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Abstract 

Compared to traditional rigid robots, continuum robots have intrinsic compliance and 

therefore behave dexterously when performing tasks in restricted environments. 

Although there have been many researches on the design and application of 

continuum robots, a theoretical investigation of their dexterity is still lacking. In this 

paper, a two-joint wire-driven continuum robot is utilized to demonstrate dexterity by 

introducing the concept of orientability taking into account two indices, the accessible 

ratio and angle of the robot, when its tip reaches a certain task space inside the 

workspace. Based on the kinematic model, the accessible ratio and angle of the 

continuum robot are calculated using the Monte-Carlo method. From this, the 

influence of individual joint lengths on the proposed orientability indices and the 

optimal joint length are then investigated via an improved particle swarm 

optimization (PSO) algorithm. Finally, the presented methods were validated through 

experiments showing that the use of optimal joint length can increase the accessible 

ratio and reduce the minimum accessible angle by more than 10° in the task space. 
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1. Introduction 

In recent years, continuum robots mimicking biological structures such as 

octopus tentacles and elephant trunks have gained increasing attention due to their 

unique structural advantages of inherent compliance and adaptability. This enables 

them to be suitable for operations in narrow, complex and unconstructed 

environments such as detection, rescue, and medical fields1. 

So far, there have been many related researches on the design and 

implementation of continuum robots. Walker et al.2-4 developed a series of continuum 

robots, such as the Air-OCTOR driven by a mixture of wires and air pressure. Xu et 

al.5 exploited a continuum robot for minimally invasive surgery in the throat, using 

multiple super-elastic wires for actuation. Okamura et al.6 proposed a concentric tube 

continuum robot with 3-D printed method, which can be used in patient-specific 

applications. Kang et al.7-9 presented several continuum robots driven by pneumatic 

muscle actuators and wires for underwater and restricted environments. Kim et al.10 

designed a flexible spring-based continuum robot composed of an inter-connected 

inner spring and an outer spring to meet the demand for motions in three dimensions. 

The above-mentioned continuum robots show higher dexterity in manipulation than 

traditional rigid robots, but few works were concerned with the quantitative 

evaluation and analysis of the dexterity for continuum robots. To do this, a kinematic 

model of continuum robot is required. 

There have been a lot of attempts to establish kinematic models for continuum 

robots. Walker et al.11 introduced a modified D-H method for the kinematic model of 

continuum robots. Camarillo et al.12 came up with a novel linear method to derive the 

kinematic model for a wire-driven continuum robot. Webster et al.13 presented a 

continuum robot composed of telescoping, concentric, precurved superelastic tubes, 

whose kinematic model was obtained by beam mechanics. Based on the above works, 

workspace of continuum robots has been further studied. Yuan et al.14 carried on 

workspace analysis of wire-driven continuum manipulators taking into account the 

wire tension, payload and gravity. Burgner-Kahrs et al.15 described a method for 

calculating the volume of workspace for a concentric tube continuum robot. Kang et 

al.16 proposed a wire-driven continuum robot and analyzed its workspace based on 

mechanical interference identification. Although these works gave methodologies to 

calculate the workspace of continuum robots based on kinematic models, the 

definition of dexterity and how to use the dexterity to optimize the structural design of 

continuum robots are still lacking. 



Within the scope of rigid robots, the following two types of indices were 

generally used to characterize their dexterity: the manipulability17-19 evaluating the 

stability of the tip position of a robot with respect to small changes of displacement in 

actuators, and the orientability20-22 representing the ability of a robot to reach a 

specific position or space in different orientations. Inspired by these methods, Kang et 

al.23 used the condition number of the Jacobian matrix to analyze the manipulability 

of a continuum robot, and Wu et al.24 investigated the orientability of a continuum 

robot by identifying an accessible region (also referred to as service region in some 

papers22) where the robot tip can reach through different body configurations. It was 

found that, the orientability describing dexterity in a geometric way is more 

straightforward than the manipulability using an algebraic way, thus, it is utilized in 

this paper for dexterity analysis. To normalize the orientability of a continuum robot 

with respect to a given task space, an index named accessible ratio is presented in our 

study meaning the area ratio of the accessible region to the surface of the task space. 

Unlike the previous work24 that identified the accessible region by only counting the 

number of possible configurations, this paper proposes a new index, accessible angle, 

to further characterize the perpendicularity of the robot tip to the surface of the task 

space, and therefore provides a more comprehensive evaluation of orientability. 

Moreover, the indices of accessible ratio and angle are integrated into an objective 

function to optimize the structure of a wire-driven continuum robot. 

The main contributions of this paper are: the orientability indices including the 

accessible ratio and angle are presented; the individual joint lengths of a continuum 

robot are then optimized to figure out their influence on the accessible ratio and angle 

within a specific task pace. This work provides a useful guidance for the structural 

design of wire-driven continuum robots, and can be applied to designs of other 

continuum robots as long as they have serially connected bending joints. 

This paper is organized as follows. Section 2 introduces the construction of a 

kinematic model for the continuum robot. Then in Section 3, the orientability of the 

continuum robot and the influence of the individual joint lengths on it are analyzed in 

detail. Subsequently, the individual joint lengths of the continuum robot are optimized 

by comprehensively considering the orientability indices in Section 4. Results are then 

experimentally validated in Section 5, and Section 6 summarizes the paper. 

2. Structure and Kinematic Model of the Robot 

2.1 Structure of the robot 

Up to now, the classification of continuum robots according to the actuation 

methods can be divided into wire-driven mechanisms, pneumatic muscles, SMA, etc1. 

Among them, the wire-driven mechanisms are the most widely used due to their 

relatively simple structure and high precision. In this paper, a wire-driven continuum 



robot is used to carry out orientability analysis and structural optimization, as shown 

in Fig. 1. The robot consists of two modular joints, each of which contains a central 

backbone, three driving wires and multiple constraint disks. The backbone runs 

through two joints and functions as a support to the body of the robot. The constraint 

disks are fixed to the backbone with an equally spaced distance. The driving wires are 

fixed to the top constraint disk of the corresponding joint, and pass through the holes 

arranged 120° apart in the constraint disks. Because the length of the backbone is 

constant, bending motion of the robot can be achieved by changing the length of the 

driving wires. The backbone and the driving wires are made of superelastic NiTi alloy 

to ensure the compliance of the continuum robot while the driving wires can take both 

thrust and tensile forces for a bidirectional control. The robot can be easily 

modularized to desired length by adding or removing the joints and constraint disks. 

 

Fig. 1 A two-joint wire-driven continuum robot: (a) Three-dimensional model; (b) 

Geometric model (to make the figure clear, the constraint disks in the middle of each 

joint are not drawn). 

2.2 Parameter description 

In this section, we define the geometrical parameters of the continuum robot. As 

shown in Fig. 1, two coordinate systems Omb (xmb, ymb, zmb) and Ome (xme, yme, zme) are 

established in joint m (m = 1, 2), respectively: 

1) Omb (xmb, ymb, zmb) is the base coordinate system fixed on the center of the 

base of joint m, where the xmb axis passes through the intersection of the first 

driving wire and the base of joint m. 

2) Ome (xme, yme, zme) is the end coordinate system of the tip of joint m, where 

the xme axis is in the bending plane of joint m. 



Assuming the bending shape of each joint has constant curvature, three spaces of 

the continuum robot are described25: 

1) Workspace P = [x, y, z]T is a collection of the position of the robot tip in the 

base coordinate system O1b (x1b, y1b, z1b), which is an important criterion to 

evaluate the manipulation area of the robot. 

2) Configuration space Ψ = [θm, δm]T (m = 1, 2) includes the bending angle and 

the rotation angle of joint m, which are named θm and δm, respectively. The 

configuration space reflects the shape of the continuum robot. 

3) Driving space Q = [lm,n]
T (m = 1, 2, n = 1, 2, 3) covers the length of the whole 

driving wires, where lm,n represents the length of the nth driving wire of joint 

m. The driving space is a direct input variable used to control the continuum 

robot. 

2.3 Kinematic model 

For a two-joint wire-driven continuum robot, as the three driving wires of joint 2 

pass through joint 1, if joint 1 bends, the lengths of driving wires of joint 2 will be 

changed as well. Therefore, when considering the mapping relationship between the 

driving space Q and the configuration space Ψ, the kinematic coupling of the two 

joints should be taken into account: 

,
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where Lk represents the length of the joint k (i.e. the length of the backbone included 

in joint k), r is the radius of the distribution circle, α = 120° indicates the angle of the 

three driving wires along the circumference of the distribution circle in each 

constraint disk, and β = 60° is the angle between the driving wires of joints 2 and 1, as 

shown in Fig.1. 

According to Eq. (1) and the geometrics of the continuum robot, it can be found 

that for each given set in the configuration Ψ, there exists a unique solution in the 

driving space Q and vice versa. 

From Fig. 1, the homogeneous transformation matrix ( 1,2)mb

meT m   from the 

coordinate system Omb to Ome can be expressed by Eq. (2). Therefore, the kinematic 

mapping relationship between the configuration space Ψ and the workspace P can be 

obtained as Eq. (3). 
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where Rot and Trans represent the rotation and translation transformation, 

respectively. 

From Eq. (2) and (3), we can see that for each given set in the configuration Ψ, 

there exists a unique solution in the workspace P, however, there may be multiple 

different configurations corresponding to a certain position in the workspace P. 

Thus, the forward kinematics of the wire-driven continuum robot from the 

driving space Q to workspace P has a unique solution, while the inverse kinematics 

from the workspace P to driving space Q may have multiple solutions. Moreover, it’s 

difficult to determine the explicit solution because of the complicated expression of 

Eq. (3), so numerical solutions are used to obtain the inverse kinematics of the 

continuum robot. 

3. Orientability Analysis 

3.1 Orientability indices 

Based on the kinematic model, the orientability of the continuum robot will be 

discussed in this section. Abdel-Malek et al.20 proposed the concept of accessible 

region for manipulators in 1994. Based on that, Badescu et al.22 carried a further study 

on orientability for a multi-segmented rigid robotic arm. These efforts provide 

inspiration for the analysis of the orientability of the continuum robot in this paper.  

From the kinematic relationships in Section 2, it can be seen that the continuum 

robot reaches a given manipulation area, named task space T, inside its workspace 

with a variety of different configurations. For instance, to paint a part, the task space 

T can be defined as a circumscribed sphere. For the convenience of analyzing, the 

task space T is assumed to be centered at point C with a radius R, as shown in Fig. 2. 

 
Fig. 2 The accessible region in a task space 



By defining the surface area of the task space T where the robot tip can pass 

through with different configurations as the accessible region, the accessible ratio of 

the continuum robot with respect to the task space T can be expressed as 

2
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where AC represents the area of the accessible region, AT represents the surface area of 

the task space T. 

For the surface of the task space T, if we divide it into equal-area M×N patches 

in terms of longitude and latitude, Eq. (4) can be simplified to 
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where K indicates the number of the patches that included by the accessible region. 

Eq. (5) reflects the number of orientations that the robot can hold for entering a 

given task space. However, in many cases, e.g. painting26 or drilling tasks27, it is 

expected that the robot tip can approach the task space as perpendicular as possible to 

ensure enough contact in the normal direction for better operational performance. As 

shown in Fig. 3, assuming the robot intersects with a certain patch on the task space at 

point B, the tip position of the robot is point A, the center of the patch is point D, and 

the center of the task space T is point C. Then, the angle between the vectors AB⃗⃗⃗⃗  ⃗ and 

CD⃗⃗⃗⃗⃗⃗  is defined as the accessible angle ω expressed by 

ω = arccos 
AB⃗⃗⃗⃗  ⃗∙CD⃗⃗⃗⃗ ⃗⃗ 

|AB⃗⃗⃗⃗  ⃗|∙|CD⃗⃗⃗⃗ ⃗⃗ |
   ω∈[0, 90°]                                    (6) 

Assume the tip part of the continuum robot inside the task space T is relatively 

small in comparison to the whole joint lengths of the robot, so the vector AB⃗⃗⃗⃗  ⃗ can 

approximate the tangent line of the robot at point B. The accessible angle ω will then 

reflect the perpendicularity of the robot tip pointing to the accessible region on the 

surface of the task space T. 



 

Fig.3 The accessible angle ω 

For different configurations passing through the same patch in the accessible 

region, the value of their accessible angle ω are different. To ensure the operational 

performance, it is desirable to use the configuration with the minimum accessible 

angle ω, denoted as ωmin, for this patch. Thereby, the average of the minimum 

accessible angle ωmin in the entire accessible region with respect to the task space T 

can be calculated by 
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In this paper, the orientability in the task space T will be comprehensively 

reflected by the above two indices: the accessible ratio D(T) and the average 

minimum accessible angle Ω(T). The larger the value of D(T) and the smaller the 

value of Ω(T) are, the better orientability performance the robot will achieve. 

3.2 The analysis of orientability in the task space T 

Orientability in the task space T is obtained through the following steps: 

1) Determine the location of the task space T and divide its surface into equal-

area M×N patches in terms of longitude and latitude. 

2) Generate random samples with Monte-Carlo method in the configuration 

space Ψ and use the forward kinematics to find the corresponding robot tip 

positions that can enter the task space T. 

3) Search the intersection of the robot and the surface of the task space T and 

record the position of the patch where the intersection occurs. 

4) Use Eq. (5) and (7) to calculate the value of D(T) and Ω(T). 

Large orientability means a large bending level of the continuum robot, which is 

relevant to the following parameters: the individual joint length Lm (m = 1,2, Lm also 



indicates the initial length of the driving wires in joint m), the length changes of the 

driving wires Δlm,n = Lm - lm,n (m = 1,2, n = 1,2,3), and the radius of the driving wires 

distribution circle r. According to the geometric model shown Fig. (1) and Eq. (1), it 

can be found that in a bending plane, increasing the value of Δlm,n while decreasing 

the value of r will result in larger bending angle θm (m = 1, 2), i.e., Δlm,n = rθm. And 

larger bending angle θm allows for better dexterity and orientability16, 24. However, the 

influence of Lm on the orientability is not straightforward. Thus, this paper discusses 

the orientability with respect to the individual joint length Lm while assuming other 

parameters are given. 

Below is an example showing the orientability of the robot in a task space T with 

different joint length combinations. Suppose the point C = (250mm, 200mm, 700mm) 

and R = 50mm are the center and radius of the spherical task space T, respectively. 

The number of the patches on the surface of the task space T is set to 800, that is, M = 

40 and N = 20. Three combinations of the joint lengths are assigned as (L1 = 550mm, 

L2 = 220mm), (L1 = 600mm, L2 = 220mm), and (L1 = 550mm, L2 = 240mm). 10 

million random samples in the configuration space Ψ are then used to calculate 

orientability via Monte-Carlo method. 

Figure 4 plots the accessible regions and minimum accessible angles obtained 

from the three joint length combinations. In each case, the results are shown in two 

view directions, the front and back view of the spherical task space T. The accessible 

region is represented by colored patches. The darker patches indicate the smaller 

value of the minimum accessible angle ωmin, which is better for manipulation, and 

vice versa. 

 



 

Fig. 4 The orientability description in the task space T with different joint length 

combinations (each subfigure has two perspectives): (a) (L1 = 550mm, L2 = 220mm), 

number of the colored patches: 244, D1(T) = 0.31, Ω1(T) = 20.81°; (b) (L1 = 600mm, 

L2 = 220mm), number of the colored patches: 501, D2(T) = 0.63, Ω2(T) = 23.38°; (c) 

(L1 = 550mm, L2 = 240mm), number of the colored patches: 256, D3(T) = 0.33, Ω3(T) 

= 24.52°. 

From Fig. 4 (a), (b) and (c), it can be seen that different joint length 

combinations result in large differences in the accessible ratio D(T) and the average 

minimum accessible angle Ω(T). Comparing (a) with (b), if L1 increases by 50mm and 

L2 remains constant, D(T) will increase by 103.23%. Comparing (a) with (c), if L2 

increases by 20mm and L1 remains constant, Ω(T) will increase by 17.83%. It is found 

that D(T) and Ω(T) is mainly affected by L1 and L2, respectively. Therefore, it is 

necessary to determine the optimal length for each joint in a continuum robot to meet 

the need for both indices of D(T) and Ω(T), and ensure the orientability in a given 

task space. 

 

 

 



4. Structural Optimization 

4.1 Problem statement 

To obtain the optimal individual joint lengths with respect to the orientability 

indices, i.e. the accessible ratio D(T) and the average minimum accessible angle Ω(T), 

in a given task space T, the problem can be stated as follows. 
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where D(T) = f (L1, L2), Ω(T) = g (L1, L2), f and g are the forward kinematics of the 

continuum robot, 1 and 2 are the weights of the indices D(T) and Ω(T), respectively. 

a is the minimum value of the individual joint lengths, b and c are the minimum and 

maximum value of the total length, respectively. Note that, it is difficult to obtain the 

explicit expressions of the functions f and g due to the highly complicated and 

nonlinear kinematic relationships. Thus, the calculation of F is based on a Monte- 

Carlo method described in Section 3.2. The selection of a, b and c depends on the 

practical task, for instance, the distance between the robot base and the center of the 

task space, and the engineering limitations of the actuators, transmissions and 

structural stiffness.  

4.2 PSO optimization 

In this section, we use the example given in Section 3.2 to demonstrate the 

optimization process. The task space T is a sphere with a radius of 50mm centered at 

C = (250mm, 200mm, 700mm). The distance between the robot base and the centroid 

C is 769.7mm, thus, the total length L = L1 + L2 of two joints should be greater than 

769.7mm (i.e. b = 769.7mm). On the other hand, too large L will lead to issues on 

structural stiffness and control precision, so we limit the total length L to be less than 

1000mm (i.e. c = 1000mm). In the meantime, to guarantee the robot body contains the 

necessary backbone, driving wires and constraint disks. The minimum length of each 

joint is set to 200mm (i.e. a = 200mm) and the radius of the driving wire distribution 

circle is 15mm (i.e. r = 15mm). The values of L1 and L2 are then optimized by using 

an improved PSO algorithm28 based on decomposition principle. During the 

optimization process, the objective space is decomposed into a set of sub-regions 

based on a set of direction vectors, and the local optimal solutions are searched 

separately between the regions. Then, the crowding distance is utilized to calculate the 

fitness values of the reserved solutions and determine the global optimal solution. 



PSO algorithm can deal with optimal problems whose objective function is implicit, 

so it is employed in our study. The population size, the maximum number of 

iterations, the learning factors and the inertia weight of the improved PSO are 

assigned as N = 30, T = 80, C1 = C2 = 1.4962 and ρ = 0.7298, respectively. 

To compare the influence of the weights for the indices D(T) and Ω(T), three 

case studies are carried out where the weights λ1 and λ2 have different values as shown 

in Table I. It was found that in Table I, although the maximum of F in the three cases 

are similar, the corresponding joint lengths are quite different. Increasing weight 1 

will result in an increase of joint length L1 and decrease of joint length L2, and vice 

versa. This is consistent to the results shown in Fig. 4 that different joint lengths L1 

and L2 have significant impacts on the value of D(T) and Ω(T). Note that, in practical 

design of robots, the weights 1 and 2 are usually pre-determined according to the 

task requirements (e.g., requiring the robot to access more region or to access a region 

with more minimum angles). So, in our study, we don’t focus on comparing the 

maximum of D(T), Ω(T) and F by changing the weights 1 and 2. Instead, we focus 

on investigating the impacts of joint lengths L1 and L2 on the value of D(T), Ω(T) and 

F with respect to given cases of weights 1 and 2. 

The improved PSO evolution curve of the objective function F is shown in Fig.5. 

It can be seen that, in each case, the evolution of joint lengths L1 and L2 will 

significantly change the value of F and the maximum value of F can be obtained after 

about 50 iterations. 

Table I. The results of the improved PSO optimization 

Case (1, 2) (L1, L2)/mm D(T) Ω(T)/°
 F 

1 (0.5,0.5) (590,250) 0.71 23.06 0.73 

2 (0.9,0.1) (610,230) 0.72 26.24 0.72 

3 (0.1,0.9) (560,270) 0.68 21.92 0.75 

 

 



 

Fig. 5 The improved PSO evolution curve of the optimal orientability value of F: (a) 

Case 1: λ1 = 0.5, λ2 = 0.5; (b) Case 2: λ1 = 0.9, λ2 = 0.1; (c) Case 3: λ1 = 0.1, λ2 = 0.9. 

The corresponding accessible regions and minimum accessible angles in the 

three cases are presented in Fig. 6. It can be seen that, when the weight of D(T) gets 

larger, the area of the accessible region expands (i.e. the number of the colored 

patches increases), which is consistent with the results given in Table 1. In the 

accessible region, the color of the patches gets brighter, indicating the index Ω(T) and 

manipulation performance get worse. 

 



 

Fig. 6 The optimal orientability distribution in three cases: (a) Case 1: λ1 = 0.5, λ2 = 

0.5, number of the colored patches: 568; (b) Case 2: λ1 = 0.9, λ2 = 0.1, number of the 

colored patches: 576; (c) Case 3: λ1 = 0.1, λ2 = 0.9, number of the colored patches: 

544. 

4.3 Results validation 

In this section, a case study using traditional Monte-Carlo searching method is 

introduced to demonstrate the impact of joint length and to validate the PSO 

algorithm. The searching space is defined within 200mm  L1  800mm, 200mm  L2 

 800mm, and the weights are assigned as λ1 = λ2 = 0.5. It is found that the results 

obtained by the improved PSO algorithm are consistent with the Monte-Carlo method, 

as shown in Fig.7. By repeating the optimization with the improved PSO algorithm 

for several times, the results always converge to the global optimal solution F = 0.73 

when L1 = 590mm and L2 = 250mm. So, the improved PSO is a feasible method for 

the optimization problem in this paper. 

 

Fig. 7 Results comparison of the improved PSO algorithm and Monte-Carlo method 

5. Experimental Verification 

In this section, a two-joint wire-driven continuum robot is constructed to carry 

out the experimental verification. Assuming that we expect a continuum robot to have 



balanced performance between the accessible ratio D(T) and average minimum 

accessible angle Ω(T) in normal operations, the joint lengths L1 = 590mm and L2 = 

250mm shown in Table 1 (case 1) is chosen for the robotic prototype to demonstrate 

the effects of optimization. Also, we modify the prototype to a traditional structure 

using equal joint length, L1 = L2 = 420mm, to compare with the optimized one. 

Figure 8 shows the experimental platform including a continuum robotic 

prototype and a 3D electromagnetic tracking system (3D Guidance trakSTAR 

produced by NDI, measure error: below 0.5mm). The motion of the continuum robot 

is achieved through kinematic control. Given a desired configuration [θm, δm], the 

controller will calculate the corresponding displacement Δlm,n for the driving wires 

through the inverse kinematic model, and then activate the motor and screw system to 

push or pull the driving wires. The electromagnetic tracking system then provides 

feedback on the position information along the robot by placing a sensor probe on 

desired points. 

 

Fig. 8 The experimental platform 

It can be seen from Fig.6 (a) that the distribution of the accessible region is 

symmetrical, so 30 patches are taken and classified into three groups G1, G2 and G3 

whose minimum accessible angles ωmin are within [0, 30°], [30°, 60°] and [60°, 90°], 

respectively. For each patch, the simulated configuration with minimum accessible 

angle can be obtained by using Eq. (6), then the obtained configuration is used as an 

input to the robotic prototype to perform the experiment on orientability. Figure 9 

shows a schematic diagram of how to determine the intersecting patch and the value 

of ωmin in the experiments. The position sensor probe detects four reference points on 

the robot body with a distance of 25mm, 50mm, 75mm and 100mm from the robot 

tip. Then, the actual configuration of the robot’s end part can be obtained by using the 

least squares based fitting method with respect to the four reference points. Finally, 



the intersection of the robot and patch, as well as the value of the minimum accessible 

angle ωmin can be calculated using Eq. (6). 

 

Fig. 9 The schematic diagram of the experimental process 

The experimental and simulated results of the optimal joint length (L1 = 590mm, 

L2 = 250mm) are shown in Fig. 10 (a) and (b). It can be seen that the distribution of 

the patches are consistent, however, it is difficult to tell the color difference for each 

patch, which represents the value of the minimum accessible angle ωmin. Figure 11 

gives a more detailed comparison showing the values of ωmin in different groups. 

Each triangle or circle represents the value of ωmin corresponding to a patch. The root 

mean square errors (RSME) are then calculated based on these ωmin values for groups 

G1, G2 and G3, which are 2.51°, 1.89° and 2.23°, respectively. Errors are mainly due to 

the gap between the theoretical kinematic model and the robotic prototype, such as the 

friction that is not considered in the kinematic model. Also, the measurement systems 

and curve fitting process will introduce minor errors. 

 

Fig. 10 Comparison between experimental and simulated results for the optimal joint 

length (L1 = 590mm, L2 = 250mm): (a) experimental results; (b) simulated results. 



 

Fig. 11 Comparison of experimental and simulated results of ωmin with the optimal 

joint length (L1 = 590mm, L2 = 250mm) 

By maintaining the total length of the robotic prototype while changing the joint 

length to L1 = L2 = 420mm, the experimental results are presented in Fig. 12. Three 

groups of patches G4, G5 and G6 are selected in the areas where the minimum 

accessible angles ωmin are within [0, 30°], [30°, 60°] and [60°, 90°], respectively, 

corresponding to that for G1, G2 and G3. 

 

Fig. 12 Experimental results for the traditional equal joint length (L1 = L2 = 420mm) 

Comparing Fig. 10 (a) with Fig. 12 in terms of the accessible ratio D(T) index, it 

is found that the prototype using optimal joint length (L1 = 590mm, L2 = 250mm) has 

10 patches in G1 while its counterpart using equal joint length (L1 = L2 = 420mm) has 

only 4 patches in G4. This means that the optimal joint length can achieve larger 

accessible region than the traditional one. For the minimum accessible angle ωmin, 

Fig. 13 gives a detailed comparison between the prototypes using optimal and equal 

joint lengths. As G4 contains only 4 patches, RMSE (G1, G4) is calculated based on 

these four patches (i.e. patches 1,5,6,9 in Fig. 13). However, RMSE (G2, G5) and 



RMSE (G3, G6) are calculated based on 10 patches (i.e. patches 1, 2, … ,10 in Fig. 13). 

It can be seen that the use of optimal joint length reduces the minimum accessible 

angle by more than 10° in all cases, which means a better orientability with respect to 

the index Ω(T). 

   

Fig. 13 Comparison of experimental results of ωmin between the optimal joint length 

and traditional equal joint length 

6. Conclusions 

In this paper, the orientability of a wire-driven continuum robot in a task space 

was defined and analyzed in detail based on a kinematic model. It was evaluated by 

two indices: the accessible ratio and the average minimum accessible angle, which 

reflected the size of the accessible region and the perpendicularity of the robot tip 

pointing to the task surface, respectively. The optimal joint lengths of the robot were 

then obtained to improve the orientability by using an improved PSO method. It was 

found that increasing the length of the proximal joint will enlarge the accessible ratio 

while increasing the length of the distal joint will reduce the minimum accessible 

angle. Finally, a prototype of the continuum robot was constructed to validate the 

presented methods. The experimental results show that using optimized unequal joint 

length instead of traditional equal joint length can increase the accessible region and 

reduce the minimum accessible angle by more than 10°. This work gives a new insight 

into the determination of design qualities affecting dexterity of continuum robots, and 

provides a foundation for further investigation into the design of multi-joint 

continuum robots. Future work will improve the two-joint continuum robot to a multi-

joint one and use the presented methods to optimize its orientability. The orientability 

indices will be utilized to guide the path planning29 and kinematic control of the 

multi-joint continuum robot, so that the robot can adjust its configuration to avoid 

obstacles while maintaining optimal orientability to a specific task space. 
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