorisation) The parity-odd part of any tree-level correlator
of massless scalar fields is factorised and, in the absence of linear mixings, admits a Taylor
expansion around kT = 0, in theories containing an arbitrary number of fields of any mass,
spin, coupling, sound speed and chemical potential, under the assumptions of locality, unitarity,
scale invariance, IR convergence and a Bunch-Davies vacuum.

Discussion. Note that despite the subtlety of linear mixings in stating the kT -reality
theorem (4.2), we have included this possibility in the parity-odd factorisation theorem here.
This is because the proof of parity factorisation relies solely on the reality of the maximally-
connect wavefunction ψC

n but not the kT -poles. The former is always true regardless of linear
mixings. Hence the factorisation property follows straightforwardly. The statement about
the smoothness near kT = 0, however, does depend on the absence of linear mixings. To
better illustrate this point, we present an explicit example of a parity-odd trispectrum in
a scalar theory with a linear-mixing in section 5.4.

Interestingly, although the parity-odd correlator factorises for the exchange of both light
fields and heavy fields, they factorise following different routes. For light fields, the whole
wavefunction coefficient ψn is itself real, leading to

ρPO
n = 1

2 [ρn({k}, {k})− ρn({k}, {−k})]

= 1
2 [ψn({k}, {k}) + ψn({k}, {−k})− ψn({k}, {−k})− ψn({k}, {k})]

= 0 . (4.54)

Thus the parity-odd n-point correlator sourced by light fields solely receives contributions
from lower-point wavefunction coefficients ψf1···fm with m ≤ n− 1. In contrast, when heavy
fields are involved, ψn is no longer real by itself, and one has to perform the C-F decomposition
to isolate the factorised parts of ψn, which will also contribute to the final parity-odd n-point
correlator. Alternatively, one can say that for light fields, F = 0 and there is nothing
to isolate away from ψn. However, such a computational distinction is an artefact of the
wavefunction formalism. Namely, the Dirichlet boundary condition at η = η0 is introduced as
an intermediate tool to organise the perturbative expansion. In the absence of IR divergences,
the final correlator does not depend on η0, and the η0 dependence in each contributing piece
must cancel out. Yet the Dirichlet boundary condition does not respect the continuity of the
mass parameter at ν = iµ = 0, since the IR behaviour of light and heavy fields are different:
light fields split into two scaling modes with one dominating over the other in the limit η0 → 0:

σh(η0, k) ∼ Ah(k, ν, κ̃)(−kη0)
3
2−ν +Bh(k, ν, κ̃)(−kη0)

3
2 +ν . (4.55)
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Heavy fields split into two oscillatory modes with the same damping power, and are equally
important as η0 → 0:

σh(η0, k) ∼ Ah(k,−iµ, κ̃)(−kη0)
3
2−iµ +Bh(k, iµ, κ̃)(−kη0)

3
2 +iµ . (4.56)

Thus implementing a Dirichlet boundary condition at η0 is sensitive to the mass of the bulk
fields, which should be artificial. This is because there is nothing physically problematic14

at ν = iµ = 0, and all the physical observables such as the boundary correlator should be
continuous across this point. As we shall see in section 5, this is indeed the case for parity-odd
4-point correlators. Namely, the correlator for exchanging a heavy field can be directly
obtained via the analytic continuation ν → iµ in the final result of light field exchange. To
complement this discussion and the proofs we have outlined in this section, in appendix B
we show how to understand our results in the in-in/Schwinger-Keldysh formalism where
the subtlety of the role of η0 does not appear.

5 Exact parity-odd trispectra

In this section we present three examples of parity-odd trispectra, which we are able to
compute exactly given our theorem that parity-odd correlators are factorised. Indeed, to arrive
at these exact shapes we only need to compute time integrals associated with cubic diagrams,
without having to worry about the complicated nested integrals that one usually encounters
when computing trispectra. Given these examples, it would be straightforward to extend our
methods to more general examples corresponding to other interactions, other spins, etc.

Before diving into technical details, we first outline the overall algorithm for computing
such parity-odd trispectra. Based on the C-F decomposition that isolates the connected
propagator C which satisfies helical-reality,

, (5.1)

we can compute the s-channel parity-odd trispectrum as a sum of three terms,

. (5.2)

The first term on the second line vanishes due to the reality of the maximally-connected
wavefunction ψC

4 . We therefore only need to compute the second and third terms which
are products of exactly computable cubic time integrals:

14In contrast, the Higuchi bound at νH = 1/2 is problematic in de Sitter-invariant theories due to the loss
of unitarity beyond νH .
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• For the exchange of light fields we have F = 0, and so the second term on the second
line above vanishes, leaving only the third term from the product of cubic wavefunction
coefficients:

, (light fields). (5.3)

• For the exchange of heavy fields, the second term is non-zero and so we need to compute
both factorised diagrams:

, (heavy fields). (5.4)

Both diagrams depend on η0, and there is an intricate cancellation between the two
which ensures that the final result does not depend on this late-time cut-off.

Again we stress that the final results for heavy fields and light fields are related to each other
by analytical continuation (as we will see below).

5.1 Example 1: spin-1 exchange in CC with chemical potential

One particularly interesting example is the exchange of a massive spin-1 field with a chemical
potential. In this subsection we consider this case within the CC scenario (although things
are essentially the same in the CCM as we will explain). The chemical potential in this case
is naturally introduced via a dimension-5 Chern-Simons coupling ϕFF̃ that respects the
shift symmetry ϕ→ ϕ+ c. In a recent work [105], it has been demonstrated that with the
assistance of the chemical potential and a reduced Goldstone sound speed, a large parity-odd
trispectrum can be generated. In [105], the massive vector field is integrated out, resulting
in a non-local EFT description which is organized as a time-derivative expansion. From
the perspective of the single-field effective theory, the parity-odd trispectrum emerges from
the (spatially) non-local feature of the self-interactions of the inflaton and this non-locality
allows the evasion of the no-go theorems of [34, 38]. Utilizing the non-local EFT, one can
derive a simple analytical expression that serves as a good approximation to the parity-odd
trispectrum and matches well with numerics in certain parameter regimes. In contrast, in
this work, we will set out to obtain the exact result of the parity-odd trispectrum using
our factorisation theorem.15

The action of a massive vector field with a chemical potential is

S =
∫
d4x

√
−g

[
−1
4F

2
µν − m2

2 Φ2
µ + ϕ

4Λc
FµνF̃

µν

]
, (5.5)

15Notice that for a unit sound speed cs = 1, the complete trispectrum has been solved in [75]. However,
the case with a non-unit sound speed (more specifically, cs < 1) has not yet been fully understood in the
whole kinematic domain. The main difficulty lies in the analytic continuation beyond the spurious collinear
singularities [35]. Our work serves as a first complete result in the parity-odd sector for non-unit sound speeds.
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where Fµν = ∇µΦν −∇νΦµ, F̃µν = εµναβFαβ and εµναβ = ϵµναβ
√
−g

is the contravariant Levi-
Civita tensor density. The mass term breaks the U(1) gauge symmetry of the spin-1 field.
As we will explain in more detail below, all of our results also apply in the massless limit
corresponding to axion-U(1) gauge field inflation, see e.g. [101, 115–126], however throughout
this subsection we will be more general and keep the mass term.

The inflaton background can be expanded as ϕ = const + ϕ̇0t, where higher order terms
are suppressed by slow-roll parameters. The constant term has no dynamical effects due to
the shift symmetry of this dimension-5 operator, and the chemical potential κ is equal to
ϕ̇0/Λc. The equation of motion of this spin-1 field is then

□Φν −∇µ∇νΦµ −m2Φν − 2κ ε0ναβ∇αΦβ = 0 . (5.6)

The second term can be eliminate using

∇µ∇νΦµ = ∇ν∇µΦµ + 3H2Φν , (5.7)

and taking the divergence of both sides yields the transverse constraint ∇νΦν = 0. The
final equation of motion is then[

□− (m2 + 3H2)
]
Φν = 2κε0ναβ∇αΦβ . (5.8)

We now convert to momentum space and decompose into the different helicities. We write

Φµ(η,x) =
1∑

h=−1

∫
k
Φh

µ(η,k)eik·x , (5.9)

with

Φη(η,k) = Φ0
0,1(η, k) , (5.10)

Φ0
i (η,k) = Φ0

1,1(η, k)e0
i (k) , Φ±1

i (η,k) = Φ±1
1,1(η, k)e±1

i (k) . (5.11)

The equations of motion then decouple for each mode, and only the transverse mode will be
affected by the addition of the chemical potential, while the temporal and longitudinal mode
remain the same as in section 2. Since we ultimately care about the parity-odd contributions,
which cannot come from the exchange of h = 0 modes, let us only focus on the transverse
modes which are subject to

Φ±1
1,1

′′ + (k2 ± 2aκk + a2m2)Φ±1
1,1 = 0 , (5.12)

and the solution to this equation with Bunch-Davies vacuum conditions is given by the
Whittaker-W function:

Φh
1,1(η, k) =

e−πκ̃/2
√
2k

Wiκ̃,ν(2ikη) , (5.13)

with κ̃ ≡ hκ/H. This is familiar from our discussion of the cosmological condensed matter
scenario but now the mass parameter is different, as is the scaling dimension of the field.
Here we have

ν =
√
1/4−m2/H2 . (5.14)
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Given that only helicity states with ±1 are relevant here (and they have the same speed),
we have set the speed of sound of the internal massive field to unity, and incorporated a
dependence on the speed of sound of the external Goldstone boson cs. This convention
has been adopted in [105] and will make the comparison between the two sets of results
more transparent.

We now need to choose interaction vertices of the form ππΦ, and in order to make use of
our factorisation theorem the interactions need to be IR-finite. EFToI operators that are
quadratic or cubic in building blocks can both yield the desired interactions where here we
define a building block as an object that starts at linear order in fluctuations. By using only
these operators the tadpole cancellation is guaranteed. For operators that are quadratic in
building blocks the presence of ππΦ couplings also induces πΦ couplings. Such couplings
have two primary effects: they can contribute to the bispectrum of curvature perturbations
through single-exchange diagrams, and yield new trispectrum diagrams which perturbatively
capture the corrections to the linear theory. See [35, 36] for recent works bootstrapping
such single-exchange contributions to the bispectrum. Furthermore, for such interactions
convergence of the time integrals we must compute is more subtle, and is not guaranteed,
so we present a separate example that considers linear mixings in section 5.4. In our quest
to write down exact shapes, we will therefore concentrate on EFToI operators for which
the leading vertices are ππΦ i.e. those that do not necessarily come with πΦ couplings by
symmetry. This essentially tells us that π must appear as π′ or ∂i∂jπ (which come from
the EFToI operators δg00 and δKµν), and we can add extra derivatives to these objects. By
requiring that π always appears in this way we ensure convergence of all time integrals at the
conformal boundary. Indeed, the two spatial derivatives come with two factors of η by scale
invariance while π′ yields one power of η by scale invariance but then we have

K ′
π(k, η) = k2ηeikη , (5.15)

which yields an additional factor. The net contribution from the two factors of π in each
vertex is then at least four powers of η which cancels the four inverse powers coming from
the integration measure. Adding additional derivatives can only improve convergence thanks
to the additional powers of η which are dictated by scale invariance. We can also restrict
to at most one time derivative on each of the external bulk-boundary propagators given
that higher order ones can be eliminated by the scalar field’s equation of motion. The
lowest dimension operators which satisfies these properties are dimension-7 [38], and for
concreteness we will use16

Sint =
∫
d3xdη

(
a−1

Λ3 ∂jπ
′
c∂i∂jπcΦi

)
, (5.16)

which originates from the EFT operator ∇µδg
00δKµ

νΦν . The number of scale factors can be
understood from scale invariance given that under a scale transformation the vector transforms

16There is a dimension-6 operator, π′∂iπ
′Φi, that satisfies our requirements but since only the h = ±1

modes contribute we can take Φi to be transverse and then this operator is a total spatial derivative. The
resulting correlator will then vanish once we impose momentum conservation. The other dimension-7 operator
that we could use is ∂2π∂iπ

′Φi. The correlator arising from this vertex will only differ from the one we are
going to compute in the kinematic factors since the time integrals will be the same.
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in the same way as a(η)πc (since it is spin-1). Here πc is the canonically normalized Goldstone
boson πc = c

−3/2
s f2

π π with f4
π = H4/(2π∆ζ)2, and ∆2

ζ ≈ 2×10−9 is the observed dimensionless
power spectrum. In the following we compute the parity-odd trispectrum due to the exchange
of this massive vector due to (5.16). We consider light and heavy fields separately.

Light mass case. Let us first consider the light mass case where m < H/2. We remind
the reader that the s-channel contribution to the trispectrum is, cf. (4.48),

⟨π4
c ⟩′s =

4∏
a=1

Pπc(ka)

ρ4({k}; s; {k}) +
1∑

h=−1
Ph(s)ρ(h)

3 (k1,k2,−s)ρ(h)
3 (k3,k4, s)

 . (5.17)

According to the proof in section 4, the full ψ4 is real and ρ4 does not contribute to the parity-
odd trispectrum (see (5.3)). Here we therefore directly compute the factorised contributions
i.e. the cubic wavefunction coefficients. We have

ψ
(h)
3 (k1,k2,−s) =

=− H

Λ3 (k1 · k2)
(
k1 · e(h)(ŝ)

)∗
×
∫
dη ηKπc(k1, η)∂ηKπc(k2, η)Kh(s, η)

− H

Λ3 (k1 · k2)
(
k2 · e(h)(ŝ)

)∗
×
∫
dη ηKπc(k2, η)∂ηKπc(k1, η)Kh(s, η) ,

(5.18)

with

Kπc = (1− icskη)eicskη, Kh = W−iκ̃,ν(−2ikη)
W−iκ̃,ν(−2ikη0)

. (5.19)

Here the superscript denotes the helicity of the external vector field, and we have used
[e(h)(ŝ)]∗ = e(−h)(ŝ) = e(h)(−ŝ) for h = ±1. The dynamical integral can be evaluated exactly
using the Laplace transformation of the Whittaker function,

Ih
n(a, b, ν) ≡ an+1

∫ ∞

0
xnW−iκ̃,ν(2ax)e−bxdx

= 2−1−nΓ
(3
2 + n− ν

)
Γ
(3
2 + n+ ν

)
2F̃1

[ 3
2 + n− ν, 3

2 + n+ ν

2 + n+ iκ̃

∣∣∣∣∣ 12 − b

2a

]
,

(5.20)

where 2F̃1 is the regularized hypergeometric function:

2F̃1

[
a, b

c

∣∣∣∣∣ z
]
≡ 2F1

[
a, b

c

∣∣∣∣∣ z
]
/Γ(c) . (5.21)

This integral enjoys the helical reality property we have seen many times above,

Ih∗
n (a, b, ν) = I−h

n (a, b, ν) . (5.22)
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The cubic wavefunction coefficient is therefore given by

ψ
(h)
3 (k1,k2,−s)=− ic2

s

s3W−iκ̃,ν(−2isη0)
H

Λ3 (k1 ·k2)
(
k1 ·e(h)(ŝ)

)∗
k2

2

(
1−k1

∂

∂k1

)
Ih

2 (s,csk12,ν)

− ic2
s

s3W−iκ̃,ν(−2isη0)
H

Λ3 (k1 ·k2)
(
k2 ·e(h)(ŝ)

)∗
k2

1

(
1−k2

∂

∂k2

)
Ih

2 (s,csk12,ν) ,

(5.23)

and the cubic density matrix coefficient reads

ρ
(h)
3 (k1,k2,−s) = ψ3 (k1,k2,−s) + ψ∗

3 (−k1,−k2, s)

= −2ic2
sH

Λ3 (k1 · k2)
(
k1 · e(h)(ŝ)

)∗ k2
2
s3

(
1− k1

∂

∂k1

)
Re

[
Ih

2 (s, csk12, ν)
W−iκ̃,ν(−2isη0)

]

− 2ic2
sH

Λ3 (k1 · k2)
(
k2 · e(h)(ŝ)

)∗ k2
1
s3

(
1− k2

∂

∂k2

)
Re

[
Ih

2 (s, csk12, ν)
W−iκ̃,ν(−2isη0)

]
.

(5.24)

The product of polarisation factors is given by

(
k1 · e(h)(̂s)

)∗ (
k3 · e(h)(̂s)

)
=


1
2 [k1 · k3 − (k1 · ŝ)(k3 · ŝ) + ihŝ · (k1 × k3)] , h = ±1

(k1 · ŝ)(k3 · ŝ) , h = 0
,

(5.25)

and by putting everything together, projecting onto the parity-odd part of the full trispectrum
cf. (4.43), and transferring πc to the curvature perturbations using the relation ζ = −Hπ =
−(2π∆ζc

3/2
s /H)πc, we arrive at

Bζ,PO
4 = i

(
H

Λ

)6 π4∆4
ζ

2c2
s

(k1 · k2) (k3 · k4)
k1k2k3k4

s · (k1 × k3)
k2

1k
2
3s

8

(
1− k1

∂

∂k1

)(
1− k3

∂

∂k3

)

×
{

πi

Γ
(

1
2 − iκ̃+ ν

)
Γ
(

1
2 − iκ̃− ν

)I(+1)
2 (s, csk12, ν)I(+1)

2 (s, csk34, ν)

+ eπκ̃Re
[
I(+1)

2 (s, csk12, ν)I(−1)
2 (s, csk34, ν)

]
−
(
κ̃→ −κ̃

)}
+ 3 perms

+ (t-channel) + (u-channel), (5.26)

where we have implicitly assumed h = 1 in the κ̃. The +3 perms yields the correct s-channel
trispectrum and then we add the t and u channel permutations to give us the full symmetric
trispectrum. To cancel the η0 factors we used the relation (3.13), and we see that this
result is purely imaginary as it should be. Scale invariance tells us that B4 ∼ k−9, and
we can check that this is indeed the case given that Ih

n ∼ k0. This final result therefore
is indeed of the form (1.2), i.e. a sum of terms containing kinematic factors multiplied
by a product of hypergeometric functions which come from time evolution. The factor of
s · (k1 × k3) = k2 · (k1 × k3) will appear as a factor in all s-channel, parity-odd trispectra.
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Figure 6. The s-channel dimensionless parity-odd trispectrum Im Ts,PO as a function of the momentum
ratio k1/s. The kinematics is chosen as k1 = k3, k2 = k4 =

√
s2 + k2

1 and ψ = π/3 being the dihedral
angle from the (k1,k2)-plane to the (k3,k4)-plane. The parameters are chosen as cs = 0.1,Λ = 3H
(left panel) and cs = 1,Λ = 20H (right panel), together with a common chemical potential κ = H.
The blue and magenta curves show the exact solution (5.26) for vector field mass m = H/3 and
m = H/5, respectively. The dots represent the numerical result computed in the UV theory, which
perfectly match our exact solution.

As a consistency check of this result, and therefore a check of our statement that the
quartic wavefunction coefficient is purely real for this light field exchange, we also numerically
computed the s-channel trispectrum using the in-in formalism. In figure 6 we plot the
dimensionless trispectrum Ts,PO, as defined in (1.15), for both our exact expression and the
result from numerics. Clearly the exact solution agrees with the numerics very well as seen
from the plot. The mass dependence of Ts,PO turns out to be mild and smooth within the
complementary series mass range. Interestingly, with a reduced inflaton sound speed cs < 1
and chemical potential κ ≳ H, the trispectrum has a peak roughly lying at a momentum
ratio k1/s ∼ 2κ/H, which is followed by a dip to zero at k1/s ∼ 2κ/(c1/2

s H) and a second
peak at k1/s ∼ 2κ/(csH). The precise location and the relative height of the peaks and
the dip depend on the detailed choice of mass and chemical potential, and if probed, can
be utilized to break the degeneracy of parameters.

Heavy mass case. We now move to the heavy field case where the mass of the vector Φ is in
the principle series. We now have a complex ψ4 and that will contribute to the final parity-odd
trispectrum. However, as we have discussed at length in this paper, the modification of the
bulk-bulk propagator by the addition/subtraction of a factorised contribution ensures that
the connected component of the wavefunction coefficient is real. Then what we need to take
into account are those factorised contributions to the bulk-bulk propagator which we have
been denoting by F as a pair of cut dashed lines, as shown diagrammatically by (5.4). For
concrete calculations we choose the simplest form of F which is given by

F h
1,1(η1, η2, k) = −

Φh
1,1(η0, k)

Φh∗
1,1(η0, k)

Φh∗
1,1(η1, k)Φh∗

1,1(η2, k)−Ah,1Φh∗
1,1(η1, k)Φh∗

1,1(η2, k) , (5.27)
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with

Ah,1 = iπ sech(πκ̃)
Γ
(

1
2 − iκ̃− iµ

)
Γ
(

1
2 − iκ̃+ iµ

) . (5.28)

This factorised contribution from F is then given by

ψh,PO
4 =

= ihc4
s

(
H

Λ3

)2 k2
2k

2
4

4s8 (k1 · k2) (k3 · k4) [s · (k1 × k3)]
(
1− k1

∂

∂k1

)(
1− k3

∂

∂k3

)

× e−πκ̃

[
Ah,1 +

Wiκ̃,iµ(2isη0)
W−iκ̃,iµ(−2isη0)

]
Ih

2 (s, csk12, iµ)Ih
2 (s, csk34, iµ) + 3 perms , (5.29)

and the corresponding parity-odd density matrix coefficient is

ρPO
4 = ic4

s

(
H

Λ3

)2 k2
2k

2
4

4s8 (k1 · k2) (k3 · k4) [s · (k1 × k3)]
(
1− k1

∂

∂k1

)(
1− k3

∂

∂k3

)

×
{[

2 cosh(πκ̃)A+1,1 +
e−πκ̃Wiκ̃,iµ(2isη0)
W−iκ̃,iµ(−2isη0)

− eπκ̃Wiκ̃,iµ(−2isη0)
W−iκ̃,iµ(2isη0)

]

× I(+1)
2 (s, csk12, iµ)I(+1)

2 (s, csk34, iµ)− (κ̃→ −κ̃)
}
+ 3 perms . (5.30)

For the light mass case the entire bracket in (5.30) vanishes, which is consistent with ψ4 being
purely real. For the heavy mass case, ρPO

4 is dependent on η0, however this dependence cancels
with the contribution to the correlator coming from the cubic wavefunction coefficients thereby
rendering the final correlator η0-independent (as it should be for IR-finite interactions). The
computation of the cubic wavefunction coefficients is identical as above, and is omitted here for
brevity. Putting everything together and projecting on to the parity-odd sector, we arrive at

Bζ,PO
4 = i

(
H

Λ

)6 π4∆4
ζ

2c2
s

(k1 ·k2)(k3 ·k4)
k1k2k3k4

s·(k1×k3)
k2

1k
2
3s

8

(
1−k1

∂

∂k1

)(
1−k3

∂

∂k3

)

×
{
cosh(πκ̃)A+1,1I+1

2 (s,csk12, iµ)I+1
2 (s,csk34, iµ)

+eπκ̃Re
[
I+1

2 (s,csk12, iµ)I−1
2 (s,csk34, iµ)

]
−
(
κ̃→−κ̃

)}
+3 perms

+(t-channel)+(u-channel). (5.31)

Again this result has the correct momentum scaling, and is purely imaginary. If we compare
this result with that of light fields (5.26), we see that they can be converted into each other
by replacing iµ↔ ν. Hence as we expected, there is no discontinuity in the mass parameters.
This property extends to other examples too: the heavy field result is always given by an
analytic continuation of the light field result. Given that the calculation for light fields is
less involved, for the other examples we will concentrate on light fields and then extract the
heavy field result via this simple replacement rule.
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Figure 7. The s-channel dimensionless parity-odd trispectrum Im Ts,PO as a function of the momentum
ratio k1/s. The kinematics is chosen as k1 = k3, k2 = k4 =

√
s2 + k2

1 and ψ = π/3 being the dihedral
angle from the (k1,k2)-plane to the (k3,k4)-plane. The parameters are chosen as m = 6H,κ = H

(left panel) and m = 6H,κ = 4H (right panel), together with a common sound speed cs = 0.1 and
Λ = 30H . The blue and green curves show the leading-order (LO) and the next-to-leading-order (NLO)
non-local EFT results. The red curve denotes the exact result (5.31) and the gray dots represent the
numerics in the UV theory. We see that the non-local EFT predictions agree with numerics in the
small-κ case, yet deviations start to appear at large κ. In principle, such deviations may be cured by
adding higher order contributions which are in practice tedious to compute. In contrast, the exact
result we have computed in this paper matches the numerics very well for all parameter choices.

Interestingly, for a small inflaton sound speed (i.e. cs ≪ 1), this model of a heavy
vector field with chemical potential admits a non-local single-field EFT description in the
IR, which well approximates the behaviour of the parity-odd trispectrum in the regime
csκ < csm < 1 [105]. After partially integrating out the heavy vector, parity violation
resurges through emergent non-locality in the effective vertex, and the resulting parity-odd
trispectrum is neatly computed as a residue of the non-local pole in the effective vertex. Such
a miraculous behaviour as seen from the non-local EFT now becomes understandable from
the parity-factorisation perspective. The fact that the parity-odd trispectrum is necessarily
factorised in the UV theory is precisely the reason why we only acquire a non-vanishing
contribution from the non-local pole in the IR EFT.

To compare our exact result for the parity-odd trispectrum in this model with the
non-local EFT prediction, and to check them against numerics, we plot the corresponding
dimensionless trispectra in figure 7. As we can see from the plot, the exact result agrees
with numerics very well, while the non-local EFT predictions start to deviate from the exact
result when the chemical potential κ is large.

Before moving to some other examples, let us first comment on the massless case with a
U(1) gauge symmetry, as promised. In this case we set m = 0 to preserve the gauge symmetry
in the free theory of the vector field. We therefore have ν = 1/4. Without adding any
additional interactions beyond those in (5.5), a parity-odd trispectrum can be generated at
1-loop due to the πΦΦ coupling. At tree-level we would again need to add interactions of the
form ππΦ that preserve the U(1) gauge symmetry. Since the field strength is anti-symmetric,
this requires more derivatives than what we have studied so far. Indeed, the first non-zero
operator is dimension-8. It would be interesting to study this class of trispectra in more detail.
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5.2 Example 2: spin-2 exchange in CCM

We now move to a second example where we consider the exchange of a spin-2 field with
its dynamics described by the cosmological condensed matter physics scenario. In this case
we take the bulk-bulk propagator to be parity-even κ̃ = 0, and source the parity-violation
via the interaction vertices. We therefore need one vertex to have an even number of
spatial derivatives, and for the other to have an odd number. As before, we need to ensure
IR-convergence. We will therefore work with the following interactions:

Sint =
∫
d3xdη

(
a

Λ2
1
π′c∂i∂jπcσij +

1
Λ3

2
ϵijk∂iπ

′
c∂j∂lπcσkl

)
, (5.32)

where the first term is dimension-6 while the second is dimension-7. These are the only
operators with those mass dimensions and are the leading ones which are IR-finite. The
corresponding EFToI operators are δg00δKµνΣµν and nµε

µναβ∇νδg
00δKαγΣγ

β . In the CCM
scenario the conformal weight of the massive field is the same as that of a massless scalar
so the counting of the scale factors is simply 4 − (total number of derivatives). As with
section 2 we write

σij(η,k) =
2∑

h=−2
σh(η, k)e(h)

ij (k) , (5.33)

and the polarisation tensors are chosen to satisfy conditions (2.6) and (2.7), and are given by

e(0)
ij =

√
3
(
k̂ik̂j −

1
3δij

)
, e(±1)

ij = i(k̂iê
±
j + k̂j ê

±
i ), e(±2)

ij =
√
2ê±i ê±j . (5.34)

The mode functions for each helicity are given by

σh(η, k) = − Hη√
2ch,2k

W0,ν(2ich,2kη) , (5.35)

where as we mentioned before we take the chemical potential to vanish κ̃ = 0. In this limit
the Whittaker function recovers the Hankel function of the first kind, cf. (2.15). When the
mass of the spin-2 field is light, the only contributions to the parity-odd trispectrum come
from the cubic wavefunction coefficients which are given by

ψ
(h)
3 (k1,k2,−s)=

= ik2
1

η0W0,ν(−2ich,2sη0)
×
[

1
s2HΛ2

1

(
ki

2k
j
2e

(h)
ij (s)

)∗(
1−k2

∂

∂k2

)
I0

1 (ch,2s,k12,ν)

+ 1
s3Λ3

2

(
ϵijkk

i
1k

j
2k

l
2e

(h)
kl (s)

)∗(
1−k2

∂

∂k2

)
I0

2 (ch,2s,k12,ν)
]
+(1↔ 2) .

(5.36)

In the absence of the chemical potential, the Ih
n integral is identical for each helicity (except

for the sound speeds) and purely real. The helicity dependence then resides in the kinematic
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factors rather than the dynamical ones. The density matrix then reads

ρ
(h)
2,1(k1,k2,−s)=

k2
1

s2HΛ2
1
Re
(

2i
η0W0,ν(−2ich,2sη0)

)(
k2ik2j ·e(h)

ij (s)
)∗(

1−k2
∂

∂k2

)
I0

1 (ch,2s,k12,ν)

+i k2
1

s3Λ3
2
Re
(

2
η0W0,ν(−2ich,2sη0)

)(
ϵijkk1ik2jk2le(h)

kl (s)
)∗(

1−k2
∂

∂k2

)
I0

2 (ch,2s,k12,ν)

+(1↔ 2) . (5.37)

To make the angular dependence transparent, let us decompose the s-channel trispectrum
into two separate parts arising from the exchange of different helicity modes:

Bζ
4 = Bζ

4,h=±1 +Bζ
4,h=±2 , (5.38)

where we have dropped the contribution from h = 0 since scalar exchanges cannot yield a
parity-odd contribution. For the higher helicity modes, we need to fix the polarisation sums.
For spin-1 the form of ∑h=±1 êi(k)êj(−k) can be easily fixed without choosing any particular
basis. The result should be parity-even and real given the properties of the polarisation
vectors. Scale invariance further constrains it to only depend on δij and k̂i = ki/k. The free
parameters can be then fixed by requiring the result to be transverse, and appropriately
normalised: ê±i (k)ê±i (−k) = 1. We then have

πij(k) ≡ ê+
i (k)ê+

j (−k) + ê−i (k)ê−j (−k) = δij − k̂ik̂j . (5.39)

For spin-2, where polarisation tensors are combinations of k̂i and ê±i , we can proceed in a
similar way using (5.33) and (5.39). We have∑

h=±1
eh

ij(k)eh
mn(−k) = k̂ik̂mπjn + k̂j k̂mπin + k̂ik̂nπjm + k̂j k̂nπim , (5.40)

and ∑
h=±2

eh
ij(k)eh

mn(−k) = πimπjn + πinπjm − πijπmn . (5.41)

By combining these polarisation sums evaluated at k = −s and the density matrix coefficients
we can extract the contribution from individual helicity exchanges to the final parity-odd
trispectrum,

Bζ,PO
4,h=±1 = 2iπ4∆4

ζ cos(πν)
(
H

Λ1

)2 (H
Λ2

)3 (k2 · s) (k4 · s)
k1k2k3k4

[s · (k1 × k3)]
c1,2k2

2k
2
4s

8

×
(
1− k2

∂

∂k2

)(
1− k4

∂

∂k4

)
I0

1 (c1,2s, k12, ν)I0
2 (c1,2s, k34, ν) + 7 perms

+ (t-channel) + (u-channel). (5.42)

Bζ,PO
4,h=±2 = 2iπ4∆4

ζ cos(πν)
(
H

Λ1

)2 (H
Λ2

)3 [s2 (k2 · k4)− (k2 · s) (k4 · s)
]

k1k2k3k4

[s · (k1 × k3)]
c2,2k2

2k
2
4s

8

×
(
1− k2

∂

∂k2

)(
1− k4

∂

∂k4

)
I0

1 (c2,2s, k12, ν)I0
2 (c2,2s, k34, ν) + 7 perms

+ (t-channel) + (u-channel). (5.43)
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As a consistency check, we see that the terms proportional to (k2 · s) (k4 · s) in (5.42) and (5.43)
differ only by a sign and the sound speeds of the different modes. These two contributions
would therefore cancel once added together if the sound speeds were identical (c1,2 = c2,2).
In that case the total trispectrum would be independent of si, which is to be expected since
in that case the three polarisation sums add up to an object that is independent of si. We
also see that the result is purely imaginary, and has the correct momentum scaling. For the
special cases of ν = 3/2 and ν = 1/2, where the mode functions simplify to exponentials, the
trispectrum vanishes which is consistent with the no-go theorem of [38]. Note that here we
add +7 perms rather than +3 perms which we had in example 1 since here the two vertices
on either side of a diagram are different.

It is noteworthy that in de-Sitter/inflationary four-point functions, spin-1 exchange is
typically characterised by linear factors of t2 − u2 in s-channel diagrams, which originate
from contractions between momenta and the polarisation sum. Exchanges of higher spin are
then non-linear in t2 − u2. However, here things are slightly different due to the Levi-Civita
ϵ-tensor, and it is easy to check no such factor arises for spin-1 exchange as indicated by (5.42).
For the exchange of h = ±2 modes, this dependence appears from the k2 · k4 factor and
its corresponding permutation. Indeed we have

k2 · k4 = 1
4
(
t2 − u2

)
+ 1

4
(
k2

1 + k2
3 − k2

2 − k2
4 − s2

)
. (5.44)

For general spin-S, it is simple to see that helicity ±h exchange will introduce contributions
to the parity-odd trispectrum with a factor of

(
t2 − u2)|h|−1, from which we can read off

the spin of the exchanged field.
Here we have computed the trispectrum for light field exchange, and as we discussed above,

from this result we can extract that of heavy field exchange by sending ν → iµ. We have also
checked by explicit calculation that this analytic continuation yields the correct result.

5.3 Example 3: spin-2 exchange in CC

In this example we again consider spin-2 exchange with parity-violation arising from the
interactions vertices, however now we describe the dynamics of the spin-2 field in the
cosmological collider physics set-up. As we discussed in section 2, the mode functions in the
CC and CCM scenarios can differ significantly, leading to a distinct parity-odd trispectrum
compared to what we have just computed in the previous sub-section. We will denote
the massive spin-2 field by Φµν . Given that scalar modes do not contribute to the final
trispectrum, our focus will be on the components Φ0j and Φij . Again we need IR-finite
interaction vertices and we choose

Sint =
∫
d3xdη

(
a−1

Λ2
1
π′c∂i∂jπcΦij +

a−2

Λ3
2
ϵijk∂iπ

′
c∂j∂lπcΦkl

+ a−2

Λ3
3
∂iπ

′
c∂i∂jπcΦ0j +

a−3

Λ4
4
ϵijk∂i∂lπc∂j∂lπ

′
cΦ0k

)
, (5.45)
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which arise from the following EFToI operators:

δg00δKµνΦµν −→ π′c∂i∂jπcΦij , (5.46)
nµε

µναβ∇νδg
00δKαγΦγ

β −→ ϵijk∂iπ
′
c∂j∂lπcΦkl, (5.47)

∇µδg00δKµνnαΦαν −→ ∂iπ
′
c∂i∂jπcΦ0j , (5.48)

nµε
µναβδKνρnγ∇γδKρ

αnδΦδ
β −→ ϵijk∂i∂lπc∂j∂lπ

′
cΦ0k. (5.49)

Again the scale factors are fixed by scale invariance (note that here Φ scales in the same
way as a2(η)πc). To establish a parity-odd trispectrum, we need a parity-even vertex and
a parity-odd vertex. For simplicity, we shall henceforth focus on operators in the first line
of (5.45), and the inclusion of the second line is technically analogous but tedious. We now
decompose the field into the helicity basis:

Φ0j(η,k) =
∑

h

Φh
1,2(η, k)e

(h)
j (k̂) , (5.50)

Φij(η,k) =
∑

h

Φh
2,2(η, k)e

(h)
ij (k̂) , (5.51)

and from now on we will ignore the longitudinal modes Φ0
1,2 and Φ0

2,2 since they will not
contribute to the parity-odd trispectrum. This leaves us with three modes: Φ±1

1,2, Φ±1
2,2, and

Φ±2
2,2. The polarization tensors for these modes, which satisfy (2.19) and (2.20), are

e
(±1)
i =

√
2 ê±i , e

(±1)
ij = 3√

2

(
k̂iê

±
j + k̂j ê

±
i

)
, e

(±2)
ij = 2ê±i ê±j . (5.52)

The factor
√
2 arises because we adhere to the convention of [5], where e

(±1)
i e

∗(±1)
i = 2.

Following our discussion in section 2, we can derive the following mode functions

Φ±1
1,2(η, k) = eiπ(ν+1/2)/2Z+1

2 (−kη)1/2H(1)
ν (−kη) , (5.53)

Φ±2
2,2(η, k) = eiπ(ν+1/2)/2Z+2

2 (−kη)−1/2H(1)
ν (−kη) , (5.54)

Φ±1
2,2(η, k) =

i

2e
iπ(ν+1/2)/2Z+1

2 (−kη)−1/2
[
kη
(
H

(1)
ν+1(−kη)−Hν−1(−kη)

)
− 3H(1)

ν (−kη)
]
,

= − i

2e
iπ(ν+1/2)/2Z+1

2 (−kη)−1/2
[
2kη H(1)

ν−1(−kη) + (3 + 2ν)H(1)
ν (−kη)

]
, (5.55)

where Z |h|
s is given by (2.40), and in the last line of Φ±1

2,2 we have used the recursion relation of
Hankel function to simplify the expression. Given that we are only turning on the interactions
in the first line, the full trispectrum is

Bζ
4 = Bζ

(2,±1) +Bζ
(2,±2) , (5.56)

where we have introduced the notation Bζ
(n,h) which tells us about the helicity and spatial

spin of the exchanged mode. The computation of the remaining components is the same as
what we have been through above. Once again, considering light fields buys us the privilege
of limiting the focus on the cubic wavefunction coefficients only (i.e. (5.3)), before obtaining
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the density matrix coefficients and summing over helicities. The result for heavy fields then
follows from analytic continuation. In short, we find

Bζ,PO
(2,±1) =9i∆4

ζπ
3 cos(πν)H2∣∣Z+1

2 (s)|2
(
H

Λ1

)2(H
Λ2

)3 (k2 ·s)(k2 ·s)
k1k2k3k4

s·(k1×k3)
k2

2k
2
4s

9

×
(
1−k2

∂

∂k2

)[
2I0

2 (s,k12,ν−1)+(3+2ν)I0
1 (s,k12,ν)

]
×
(
1−k4

∂

∂k4

)[
2I0

3 (s,k34,ν−1)+(3+2ν)I0
2 (s,k34,ν)

]
+7 perms

+(t-channel)+(u-channel) , (5.57)

Bζ,PO
(2,±2) =2i∆4

ζ(2π)3 cos(πν)H2∣∣Z+2
2 (s)|2

(
H

Λ1

)2(H
Λ2

)3 [s2k2 ·k4−(k2 ·s)(k4 ·s)
]

k1k2k3k4

s·(k1×k3)
k2

2k
2
4s

9

×
(
1−k2

∂

∂k2

)(
1−k4

∂

∂k4

)
I0

1 (s,k12,ν)I0
2 (s,k34,ν)+7 perms

+(t-channel)+(u-channel) . (5.58)

Again we see that each component is purely imaginary and has the correct scaling with
momenta (in checking this point we use the fact that Zh

2 (s) ∼ s1/2). We also see that
for the special case of ν = 1/2 the trispectrum vanishes. This limit corresponds to the
partially-massless limit where the massive spin-2 field has only four propagating degrees
of freedom (since the h = 0 modes do not contribute here we don’t need to worry about
the divergence of the corresponding two-point function in this PM limit). In this limit
the mode functions simplify to exponentials and again the no-go theorem of [38] dictates
that the result should vanish.

5.4 Example 4: spin-0 exchange with linear mixing

In this final example we will show that, perhaps counter-intuitively, a parity-odd trispectrum
can be generated in a pure scalar theory at tree-level, provided that we allow for a linear-
mixing between the inflaton and a new massive scalar field which we denote as σ.17 We
consider a theory with a parity-odd vertex of the form πππσ and a parity-even linear mixing
of the form πσ. We take σ to be in the complementary series but can again analytically
continue the final result to capture the contribution from a principle series field. In terms
of wavefunction coefficients, the trispectrum is then

. (5.59)

According to our ψn-reality theorem, the wavefunction coefficient ψ4 is strictly real after Wick
rotation, assuming IR convergence. Thus the first term in (5.59) drops out when projected
onto the parity-odd component. It is crucial that we only require IR convergence of the
full ψn rather than the individual vertices. Indeed, for certain couplings the mixing vertex

17See [44] for a discussion of how a parity-odd trispectrum can be generated at loop level.
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appears to diverge as η approaches zero using a naive power counting, yet the wavefunction
remains IR finite and our reality and factorisation theorems still apply. For example, consider
the lowest-order mixing operator that respects the shift symmetry of the Goldstone mode∫

dη a3π′σ . (5.60)

In the late-time limit, a naive scaling of the field operators gives π′ ∼ η and σ ∼ η3/2−ν .
Then the total scaling of integrand is η−1/2−ν which is superficially IR divergent for ν ≥ 1/2.
However, since we are computing wavefunction coefficients, the vertex integrals behave slightly
differently from the naive expectation using field operators, thanks to the vanishing boundary
condition satisfied by the bulk-bulk propagator of the exchanged field which is given by

Gσ(η1, η2, k) = −2iPσ(η0, k)Kσ(η′, k) ImKσ(η, k)θ(η − η′) + (η ↔ η′) . (5.61)

At late times the scaling of the propagator is dictated by P
1/2
σ ImKσ,18 which enjoys a

softer IR scaling than σ:

P 1/2
σ (η0, k) ImKσ(η, k) ∼ (−η0)3/2+ν

(
1− η

η0
+ · · ·

)
, η, η0 → 0− . (5.62)

Therefore, the actual integrand scales as (−η0)−1/2+ν assuming that the linear-mixing vertex
is later than the quartic vertex. This contribution to the wavefunction therefore remains
convergent as η0 → 0 for the whole range of light masses. Furthermore, as we will see
below, the quartic vertices we will consider always have enough derivatives to also ensure IR
convergence when the linear-mixing vertex is earlier. We can therefore safely ignore ψ4, and
the only parity-odd contribution to the trispectrum comes from the factorized piece such that

, (light fields). (5.63)

To give explicit examples of a non-vanishing parity-odd trispectrum from scalar exchange,
we now construct parity-odd vertices of the form πππσ. Assuming dilation, rotation and
translational invariance, the leading two operators are of dimension-10:

a−2σϵijk∂iπ
′′∂jπ

′∂kπ, (5.64)
a−2σϵijk∂m∂iπ

′∂m∂jπ∂kπ. (5.65)

How can these arise in the EFToI? In general we have Bσ, BBσ and BBBσ operators that
we can consider where B are building blocks that start at linear order in π with the linear
terms of the form π′ or ∂i∂jπ. Clearly the operators we have above cannot come from BBBσ

operators since they contain single spatial derivatives acting on a π. The Bσ option also
cannot yield something parity-odd. We are therefore left with BBσ. Consider the first of the
above dimension-10 operators. The ∂kπ term needs to come from δKij ∼ ∂i∂jπ+∂iπ∂jπ+ . . ..

18It is P 1/2
σ that contributes rather than Pσ since its scaling is shared between the two vertices that are

connected by this propagator.
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However since the partial derivatives in δKij are symmetric we cannot get the anti-symmetric
structure of this term. For the second we can realise this term from

σ nµeµνρλ∇α∇νδg00∇ρKαλ . (5.66)

The leading ππσ contribution vanishes by symmetry.
Let us therefore consider the interaction in (5.65). The computation can be very easily

extended to other interactions. In terms of the canonically normalised fields, the interaction
part of the action is therefore

Sint =
∫
d3xdη

(
ρ a3π′cσ + a−2

Λ6 σϵijk∂m∂iπ
′
c∂m∂jπc∂kπc

)
, (5.67)

where as always the scale factors are fixed by scale invariance. The two-point wavefunction
coefficient ψ1,1 from the quadratic mixing can be directly calculated as

ψ1,1 =

=− ρ

H3
k

3/2
4

(−η0)3/2H
(2)
ν (−k4η0)

[
eiπ(ν−1/2)/2√2π sec(πν)

+ 21+ν(−k4η0)
1
2−ν csc(πν)

(2ν−1)Γ(1−ν) −i2
1+ν(−k4η0)

3
2−ν csc(πν)

(2ν−3)Γ(1−ν) +· · ·
]
,

(5.68)

where for simplicity we have set the speeds of sound to unity. Here, we truncate ψ1,1 up to
higher orders in the time cutoff η0 which vanish in the limit η0 → 0−. For the mass range
0 ≤ ν < 1

2 , the time integral is IR-finite and only the first line in the bracket contributes
to the wavefunction coefficient. For the mass range 1

2 ≤ ν ≤ 3
2 , the second line of (5.68)

actually diverges as the time cutoff is sent to zero. Despite the IR divergence in ψ1,1, it is
noteworthy that the density matrix diagonal as well as the correlator remain IR-convergent as
long as σ is massive. This is attributed to the cancellation of the IR divergence after adding
the Hermitian conjugation. More explicitly, using the property H

(2)
ν = −H(1)

ν , η → 0−, we
obtain the corresponding density matrix diagonal

ρ1,1(k4) = ψ1,1(k4) + ψ∗
1,1(k4)

= i
ρ

H3

√
2π csc (πν/2 + π/4)
H

(2)
ν (−k4η0)

(
−k4
η0

)3/2
, 0 ≤ ν <

3
2 , (5.69)

where the divergences in the wavefunction coefficient ψ1,1 manifestly drop out. However,
when the σ field is exactly massless, the expression above becomes invalid due to the
singularity of the factor csc (πν/2 + π/4) at ν = 3/2. We note that in the limit ν → 3/2, an
additional contribution arises from the last term in the bracket of equation (5.68) that goes
like (−k4η0)3/2−ν ∼ 1 + (3/2 − ν) ln(−k4τ0). This contribution serves to remove the pole
of the sec(πν) factor in the first line of (5.68). Consequently, the density matrix diagonal
for the massless case becomes

ρ1,1(k4) ∼ −2k3
4 log (−k4η0) , (5.70)
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which contains the logarithmic term as typically expected for massless exchange [37]. For the
other factorized component, the parity-odd wavefunction ψ3,1 can be expressed as

ψ3,1 =

= − (k1 · k2) [k1 · (k2 × k3)]
H2

Λ6
eiπ(ν−1/2)/2 k2

1

k
11/2
4 (−η0)3/2H

(2)
ν (−k4η0)

√
2
π

×
(
1− k2

∂

∂k2

)(
1− k3

∂

∂k3

)
I0

4 (k4, k123, ν) + 6 perms . (5.71)

For the massless case, it is apparent that the density matrix ρ3,1 vanishes as a power-law
function of the cutoff time η0. Therefore, even with a logarithmically divergent ρ1,1 (5.70),
exchanging a massless scalar cannot generate a parity-odd trispectrum, reinforcing the no-go
theorems [34, 38]. As a summary, the parity-odd tripsectrum from massive scalar exchange is
thus finite and scale-invariant and can be exactly computed to be

Bζ,PO
4 = i

π5∆4
ζ

32

(
ρ

H

)(
H

Λ

)6
Γ
(11

2 −ν
)
Γ
(11

2 +ν
) (k1 ·k2) [k1 ·(k2×k3)]

k1k3
2k

3
3k

7
4

×
(
1−k2

∂

∂k2

)(
1−k3

∂

∂k3

)
2F̃1

[ 11
2 −ν, 11

2 +ν
6

∣∣∣∣∣ 12− k123
2k4

]
+23 perms . (5.72)

We point out that this example is, to our knowledge, the first one realising a tree-level
parity-violating trispectrum in a pure scalar theory. Its analytic structure is also distinct
from other examples involving triple vertices. Notably, there is only a single hypergeometric
function of kinematics. This simplification arises from the fact that linear coupling reduces
the other hypergeometric function to a constant. In the limit kT = k123 + k4 → 0, the
hypergeometric function encounters a singularity at unit argument, which is precisely the
fake total-energy singularity we discussed above that arises as a partial-energy singularity
but turns into a total-energy one by momentum conservation at the quadratic vertex. To
check this result we have also numerically computed the trispectrum and find agreement.

6 Conclusions and outlook

In this paper we have derived some reality theorems relating to cosmological wavefunction
coefficients of massless scalars, massless gravitons and conformally coupled scalars. We have
shown that the maximally-connected part of these coefficients, which is i) the most difficult
to compute since it contains the maximum number of nested time integrals and ii) the part
that can be singular as the total-energy goes to zero kT → 0, is a purely real function of
the kinematics. Our results allow for the exchange of states with any mass and integer
spin, and in deriving our results we considered two distinct descriptions for the dynamics
of massive spinning fields during inflation: cosmological condensed matter physics (where
states are representations of the group of rotations) and cosmological collider physics (where
states are representations of the de Sitter group). Furthermore, if all exchanged fields are
in the complementary series i.e. they have light masses, then our reality theorem extends
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beyond the maximally-connected part to the full wavefunction coefficient. Our results apply
under the following assumptions:

• Tree-level approximation: we considered tree-level Feynman diagrams which allowed
us to avoid having to analytically continue the spacetime dimensions. This meant
that we could work with fixed external propagators which have simple properties in
D = 3 + 1, namely that they are real after Wick rotation. In appendix C we offer
an alternative proof of our theorems using Hermitian analyticity of all propagators,
and scale invariance. Here we use the relation V = I + 1 where V is the number
of vertices and I is the number of internal propagators. This relation holds only at
tree-level. By relaxing the tree-level approximation the maximally-connected parts of
the wavefunction coefficients can have imaginary parts [44].

• Bunch-Davies vacuum conditions: this assumption enabled us to rotate all time
variables by 90◦ in the complex plane as a tool for computing wavefunction coeffi-
cients. The fact that we are computing the vacuum wavefunction for which fields
vanish exponentially fast in the far past allowed us to close the contour and drop any
contributions from the arc such that integration along the real line could be replaced
by integration along the imaginary line. This assumption is relevant for our proof in
appendix C since Hermitian analyticity is closely tied to having Bunch-Davies vacuum
conditions. If we relax this assumption, for example with the Ghost Condensate, then
the maximally-connected parts of the wavefunction coefficients can have imaginary
parts [38].

• Scale invariance: this assumption ensured that the vertex operators were real after
Wick rotation. Indeed, scale invariance ensures that time derivatives enter as η∂η and
spatial momenta enter as iηk. This could then be combined with the reality properties
of the propagators to prove that various integrands are purely real. If we relax this
assumption, for example by allowing for time-dependent couplings or going to general
FLRW spacetimes (except when the scale factor is an odd-power-law function of the
conformal time), then the maximally-connected parts of the wavefunction coefficients
can have imaginary parts [38, 127].

• IR-convergence: this assumption enabled us to make the leap from proving the
reality of integrands to the reality of the integrated result. Indeed, IR-convergence
meant that the final result was independent of η0 and so we did not need to worry
about rotating this cut-off. In the presence of an IR-divergence we would need to
also rotate η0 and this can yield imaginary parts with a logarithmic-divergence, for
example. In appendix C we combined scale invariance of the bulk interactions with
IR-convergence to use the fact that the wavefunction coefficients have a fixed scaling
with momenta yielding simple transformation properties as all momenta and energies
flip sign. If we relax this assumption, for example by allowing for IR-divergent bulk
interactions as occurs for the minimal coupling between the inflaton and the massless
graviton, then the maximally-connected parts of the wavefunction coefficients can have
imaginary parts [102].
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The reality of the maximally-connected part of wavefunction coefficients is not just
of theoretical interest, rather it can make the computation of phenomenologically relevant
([98–100, 103, 104]) cosmological correlators a far simpler task than naively expected. We
have shown this in section 5 by considering the parity-odd trispectra of curvature pertur-
bations due to the coupling of the inflaton with another sector with massive spinning fields
and parity-violation. Since parity-odd correlators depend on the imaginary part of the
maximally-connected wavefunction coefficients, these trispectra are factorised and computed
by considering cubic diagrams only. We presented a number examples considering both
the CCM and CC scenarios, both light and heavy fields (with the final answers related by
analytic continuation), and both parity-violation arising from the free theory of the massive
spinning fields and from the bulk interactions. In particular, we considered a parity-violating
correction to the action of a massive vector field in section 5.1 and compared our result with
that computed in [105] using a non-local EFT arising from integrating out the massive vector
field. Our result recovers the EFT result in the appropriate limit, but also gives an exact
result in the regime where the EFT breaks down. This example also includes axion-U(1)
gauge field inflation. We also considered examples with massive spin-2 fields in sections 5.2
and 5.3. In cases with linear-mixing couplings, we were able to establish a first-of-its-kind
example of a trispectrum in scalar theories that is parity-violating at tree level. For all spins
we allowed for a chemical potential in our analysis, and for hierarchies between the speed of
the inflaton and the exchanged fields, such that the size of trispectra can be enhanced.

There are many avenues for future research directions and here we outline a few:

• Moving on to loops: it would be interesting to see if any of our reality theorems
hold at loop level. As we mentioned above, total-energy poles coming from loops can
be imaginary, but perhaps the structure of such imaginary terms can be constrained
given that the reality properties of bulk-bulk propagators still hold. In fact, in the
original D = 3 + 1 spacetime dimensions, the loop integrand for ψn of light fields still
appears to be purely real after Wick rotation, but the dimensional regulator demands
an evaluation in D = 4− ϵ dimensions. The Wick rotation in such a case is expected to
bring factors of (−η)ϵ = (−iχ)ϵ = (1− iπϵ/2)χϵ. The O(ϵ) imaginary part turns out to
be cancellable by the 1/ϵ divergences, giving finite imaginary contributions to ψn. This
has been demonstrated for massless and conformally coupled theories in [44]. It would
be interesting to see if such a phenomenon persists for general massive fields and at
higher loops.

• Distinguishing between massive spinning field set-ups: we have considered two
different descriptions of massive spinning fields during inflation (CC and CCM). It
would be interesting to investigate if these two set-ups could be distinguished from each
other at the level of massless scalar and massless graviton correlation functions.

• Kramers-Kronig for correlators: it would be interesting to investigate if the
parity-even part of a correlator can be constrained given the parity-odd part. This is
conceivable for examples where the parity-violation is driven by a chemical potential
correction to the free theory. Perhaps consistency of higher-point functions could be
used to constrain lower-point ones in this regard. Since the parity-odd part is always
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imaginary and the parity-even part is always real, such reconstruction of a full correlator
from its imaginary part, if possible, will be an interesting cosmological analogy of the
well-celebrated Kramers-Kronig relations in electromagnetism.

• EAdS perspective: the Wick rotation used extensively throughout this work is in
fact a contour deformation, i.e. a change of integrated bulk time which are dummy
variables. However it is tempting to conceive a further Wick rotation for the boundary
time η0 = iχ0 which is explicit. In doing so, one arrives at a quantity different from
the wavefunction of the universe. The reality of this quantity is especially transparent
since the whole spacetime becomes Euclidean. In fact, a further rotation of the Hubble
parameter H = −i/LAdS yields a theory defined in Euclidean Anti-de Sitter (EAdS)
space. The wavefunction then becomes the partition function of the boundary CFT
of the EAdS bulk [73]. The difficulty, however, is in the fact that the continuations
of η0 and H do not seem to commute with the recipe of obtaining correlators from
wavefunction coefficients, which relies on the unitarity of the wavefunction. It would be
helpful to understand how to correctly perform this continuation, i.e. how to understand
in-in correlators in Euclidean field theories.

• Classifying singularities: we have concentrated on the total-energy singularities
in this work, yet they are by no means the only singularities of the wavefunction.
Notably, there are also partial-energy singularities when the total energy flowing into a
sub-component of a Feynman diagram approaches zero. For IR-convergent massless
or conformally coupled theories in de Sitter and flat spacetime, these singularities
are always poles at tree-level since the wavefunction coefficients are rational functions
of momenta [28, 80]. However, in more general theories with arbitrary mass, spin,
sound speed and chemical potential, these singularities have not yet been classified
even at tree-level. The classification of these singularities would crucially serve as a
first step toward a complete understanding of the analytic structure of wavefunction of
the universe.
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A General solution of ∆G(h)
σ

In this appendix we construct the general solution of ∆G(h)
σ such that the connected propagator

C
(h)
σ = G

(h)
σ +∆G(h)

σ is helically real after Wick rotation. We allow for a chemical potential
κ in the massive field’s dispersion relation in the CCM scenario such that the relevant mode
function is given by a Whittaker function, cf. (2.14). Recall that we need to decompose
the bulk-bulk propagator into two parts,

C(h)
σ (η1, η2, k) = [σh(η1, k)σ∗h(η2, k)θ(η1 − η2) + (η1 ↔ η2)] + ∆G(h)

σ (η1, η2, k) , (A.1)

F (h)
σ (η1, η2, k) = −σh(η0, k)

σ∗h(η0, k)
σ∗h(η1, k)σ∗h(η2, k)−∆G(h)

σ (η1, η2, k) . (A.2)

In order to ensure that the connected part still satisfies the propagator equation (3.7), the
added term must satisfy the homogeneous equation(

η2
1
∂2

∂η2
1
− 2η1

∂

∂η1
+ c2

h,Sk
2η2

1 − 2ch,S κ̃ k +
m2

H2

)
∆G(h)

σ (η1, η2, k) = 0 . (A.3)

The UV convergence of bulk time integrals requires the Bunch-Davies initial condition at
η → −∞, namely

lim
η1,η2→−∞(1−iϵ)

∆G(h)
σ (η1, η2, k) = 0 . (A.4)

Note that in contrast to (3.8), we do not impose any boundary condition at η0 for ∆G(h).
Upon symmetrizing over η1 ↔ η2, we are left with

∆G(h)
σ (η1, η2, k) = Ah σ

∗
h(η1, k)σ∗h(η2, k) . (A.5)

Here Ah = Ah(κ, µ) is a helicity-dependent constant to be determined. Now we demand that
this connected propagator is helically real after rotation, i.e.[

C̃(h)
σ (χ1, χ2, k)

]∗
= C̃(−h)

σ (χ1, χ2, k) . (A.6)

Due to the symmetry between χ1 ↔ χ2, we are free to pick χ1 < χ2 without loss of generality.
Thus the Wick-rotated connected propagator becomes

C̃(h)
σ (χ1, χ2, k) =

[
σh(ieiϵχ1, k) +Ahσ

∗
h(iχ1, k)

]
σ∗h(iχ2, k)

= −H
2χ1χ2

2ch,Sk
e−πκ̃

×
[
Wiκ̃,iµ(−2eiϵch,Skχ1) +AhW−iκ̃,−iµ(2ch,Skχ1)

]
W−iκ̃,−iµ(2ch,Skχ2) .

(A.7)

Notice that Whittaker functions have a branch cut along the negative real axis, which is
why we have kept the eiϵ factor to ensure that the branch cut is never crossed. However,
the complex conjugation of Whittaker functions is most transparent when their argument
lies along the positive real axis,

[Wa,b(z)]∗ =Wa∗,b∗(z) , [Ma,b(z)]∗ =Ma∗,b∗(z) , z ∈ R+ . (A.8)
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To inspect the complex conjugation [C̃(h)
σ ]∗, we can first expand the Whittaker W -functions

in terms of Whittaker M -functions,

Wa,b(z) =
Γ(−2b)

Γ
(

1
2 − b− a

)Ma,b(z) +
Γ (2b)

Γ
(

1
2 + b− a

)Ma,−b(z) , (A.9)

and then rotate away arguments lying below the branch cut using

Ma,b(−eiϵz) = −ie−iπbM−a,b(z) . (A.10)

This yields

C̃(h)
σ (χ1,χ2,k)=−H2χ1χ2

2ch,Sk
e−πκ̃

×
{

Γ(−2iµ)2

Γ
(1

2+iκ̃−iµ
)2

[
Ah−

ieπµΓ
(1

2+iκ̃−iµ
)

Γ
(1

2−iκ̃−iµ
) ]

M−+(1)M−+(2)

+ π csch(2πµ)
2µΓ

(1
2+iκ̃−iµ

)
Γ
(1

2+iκ̃+iµ
) [Ah−

ie−πµΓ
(1

2+iκ̃+iµ
)

Γ
(1

2−iκ̃+iµ
) ]

M−−(1)M−+(2)

+(µ→−µ)
}
, (A.11)

where we have abbreviated

M±±(j) ≡M±iκ̃,±iµ(2ch,Skχj) , M±∓(j) ≡M±iκ̃,∓iµ(2ch,Skχj) , j = 1, 2 . (A.12)

Now we can perform a complex conjugation on the Wick-rotated propagator and obtain

[C̃(h)
σ (χ1,χ2,k)]∗ =−H2χ1χ2

2ch,Sk
e−πκ̃

×
{

Γ(2iµ)2

Γ
(1

2−iκ̃+iµ
)2

[
A∗

h+
ieπµΓ

(1
2−iκ̃+iµ

)
Γ
(1

2+iκ̃+iµ
) ]

M+−(1)M+−(2)

+ π csch(2πµ)
2µΓ

(1
2−iκ̃+iµ

)
Γ
(1

2−iκ̃−iµ
) [A∗

h+
ie−πµΓ

(1
2−iκ̃−iµ

)
Γ
(1

2+iκ̃−iµ
) ]

M++(1)M+−(2)

+(µ→−µ)
}
, (A.13)

while a helicity flip gives

C̃(−h)
σ (χ1,χ2,k)=−H2χ1χ2

2ch,Sk
eπκ̃

×
{

Γ(−2iµ)2

Γ
(1

2−iκ̃−iµ
)2

[
A−h−

ieπµΓ
(1

2−iκ̃−iµ
)

Γ
(1

2+iκ̃−iµ
) ]

M++(1)M++(2)

+ π csch(2πµ)
2µΓ

(1
2−iκ̃−iµ

)
Γ
(1

2−iκ̃+iµ
) [A−h−

ie−πµΓ
(1

2−iκ̃+iµ
)

Γ
(1

2+iκ̃+iµ
) ]

M+−(1)M++(2)

+(µ→−µ)
}
. (A.14)
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By comparing the coefficients of (A.13) and (A.14), we conclude that reality of the connected
propagator requires us to satisfy:

eπκ̃A−h − e−πκ̃A∗
h = 2iπ

Γ
(

1
2 + iκ̃− iµ)Γ(1

2 + iκ̃+ iµ
) . (A.15)

In principle, Ah can be chosen to be an arbitrary complex constant as long as it satisfies (A.15).
However, it is often convenient to pick a symmetric choice such that

A−h = −A∗
h , (A.16)

which yields (3.31) in the main text i.e

Ah = iπ sech(πκ̃)
Γ
(

1
2 − iκ̃− iµ)Γ(1

2 − iκ̃+ iµ
) . (A.17)

This concludes the construction of the desired connected propagator in the CCM scenario.
In the CC scenario, we turn off the chemical potential, and the general constraint (A.15)

for the mode with n = |h| reduces to

A−h,|h| −A∗
h,|h| = 2i cosh πµS . (A.18)

The simplest choice is to demand A−h,|h| = Ah,|h| = −A∗
h,|h|, which gives

Ah,|h| = i cosh πµS . (A.19)

Note that this solution establishes the reality of Ch
|h|,S , while that of Ch

n,S , n > |h| follows
trivially from acting with real derivative operators on Ch

|h|,S , as we explained in the main text.
Finally, we point out that although the inclusion of heavy fields motivated the ∆G piece

that achieves the reality of C, the same procedure works equally well for light fields except
when ν is a half-integer. It is easy to see that all the derivations above straightforwardly go
through with the replacement of µ→ −iν. In fact, after choosing the specific choice (A.17)
and replacing µ by −iν, the connected propagator becomes identical to the original bulk-bulk
propagator in the η0 → 0 limit (cf., (3.13)), i.e. C = G and F = 0. For the case of ν = n/2,
n ∈ N+, the equation (A.9) reaches a singularity, rendering the proof invalid. However, it
is easy to check the validity of (A.17) by inserting it into (A.6), using the same derivation
that appeared in section 3.1. This crucially demonstrates that the proof of kT -reality does
not make any artificial distinction between light fields and heavy fields; we can extract the
connected propagator part of all the internal lines regardless of their masses, and make use
of their reality property to show the total-energy poles are always real.

B Proofs via the in-in/Schwinger-Keldysh formalism

In this appendix we streamline the derivation of the reality and parity-odd factorisation
theorems in the language of the more conventional in-in and Schwinger-Keldysh formalisms.
Both of them focus directly on the observable, i.e. the n-point correlation function itself,
without introducing intermediate quantities such as the wavefunction representation of the
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quantum state of the universe. Therefore, we shall translate the kT -reality theorem for
wavefunction coefficients 4.2 to the correlator level, and show that consequently all parity-odd
correlators are factorised at tree-level. Here we will only deal with the CCM case, and the
proof straightforwardly extends to the CC case as shown in the main text.

The perturbative computation of correlators can be organized using diagrammatics
with slightly different Feynman rules from those of the cosmological wavefunction (see,
for example, [8]). In short, every n-point correlator is computed by a set of diagrams with
coloured vertices indicating whether they are time-ordered (black or “+”) or anti-time-ordered
(white or “−”). Thus in general, a diagram of V vertices will comprise of 2V coloured copies
which need to be summed. A change from a black vertex to a white one (i.e. from + to −)
corresponds to a local complex conjugation plus a flip of the direction of all the 3-momenta
flowing into the vertex. The internal propagators connecting these vertices are thus classified
into four types according to the colour of their vertices:

G++(η1, η2, k) = θ(η1 − η2)φ(η1, k)φ∗(η2, k) + θ(η2 − η1)φ∗(η1, k)φ(η2, k) , (B.1a)
G+−(η1, η2, k) = φ∗(η1, k)φ(η2, k) , (B.1b)
G−+(η1, η2, k) = φ(η1, k)φ∗(η2, k) , (B.1c)
G−−(η1, η2, k) = θ(η1 − η2)φ∗(η1, k)φ(η2, k) + θ(η2 − η1)φ(η1, k)φ∗(η2, k) . (B.1d)

The external propagators are simply obtained from sending one of the vertices to the
boundary in the internal propagators,

K+(η, k) = G−+(η0, η, k) = φ(η0, k)φ∗(η, k) , (B.2a)
K−(η, k) = G+−(η0, η, k) = φ∗(η0, k)φ(η, k) . (B.2b)

All of these propagators satisfy the Bunch-Davies (or anti-Bunch-Davies for anti-time-ordered
vertices) initial condition in the far past, while no boundary condition at η0 is posed for
them. Instead, they satisfy the conjugation rule

[Gab(η1, η2, k)]∗ = G(−a)(−b)(η1, η2, k) , (B.3)
[Ka(η, k)]∗ = K−a(η, k) , a, b = ± . (B.4)

Notice that the flip of vertex colour is accompanied by a flip of momentum in the kinematic
structure in addition to the complex conjugation.

We start by noticing that the total-energy singularities can only reside in monochromatic
diagrams where the vertices are either all-black or all-white. This is simply a consequence
of the factorised nature of the Wightman functions G±∓(η1, η2, k), i.e. any polychromatic
diagram is necessarily disconnected in time at the internal line with opposite colours. In
the wavefunction formalism language, they correspond to contributions from the factorised
third term in the bulk-bulk propagator (1.7) together with sewing disconnected ρn in (4.48).
Since the all-white diagram is just the complex conjugation plus momentum inversion of
the all-black diagram,

⟨φ(k1) · · ·φ(kn)⟩′− = ⟨φ(−k1) · · ·φ(−kn)⟩′ ∗+ , (B.5)
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we will focus on the all-black diagram without loss of generality,

⟨φ(k1) · · ·φ(kn)⟩′+ =
∫ 0

−∞(1−iϵ)

[
V∏

v=0
dηv (+i)λv Dv

] [
n∏

e=1
Ke,+

] [
I∏

e′=1
Ge′,++

]
, (B.6)

where Dv is given by (4.1) for the CCM scenario. As with the derivation for the cosmological
wavefunction ψn, we perform a Wick rotation η = iχ,

⟨φ(k1) · · ·φ(kn)⟩′+ = (−1)V
∫ ∞

0

[
V∏

v=0
dχv λv D̃v

] [
n∏

e=1
K̃e,+

] [
I∏

e′=1
G̃e′,++

]
. (B.7)

The reality of the vertices and external propagators becomes automatic assuming scale
invariance and massless external fields,

D̃∗
v = D̃v , K̃∗

e,+ = K̃e,+ . (B.8)

For the internal Feynman propagators, reality can be achieved for the connected part via
adding and subtracting a homogeneous solution to the equations of motion,

G̃e′,++ = C̃e′,++ + F̃e′,++ ,
(
C̃e′,++

)∗
= C̃e′,++ , (B.9)

where

C̃e′,++ ≡ G̃e′,++ +∆G̃ , (B.10)
F̃e′,++ ≡ −∆G̃ . (B.11)

The solution of ∆G̃ is identical to that in the wavefunction approach (see appendix A).
Thus after expanding the internal propagators of the all-black diagram, we deduce that the
maximally-connected contribution

⟨φ(k1) · · ·φ(kn)⟩′C+ = (−1)V
∫ ∞

0

[
V∏

v=0
dχv λv D̃v

] [
n∏

e=1
K̃e,+

] [
I∏

e′=1
C̃e′,++

]
, (B.12)

is purely real (see the diagrammatic illustration in figure 8). Consequently, all the total-energy
poles inside the full tree-level correlator must also be real,

Im ⟨φ(k1) · · ·φ(kn)⟩′C+ = Im Res
kT →0

[
km

T ⟨φ(k1) · · ·φ(kn)⟩′
]
= 0 , m, n ∈ N . (B.13)

Other total-energy singularities are also real when understood as analytically continued from
the positive-kT direction, see the discussions in section 4.2. The factorisation of parity-odd
correlators then directly follows from the kT -reality,

⟨φ(k1) · · ·φ(kn)⟩′PO = 1
2
[
⟨φ(k1) · · ·φ(kn)⟩′ − ⟨φ(−k1) · · ·φ(−kn)⟩′

]
= 1

2
[
⟨φ(k1) · · ·φ(kn)⟩′C+ + ⟨φ(k1) · · ·φ(kn)⟩′C−

−⟨φ(−k1) · · ·φ(−kn)⟩′C+ − ⟨φ(−k1) · · ·φ(−kn)⟩′C−
]
+ factorised

= 0 + factorised , (B.14)
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Figure 8. A five-point illustration of the kT -reality in the in-in/Schwinger-Keldysh diagrammatics.
The all-black vertices indicate the diagram is a fully time-ordered diagram ⟨φ5⟩+. We then expand the
internal Schwinger-Keldysh propagators (solid lines) into the connected (double lines) and factorized
parts (dashed lines), and use the reality of the connected propagator to conclude the reality of the
maximally-connected first term and the total-energy singularities therein.

where we have applied (B.5) and (B.13). Finally, we comment that in the in-in/Schwinger-
Keldysh formalism, there is no explicit reference to the boundary time η0 except for the
external propagator K± which can be trivialised by sending η0 → 0 first, and consequently
the parity-odd correlators factorise in the same fashion for light fields and heavy fields.
This generalises the proof of [38], which applied to massless and conformally-coupled mode
functions, allowing for general massive mode functions for the internal lines.

C Reality from Hermitian analyticity

In [38], the Cosmological Optical Theorem (COT) of [22] was used to deduce that contact
diagrams of massless scalars arising from IR-finite interactions are purely real, which in turn
implies that such diagrams do not contribute to parity-odd trispectra. This result itself
suggests that such a trispectrum is a very nice probe of exotic inflationary physics. The same
result was also derived in [34] using Wick rotations. It is therefore tempting to wonder if
the more general results we have derived in this paper, namely the inclusion of exchange
processes and massive fields, can also be understood using the COT (or more generally
without invoking Wick rotations). In other words, can we deduce from the COT that the
imaginary part of wavefunction coefficients is factorised? Let us first review the argument
for contact diagrams. The COT states that

ψn({k}, {k}) + ψ∗
n({−k}, {−k}) = 0 , (C.1)

where in the second term we flip both the energies and the momenta. Note that the COT
relies on our ability to analytically continue the momenta away from the physical region. The
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COT follows from having real coupling constants (by unitarity) and Hermitian analyticity
of the massless bulk-boundary propagators, K(η, k) = K∗(η,−k) cf. (4.3), and the spatial
momenta which enter as ik. We refer the reader to [22–24, 29] for full details. If we have exact
scale invariance then ψn ∼ k3, where the cubic scaling is there to cancel the scaling of the
momentum-conserving delta function in three spatial dimensions, and therefore (C.1) becomes

ψn({k}, {k})− ψ∗
n({k}, {k}) = 0 =⇒ Im ψn = 0 . (C.2)

Since it is the imaginary part of the wavefunction coefficient that contributes to the parity-odd
correlator, cf. (4.46), this tells us that contact diagrams do not contribute. Here we have
used exact scale invariance of the wavefunction coefficients which of course requires scale
invariance of the bulk interactions, but also IR-convergence of the time integrals otherwise
scale invariance is broken by the IR cut-off η0. In that case the wavefunction can indeed
have an imaginary part [38].

Now consider a four-point exchange diagram. For an s-channel diagram the COT
reads [22]

ψ4,s({k}, s, {k}) + ψ∗
4,s({−k}, s, {−k}) = factorised , (C.3)

where the factorised r.h.s. depends on the three-point sub-diagrams that contribute to this
four-point coefficient. In addition to unitarity and Hermitian analyticity of the bulk-boundary
propagators and spatial momenta, this expression holds since the real part of the bulk-bulk
propagator is factorised [24] (we remind the reader that in this paper our bulk-bulk propagator
differs by a factor of i from that of [24] which is why the real part rather than the imaginary
part is factorised). We can see this explicitly. Indeed,

G(η1,η2,k)=σ(η1,k)σ∗(η2,k)θ(η1−η2)+σ(η2,k)σ∗(η1,k)θ(η2−η1)+factorised , (C.4)

and therefore

G(η1,η2,k)+G∗(η1,η2,k)= [σ(η1,k)σ∗(η2,k)+σ∗(η1,k)σ(η2,k)][θ(η1−η2)+θ(η2−η1)]+factorised
= factorised . (C.5)

This straightforwardly generalises to spinning fields. The l.h.s. of the COT is therefore
picking out the factorised part of the bulk-bulk propagator. The fact that the r.h.s. is
factorised suggests that such a relation could be used to derive similar results to what we
have found in this paper, namely that the imaginary part of wavefunction coefficients is
factorised (under the assumptions of scale invariance and IR-convergence). We would then
naturally want to use scale invariance to pick out the imaginary part like we did for contact
diagrams, however this leads to

ψ4,s({k}, s, {k})− ψ∗
4,s({k},−s, {k}) = factorised , (C.6)

since under a scale transformation s is rescaled too. In general, wavefunction coefficients
can contain both odd and even terms in s, since the bulk-bulk propagator does not enjoy
any symmetry property under s → −s, so we cannot conclude that the imaginary part is
factorised from this expression alone.
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However, this discussion suggests that instead we need to use a property of the bulk-bulk
propagator that requires us to flip the sign of s. This is precisely Hermitian analyticity of the
bulk-bulk propagator which for massive scalars and spinning fields within the CCM set-up
was discussed in detail in [24]. Let us explain how we can use this property to offer another
perspective on the results we have found in this paper. As one might expect, the story for
the CCM and CC scenarios are slightly different, and in each case light and heavy fields are
slightly different. Let us therefore take each possibility in turn.

Cosmological condensed matter physics. For concreteness we will restrict ourselves
to κ̃ = 0 since Hermitian analyticity has been well-established in this case. To match the
notation of [24] we define σ−h (η, k) ≡ −iσh(η, k) and σ+

h (η, k) ≡ +iσ∗h(η, k). We then have19

σ−h (η, k) = −iH
√
π

2 (−η)3/2eiπ(ν+1/2)/2H(1)
ν (−ch,Skη) , (C.7)

σ+
h (η, k) = +iH

√
π

2 (−η)3/2e−iπ(ν+1/2)/2H(2)
ν (−ch,Skη) , (C.8)

and the helical bulk-bulk propagator can be written as

G(h)
σ (η1,η2,k)=σ+

h (η1,k)σ+
h (η2,k)

(
σ−h (η1,k)
σ+

h (η1,k)
−
σ−h (η0,k)
σ+

h (η0,k)

)
θ(η1−η2)+(η1 ↔ η2) . (C.9)

Since the new mode functions only differ from the old ones by a phase, the bulk-bulk
propagator is unchanged. Now as shown in [24], the mode functions satisfy the properties:[

σ+
h (η,−k∗)

]∗
= iσ+

h (η, k) , (C.10)[
σ−h (η,−k∗)

]∗
= iσ−h (η, k) + 2 cos(πν)σ+

h (η, k) , (C.11)

from which one can show that the helical bulk-bulk propagator is anti-Hermitian analytic:[
G(h)

σ (η1, η2,−k∗)
]∗

= −G(h)
σ (η1, η2, k) . (C.12)

Note that this property holds for both light and heavy fields. Here −k∗ indicates that we
must include a small negative imaginary contribution, in additional to the negative real
part, such that we do not cross any branch cuts. We can now attempt to put this property
into good use to conclude some reality properties of wavefunction coefficients. Consider
the general diagram structure of (4.4):

ψn({k}, {p}, {k}) =
∫ [ V∏

v=1
dηv iλv Dv

] [
n∏

e=1
Ke(ke)

] [
I∏

e′=1
Ge′(pe′)

]
, (C.13)

where we have only indicated the energy dependence of the propagators. We can now use
the various Hermitian analyticity properties to write

ψ∗
n({−k}, {−p∗}, {−k}) = −

∫ [ V∏
v=1

dηv iλv Dv

] [
n∏

e=1
Ke(ke)

] [
I∏

e′=1
Ge′(pe′)

]
, (C.14)

19These two solutions are complex conjugate to each other for both light and heavy fields.
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where we have used the fact that at tree-level we have V = I+1. For wavefunction coefficients
of massless scalars that adhere to exact scale invariance, i.e. have no η0 dependence and
therefore scale as ψn ∼ k3, we can then write

ψ∗
n({k}, {p}, {k}) =

∫ [ V∏
v=1

dηv iλv Dv

] [
n∏

e=1
Ke(ke)

] [
I∏

e′=1
Ge′(pe′)

]
= ψn({k}, {p}, {k}) ,

(C.15)

which establishes the reality of ψn. Here it was crucial that there was no η0 dependence.
If there is an η0 dependence then flipping the signs of all energies and momenta does not
simply yield an overall minus sign since η0 itself carries a conformal weight. As we have
discussed a number times in this paper, the bulk-bulk propagator is independent of η0 only
for light fields, whereas for heavy fields it does indeed depend on η0. This proof therefore
applies for light fields only, and offers a complementary proof of the result we derived in
section 4 using Wick rotations.

For heavy fields this argument does not hold (and indeed we wouldn’t expect it to hold
since we have already seen that for heavy fields ψn is not real), but the discussion and the
C-F decomposition we made in section 3 suggests a clear way forward. Indeed, consider
the connected bulk-bulk propagator cf. (3.24),

C(h)
σ (η1, η2, k) = σ+

h (η1, k)σ+
h (η2, k)

(
σ−h (η1, k)
σ+

h (η1, k)
− i cos(πν)

)
θ(η1 − η2) + (η1 ↔ η2) , (C.16)

where we have taken the minimal solution of Ah which we derived in appendix A. The relative
minus sign between the two terms in the brackets comes from the fact we have written this
propagator in terms of σ− and σ+ rather than σ and σ∗. Here we have written the solution
for Ah that is valid for both light and heavy fields. We can then use the Hermitian analytic
properties of the mode functions to conclude that this connected bulk-bulk propagator is
anti-Hermitian analytic: [

C(h)
σ (η1, η2,−k∗)

]∗
= −C(h)

σ (η1, η2, k) , (C.17)

which holds for both light and heavy fields. In appendix A we saw that we could add any
real term to Ah while maintaining the reality of the connected bulk-bulk propagator after
Wick rotation. Here we can also add any real term to Ah and still realise the anti-Hermitian
analyticity given (C.10). We can now run the same argument as above but with the full
bulk-bulk propagator replaced by the connected one, and with the crucial difference that
the connected propagator is independent of η0 such that we can use exact scale invariance,20

to conclude that ψC
n is real which complements the proof we derived in section 4 using

Wick rotations.

Cosmological collider physics. As expected, things are a little more involved for the CC
scenario since the mode functions are more complicated, however here we prove anti-Hermitian
analyticity of the full bulk-bulk propagator, and the connected part, for each helicity mode.
To the best our of knowledge this has not been shown before.

20Note that the connected propagator has the same conformal weight as the full bulk-bulk propagator so it
remains the case that ψC

n ∼ k3 by scale invariace.
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As always we start with the n = |h| modes with mode functions given in (2.39) which
are the same as in the CCM scenario up to some real factors, and integer powers of k. We
can therefore immediately conclude that the bulk-bulk propagator is anti-Hermitian analytic:[

Gh
|h|,S(η1, η2,−k∗)

]∗
= −Gh

|h|,S(η1, η2, k) . (C.18)

As we discussed at length in section 3, the bulk-bulk propagator for the other modes can
be written in terms of Φh

|h|,S by iteratively using the relation (2.36):

Gh
n,S(η1,η2,k)= D̂∗

h,n(iη1,k)[Φh∗
|h|,S(η1,k)]D̂∗

h,n(iη2,k)[Φh∗
|h|,S(η2,k)]

×
(
D̂h,n(iη1,k)[Φh

|h|,S(η1,k)]
D̂∗

h,n(iη1,k)[Φh∗
|h|,S(η1,k)]

−
D̂h,n(iη0,k)[Φh

|h|,S(η0,k)]
D̂∗

h,n(iη0,k)[Φh∗
|h|,S(η0,k)]

)
θ(η1−η2)+(η1 ↔ η2) .

(C.19)

The main observation that allows us to make progress is that the differential operators
D̂h,n(iη, k) are Hermitian analytic. This follows straightforwardly from the fact that the
differential operator in (2.36) is Hermitian analytic (and so acting with it iteratively also
yields something Hermitian analytic). The same Hermitian analyticity relations we used above
for CCM can then be used to infer that this bulk-bulk propagator is anti-Hermitian analytic:[

Gh
n,S(η1, η2,−k∗)

]∗
= −Gh

n,S(η1, η2, k) . (C.20)

Note that in arriving at this conclusion we also had to make use of the fact that D̂h,n(iη, k)
are either purely real, for even n− |h|, or purely imaginary, for odd n− |h|, as we discussed
in section 3. This leads to

D̂h,n(iη1, k)[Φh∗
|h|,S(η1, k)]

D̂∗
h,n(iη1, k)[Φh∗

|h|,S(η1, k)]
= (−1)n−|h| . (C.21)

This is used to cancel the cos(πν) pieces that come from (C.11). We can now use a similar
argument as above for the CCM scenario, using the general wavefunction coefficients we
discussed in section 4 for the CC scenario, to conclude that the wavefunction coefficients of
massless scalars exchanging such massive spinning fields are purely real, as long as the η0
dependence cancels out. As with the CCM case, this is only the case for light fields cf. (3.44).
This complements the proof we detailed in section 4 using Wick rotations.

The situation for heavy fields now follows in the same way as for the CCM scenario:
the connected bulk-bulk propagator for all modes is Hermitian analytic from which we can
easily deduce that the connected part of wavefunction coefficients is purely real. In this CC
scenario the connected bulk-bulk propagator is given by (3.48) with reality of this propagator
after Wick rotation fixing

Ah,n(µ) = (−1)n−|h|i cos(πνS) , (C.22)

which we have again written in a way that is valid for both light and heavy fields. We can
then again use the Hermitian analyticity of D̂h,n(iη, k), and the fact that these differential
operators are purely real for even n− |h| and purely imaginary for odd n− |h|, to conclude
that this connected bulk-bulk propagator is anti-Hermitian analytic:[

Ch
n,S(η1, η2,−k∗)

]∗
= −Ch

n,S(η1, η2, k) . (C.23)
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A caution on locality and the anomaly of Hermitian analyticity. In all of the above
proofs, locality of the general form of the interactions, meaning that the vertex operator
Dv is composed of derivatives but not inverse derivatives, is an implicit assumption. In
momentum space, locality tells us that Dv ∼ (ik)n is a polynomial in the energy variable
k = |k| with n ∈ N. Such a local interaction vertex trivially satisfies Hermitian analyticity,
i.e. D∗

v(−k) = Dv(k), leading to (C.14) and the reality theorems. However, if the assumption
of locality is dropped, and Dv(k) is allowed to have a non-polynomial dependence on k, there
can be an intriguing “anomaly” of Hermitian analyticity after performing the time integrals,
thereby invalidating the conclusions about reality of wavefunction coefficients.

To demonstrate the essential idea, consider the following toy model of a scale-invariant
non-local interaction:

L = λϕ′2
1

1− ∇2/(aH)2ϕ
′2 , (C.24)

where ∇2 = δij∂i∂j is the three-dimensional Laplacian in flat space. This non-local theory
can be understood as describing massless ϕ particles interacting via a Yukawa-like force. It
can be derived from a UV theory of ϕ and a massive scalar σ, by integrating out σ and
taking the leading order contribution from the time-derivative expansion [35]. The resulting
s-channel contact wavefunction is21

ψ4({k}, s) = iλ(k1k2k3k4)2
∫ 0

−∞
dη

η4

1 + s2η2 e
ikT η . (C.25)

Taking the Hermitian-analytic conjugate, we obtain

ψ∗
4({−k∗},−s) = −iλ(k1k2k3k4)2

∫ 0

−∞
dη

η4

1 + s2η2 e
ikT η , (C.26)

indicating that ψ4 is anti-Hermitian analytic,

ψ4({k}, s) + ψ∗
4({−k∗},−s) = 0 , (before time integration) , (C.27)

as expected from (C.14). We might then be tempted to use scale invariance and conclude that
such a wavefunction coefficient is purely imaginary. However, this is not the case. Indeed,
we can carry on and compute the time integral to obtain

ψ4({k},s)= iλ
(k1k2k3k4)2

s5

[
i

(
Ci ikT

s
sinh kT

s
−ShikT

s
cosh kT

s
+ s

kT
+2s3

k3
T

)
+π

2 cosh kT

s

]
,

(C.28)

which, under Hermitian-analytic conjugation, becomes

ψ∗
4({−k∗},−s)= iλ

(k1k2k3k4)2

s5

[
−i
(

Ci−ik
∗
T

s
sinh kT

s
−ShikT

s
cosh kT

s
+ s

kT
+2s3

k3
T

)
+π

2 cosh kT

s

]
,

(C.29)
21By “s-channel” here we mean the contribution to the full four-point wavefunction coefficient that has the

same symmetries as an s-channel exchange diagram.
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Figure 9. Left panel: at any fixed time η, one can choose to continue from s to −s∗ by either passing
above or below the singularity at i/η. Right panel: after finishing the time integral, the singularities
merge into a branch cut that goes all the way from zero to infinity, preventing a uniform definition of
the analytic continuation.

where

Ci(x) = −
∫ ∞

x

cos t
t
dt , Shi(x) =

∫ x

0

sinh t
t

dt , (C.30)

are the cosine integral and hyperbolic sine integral functions, respectively. Adding (C.28)
and (C.29) together, we see that in contradiction to our naive expectation (C.27), (anti-
)Hermitian analyticity is violated,

ψ4({k}, s) + ψ∗
4({−k∗},−s) = iπλ

(k1k2k3k4)2

s5 e−kT /s ̸= 0, (after time integration) .
(C.31)

Consequently, the wavefunction coefficient ψ4 is complex in general (rather than being
purely imaginary).

Such an anomaly of Hermitian analyticity stems from the non-analytic behaviour of the
vertex function with respect to the energy variable s: at any finite time η, there are poles
at s = ±i/η which affect the definition of the Hermitian analytic image. One can choose
to continue path-wise in the s-plane from either side of the poles, but since the integration
time η ranges from the origin all the way to infinity, there is no uniform way to perform
the continuation throughout time (see figure 9). The Hermitian analytic properties of the
integrand therefore do not imply some simple relations for the final integrated result when
there is some element of non-locality in the interactions.

Things are somewhat clearer from the Wick rotation perspective which we have primarily
used in this paper: the pole at ηc = i/s on the complex η-plane prevents the deformation of
the integration contour into the Wick-rotated one. Instead, we must include half of the residue
at ηc to account for the half-circle touring around the pole, which gives exactly (C.31). In fact,
this is precisely how parity violation is generated in the non-local single-field EFT model [105].

D Beyond scale invariance: reality in other FLRW spacetimes

The discussion in appendix C suggests a strong connection between the reality properties we
have derived in this work, namely that of wavefunction propagators after Wick rotation, and
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their Hermitian analyticity properties that have been discussed in the literature. Indeed, with
the exact scale invariance of de Sitter space, these two properties are equivalent at the level
of equations of motion. To see this equivalence more clearly, recall the equation of motion
for a free bosonic field without the chemical potential term:

Ê(η, k)σh(η, k) = 0 , Ê(η, k) ≡ η2 ∂
2

∂η2 − 2η ∂
∂η

+ c2
h,Sk

2η2 + m2

H2 . (D.1)

Our reality theorems rely on the fact that after Wick rotation, η = iχ, the equation of
motion remains real:[

Ê(iχ, k)
]∗

= Ê(iχ, k) , or Ê∗(−iχ, k) = Ê(iχ, k) . (D.2)

Hermitian analyticity, on the other hand, states that sending energies to minus energies,
while doing a complex conjugation, is a unit transformation,[

Ê(η,−k)
]∗

= Ê(η, k) , or Ê∗(η,−k) = Ê(η, k) . (D.3)

For a scale-invariant free theory in de Sitter space, the equation of motion operator must
be a function of the combination

Ê(η, k) = f(η∂η, kη) , (D.4)

which means (D.2) and (D.3) are equivalent (at least for a vanishing chemical potential):

Ê∗(−iχ, k) = f∗(χ∂χ,−ikχ) = f∗(η∂η,−kη) = Ê∗(η,−k) . (D.5)

However, in the absence of scale invariance, reality and Hermitian analyticity are drasti-
cally different notions, since they constrain the functional dependence on different variables in
Ê(η, k): reality constrains the time dependence (η, ·), whereas Hermitian analyticity constrains
the energy dependence (·, k). For fields with more complicated dispersion relations, as can
appear in general FLRW spacetimes, the time and energy dependence decouples, and it
is easy to find examples where one of them is satisfied but not the other. For instance, a
scale-dependent mass alters the equation of motion to

Êα(η, k) = η2 ∂
2

∂η2 − 2η ∂
∂η

+ c2
h,Sk

2η2 +
(
m2

H2 + αk

)
, (D.6)

which satisfies reality but not Hermitian analyticity, while a time-dependent sound speed

Êβ(η, k) = η2 ∂
2

∂η2 − 2η ∂
∂η

+
(
c2

h,S + βη
)
k2η2 + m2

H2 , (D.7)

satisfies Hermitian analyticity but not reality. Notice that if one assumes the usual dispersion
relation w2 = c2

sk
2
p +m2, Hermitian analyticity is valid for most theories in general FLRW

spacetimes with a Bunch-Davis vacuum [24], whereas reality is more stringent and is only
valid for certain spacetimes.

To see how far we can go without assuming scale invariance, consider theories in a
power-law FLRW spacetime,

ds2 = a2(η)(−dη2 + dx2) , a(η) =
(
η∗
η

)p

, p ≥ 0 , (D.8)
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where p = 1 corresponds to the case of inflation. The equation of motion operator reads

Ê(η, k) = 1
a2(η)

(
∂2

∂η2 − 2p
η

∂

∂η
+ c2

sk
2
)
+m2 . (D.9)

This operator is apparently Hermitian analytic for any p ∈ R+, and under some assumptions
the corresponding propagators are Hermitian analytic [24]. How about reality after Wick
rotation? Replacing η → iχ, we find

Ê(iχ, k) = i2p 1
a2(χ)

(
− ∂2

∂χ2 + 2p
χ

∂

∂χ
+ c2

sk
2
)
+m2 , (D.10)

which is real only for p being an integer. Thus the propagator realities for Ke, Ge′ will
continue to hold for p ∈ N. To further check the ψn-reality and kT -reality, we need to examine
how the vertex Dv transforms under Wick rotation:22

Dv = a4−kv−lv(η)
[
(δij)pv (ϵijk)qv (∂η)kv (i ki)lv

]
partially contract

= i(−4+kv+lv)p i−kv ilv × a4−kv−lv(χ)
[
(δij)pv (ϵijk)qv (∂χ)kv (ki)lv

]
partially contract

= i(kv+lv)(p+1) × real , (D.11)

which is real for arbitrary couplings (i.e. all kv, lv ∈ N) only if p is an odd integer.23 Therefore,
we conclude with

Corollary D.1. In odd-power-law FLRW spacetimes with a Bunch-Davies vacuum and IR
convergence, ψn-reality, kT -reality and parity-odd factorisation theorems are still valid even
in the absence of scale invariance.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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