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Abstract5

Synaptic plasticity enables animals to adapt to their environment, but memory formation can6

consume a substantial amount of metabolic energy, potentially impairing survival. Hence, a neuro-7

economic dilemma arises whether learning is a profitable investment or not, and the brain must therefore8

judiciously regulate learning. Indeed, in experiments it was observed that during starvation, Drosophila9

suppress formation of energy-intensive aversive memories. Here we include energy considerations in a10

reinforcement learning framework. Simulated flies learned to avoid noxious stimuli through synaptic11

plasticity in either the energy expensive long-term memory (LTM) pathway, or the decaying anesthesia-12

resistant memory (ARM) pathway. The objective of the flies is to maximize their lifespan, which is13

calculated with a hazard function. We find that strategies that switch between the LTM and ARM14

pathways based on energy reserve and reward prediction error, prolong lifespan. Our study highlights15

the significance of energy-regulation of memory pathways and dopaminergic control for adaptive learning16

and survival. It might also benefit engineering applications of reinforcement learning under resources17

constraints.18

Keywords: reinforcement learning, learning and memory, metabolism, insects, computational modeling19

Learning allows animals to adapt to their surroundings, evade dangers, and enhance survival prospects.20

However, learning itself comes at a cost as it requires considerable amounts of metabolic energy. For21

instance, experiments have shown that fruit flies that learn a classical conditioning task perish 20% faster22

when subsequently starved compared to starved control flies (Mery and Kawecki, 2005). When they are23

not starved, flies strongly increase their food intake after learning (Plaçais and Preat, 2013).24

In Drosophila memory is expressed in (at least) two distinct pathways, that are believed to be mutually25

exclusive (Isabel et al., 2004). The Long Term Memory (LTM) pathway requires a lot of energy but yields26

persistent memory. Conversely, the Anesthesia Resistant Memory (ARM) pathway is thought to require27

negligible amounts of energy, as its expression does not significantly affect lifetime (Mery and Kawecki,28

2005). However, ARM memory typically dissipates within four days (Tully et al., 1994). Notably, in29

aversive conditioning protocols flies halt energy-demanding LTM formation when starved (Plaçais and30

Preat, 2013).31

As learning comes at a cost, a neuro-economic dilemma arises whether learning is a profitable investment32

or not. Yet, the energy requirements of learning have thus far been mostly overlooked in the computational33

community. The situation can be compared to the human dilemma whether or not to spend money on34
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Figure 1: Hazard framework a) Illustration of hazard formulation. At each day the fly has a probability h(t)
to die, or to survive to the next day. The hazard is determined by the fly’s metabolic energy reserve and
the stimuli it encounters. The hazard has two components: starvation hazard and hazard from approaching
the noxious stimulus.
b) Assumed relation between the normalized energy reserve of the fly and its starvation hazard. The hazard
increases exponentially at low energy. Note that even at maximal energy, there is a background hazard.
c) Hazard framework leads to discounting. The reduction in lifetime due to an additional hazard versus the
time of this extra hazard. Future hazards are exponentially less important than immediate ones. When the
expected lifetime is shorter (red curve), the discounting is stronger, i.e. decay is faster. Baseline hazard:
0.1 (black), and 0.2 (red); hazard of stimulus in both cases 0.05.

education: typically investment in education will pay off financially, but only if the life expectancy is long35

enough and bankruptcy can be avoided.36

Here we examine the energy cost-benefit of learning on expected survival, and compare learning strategies37

that maximize survival during an aversive conditioning protocol. We introduce a hazard framework to38

examine the trade-off between the energy expenditure required learning and encountering hazardous stimuli.39

Learning to evade aversive stimuli decreases the stimulus hazard, but the energy expenditure associated40

with learning increases the starvation hazard. The objective for the flies is to maximize their lifetime by41

employing either the LTM or the ARM memory pathways. We propose a strategy that switches between42

ARM and LTM pathways depending on the current energy reserve and the reward prediction error. This43

strategy robustly increase life-time across a number of stimulus protocols.44

Model: Hazard framework45

Most biological reinforcement learning studies assume that animals seek to maximize total reward and46

minimize punishment. The tacit assumption is that this improves biological fitness. It is then common47

to compare behavior to reward maximizing policies (e.g. Beron et al., 2022), often without regards for48

metabolic cost of implementing and updating the policy. Here, however, we directly assume that the49

optimal policy maximizes survival, i.e. the life time of the organism. Because learning requires energy, the50

policy needs to balance avoidance of a hazardous stimulus against the expenditure of energy by learning.51

To examine this trade-off we use a hazard function approach. Hazard functions were originally developed52

in life insurance to calculate the probability that policy holders would die; they are also used in failure53

analysis and healthcare (e.g. Modarres et al., 1999; Clark et al., 2003). In computational neuroscience54

hazard functions have been used to model the probability that a neuron fires a spike (Gerstner et al., 2014).55

Despite being a natural approach, a hazard framework has to our knowledge not been used before for56

reinforcement learning problems.57

Using a discrete time formulation, the hazard function h(t) (0 ≤ h(t) ≤ 1) specifies at any time the58
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probability to die within a time unit. The probability to have a life time t is given by the probability59

of surviving all previous time-steps and perishing at time t. For a constant hazard h(t) = h, one finds60

that P (t) = (1 − h)t−1h, Fig. 1a. The life time distribution is in this case exponential with mean61

lifetime ⟨t⟩ =
∑∞

t=0 tP (t) = 1/h − 1. For time-varying hazards, the probability to have a life-time t is62

P (t) = S(t)− S(t+ 1), where S(t) =
∏t−1

t′=0[1− h(t′)] is the survival function to survive until time t. The63

mean life time follows as64

⟨t⟩ =
∞∑
t=0

S(t)− 1. (1)

In the following we measure time in days, and so the hazards have units ’per day’.65

The total hazard can include factors such as the internal state of the animal, as well as external66

stimuli and environmental factors. We consider two hazards: First is the hazard from starvation, which67

increases when the metabolic energy reserve M(t) diminishes. We assume that the energy reserve M(t) is68

positive and saturates at 1, corresponding to about 10 Joule (Girard et al., 2023). Although it would be69

straightforward to determine dependence of hazard on energy reserve experimentally, we are not aware of70

such experiments. Therefore we assume a steep increase at low energy levels, Fig. 1b,71

hM (t) = exp[−cM(t)] (2)

We calibrate c by using that well-fed flies (M = 1) have a lifespan of some 50 days (Linford et al., 2013),72

i.e. c = 3.9. Note that the hazard formulation includes the non-stochastic case where flies die if and only73

if the energy reaches zero. Hereto one would set the hazard hM (t) to zero whenever M > 0, and to one74

otherwise.75

Second, there is a hazard associated to approaching the aversive stimulus. Although laboratory76

experiments generally involve non-lethal shock stimuli, in a natural environment such shocks could77

potentially forebode a life threatening event, for instance the presence of a predator. We denote this hazard78

hs.79

Being probabilities, hazards from different sources add up as hΣ(t) = 1− [1− hs(t)][1− hM (t)]. (In the80

limit of small hi or, equivalently, the continuum limit, this reduces to a regular sum.)81

Interestingly, the hazard framework automatically leads to reward discounting – a core feature added82

by hand to many RL models to express that immediate rewards are preferable to future rewards. In the83

hazard formulation rewards and hazards that are far in the future will hardly impact the lifetime. Instead84

it is important to minimize hazards early on. To illustrate discounting in a simple scenario, assume a85

constant permanent hazard and that at a certain time an additional hazard is introduced, active during86

one time-step only. The lifetime is reduced most if the hazard occurs immediately, whereas stimuli far87

in the future have no effect on the lifetime, Fig. 1b. For a constant background hazard, the discounting88

can be shown to be exponential. Furthermore, when the energy reserve is low and the expected lifetime89

shorter, the discounting is stronger, Fig. 1b (red curve).90

Hazard typically also increases with age, however we assume that the experiments are so drastic that91

age dependence of the hazard can be ignored (“biologically immortality”) or averages out. In more detailed92

models such effects could be included. For instance, such models should find that expensive LTM learning93

is less beneficial for aged animals with little expected life-time left.94
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Model: Network Design95
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Figure 2: Schematic of the learning network rooted in the Drosophila brain anatomy. The left panel
demonstrates the feed-forward Decision-making network, complemented by the right panel showing the
feedback Energy-Adaptive learning mechanism, steered by reinforcement signals. The weight change,
denoted by ∆w, is modulated by the reinforcement. The subscript represents the action of the current
trial, either approach (+) or avoid (−).

We implemented a network reflecting the Drosophila brain’s anatomical structure, and a complementary96

feedback network associated with reinforcement, Fig. 2. In Drosophila aversive conditioning experiments,97

an odor (conditioned stimulus, CS) is paired with a shock (unconditioned stimulus, US). By repeating98

exposure to the CS-US pairs a few times, the flies learn to avoid the odor, as can be subsequently tested in99

a T-maze. The underlying circuitry, involving sensory encoding Kenyon Cells (KCs) and action-driving100

Mushroom Body Output Neurons (MBONs), is relatively well understood (Tempel et al., 1983; Tully et al.,101

1994; Bennett et al., 2021).102

The network comprises a population of sensory KCs that represent the odor signal, which subsequently103

drives the Mushroom Body Output Neurons (MBONs) that determine behavior, Fig. 2 left. The firing rate104

of the KC population is denoted x.105

The activities of the MBONs are split up in the ARM and LTM pathways (see below). Each pathway106

is modeled as a linear neuron BLTM
± = wLTM

± x, and BARM
± = wARM

± x, where ± indicates approach (+)107

and avoidance (−) behaviors, and the parameters wLTM
± and wARM

± denote the synaptic strengths from108

the KCs to the MBONs. Given the additive nature of MBON signals (Aso et al., 2014b), we posit that109

total neuronal activity driving the approach and avoidance behaviors result from the sum of the ARM and110

LTM components. Hence111

B± = (wARM
± + wLTM

± )x (3)

The total weight for approach and avoidance behaviors is w± = wARM
± + wLTM

± .112

Winner-Take-All competition between the two MBON neuron populations determines the fly’s action.113

The competition process is not explicitly modeled, but could reflect lateral inhibition and attractor dynamics.114

We assume that the neural processing and resulting decision making is noisy. (Otherwise, even the smallest115

imbalance would fully determine the decision). This randomness also means that the organism does not116

fully commit to avoiding even the smallest hazard, but keeps exploring as well. Assuming independent117

Poisson spike-time variability, the input to the decision making neurons has a variance equal to the mean118

input. At sufficient high rates this is well approximated by normal distribution with a variance equal to119
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the mean. The probability to avoid P− is a sigmoidal function of the difference in activities B+ and B−120

P− = P (B− > B+)

=
1

2
+

1

2
erf

√
µ

w− − w+√
w2
− + w2

+

 (4)

The mean µ of x can be extracted from the observation that when learning is saturated the performance121

corresponds to about P− = 0.925 (Tully et al., 1994). Using w− = 1 and w+ = 1/2 (see below), this yields122

µ = 10.3. The µ is the average number of spikes the MBON neuron receives from the sensory neurons123

within one integration period (e.g. 103Hz in 100ms); encouragingly it is similar to the value used in Bennett124

et al. (2021).125

Reward driven plasticity126

The reward when approaching (+) the aversive stimulus is negative and denoted R+, without loss of127

generality we set hs = −R+. That is, the punishment is expressed as its hazard. The reward for avoiding128

the stimulus, R−, is set to 0. In the MB of Drosophila, reinforcement-related signals are encoded by129

dopamine neurons (DANs) (Aso et al., 2014a), and these DAN signals modulate the plasticity of the130

synapse connecting KCs to MBONs (Cohn et al., 2015; Bennett et al., 2021). The synaptic strength131

associated with the selected behavior is updated based on the discrepancy between the reward from the132

current trial R±(t) and the expected reward R±, also known as the reward prediction error. The synaptic133

weight modification is134

∆w± = η
[
R±(t)− R̄±(t− 1)

]
x, (5)

where η is the learning rate. In line with experiments (Hige et al., 2015), the learning according to Eq.5,135

occurs through depression of the approach action, rather than a strengthening of the avoid action. The136

learning rate was calibrated by using that in Tully et al. (1994) after a single cycle of learning, avoidance137

performance was P− = 0.85, which corresponds to w− = 0.8. Using hs = 0.1 we find η = 0.6. As the138

performance early after learning through LTM and ARM are similar, the same learning rate was used for139

both ARM and LTM learning.140

The R̄± in Eq.5 is the running average of the reward of either action. The expected rewards are141

initialized at zero at the beginning of the simulation. The expected reward is updated when that action is142

chosen, otherwise it decays to zero143

R̄±(t) = (1− α)R̄±(t) if not choosen (6)

= (1− α)R̄±(t) + αR(t) if choosen (7)

where α = 1 − e−1/τR , and the decay time constant of the average, τR, is set equal to the ARM decay144

(below).145
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Synaptic plasticity pathways146

Experiments show that ARM and LTM memory formation are mutual exclusive (Isabel et al., 2004). Hence147

the synaptic weight changes given by Eq. 5 are expressed in either LTM or ARM weights. Updating the148

weight in the ARM pathway (wARM
± ) comes at negligible metabolic cost (Mery and Kawecki, 2005; Plaçais149

and Preat, 2013). However, the ARM weights decay over time, so that the update equation reads150

wARM
± (t) = γARMwARM

± (t− 1) + ∆w± (8)

Here γARM is the ARM decay rate. To estimate its value, we use that the data in Tully et al. (1994), where151

flies where exposed to massed training and the memory decay was measured. In four days the probability152

for the correct action decayed from P− = 0.925 to P− = 0.525 (in terms of the performance index used153

there, from 85% to 5%). In the model the memory extinction is found by substitution of Eq. 8 in Eq. 4. A154

fit yields γARM = 0.34.155

When, in contrast, LTM is expressed, the weight updates do not decay156

wLTM
± (t) = wLTM

± (t− 1) + ∆w± (9)

However, LTM is metabolically costly (Mery and Kawecki, 2005). We examine two abstract energy models.157

The first assumes that the metabolic energy cost of LTM formation decreases the energy reserve by an158

amount proportional to the weight change (Li and van Rossum, 2020)159

M1(t) = M1(t− 1)− cLTM

(
|∆wLTM

+ |+ |∆wLTM
− |

)
(10)

The parameter cLTM denotes the energy cost of LTM. In experiments LTM before starvation reduced the160

survival time in female flies from 26 to 22 hrs (Mery and Kawecki, 2005), this approximately corresponds161

to cLTM = 0.27 (see Girard et al., 2023, for details). The ARM weights were initialized at 0; the LTM162

weights at 0.5.163

An alternative energy model, termed M0, assumes that the energy is used whenever LTM plasticity164

occurs, but it is independent of the amount of synaptic strength change,165

M0(t) = M0(t− 1)− dLTM if |∆wLTM
± | ≠ 0.

Simulation of the single exposure experiments, yields a calibration dLTM = 0.1. Mathematically, the energy166

models corresponds to the L1 and L0 norms of the weight updates (van Rossum, 2023). The subscript167

distinguishes between the two variants for the energy consumed by LTM. To summarize168

M1-energy: Energy equals the total amount of LTM synaptic weight change, e.g. number of receptors169

inserted and removed.170

M0-energy: Energy equals the total number of LTM events.171

We are not aware of experiments that decide between these energy models; future experiments hopefully172

will. Note that interactions between ARM and LTM pathways as well as interactions across time, that173

could in principle increase or reduce energy requirements, are also ignored.174
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Figure 3: ARM vs LTM learning during the simulated aversive conditioning protocol. a) Evolution of
performance, weights, energy reserve, and hazard. Left panel: ARM only learning. Right: LTM learning
under the M0 and M1 energy model.
b) Life-time histogram of 10000 flies under either pathway. Because the total hazard variations are relatively
small, the distributions are close to exponential. However, for the M0 energy model, lifetimes are much
shorter. (Parameters: stimulus hazard hs = 0.2, initial energy reserve 0.5).

Stimulus protocol175

In the simulation an odor is presented each day, which when approached, leads to a hazard of killing the176

fly and hence is to be avoided. In detail, on every day: the fly chooses stochastically to approach or avoid177

the stimulus (Eq. 4); the reward and reward expectation are updated (Eq. 7); the synapses are updated178

(Eq.5); the energy reserve is updated; the hazards are calculated; and finally the expected reward and179

ARM weights are decayed. The protocol is given to 10000 flies and repeated 50 days at the end of which180

all flies will have died.181

The simulation contains in principle two stochastic elements: first, the decision to avoid the stimulus182

stochastic (Eq.4) and, second, the hazard is a probability to be evaluated every day for every fly, Fig.1. As183

a technicality, by calculating the population average expected lifetime from the hazards (Eq. 1), we remove184

this second source of variability in the simulation and reduce variability that would otherwise require larger185

simulated populations. Code for the paper can be found at github.com/vanrossumlab/neuroeconomicRL.186

Results187

ARM versus LTM learning188

We first illustrate the model by assuming that flies exclusively use either the ARM or the LTM pathway.189

We simulate a population of flies that is subject to the following experiment: Each day an odor is presented,190

which when approached, leads to a hazard of killing the fly and hence is to be avoided. In addition there is191

a hazard to die from starvation, Eq. 2. We initially assume that apart from the energy required for LTM192

learning, there is no change in the energy reserve in the flies.193
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Figure 4: a) Life time effects of learning as a function of the energy reserve at day 0. ARM learning (red
curve) is always better than no learning (black line). LTM (blue curve) is only beneficial when the energy
reserve is high and the energy use is proportional to update size. (Stimulus hazard hs = 0.1).
b) Both the initial energy and hazard level influence whether LTM learning increases life-time over ARM
learning. When the hazard is high, is better to invoke LTM at lower energy reserves (M1 energy model).

We track the evolution of the hazard, synaptic weights, energy reserve, and performance as measured194

by avoidance of the stimulus, Fig. 3a. With ARM-pathway learning (left panels), performance improves195

but does not exceed 70%, as the flies forget between the exposures. As a result the stimulus hazard remains196

substantial, however, the energy reserve stays high and starvation hazard low. The synaptic weights (and197

as a result behavior) oscillate slightly before settling down due to the updates in the expected reward.198

In contrast, in LTM learning performance becomes close to perfect after some 4 days, always avoiding199

the stimulus hazard, Fig. 3a right panels. The performance increases only slowly, because on the first trial200

only half the flies will randomly approach the stimulus and will learn, and so on.201

While the hazard will be avoided, the expenditure of energy needed for LTM learning increases the202

starvation hazard. This effect is mild if the energy consumed by LTM is proportional to the size of the203

weight update (M1 energy). In this case the difference between the reward and its expectation and hence204

the amount of weight change diminishes as learning progresses. Only the first few learning events are costly205

(blue curves). However, when the cost is independent of the amount of weight update (M0, cyan curves),206

the energy is quickly depleted and the starvation hazard rises rapidly.207

In this example ARM learning yields the longest lifetime of 5.6 days, LTM learning yields 4.4 days208

using the M1 energy model; their lifetime distributions are close to exponential. Using the M0 energy209

model the lifetime is only 2.4 days, Fig. 3b.210

These simulations raise the question which memory pathway generally yields to longest life time for a211

given hazard and initial energy reserve. We varied the initial energy reserve of the flies, and determine the212

lifetime with ARM and LTM learning and in the absence of learning, Fig. 4a. Because in the model ARM213

learning comes at no cost, it is always better to learn with ARM than not learning at all. Under the M0214

energy model, LTM learning never extends lifetimes (the cyan curve lies under all others). Under the M1215

energy model (blue curve), there is a transition point. When initial energy is low, avoiding starvation is216

more important than avoiding the hazard, hence ARM yields longer lifetimes than LTM. In contrast, with a217

large energy reserve, the investment in avoiding the hazard is worthwhile and LTM yields a longer lifetime.218
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Figure 5: Adaptive switching between ARM and LTM can improve lifetime. Population life time vs
threshold for two hazard levels. LTM was employed whenever the energy exceeded a certain threshold
(x-axis). Left: low hazard (0.05) and high hazard (0.2) . Using the M1 energy, the adaptive model (green)
increases average population life time compare d to either LTM or ARM exclusively. For the M0 energy
model this only happens at large hazards. The optimal threshold that gives the longest lifetime depends
on stimulus hazard.

The point at which LTM is better, depends on the stimulus strength. The higher the hazard, the lower219

the transition point, Fig. 4b. In the Appendix we derive an equation that gives insight in the break-even220

point, however, a full analytical treatment seems out of reach, because learning does not only affect the221

next decision, but all future (discounted) decisions. In the remainder we therefor rely on simulations.222

Threshold Models223

In the above simulations the memory pathway was set once and for all at the start of the simulation. While224

this is useful to gain understanding, it makes more sense to choose the pathway depending on the current225

energy reserve M(t). We assume that the expensive LTM pathway was used whenever the energy reserve226

exceeded a threshold, otherwise the ARM pathway was updated. To show the benefit of this algorithm we227

consider a population of flies with different initial energies, drawn uniformly between 0 and the maximum228

and measured the average lifetime as the threshold was varied, Fig. 5. Note that, as expected, when the229

threshold is 0 (1), the lifetime equals that of LTM-only (ARM-only). When the threshold parameter is230

tuned (x-axis), the lifetime can exceed that of exclusively using either LTM (blue) or ARM (red). The231

peak of the curve shifts left as the stimulus hazard increases. That is, the larger the stimulus hazard, the232

lower the threshold. Under the M0 energy model, adaptive learning is only beneficial for large stimulus233
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hazards, Fig. 5bottom row.234

General threshold models235

In the above adaptive switching model, LTM will be employed when the energy reserve is sufficient, even if236

the reward prediction error and hence weight changes are small. This means that energy might be spend for237

only a small change in avoidance behavior. Therefore, we made the threshold both dependent on the current238

energy reserve M(t), and the difference between expected and actual reward, ∆R = |R(t)− R̄(t− 1)|. We239

parameterized the switch so that the LTM pathway was employed whenever240

cMM + cR ∆R > 1

The parameters cM and cR define a line the M,∆R-plane. When cR is set to zero, we retrieve the energy241

threshold model: M has to be larger than 1/cM for LTM to occur, Fig 6a. Likewise, when cM = 0 the242

decision solely depends on ∆R. Generally, when cM > 0, a large reward prediction error ∆R will lower the243

threshold for LTM memory.244

We varied the stimulus hazard and optimized the cM and cR parameters of the threshold. The life-time245

is maximal around cM = 1.01 and cR = 1.76, Fig. 6b. If a threshold on just the energy were optimal, the246

optimal threshold would be lying on the cR = 0 axis. And similarly, when just a threshold on ∆R would247

suffice, the optimal solution would lie on on the cM = 0 axis. As the optimum lies away from both axes, a248

joint threshold yields the longest lifetimes.249

The lifetime using optimized parameters exceeds that of exclusively using the ARM or LTM pathway250

across stimulus hazards, Fig. 6 right. The adaptive threshold model picks the ’best of both worlds’.251

Ideally, the optimal threshold should be such that a change in stimulus hazard should not require a252

re-tuning of the threshold parameters. We calculated the life-time for the parameters that were best on253

average, and compared it to the life-time optimized for each value of stimulus hazard. The lifetimes using254

the fixed parameters were practically indistinguishable from the individually tuned threshold parameters.255

Hence the threshold model is robust against changes of the stimulus parameter..256

We also tried a variant in which either energy reserve or reward error where above a threshold, as well257

as a model where both energy reserve and reward error needed to exceed a threshold; these both did not258

perform as well as the above model (not shown).259

For the M0 energy model the results are very comparable (Supplementary fig 9). As above, under the260

M0 energy model the lifetime is severely shortened when always using the LTM pathway, because every261

LTM plasticity is expensive even if the weight changes are small. But again, adaptively switching to LTM262

under the right circumstances again improves lifetime, Fig.9a. The optimal cM parameter is somewhat263

smaller (cM = 0.97, cR = 2.35), that is, the energy needs to be larger to switch to LTM than for the M1264

energy model, Fig.9 b.265

We repeated this analysis for two other parameters of the stimulation protocol. First, we fixed the266

stimulus hazard (0.1), but we assumed that approaching the stimulus only sometimes lead to exposure to267

the hazard. The hazard probability was varied between 0 and 1, and determined on each trial independently268

whether the hazard was encountered or not. As expected, at the zero stimulus probability, the lifetime was269

maximal and independent of any learning. Again the adaptive threshold robustly improved lifetime, Fig.7270
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left.271

Next, we modified that model so that in addition to the energy consumption by LTM plasticity, there was272

a fixed daily energy intake/consumption. The lifetime has a sigmoidal shape as a function of this amount,273

Fig.7 right. When there is a high consumption (left part of graph), the fly heads for perishing anyway, and274

investment in LTM learning only hastens that. But when there is a daily net intake, the investment in LTM275

memory helps to escape the hazard, while future starvation is unlikely. The lifetimes using LTM memory276

now exceed those from ARM learning. Again the adaptive algorithm improves the lifetime, outperforming277

either ARM or LTM exclusive learning. The results for both daily energy intake/consumption and the278

probabilistic stimulus also hold when considering the M0 energy (not shown).279

Appetitive conditioning280

While we designed the model for avoidance conditioning, the same circuit is thought to underlie appetitive281

conditioning. To model this we assumed that approaching the reward increased the energy reserve with an282

amount 0.05. The only hazard that the fly encountered was from starvation. We first examined the effect283

of learning on life time as a function of initial energy for the various learning protocols. In contrast to284

aversive conditioning, the learning makes only little difference on the life time, Fig. 8left, cf. Fig.4. ARM285

learning performs very well throughout. The reason is that in contrast to the aversive protocol, the ARM286

memory is daily refreshed by approaching the stimulus and boosted in appetitive conditioning. Moreover,287

as the maximum energy was capped at 1, gaining extra reward did not carry a large benefit, whereas in288

aversive conditioning avoiding the hazard is always important.289

Next, we included a daily net energy increase or decrease. As in the above aversive conditioning, the290

mean life time depends strongly on this daily amount, Fig. 8 right. Learning however only slightly improves291

lifetime. Furthermore, for the used parameters LTM learning was never beneficial over ARM learning.292

Only in a narrow region LTM learning outperforms no-learning.293

It is known that flies also switch between LTM and ARM pathways in appetitive conditioning. However,294

in contrast to aversive conditioning, the LTM pathway is only activated when the animals are starved prior295
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to conditioning (Trannoy et al., 2011). Unlike the experimental findings, there would seem no reason why296

LTM would more beneficial at low energy than at high energy reserves, Fig. 8left. When the animal has297

enough reserve there is no reason not to use LTM. However, it might that the LTM requires other resources298

that are scarce, or that LTM learning carries other detrimental consequences.299

Discussion300

Inspired by experimental findings that LTM memory formation is metabolically costly, and that flies301

stop aversive LTM learning under starvation, we have explored how such adaptive learning can increase302

evolutionary fitness and how the switch between LTM and ARM should be set. Using the hazard framework,303

a switch to LTM memory when the energy reserve is high and the reward prediction error is high, improves304

population life-time.305

Necessarily, simulations need to assume a certain hazard exposure protocol. The optimal parameters306

that set the switch point will be dependent on this. But some generalizations are immediately obvious. For307

instance, when the stimulus interval is increased, the ARM memory will decay more between events, and308

ARM becomes less effective. As a result the fly should switch to LTM sooner. As another extreme example,309

if the stimulus were only presented once, learning would be useless and should be turned off. The biological310

parameters have presumably been optimized for performance across the ensemble of naturally encountered311

environments and hence the parameters values found here are not expected to be exactly those found in312

experiments. Future studies could aim to close this gap and study more realistic and richer environments,313

including those with temporal correlations. The adaptive algorithm might be adjusted to include stimulus314

repetition and spacing effects (Anderson and Schooler, 1991).315

We have relied on mean population lifetime as fitness measure, however true fitness is the ability to316

pass genetic material to offspring. A more involved model could use a fitness measure that reflects that.317

For instance, for a population it might be better to have a wide spread in the life-time distribution, so that318

some individuals would survive periods of famine.319

While the current work focused on Drosophila anatomy and physiology, there are indications that320

similar principles might be at work in mammals. In contrast to the fruit-fly’s ARM and LTM pathways,321

transient and persistent forms of mammalian long term potentiation (LTP) appear to be expressed at the322

same synapse. However, also in mammals there is physiological evidence for down-regulation of persistent323

LTP under energy scarcity via the AMPK pathway (Potter et al., 2010), and there is behavioral evidence for324

a correlation between blood glucose level and memory formation (Gold, 1986; Smith et al., 2011). Likewise,325

the presence of a dopamine reward signal, typically interpreted as signaling the reward prediction error,326

lowers the threshold for late-phase LTP (O’Carroll et al., 2006; Bethus et al., 2010; Lisman et al., 2011).327

Finally, reinforcement learning has many engineering and software applications. The results found here328

could potentially enhance the performance of RL algorithms, especially in resource-limited settings or tasks329

requiring multi-objective optimization. The energy requirements in these applications could be associated to330

computing the weight updates, but also for computer hardware, memory storage is energetically expensive.331
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1 APPENDIX: Micro economic Trade-off for learning395

The optimal memory strategy maximizes the lifespan. The animal has to decide whether to invest energy396

in long term memory of the CS-US associate. We derive an expression for the change in lifetime given a397

small weight update, which in turn leads to a small change in the hazards δh(t). Under this assumption398

the change in expected lifetime between LTM and no learning (NL) can be expanded as399

l − lNL ≈ −
∑
t

[
e−

∑
t′ h

NL(t′)
∑
t′

δh(t′)

]

Given ARM learning with a small weight change ∆w, the temporary reduction in stimulus hazard is400

δhs(t) = |∆w|h0s
∂P−(w−, w+, µ, t)

∂w−
exp(−t log γ)

For LTM learning, the expression is similar but the decay term is absent. LTM learning at the same time401

increases starvation hazard as402

δhM = cLTM |∆w|hNL
M

The difference in expected lifetime between ARM and LTM learning is in first order of |∆w|,403

lARM − lLTM ≈ |∆w|
∑
t

[
e−

∑
t′ h

NL(t′)
∑
t′

{
h0s

∂P−(w−, w+, µ, t
′)

∂w−
(1− e−t′ log γ) + cLTMhNL

M

}]
(11)

Where it should be noted that because learning decreases the probability of encountering the stimulus404

(∂P/∂w < 0), the first term in the curly brackets is negative, while the second term is strictly positive. h0s405

denotes the stimulus hazard if it is approached.406

When the lifetime difference is larger than zero, ARM learning should be chosen over LTM learning.407

While complex, the expression gives insight in when ARM memory is preferable to LTM. It happens when:408

1) The stimulus hazard h0s is small, 2) when the impact of the learning on the choice probability ∂P/∂w409

is small, e.g. late in the learning process, 3) the ARM decay γ is slow, and 4) the energy cost of LTM,410

cLTM is high. Finally, the first r.h.s term attenuates the benefit of long lasting memory, so that ARM is411

generally preferable when the expected lifetime is short.412

Nevertheless, it would appear challenging for a fly to estimate the expected life time based on this413

expression to decide whether to use ARM or LTM memory, so instead we a looking for approximate414

heuristic algorithms that only rely on observables directly accessible by the organism and are close to415

optimal under various conditions.416
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Figure 9: Supplementary figure. As Figure 6 but using the M0 energy model. a) Life-time as a function of
the threshold parameters. Average across stimulus hazards b) Life-time as function of the stimulus hazard.
As for the M1 energy model, the adaptive plasticity yields the longest life time.
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